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ABSTRACT: In this study, we proposed a numerical technique for solving time-dependent partial differential
equations that arise in the electro-osmotic flow of Carreau fluid across a stationary plate based on a modified exponential
integrator. The scheme is comprised of two explicit stages. One is the exponential integrator type stage, and the
second is the Runge-Kutta type stage. The spatial-dependent terms are discretized using the compact technique. The
compact scheme can achieve fourth or sixth-order spatial accuracy, while the proposed scheme attains second-order
temporal accuracy. Also, a mathematical model for the electro-osmotic flow of Carreau fluid over the stationary sheet
is presented with heat and mass transfer effects. The governing equations are transformed into dimensionless partial
differential equations and solved by the proposed scheme. Simulation results reveal that increasing the Helmholtz–
Smoluchowski velocity UHS by 400% leads to a 60%–75% rise in peak flow velocity, while the electro-osmotic parameter
me enhances near-wall acceleration. Conversely, velocity decreases significantly with higher Weissenberg numbers,
indicating the Carreau fluid’s elastic resistance and increased magnetic field strength due to improved Lorentz forces.
Temperature rises with the thermal conductivity parameter ε2, while higher reaction rates γ diminish concentration
and local Sherwood number values. The simulation findings show the scheme’s correctness and efficacy in capturing the
complicated interactions in non-Newtonian electro-osmotic transport by revealing the notable impact of electrokinetic
factors on flow behaviour. The proposed model is particularly relevant for Biological Micro-Electro-Mechanical Systems
(BioMEMS) applications, where precise control of electro-thermal transport in non-Newtonian fluids is critical for
lab-on-a-chip diagnostics, drug delivery, and micro-scale thermal management.

KEYWORDS: Modified exponential integrator; stability; convergence; carreau fluid: electro-osmosis flow; BioMEMS
applications

1 Introduction
Numerical methods play a vital role in solving differential equations, which are essential because some

physical phenomena can be expressed as differential equations. Ordinary and partial differential equations
are the two main types of differential equations. One independent variable makes up ordinary differential
equations, while two or more independent variables are involved in partial differential equations. So,
ordinary differential equations are one way of discretization, but partial differential equations require more
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than one way of discretization. Some differential equations exist that contain time-dependent terms. So, these
time-dependent terms are approximated by numerical schemes. There exist two types of numerical schemes.
Among these, some schemes are explicit, and others are implicit categories. The explicit scheme does not
require linearization of the non-linear terms in differential equations, but the implicit schemes require
linearization. Also, one additional iterative scheme can be used to solve difference equations discretized by
the implicit schemes. However, some implicit schemes are unconditionally stable so that any step length
can be used, but primarily explicit schemes are conditionally stable, so they have restrictions on step size.
If appropriate step length is chosen for explicit schemes, the stable solution can be obtained; otherwise, the
solution will diverge if the step size or involved parameter in the given differential equation does not meet the
stability condition. If the finite difference schemes do space discretization, a stability analysis, called Fourier
series analysis, exists to find the stability condition. Fourier series analysis can be employed for both explicit
and implicit schemes. It gives an exact stability condition for linear differential equations but estimates the
exact stability condition for non-linear differential equations. Also, explicit and implicit schemes are divided
into multi-step or multi-stage schemes. Multi-stage Runge-Kutta-type schemes require information at a one-
time level to find the solution at the next time level. These methods contain one or more predictor stages and
one corrector stage.

The process known as electro-osmosis occurs when an electric field causes fluid to flow through a porous
substance or across a surface. It happens when a fluid in contact with a charged surface is exposed to an
electric field, which causes the fluid to move in reaction to the electric force. The boundary between a solid
and a fluid causes the formation of an electric double layer. This layer comprises a Stern layer of adsorbed
ions and a diffuse counter-ion layer in the fluid. When an electric field is generated perpendicular to the
surface, the charged particles in the fluid move toward the electrodes, dragging the bulk fluid with them.
Electro-osmotic flow is the term for the fluid flow produced by this movement. Electro-osmosis is a flexible
and effective method for controlling fluid flow in various applications by utilizing the interaction between
electric fields and charged surfaces or particles.

The presence of ions in viscoelastic liquids causes the generation of electric Coulomb forces, which exert
an electric field on the ions [1]. Electro-osmosis efficiently modifies and regulates blood flow and structure
[2]. Levine et al. [3] and the team conducted some of the earliest theoretical investigations in electrokinetic
rheology. Misra et al. [4] conducted a theoretical investigation examining how electro-osmotic forces affected
the flow of micropolar liquids through a vibrating tiny conduit. Regarding blood rheology, Jubery looked
into the physical consequences of electrokinetic events [5]. The effects of an electric field on electro-osmotic
flow across a T-junction were investigated by Dutta et al. [6].

Both Jeffrey [7] in 1915 and Hamel [8] in 2009 were the first to find an exact solution to the problem
of the constant flow of an incompressible fluid inside two intersecting planes with a converging-diverging
character. The two-dimensional flow of Newtonian and non-Newtonian fluids of the Jeffrey-Hamel type
via an inclined wall channel has been the subject of numerous investigations since then. The constant two-
dimensional Jeffrey-Hamel nanofluid flow in a non-Darcy permeable medium was investigated in [9], along
with the thermal leap and changing fluid properties. With an oblique magnetic ground, variable thermal
conductivity, heat sink/source influences, and two collateral sheets, Dinarvand et al. [10] computationally
investigated the aqueous Fe3O4/CNTs binary nanofluid flow. Scholarly literature such as Garimella et al. [11],
Harley et al. [12], etc., extensively details the Jeffery-Hamel flow in convergent-diverging channels, which
is fundamental for Newtonian and non-Newtonian fluids. PJ developed the non-Newtonian fluid model.
Carreau [13] provides a more comprehensive explanation of the properties of materials whose viscosity is
affected by the shear rate. This model effectively depicts the thickening and thinning properties at different
shear speeds.
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Regarding Carreau nanofluid flow, Khan and Ali Shehzad investigate the effects of microstructure on
the oscillating and periodically shifting configuration [14]. Akbar and Nadeem has utilized the Carreau
fluid model to represent blood flow via a narrowing, stenotic artery [15]. Recent efforts have explored
electro-osmotic transport in Carreau fluids using advanced numerical techniques to capture the non-linear
rheological and electrokinetic behaviour under microchannel confinement [16]. The influence of stochastic
fluctuations and porous medium resistance on electro-osmotic flow has also been investigated, revealing the
critical role of random perturbations and energy dissipation in shaping transport behaviour in microfluidic
systems [17]. According to Hayat et al. [18], non-Newtonian fluids have extraordinarily complex constitutive
equations, increasing the number of terms and governing equation order. A numerical investigation on the
steady incompressible laminar two-dimensional hybrid nanofluid flow upon a convectively warmed moving
wedge with radiative transition has been carried out by Berrehal et al. [19] based on the Carreau model of
blood viscosity, which is a non-linear model concerning shear rate. For the flow in circular pipes and thin
slits, Sochi [20] used two separate fluids, the Carreau, and the Cross fluids, to study the analytical solutions.
About Taylor’s famous paint scraping problem, which provides a model for studying wall-driven corner flow
caused by an oblique plane moving at a constant speed, Chaffin and Rees [21] studied the behaviour of the
inertia-less limit of a Carreau fluid in this kind of system. Recent research has investigated electro-osmotic
flow in complicated shapes and viscoelastic fluids. For example, the work by [22] looks at electro-osmotic
peristaltic streaming of a fractional second-grade viscoelastic nanofluid with carbon nanotubes in a ciliated
tube. This shows how electrokinetics and non-Newtonian behaviour interact in fractional-order modelling
frameworks. Using fractional viscoelastic models, researchers have looked at electro-osmotic transport in
non-Newtonian fluids [23]. Most of these works are around peristaltic movements and certain shapes.

In contrast, our study looks at the electro-thermal flow of Carreau fluids with full Multiphysics
coupling, which is important for BioMEMS applications. Researchers have also investigated magnetized
non-Newtonian nanofluids in biomedical settings. For example, the study in [24] did a thermal analysis
of blood-based nanofluid flow with a couple of stresses in a vertical microchannel under magnetic effects.
This showed how the interaction of the magnetic field and the microstructural fluid behaviour affected
temperature regulation, an important factor for thermal control in bio-microdevices. In other studies,
optimization methods have been used on complicated non-Newtonian models. For instance, the study
in [25] used response surface methodology to optimize the flow of Eyring–Powell fluids with Cattaneo–
Christov heat flux and cross-diffusion effects. This shows how advanced thermal models can be combined
with transport phenomena to give precise control in non-linear fluid systems.

In this paper, we proposed a modified exponential integrator-based numerical method for solving
time-dependent partial differential equations generated in the electro-osmotic flow of Carreau fluid over a
stationary plate. Comprising two explicit phases, the suggested method is: the first uses an exponential time
integrator to manage stiff linear components; the second uses a Runge-Kutta-type technique to capture the
non-linear dynamics. We use a compact finite difference method that can provide fourth- or sixth-order
accuracy to improve spatial accuracy. This hybrid computing system performs strongly in stiff, non-
linear domains and second-order time precision. Electric potential, Helmholtz-Smoluchowski velocity, and
thermodiffusive forces’ influences are included to create the mathematical formulation of the EOF problem.
Using the suggested method, the governing equations are non-dimensionalized and solved numerically.
The simulation findings show the notable impact of electrokinetic factors on flow behaviour, proving the
scheme’s correctness and efficiency in capturing the intricate interactions in non-Newtonian electro-osmotic
transport. In this paper, we make the following contributions.

1. We develop a modified two-stage explicit exponential integrator combining exponential and Runge–
Kutta techniques for solving non-linear time-dependent PDEs.
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2. We incorporate a high-order compact finite difference scheme to enhance spatial accuracy, achieving
fourth/sixth-order precision.

3. We model the electro-osmotic flow of Carreau fluid with integrated effects of magnetic field, porous
media, heat, and mass transfer.

4. We captured the influence of variable thermal conductivity and reaction kinetics on flow, temperature,
and concentration profiles.

5. We analyze oscillatory boundary conditions, demonstrating their impact on electrokinetic transport and
thermal diffusion. The study provides a detailed parametric investigation (e.g., We , M , Fs me , γ) and their
influence on velocity, temperature, and concentration, which has direct implications for the design and
tuning of BioMEMS and microfluidic devices where precision control is crucial.

6. We verify that the system may address complicated fluid behavior without linearization or iterative
solvers by maintaining nonlinearity.

The rest of the paper is organized as follows. Section 2 constructs the numerical scheme for solving
time-dependent partial differential equations generated in the electro-osmotic flow of Carreau fluid over a
stationary plate. Section 3 presents a stability analysis for the proposed scheme. Section 4 presents a problem
formulation of the electro-osmotic flow of the Carreau fluid model across a stationary plate. Empirical results
are provided in Section 5. Section 6 concludes the paper.

2 Proposed Exponential Time Integrator Scheme
An explicit predictor-corrector scheme is proposed for solving time-dependent partial differential

equations. The first stage of the scheme is the predictor stage, while the second stage of the scheme is called
the corrector stage. The whole domain is divided into small parts to apply the scheme. First, the solution
is found at an arbitrary time level, and then the actual solution will be found at the next time level. For
constructing the scheme, consider the following time-dependent partial differential equation.

∂p
∂t

= F (p, ∂p
∂x

, ∂p
∂y

, ∂2 p
∂y2 ) (1)

and initial and boundary conditions are given as:

p (0, x , y) = f1 (x , y) , p (t, 0, y) = f2 (t, y) , p (t, x , 0) = f3 (t, x) , p (t, x , L) = f4(t, x)

where L is a finite number and f ′i s are functions of spatial and temporal coordinates.

2.1 Reformulation for Exponential Integrator
For constructing the scheme, Eq. (1) can be written as:

∂p
∂t

= −2p + P (2)

where P = F + 2p. This allows the linear part −2p to be handled by exponential integration.

2.2 Predictor Stage
The predictor or first stage of the scheme can be written as:

pn+1
l ,m = pn

l ,m e−2Δt +
(−e−2Δt + 1)

2
Pn

l ,m (3)
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where Δt is temporal step size and Pn
l ,m = F (pn

l ,m , ∂ p
∂x ∣

n

l ,m
, ∂ p

∂ y ∣
n

l ,m
, ∂2 p

∂ y2 ∣
n

l ,m
) + 2pn

l ,m . We use an exponential

integrator to estimate an intermediate solution pn+1
l ,m at the next time level. This gives a prediction of the

solution using known quantities at time level n.

2.3 Corrector Stage
The second stage, or corrector stage of the scheme, contains three parameters whose values will be

computed by matching terms of the Taylor series expansion of the equation given by:

pn+1
l ,m = apn

l ,m + bpn+1
l ,m + c (eΔt − 1) F(pn+1

l ,m ) (4)

The constants a, b, c are determined using Taylor series expansion to ensure second-order accuracy
in time.

Rewrite Eqs. (3) and (4) as:

pn+1
l ,m = pn

l ,m e−2Δt +
(−e−2Δt + 1)

2
{ ∂p

∂t
∣
n

l ,m
+ 2pn

l ,m} = pn
l ,m +

(−e−2Δt + 1)
2

∂p
∂t

∣
n

l ,m
(5)

pn+1
l ,m = apn

l ,m + bpn+1
l ,m + c (eΔt − 1) ∂p

∂t
∣

n+1

l ,m
(6)

Expanding pn+1
i , j using Taylor series expansion as:

pn+1
l ,m = pn

l ,m + Δt ∂p
∂t

∣
n

l ,m
+ (Δt)2

2
∂2 p
∂t2 ∣

n

l ,m
+ O ((Δt)3) (7)

By putting Eqs. (5) and (7) into Eq. (6).

pn
l ,m + Δt ∂p

∂t
∣
n

l ,m
+ (Δt)2

2
∂2 p
∂t2 ∣

n

l ,m
= apn

l ,m + b (pn
l ,m + (−e−2Δt + 1)

2
( ∂p

∂t
∣
n

l ,m
)) + c(eΔt − 1) { z ∂p

∂t
∣
n

l ,m

+(−e−2Δt + 1)
2

( ∂2 p
∂t2 ∣

n

l ,m
)} (8)

By equating coefficients of pn
l ,m , ∂ p

∂t ∣
n

l ,m
and ∂2 p

∂t2 ∣
n

l ,m
on both sides of Eq. (8) to yield.

1 = a + b

Δt =
b (−e−2Δt + 1)

2
+ c (eΔt − 1)

(Δt)2

2
= c (eΔt − 1)

(−e−2Δt + 1)
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)
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By solving a system of linear Eq. (9) the values for a, b and c are:

a = (1 − e−2Δt)(1 − e−2Δt − 2Δt) + 2(Δt)2

(1 − e−2Δt)2

b =
2Δt (1 − e−2Δt − Δt)

(1 − e−2Δt)2

c = (Δt)2

(1 − e−2Δt) (eΔt − 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

2.4 Spatial Derivative Approximation

Let F = a1 p + a2
∂ p
∂x + a3

∂ p
∂ y + a4

∂2 p
∂ y2 in Eq. (1), then the first and second stages of the proposed scheme

can be expressed as:

pn+1
l ,m = pn

l ,m + (−e−2Δt + 1
2

) {a1 pn
l ,m + a2

∂p
∂x

∣
n

l ,m
+ a3

∂p
∂y

∣
n

l ,m
+ a4

∂2 p
∂y2 ∣

n

l ,m
} (11)

pn+1
l ,m = apn

l ,m + bpn+1
l ,m + c (eΔt − 1)

⎧⎪⎪⎨⎪⎪⎩
a1 pn+1

l ,m + a2
∂p
∂x

∣
n+1

l ,m
+ a3

∂p
∂y

∣
n+1

l ,m
+ a4

∂2 p
∂y2 ∣

n+1

l ,m

⎫⎪⎪⎬⎪⎪⎭
(12)

So far in this work, a time discretizing scheme is constructed, and now a space discretizing scheme is
applied to Eq. (1). We use high-order compact finite difference schemes for spatial derivatives: First derivative
in x: matrix form via M−1

1 N1, First derivative in y: matrix form via M−1
2 N2 and Second derivative in y: matrix

form via M−1
3 N3.

2.5 Final Predictor-Corrector Form (Matrix-Based)
To implement the space discretizing scheme, matrices are provided as:

pn+1
l ,m = pn

l ,m + (−e−2Δt + 1
2

) [a1 pn
l ,m + a2M−1

1 N1 pn
l ,m + a3M−1

2 N2 pn
l ,m + a4M−1

3 N3 pn
l ,m] (13)

pn+1
l ,m = apn

l ,m + bpn+1
l ,m + c (eΔt − 1) [a1 pn+1

l ,m + a2M−1
1 N1 pn+1

l ,m + a3M−1
2 N2 pn+1

l ,m + a4M−1
3 N3 pn+1

l ,m ] (14)

where M′i s and N ′i s are matrices generated by the coefficients of the left- and right-hand sides of the following
equations.

β1 p′∣nl−1,m + p′∣nl ,m + β1 p′∣nl+1,m = c○
(pn

l+1,m − pn
l−1,m)

2Δx
+ c1

(pn
l+2,m − pn

l−2,m)
4Δx

(15)

β1 p′∣nl ,m−1 + p′∣nl ,m + β1 p′∣nl ,m+1 = c○
(pn

l ,m+1 − pn
l ,m−1)

2Δx
+ c1

(pn
l ,m+2 − pn

l ,m−2)
4Δx

(16)

β2 p′′∣nl ,m−1 + p′′∣nl ,m + β2 p′′∣nl ,m+1 = c2
(pn

l ,m+1 − 2pn
l ,m + pn

l ,m−1)
(Δx)2 + c3

(pn
l ,m+2 − 2pn

l ,m + pn
l ,m−2)

4 (Δy)2 (17)

where c○ = 2/3 (β1 + 2) , c1 = 1/3 (4β1 − 1) , c2 = 4/3 (1 − β2) , c3 = 1/3(10β2 − 1).
The proposed methodology is an explicit two-stage predictor-corrector method designed to solve time-

dependent partial differential equations with high accuracy and computational efficiency. While the second
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stage improves the answer using a Runge-Kutta-type corrector, the first stage uses an exponential integrator
to manage the stiff linear component of the governing equations efficiently. The method obtains second-
order time precision using analytical determination of the weighting coefficients via Taylor series expansion.
Compact finite difference approximations are used to provide high-order spatial accuracy; they can provide
fourth- or sixth-order accuracy depending on the formulation. The method is also designed in matrix form
for quick execution and scaling to more dimensional issues. Its clear character makes it especially appropriate
for simulating non-linear and electrokinetically driven non-Newtonian flows, such as those modelled by the
Carreau fluid under electro-osmotic circumstances with heat and mass transfer influences, since it removes
the need for iterative solvers.

3 Stability Analysis
The Fourier series analysis serves as a criterion for determining the stability conditions of finite

difference schemes. The study provides precise conditions for linear partial differential equations and assesses
the stability conditions for non-linear differential equations. To employ this stability analysis, consider the
following transformations.

M1e l Iψ1+mIψ2 = β1e(l+1)Iψ1+mIψ2 + e l Iψ1+mIψ2 + β1e(l−1)Iψ1+mIψ2 (18)

N1e l Iψ1+mIψ2 = c○
(e(l+1)Iψ1+mIψ2 − e(l−1)Iψ1+mIψ2 )

2Δx
+ c1

(e(l+2)Iψ1+mIψ2 − e(l−2)Iψ1+mIψ2 )
4Δx

(19)

M2e l Iψ1+mIψ2 = β1e l Iψ1+(m+1)Iψ2 + e l Iψ1+mIψ2 + β1e l Iψ1+(m−1)Iψ2 (20)

N2e l Iψ1+mIψ2 = c○
(e l Iψ1+(m+1)Iψ2 − e l Iψ1+(m−1)Iψ2 )

2Δy
+ c1

(e l Iψ1+(m+2)Iψ2 − e l Iψ1+(m−2)Iψ2 )
4Δy

(21)

M3e l Iψ1+mIψ2 = β2e l Iψ1+(m+1)Iψ2 + e l Iψ1+mIψ2 + β2e l Iψ1+(m−1)Iψ2 (22)

N3e l Iψ1+mIψ2 = c2
(e l Iψ1+(m+1)Iψ2 − 2e l Iψ1+mIψ2 + e l Iψ1+(m−1)Iψ2 )

(Δy)2

+ c3
(e l Iψ1+(m+2)Iψ2 − 2e l Iψ1+mIψ2 + e l Iψ1+(m−2)Iψ2 )

4 (Δy)2 (23)

By employing transformations (18)–(23) into the scheme’s first stage and simplifying it.

pn+1
l ,m = pn

l ,m e−2Δt + (−e−2Δt + 1
2

) {a1 + a2 ( c○Isinψ1 + 2c1Isinψ1

2Δx(2β1cosψ1 + 1) ) + a3 ( c○Isinψ2 + 2c1Isinψ2

2Δy(2β1cosψ2 + 1) )

+a4 ( c2(cosφ2 − 1) + 2c3(cosφ2 − 1)
(Δy)2(2β2cosψ2 + 1) ) + 2} pn

l ,m (24)

Eq. (24) can be written as:

pn+1
l ,m = (γ1 + Iγ2)pn

l ,m (25)

where γ1 = e−2Δt + (−e−2Δt + 1
2

) {a4 ( c2 (cosφ2 − 1) + 2c3(cosφ2 − 1)
(Δy)2 (2γ2cosφ2 + 1)

) + a1 + 2} and β2 =

(−e−2Δt + 1
2

) {a2 (2c○sinφ1 + c1sinφ1

2Δx(2γ1cosφ1 + 1) ) + a3 (2c○sinφ2 + c1sinφ2

2Δy(2γ1cosφ2 + 1) )}.
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Now employing the transformations (18)–(23) into second stage of scheme that results in:

pn+1
l ,m = apn

l ,m + bpn+1
l ,m + c(eΔt − 1) [a1 + a2 ( c○Isinψ1 + 2c1Isinψ1

2Δx(2β1cosφ1 + 1) ) + a3 ( c○Isinψ2 + 2c1Isinψ2

2Δy(2β1cosψ2 + 1) )

+a4 ( c2(cosψ2 − 1) + 2c3(cosψ2 − 1)
(Δy)2(2β2cosψ2 + 1) )] pn+1

l ,m (26)

By rewriting Eq. (26) as:

pn+1
l ,m = γ3 pn

l ,m + (γ4 + Iγ5) pn+1
l ,m (27)

where γ3 = a

γ5 = c (eΔt − 1) {a2 ( c○sinψ1 + 2c1sinψ1

2Δx(2β1cosψ1 + 1)) + a3 ( c○sinψ2 + 2c1sinψ2

2Δy(2β1cosψ2 + 1) )}

γ4 = b + c (eΔt − 1) {a4 ( c2 (cosψ2 − 1) + 2c3(cosψ2 − 1)
(Δy)2 (2β2cosψ2 + 1)

) + a1}

By inserting Eq. (25) into Eq. (27) results in:

pn+1
l ,m = γ3 pn

l ,m + (γ4 + Iγ5) (γ1 + Iγ2)pn
l ,m (28)

Eq. (28) can be rewritten as:

pn+1
l ,m = (γ6 + Iγ7) pn

l ,m

where γ6 = γ3 + γ4γ1 − γ5γ2, γ7 = γ1γ5 + γ2γ4.
The amplification factor for this case can be written as:

∣
pn+1

l ,m

pn
l ,m

∣
2

≤ γ6 + γ7 ≤ 1 (29)

If the scheme meets condition (29), it will remain stable. The condition (29) can be satisfied by choosing
temporal and spatial step size values and involved parameters in the given differential equations.

In this work, the proposed scheme solves the convection-diffusion system. To do so, consider the
following matrix-vector equation.

∂ f
∂t

= A1
∂ f
∂x

+ A2
∂ f
∂y

+ A3
∂ f
∂y2 (30)

where f is a vector and A′i s are matrices.
The spatial components in Eq. (30) are discretized utilizing a compact methodology, while the proposed

method discretizes the time-dependent term.

f
n+1
l ,m = f n

l ,m e−2Δt + ( e−2Δt − 1
2

) [A1M−1
1 N1 f n

l ,m + A2M−1
2 N2 f n

l ,m + A3M−1
3 N3 f n

l ,m − 2 f n
l ,m] (31)

f n+1
l ,m = a f n

l ,m + b f
n+1
l ,m + c (eΔt − 1) [A1M−1

1 N1 f
n+1
l ,m + A2M−1

2 N2 f
n+1
l ,m + A3M−1

3 N3 f
n+1
l ,m ] (32)
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Theorem 1: The proposed computational scheme and compact spatial discretization converge for the vector-
matrix Eq. (30).
Proof 1: The proof of this theorem begins with the following exact scheme.

F n+1
l ,m = F n

l ,m e−2Δt + (−e−2Δt + 1
2

) [A1M−1
1 N1F n

l ,m + A2M−1
2 N2F n

l ,m + A3M−1
3 N3F n

l ,m + 2F n
l ,m] (33)

F n+1
l ,m = aF n

l ,m + bF n+1
l ,m + (eΔt − 1) [A1M−1

1 N1F n+1
l ,m + A2M−1

2 N2F n+1
l ,m + A3M−1

3 N3F n+1
l ,m ] (34)

After subtracting Eq. (31) from (33) and let f n
i , j − F n

i , j = En
i , j , etc.

F n+1
l ,m = F n

l ,m e−2Δt + (−e−2Δt + 1
2

) [A1M−1
1 N1En

l ,m + A2M−1
2 N2En

l ,m + A3M−1
3 N3En

l ,m + 2En
l ,m] (35)

Upon taking ∥⋅∥∞ on both sides of Eq. (35), it is obtained:

En+1 = En e−2Δt + ∣−e−2Δt + 1
2

∣ [∥A1M−1
1 N1∥∞ En + ∥A2M−1

2 N2∥
∞

En + ∥A3M−1
3 N3∥

∞
En + En] (36)

Rewrite Eq. (36) as:

En+1 = λ1En (37)

where λ1 = e−2Δt + ∣−e−2Δt+1
2 ∣ [∥A1M−1

1 N1∥∞ + ∥A2M−1
2 N2∥

∞
+ ∥A3M−1

3 N3∥
∞

+ 2].
Now, subtracting (32) from (34) yields.

En+1
l ,m = aEn

l ,m + bEn
l ,m + (eΔt − 1) [A1M−1

1 N1En+1
l ,m + A2M−1

2 N2En+1
l ,m + A3M−1

3 N3En+1
l ,m ] (38)

By applying norm ∥⋅∥∞ on both sides of Eq. (38) is:

En+1 = aEn + bEn+1 + c ∣eΔt − 1∣ [∥A1M−1
1 N1∥∞ En+1 + ∥A2M−1

2 N2∥
∞

En+1 + ∥A3M−1
3 N3∥

∞
En+1] (39)

By using inequality (37) in inequality (39), the resulting inequality can be expressed as:

En+1 ≤ λ2En + R (O ((Δt)3 , (Δx)6 , (Δy)6)) (40)

where λ2 = a + bλ1 + c ∣eΔt − 1∣ {A1M−1
1 N1 + A2M−1

2 N2 + A3M−1
3 N3 + 1} δ1.

By using n = 0 in inequality (40).

E1 ≤ λ2E0 + R (O ((Δt)3 , (Δx)6 , (Δy)6)) (41)

Since E0 = 0, the resulting inequality (41) is:

E1 ≤ R (O ((Δt)3 , (Δx)6 , (Δy)6)) (42)

In inequality (40), suppose n = 1.

E2 ≤ λ2E1 + R (O ((Δt)3 , (Δx)6 , (Δy)6)) ≤ (λ2 + 1)R (O ((Δt)3 , (Δx)6 , (Δy)6)) (43)
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If this is continued, then for a finite number of n.

En ≤ (λn−1
2 + . . . + λ2 + 1) R (O ((Δt)3 , (Δx)6 , (Δy)6)) = (1 − λn

2 )
1 − λ2

R (O ((Δt)3 , (Δx)6 , (Δy)6)) (44)

When the infinite limits apply, then the infinite geometric series .. + λn
2 + . . . + λ2 + 1 will converge if

∣λ2∣ < 1.◻

4 Problem Formulations
Think about the non-Newtonian, incompressible, laminar, erratic flow across the fixed plate. The y∗-axis

is perpendicular to the x∗-axis, which is taken vertically along the plate. The flow is driven by temperature
and concentration gradients, causing thermal and solutal buoyancy forces. The plate surface is warmer and
more concentrated than the surrounding fluid. Assume that the concentration and temperature at the plate
are higher than the ambient concentration and temperature outside the plate. A transverse magnetic field
of strength B○ is applied perpendicular to the plate. It introduces a Lorentz force, which influences fluid
motion through magnetohydrodynamic (MHD) effects. This is relevant in MHD flow control, cooling of
microelectronics, and biofluid manipulation. The fluid obeys the Carreau model, capturing shear-thinning
behaviour relevant to fluids like blood or polymeric solutions. An electric field is applied, inducing electro-
osmotic motion through the electric double layer (EDL) formed near the charged surface. This mechanism
is essential in lab-on-a-chip systems and micro-pumps. Porous medium effects (Darcy and Forchheimer
resistance) are included, simulating real-world channels or membranes. Fig. 1 illustrates the geometry of the
problem. This geometrical setup is physically relevant for BioMEMS, environmental microdevices, micro-
reactors, and electrokinetic separation systems, offering a comprehensive simulation framework for complex
multiphysics microflows.

Figure 1: Geometry of the Problem
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Think about the assumptions about the boundary layer; the equations that regulate the flow phenomena
are expressed as [26]:

∂u∗

∂t∗
= ν

⎛
⎝

1 + (Γ ∂u∗

∂y∗
)

2⎞
⎠

m−1
2 ∂2u∗

∂y∗2

-............................................................................./.............................................................................0
Non−New toni an v iscous d i f f us ion

+ ν (m − 1) Γ2 ∂2u∗

∂y∗2 ( ∂u∗

∂y∗
)

2 ⎛
⎝

1 + (Γ ∂u∗

∂y∗
)

2⎞
⎠

n−3
2

-................................................................................................................................................./.................................................................................................................................................0
C arreau f l uid correc t ion term

− ( σB2
○

ρ
+ ν

k
) u∗

-................................../...................................0
Magnet ic+Darc y res i stance

− bu∗2

1
Forchhe imer res i stance

+ ρe Ex
1

E l ec tro−osmotic bod y f orce

+ gβT (T − T∞)
-................................/.................................0

T hermal buo yanc y

+ gβc(C − C∞)
-............................../...............................0
Sol utal buo yanc y

(45)

∂T
∂t∗

= 1
ρcp

∂
∂y∗

(k (T) ∂T
∂y∗

)
-............................................................/.............................................................0

Heat conduc t ion w ith v ar i abl e thermal conduc t iv i t y

+ q′′′
2

Vol umetr ic heat generat ion

(46)

∂C
∂t∗

= DB
∂2C
∂y∗2

-.........../............0
Mass d i f f us ion

− k1(C − C∞)
-......................../.........................0

First ord er chemical reac t ion

(47)

Momentum Eq. (45): This equation is derived from the modified Navier-Stokes equation for a Carreau
fluid: ∂u∗

∂t∗ represents the time evolution of horizontal velocity, the unsteady inertial term, the first term on the
right-hand side is non-Newtonian viscous diffusion, the second term is Carreau-based non-linear viscosity,
σ B2
○

ρ : represents the Lorentz force due to the applied magnetic field, ν
k is flow resistance through porous

medium (Darcy term), bu∗2 represents Inertial resistance Forchheimer’s term for non-linear drag, ρe Ex :
showing the electric body force inducing electro-osmotic motion, gβT (T − T∞): represents buoyancy from
temperature gradient and gβc(C − C∞): represents the buoyancy from the concentration gradient.

Energy (Temperature) Eq. (46): ∂T
∂t∗ : represents the time-dependent temperature change, k (T) =

k∞ (1 + ε1
T−T∞

Tw−T∞ ) is variable thermal conductivity and q′′′ = kuR
ρx∗νc p

(A∗u (Tw − T∞) + B∗(T − T∞)) rep-
resents the internal heat generation due to joule heating (electrokinetic effect) and viscous dissipation or
other sources.

Concentration Eq. (47): ∂C
∂t∗ : represents the time-dependent change in species concentration, DB is

mass diffusivity (Brownian diffusion coefficient), ∂2 C
∂ y∗2 : represents the diffusive transport in the vertical

direction and k1(C − C∞) is the rate of chemical reaction depleting species, assumed first-order (e.g.,
absorption or degradation). Subject to initial and boundary conditions.

u∗ = 0, T = T∞, C = C∞ when t∗ = 0
u∗ = 0, T = T∞ + ε1 (Tw − T∞) cosw∗t∗, C = C∞ + ε1 (C − C∞) cosw∗t∗ when y∗ = 0

u → 0, T → T∞, C → C∞ when y∗ → ∞

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(48)

at initial state t = 0 fluid is at rest and ambient conditions. At the plate y∗ = 0, the wall velocity is zero,
whereas temperature and concentration oscillate harmonically. When far away from the plate y∗ → ∞ the
fluid properties approach ambient values. This setup simulates time-varying wall conditions in biological
tissues or surface-treated membranes exposed to periodic thermal or concentration cycles. The velocity
boundary condition at the wall is set to reflect no-slip or oscillatory slip induced by electro-osmotic effects,
which is consistent with charged microchannel surfaces exposed to external electric fields. The imposed time-
dependent slip velocity mimics scenarios such as alternating-current electro-osmosis (ACEO) or pulsatile
pumping mechanisms in lab-on-a-chip devices. The thermal boundary condition assumes a temperature at
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the wall higher than the ambient temperature, often encountered in thermally regulated microfluidic devices,
thermal cycling chambers (e.g., for PCR applications), or localized Joule heating in electrokinetic setups.
Where u∗ and v∗ are a horizontal and vertical component of velocity, respectively, T is the temperature of
the fluid, C is concentration, respectively, βT is the coefficient of thermal convection, βc is the coefficient of
solutal convection, g is gravity, Γ is a material, fluid parameter, ν denotes kinematic viscosity, σ is electrical
conductivity, b is non-Darcian parameter, k1is reaction rate parameter, k denotes permeability constant,
Ex is electric field component, ρ is the density of the fluid, ρe is the total ionic density. Let B○ is the
strength of the magnetic field applied transversely to the plate, cp is the specific heat capacity, k∞ represents
liquid thermal conductivity and ε1 represents smaller parameters elaborating temperature characteristics for
thermal-dependent conductivity.

Consider the following transformations [26] to convert (45)–(49) into dimensionless partial differential
equations.

y = y∗

LR
, u = u∗

uR
, v○ = v1

uR
, w = tRw∗, t = t∗

tR
, ϕ = ϕ∗

ζ
, θ = T − T∞

Tw − T∞
, ϕ = C − C∞

Cw − C∞
} (49)

where uR = (νgβT ΔT)1/3 , LR = ( gβT ΔT
ν2 )

−1/3
and tR = (gβT ΔT)−2/3 ν1/3. These non-dimensionalizations

simplify the equations and reveal governing parameters like Weissenberg number, magnetic parameter,
Darcy number, etc.

Derive Dimensionless Governing Eqs. (50)–(52): Eqs. (45)–(47) can be rewritten as dimensionless
governing equations by using transformations (49).

∂u
∂t

=
⎛
⎝

1 + W2
e ( ∂u

∂y
)

2⎞
⎠

n−1
2 ∂2u

∂y2

-....................................................................../......................................................................0
Shear d e pend ent v i scos i t y(C arrea y term)

+ (m − 1) W2
e

∂2u
∂y2 ( ∂u

∂y
)

2 ⎛
⎝

1 + W2
e ( ∂u

∂y
)

2⎞
⎠

n−3
2

-.........................................................................................................................................../...........................................................................................................................................0
non−New toni an correc t ion

− (M + 1
Da

) u
-.........................../...........................0

Magnet ic+Darc y porous drag

− Fsu2

1
Forchhe imer res i stance

+ UHS m2
e e−me y

-............................/.............................0
E l ec tro−osmotic v e l oc i t y

+ θ6
T hermal buo yanc y

+ NC
2

Sol utal buo yanc y

(50)

∂θ
∂t

= 1
Pr

(1 + ε2θ) ∂2θ
∂y2

-........................................./.........................................0
Heat conduc t ion w ithv ar i abl e

+ ε2

Pr
( ∂θ

∂y
)

2

-................./..................0
Nonl inera conduc t ion(teme perature sent iv i t y)

+ ε
Pr

(A∗u + B∗θ)
-......................................./.......................................0

Internal heat generat ion

(51)

∂ϕ
∂t

= 1
Sc Re

∂2ϕ
∂y2

-................/................0
Mass d i f f us ion

− γϕ
7

First ord er chemical reac t ion

(52)

subject to the dimensionless initial and boundary conditions.

u = 0, θ = 0, ϕ = 0 f or t = 0
u = 0, θ = ε1cosw∗t, ϕ = ε1cosw∗t f or y = 0

u → 0, θ → 0, ϕ → 0 f or y → ∞

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(53)



Comput Model Eng Sci. 2025;144(1) 885

where Da is Darcy’s number, We is a Weissenberg number, N represents the Buoyancy ratio, M is the
magnetic parameter, Pr is the Prandtl number, Sc is Schmidt number, ε and ε1 are dimensionless parameters,
FS represents Forchheimer number, kc dimensionless reaction rate parameter, UHS m2

e e−me y : represents
electro-osmotic body force due to EDL potential, and these are defined as:

Da = k
νtR

, We = ΓuR

LR
, N = βc(Cw − C∞)

βT (Tw − T∞) , M = tR σB2
○

ρ
, Pr = νk

ρcp
, Sc = ν

D
, ε = tRuR

x∗
, Fs = buR tR , kc = tR k1

These terms together model realistic non-linear thermal behaviour, such as temperature-dependent
conduction and Joule heating in electrokinetic applications, and also capture species diffusion and chemical
consumption or generation, such as nutrient uptake, pollutant decay, or reaction in catalytic membranes.

To quantify mass transfer at the wall: The local Sherwood number measures the rate of species diffusion
and is defined as:

Sh =
Lq j

DB (Cw − C∞) (54)

where q j = −DB
∂C
∂ y∗ ∣

y∗=0
.

By using transformations (50), the dimensionless local Sherwood number is given as:

ShL = − ∂ϕ
∂y

∣
y=0

(55)

This is crucial in engineering processes like filtration, separation, and biochemical transport.
Real-World Applications: The suggested model is pertinent to practical uses where non-Newtonian

fluid behaviour and electro-osmotic transport are vital. In biomedical engineering, where the Carreau model
precisely reflects the shear-thinning character of real fluids, it can represent blood flow in microfluidic devices
or tissue scaffolds. The model is appropriate for diagnostic lab-on-a-chip platforms and medication delivery
systems, including heat and mass transfer with variable thermal conductivity, since thermal management
and species diffusion are critical. Furthermore, combining electric fields and porous media influences fits
sophisticated membrane filtration, electrokinetic desalination, and wastewater treatment technologies. Mag-
netic field interaction increases its relevance to magnetohydrodynamic pumps and bioMEMS, where external
magnetic control governs flow. The model is flexible for maximizing fluid movement in micro/nano-scale
engineering systems spanning environmental, energy, and healthcare sectors.

5 Results and Discussion
We conduct an extensive simulation study with the following aims:

1. We demonstrate the application of the proposed two-stage explicit scheme for solving non-linear time-
dependent differential equations, as introduced in Section 4.

2. We highlight the efficiency of the predictor stage in estimating the solution at the (n + 1)th time level
using only the known values at the nth time level without requiring iterative procedures.

3. We showcase the corrector stage’s role in refining the predictor values, thereby enhancing temporal
accuracy and ensuring the stability of the numerical results.

4. We emphasize the advantages of the explicit scheme, particularly its ability to handle non-linear terms
without the need for linearization or additional solvers.
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5. We validate that the proposed scheme effectively captures the dynamics of electro-osmotic flow in
Carreau fluids, even in the presence of magnetic fields, porous medium effects, and non-linear thermal
and solutal transport mechanisms.

5.1 Velocity Profile Analysis
Effect of the Weissenberg Number We on Velocity Profile: Fig. 2 illustrates the impact of the Weis-

senberg number We on the velocity profile for the electro-osmotic flow of Carreau fluid over a stationary
plate. The simulation is performed using the parameter set: m = 1.5, Da = 7, me = 0.5, Pr = 0.9, Sc = 0.9,
γ = 0.1, ε1 = 0.7, ε = 0.1, ε2 = 0.1, Fs = 0.1, UHS = 0.1, N = 0.1, M = 0.1, A∗ = 0.1, B∗ = 0.1. The velocity pro-
files are plotted for three different values of the Weissenberg number: We = 0.1, We = 5.0 and We = 9.0. As
We the velocity profile exhibits a significant decline in magnitude, particularly near the boundary layer
region. The reduction in peak velocity with increasing We reflects the enhanced elastic nature of the fluid,
which resists deformation and slows down the momentum transport. This is a characteristic feature of non-
Newtonian viscoelastic fluids, such as polymer solutions or biological fluids, where the fluid’s relaxation time
becomes comparable to the timescale of flow.
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Figure 2: Variation of Weissenberg number on velocity profile using m = 1.5, Da = 7, me = 0.5, Pr = 0.9, Sc = 0.9,
γ = 0.1, ε1 = 0.7, ε = 0.1, ε2 = 0.1, Fs = 0.1, UHS = 0.1, N = 0.1, M = 0.1, A∗ = 0.1, B∗ = 0.1

Effect of Magnetic Parameter M on Velocity Profile: Fig. 3 presents the influence of the magnetic
parameter M on the velocity profile of electro-osmotic flow in a Carreau fluid. The simulation is carried
out under the fixed parameter values: m = 1.5, Da = 7, me = 0.5, Pr = 0.9, Sc = 0.9, γ = 0.1, ε1 = 0.7, ε = 0.1,
ε2 = 0.1, Fs = 0.1, UHS = 0.1, N = 0.1, We = 0.1, A∗ = 0.1, B∗ = 0.1. The velocity profiles are plotted for three
values of the magnetic parameter: M = 0.1, M = 5.0, and M = 9.0. As shown in the figure, the velocity profile
decreases consistently with increasing M. The Lorentz force, which is a resistive force when a transverse
magnetic field is present, is responsible for this slowing down. As M increases, the magnitude of the
Lorentz force also increases, thereby enhancing flow resistance and suppressing the motion of the electrically
conducting fluid. The magnetic parameter M represents the ratio of electromagnetic force to viscous force.
In an electrically conducting fluid, the interaction between the applied magnetic field and the electric
current generated by electro-osmotic motion induces a Lorentz force, which opposes the fluid flow. This
magnetohydrodynamic (MHD) braking effect becomes more pronounced at higher M, leading to a flatter
and less intense velocity profile.
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Figure 3: Variation of magnetic parameter on velocity profile using m = 1.5, Da = 7, me = 0.5, Pr = 0.9, Sc = 0.9,
γ = 0.1, ε1 = 0.7, ε = 0.1, ε2 = 0.1, Fs = 0.1, UHS = 0.1, N = 0.1, We = 0.1, A∗ = 0.1, B∗ = 0.1

Effect of Helmholtz–Smoluchowski Velocity UHS on Velocity Profile: Fig. 4 illustrates the influence
of the Helmholtz–Smoluchowski velocity UHS on the velocity profile of electro-osmotic flow in a Carreau
fluid. The simulation is carried out under the parameter values: m = 1.5, Da = 7, me = 0.5, Pr = 0.9, Sc = 0.9,
γ = 0.1, ε1 = 0.7, ε = 0.1, ε2 = 0.1, Fs = 0.1, M = 0.1, N = 0.1, We = 0.1, A∗ = 0.1, B∗ = 0.1. The velocity profiles
are plotted for three values of UHS = 0.1, UHS = 0.25 and UHS = 0.5. It is observed that as UHS increases,
the peak velocity of the flow profile increases significantly, and the flow becomes steeper near the wall. This
enhancement in velocity is a direct consequence of the stronger electro-osmotic force induced at the fluid-
solid interface. The Helmholtz–Smoluchowski velocity UHS represents the slip velocity generated at the wall
due to electrokinetic effects. A higher UHS corresponds to a stronger electrostatic interaction between the
electric field and the charged double layer at the boundary. This produces greater Coulomb forces, which
drive the fluid more effectively, resulting in faster and more intense electro-osmotic transport.
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Figure 4: Variation of Helmholtz Smoluchowski velocity on velocity profile using m = 1.5, Da = 7, me = 0.5,
Pr = 0.9, Sc = 0.9, γ = 0.1, ε1 = 0.7, ε = 0.1, ε2 = 0.1, Fs = 0.1, M = 0.1, N = 0.1, We = 0.1, A∗ = 0.1, B∗ = 0.1
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Effect of Electro-Osmotic Parameter me on Velocity Profile: Fig. 5 demonstrates the effect of the electro-
osmotic parameter me on the velocity profile of a Carreau fluid under electro-osmotic flow. The simulation
is conducted using the parameter set: m = 1.5, Da = 7, UHS = 0.1, Pr = 0.9, Sc = 0.9, γ = 0.1, ε1 = 0.7, ε = 0.1,
ε2 = 0.1, Fs = 0.1, M = 0.1, N = 0.1, We = 0.1, A∗ = 0.1, B∗ = 0.1. The velocity profiles are displayed for three
different values of me = 0.5, 0.9, 1.4. The figure shows that as me increases, the peak velocity also increases,
indicating an overall enhancement of the electro-osmotic flow. The flow acceleration is more significant
near the wall and diminishes further into the fluid domain. The parameter me characterizes the penetration
depth of the electric double layer (EDL) and reflects the influence of the applied electric field on the flow.
An increase in me strengthens the interaction between the wall’s surface charge and the electrolyte, resulting
in a stronger Coulomb force acting on the fluid. This electrokinetic effect accelerates the flow, particularly
near the boundary where the EDL is most prominent. Higher values of me correspond to greater electric
field influence over a wider fluid region, leading to increased momentum generation and higher velocity
throughout the near-wall region. However, this effect gradually levels off away from the wall due to decay in
the electric potential.
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Figure 5: Variation of electro-osmotic parameter on velocity profile using m = 1.5, Da = 7, UHS = 0.1, Pr = 0.9,
Sc = 0.9, γ = 0.1, ε1 = 0.7, ε = 0.1, ε2 = 0.1, Fs = 0.1, M = 0.1, N = 0.1, We = 0.1, A∗ = 0.1, B∗ = 0.1

5.2 Temperature Profile Analysis
Effect of Prandtl Number Pr on Temperature Profile: Fig. 6 illustrates the effect of the Prandtl number Pr

on the temperature distribution within the flow domain for a Carreau fluid under electro-osmotic influence.
The simulation is performed using the following parameter values: m = 1.5, Da = 7, UHS = 0.1, me = 0.5,
Sc = 0.9, γ = 0.1, ε1 = 0.7, ε = 0.1, ε2 = 0.1, Fs = 0.1, M = 0.1, N = 0.1, We = 0.1, A∗ = 0.1, B∗ = 0.1. The tem-
perature profiles are shown for three different values of the Prandtl number: Pr = 0.9, Pr = 1.3 and Pr = 1.7.
The results show that increasing the Prandtl number causes a slight decrease in the temperature profile,
especially beyond the thermal boundary layer region. This trend reflects the inverse relationship between
Pr and thermal diffusivity. The Prandtl number Pr represents the ratio of momentum diffusivity (viscous
diffusion) to thermal diffusivity. A higher Pr value indicates that thermal diffusion is slower than momentum
diffusion, leading to thinner thermal boundary layers and, thus, lower temperature penetration into the
fluid domain. At lower Pr , thermal conductivity is relatively higher, allowing heat to diffuse more efficiently
through the fluid. As Pr increases, this conductivity weakens, reducing the heat transfer capability and
resulting in a flatter, less intense temperature profile.
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Figure 6: Variation of Prandtl number on temperature profile using m = 1.5, Da = 7, UHS = 0.1, me = 0.5, Sc = 0.9,
γ = 0.1, ε1 = 0.7, ε = 0.1, ε2 = 0.1, Fs = 0.1, M = 0.1, N = 0.1, We = 0.1, A∗ = 0.1, B∗ = 0.1

Effect of the Small Parameter ε2 in Variable Thermal Conductivity on Temperature Profile: Fig. 7 illus-
trates the influence of the small parameter ε2, embedded within the model for variable thermal conductivity
on the temperature distribution in the electro-osmotic flow of Carreau fluid. The simulation is conducted
using the parameters: m = 1.5, Da = 7, UHS = 0.1, me = 0.5, Sc = 0.9, γ = 0.1, ε1 = 0.7, ε = 0.1, Pr = 0.9,
Fs = 0.1, M = 0.1, N = 0.1, We = 0.1, A∗ = 0.1, B∗ = 0.1. The figure presents temperature profiles for three
values of ε2= 0.1, 0.5, 0.9. As seen in the figure, the temperature profile increases with increasing ε2. The
peak temperature rises gradually, indicating that a larger value of ε2 enhances the thermal conductivity
of the fluid, thereby improving heat transfer within the system. The parameter ε2 governs how strongly
thermal conductivity varies with temperature. A higher value of ε2 implies that conductivity becomes more
sensitive to temperature changes, increasing more significantly in regions of elevated temperature. As a
result, more heat is conducted away from the hot boundary, and the fluid domain experiences enhanced
thermal diffusion, leading to broader and higher temperature profiles. This improved conductivity results
in a thicker thermal boundary layer and more efficient energy distribution throughout the fluid.
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Figure 7: Variation of small parameter contained in variable thermal conductivity on temperature profile
using m = 1.5, Da = 7, UHS = 0.1, me = 0.5, Sc = 0.9, γ = 0.1, ε1 = 0.7, ε = 0.1, Pr = 0.9, Fs = 0.1, M = 0.1, N = 0.1, We =
0.1, A∗ = 0.1, B∗ = 0.1

5.3 Concentration Profile Analysis
Effect of Reaction Rate Parameter γ on Concentration Profile: Fig. 8 presents the influence of the

reaction rate parameter γ on the concentration distribution in an electro-osmotically driven flow of Carreau
fluid. The simulation is conducted using the parameter values: m = 1.5, Da = 7, UHS = 0.1, me = 0.5, Sc = 0.9,
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ε2 = 0.1, ε1 = 0.7, ε = 0.1, Pr = 0.9, Fs = 0.1, M = 0.1, N = 0.1, We = 0.1, A∗ = 0.1, B∗ = 0.1. The concentration
profiles are displayed for three different values of the reaction rate parameter: γ = 0.1, 0.5, 0.9. As evident
from the figure, an increase in γ leads to a decrease in the concentration profile. The peak concentration
decreases progressively with higher γ, indicating the enhanced concentration depletion due to stronger
chemical reactions. The parameter γ represents the rate at which a solute undergoes a first-order chemical
reaction, consuming the concentration species as it proceeds. A higher γ indicates a faster conversion of the
solute into a product, thereby reducing the concentration of the species throughout the flow domain. This
behaviour is more pronounced near the wall, where the concentration gradient is steepest and the chemical
activity is most dominant. As γ increases, concentration diffusion is outpaced by its consumption, leading
to a thinner concentration boundary layer and lower concentration levels overall.
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Figure 8: Variation of reaction rate parameter on concentration profile using m = 1.5, Da = 7, UHS = 0.1, me = 0.5,
Sc = 0.9, ε2 = 0.1, ε1 = 0.7, ε = 0.1, Pr = 0.9, Fs = 0.1, M = 0.1, N = 0.1, We = 0.1, A∗ = 0.1, B∗ = 0.1

5.4 Sherwood Number Analysis
Effect of Schmidt Number and Reaction Rate Parameter γ on Local Sherwood Number: Fig. 9

displays the variation of the local Sherwood number as a function of the Schmidt number Sc for
three different values of the reaction rate parameter γ = 0.1, 0.4, 0.7. The simulation is performed using
the following parameters: m = 1.5, Da = 7, UHS = 0.1, me = 0.5, ε2 = 0.1, ε1 = 0.7, ε = 0.1, Pr = 0.9, Fs = 0.1,
M = 0.1, N = 0.1, We = 0.1, A∗ = 0.1, B∗ = 0.1. As shown in the figure, the local Sherwood number decreases
with increasing Sc , and this decreasing trend is further intensified for higher values of γ. This implies that
mass transfer at the wall reduces as molecular diffusivity decreases and reaction rates increase. The Schmidt
number Sc = ν

D is the ratio of momentum diffusivity to mass diffusivity. A higher Sc corresponds to lower
mass diffusion, which hinders species transport toward the wall and thereby reduces the Sherwood number, a
measure of mass transfer rate. The reaction rate parameter γ controls the rate at which the solute is consumed.
A higher γ leads to a more rapid depletion of the species near the boundary, lowering the concentration
gradient and, thus, the Sherwood number. The combination of these parameters demonstrates that weaker
diffusion and stronger reaction kinetics diminish mass flux, as measured by the Sherwood number.
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Figure 9: Variation of Schmidt number and reaction rate parameter on local Sherwood number using m = 1.5,
Da = 7, UHS = 0.1, me = 0.5, ε2 = 0.1, ε1 = 0.7, ε = 0.1, Pr = 0.9, Fs = 0.1, M = 0.1, N = 0.1, We = 0.1, A∗ = 0.1, B∗ = 0.1

5.5 3D Mesh and Contour Plot Analysis
Contour Plot for the Horizontal Velocity Component: Fig. 10 presents the contour plot of the

horizontal velocity component in an electro-osmotic flow of Carreau fluid over a stationary plate.
The simulation uses the parameter values: m = 1.5, Da = 7, UHS = 0.1, me = 0.5, Sc = 0.9, ε2 = 0.1, ε1 = 0.7,
ε = 0.1, Pr = 0.9, Fs = 0.1, M = 0.1, N = 0.1, We = 0.1, A∗ = 0.1, B∗ = 0.1, Sc = 0.9, γ = 0.9. The contour plot
reveals a repetitive pattern of vortex-like structures along the horizontal direction, alternating positive and
negative regions. This represents oscillatory behaviour in the horizontal velocity field, likely due to the time-
periodic boundary conditions and the electrokinetic coupling effects. The alternating peaks and troughs
in the velocity contours indicate unsteady electro-osmotic flow behaviour with localized accelerations and
decelerations. These may arise from the influence of oscillatory thermal and concentration boundary inputs,
leading to a periodic driving force along the plate. The non-linear interactions between the electric double
layer, magnetic damping via M, and porous media resistance via Da , Fs . The closed and elongated contour
loops suggest the presence of velocity cells or recirculation zones, especially near the boundary, where
the electrokinetic effects are strongest. Such velocity distributions are important in practical systems like
micro-mixers, where induced oscillatory flow enhances mixing performance without mechanical agitation.

Contour Plot for Temperature Distribution: Fig. 11 displays the temperature contour plot for the
electro-osmotic flow of a Carreau fluid under the influence of various coupled physical effects. The simu-
lation is performed using the parameter set: m = 1.5, Da = 7, UHS = 0.1, me = 0.5, Sc = 0.9, ε2 = 0.1, ε1 = 0.7,
ε = 0.1, Pr = 0.9, Fs = 0.1, M = 0.1, N = 0.1, We = 0.1, A∗ = 0.1, B∗ = 0.1, Sc = 0.9, γ = 0.9. The temperature
contours indicate a periodic and stratified distribution of thermal zones along the horizontal direction,
with intense thermal gradients close to the boundary wall. The colour-coded isotherms (lines of constant
temperature) form wave-like structures, showing oscillatory thermal behaviour near the surface that
gradually diminishes into the bulk fluid. This oscillatory structure in the temperature field is primarily
due to internal heat generation terms involving A∗u and B∗θ, which dynamically interacts with the flow
velocity and temperature field to amplify localized heating near the wall. The influence of variable thermal
conductivity, controlled by ε2, enhancing heat conduction in higher temperature zones. The stratification
shows that thermal waves penetrate the fluid in a damped pattern, with energy dissipation over distance
due to conduction and convection. Hence, Fig. 10 offers deep insights into thermal transport dynamics
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in electrokinetically driven non-Newtonian flows, which is crucial for designing and optimizing energy-
sensitive microfluidic systems.

Figure 10: Contour plot for the horizontal component of velocity profile using m = 1.5, Da = 7, UHS = 0.1, me = 0.5,
Sc = 0.9, ε2 = 0.1, ε1 = 0.7, ε = 0.1, Pr = 0.9, Fs = 0.1, M = 0.1, N = 0.1, We = 0.1, A∗ = 0.1, B∗ = 0.1, Sc = 0.9, γ = 0.9

Figure 11: Contour plot for temperature profile using m = 1.5, Da = 7, UHS = 0.1, me = 0.5, Sc = 0.9, ε2 = 0.1,
ε1 = 0.7, ε = 0.1, Pr = 0.9, Fs = 0.1, M = 0.1, N = 0.1, We = 0.1, A∗ = 0.1, B∗ = 0.1, Sc = 0.9, γ = 0.9

3D Mesh Plot with Contours of Concentration Distribution: Fig. 12 presents a 3D mesh plot
underneath with contour projections depicting the spatio-temporal evolution of concentration u(t, y)
in a reactive electro-osmotic flow of a non-Newtonian fluid. The simulation is performed with the
following parameters: Re = 1.9, m = 0.1, Ec = 0.9, Ho = 0.1, We = 0.1, Pr = 0.9, GrT = 1.5, ε1 = 1, E1 =
0.01, Sc = 0.9, γ = 0.1, b (chosen scheme) = 1, uw = cos (t) sin (t) , xL(l ength o f boundar y) = 27 = yL , t f
( f inal time) = 10. The parameter b represents the scheme selection value used in numerical
implementation, here set as 1. The plot shows clearly defined wave-like structures that fluctuate periodically
in time and decay in magnitude along the spatial direction y. The colour gradient from red to blue indicates
high-to-low concentration regions, while the oscillatory patterns signify the dynamic influence of the
time-periodic wall velocity condition uw = cos (t) sin (t). This figure captures how the concentration
evolves over time and space, with the following key features: Time-dependent boundary oscillation through
uw initiates periodic pulses in concentration at the wall, which then propagate into the fluid domain.
The observed amplitude decay in the y-direction reflects diffusive damping, consistent with the role of
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the Schmidt number Sc and the finite reaction rate γ. The symmetrical oscillations align with sinusoidal
boundary forcing and confirm the scheme’s ability to accurately capture temporal and spatial phase shifts
in concentration dynamics. By visualizing the time and space evolution in a single plot, Fig. 11 provides
powerful insight into the interplay between convection, diffusion, and reaction kinetics in microfluidic or
porous environments.

Figure 12: Mesh plot underneath contours for concentration profile using Re = 1.9, m = 0.1, Ec = 0.9, Ho = 0.1, We =
0.1, Pr = 0.9, GrT = 1.5, ε1 = 1, E1 = 0.01, Sc = 0.9, γ = 0.1, b (chosen scheme) = 1, uw = cos (t) sin (t) , xL(l ength o f
boundar y) = 27 = yL , t f ( f inal time) = 10

5.6 Selection of Physical Parameters and Their Ranges
This study’s selection of physical parameters is based on values commonly reported in experimental and

computational research on electro-osmotic flow, non-Newtonian Carreau fluids, and microfluidic transport
phenomena. The Weissenberg number We is varied in the range 0.1 ≤ We ≤ 9.0 to represent fluids with low
to high elastic behaviour, relevant in polymeric and biological fluid applications. The Forchheimer number
Fs is chosen between 0.1 and 1.0 to capture inertial resistance in porous media. The Darcy number Da
ranges from 10−2 to 10, covering both low- and high-permeability porous structures often encountered in
microchannel designs. The magnetic parameter M is considered within 0.1 ≤ M ≤ 1.0, consistent with low-
to-moderate strength magnetic fields used in magnetohydrodynamic (MHD) control applications. Thermal
and mass diffusion are modelled using Prandtl numbers Pr ε [0.7, 2.0] and Schmidt numbers Sc ε [0.6, 1.5],
which align with values for water, biological fluids, and electrolytic solutions. The reaction rate parameter
γ is explored in the range 0.1 ≤ γ ≤ 0.9, representing weak to strong chemical reaction intensities. These
parameter ranges ensure the physical realism of the simulations while maintaining numerical stability and
practical relevance to BioMEMS, electrokinetic devices, and thermally sensitive microfluidic systems.

5.7 Improved Temporal Accuracy via Modified Exponential Integrator Scheme
To enhance the temporal accuracy of the initially proposed scheme for solving time-dependent

partial differential equations, we introduce a modified version that surpasses the accuracy of the conven-
tional second-order Runge-Kutta method. While the original two-stage explicit scheme provides a robust
solution framework, it is not inherently more accurate than standard second-order methods for certain
step sizes. Therefore, a refined formulation is developed to achieve improved precision with comparable
computational effort.
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The first stage of the enhanced scheme is constructed using an exponential integrator approach, followed
by a slightly modified second stage, as given below:

pn+1
l ,m = pn

l ,m e7.5Δt +
(e7.5Δt − 1)

7.5
{ ∂p

∂t
∣
n

l ,m
− 7.5pn

l ,m} (56)

pn+1
l ,m = apn

l ,m + bpn
l ,m + cΔt ∂p

∂t
∣

n+1

l ,m
(57)

This modified scheme is benchmarked against the existing method used in [27] through a comparative
simulation of the second example problem provided therein. In this context, the diffusion term in the
proposed scheme is discretized using a high-order compact difference method. In contrast, the diffusion term
in the existing scheme and the convective term in both methods is discretized using second-order central
difference formulas. The numerical results, summarized in Table 1, demonstrate that the improved scheme
consistently yields lower numerical error than the standard Runge-Kutta scheme for the selected step sizes.
This confirms its suitability for high-fidelity simulations where enhanced temporal accuracy is essential.

Table 1: Comparison of the proposed scheme with the existing Runge-Kutta Scheme for solving the convection-
diffusion problem using N (grid points) = 50, t f ( f inal time) = 0.1

Δt L2 Error

Runge-Kutta Proposed (New)
0.1/1000 2.6728 × 10−5 9.3274 × 10−6

0.1/1500 2.6724 × 10−5 8.5933 × 10−6

0.1/2000 2.6722 × 10−5 1.0052 × 10−5

0.1/2500 2.6722 × 10−5 1.1320 × 10−5

0.1/3000 2.6721 × 10−5 1.2277 × 10−5

6 Conclusions
This paper presents a modified two-stage computational strategy combining an exponential integrator

with a Runge-Kutta-type algorithm created and implemented to simulate the electro-osmotic flow of Carreau
fluid over a stationary plate, including the effects of heat and mass transfer. The suggested approach
preserves second-order precision in time while including a compact spatial discretization methodology to
provide high-order spatial accuracy. The governing equations of electrokinetically driven non-Newtonian
flows exhibit nonlinearity and coupling, which our hybrid framework efficiently manages. A computational
scheme has been proposed for solving time-dependent partial differential equations. The proposed scheme
was second-order accurate, and a compact scheme was presented for handling space-dependent terms.
The numerical findings verify that the suggested method can seize the complex behaviour of electro-
osmotic flow in non-Newtonian fluids. Particularly, it was noted that the velocity profile rises with increased
Helmholtz-Smoluchowski velocity and electro-osmotic parameters. The effect of rheological characteristics
and electrokinetic forces was also correctly depicted, proving the created approach’s accuracy and depend-
ability. The compact scheme provided high-order accuracy in space. The stability and convergence of the
scheme have also been provided. The concluding points can be stated in the following way:

• By increasing the electrical parameter, the velocity profile increased.
• The velocity profile declined by raising Weissenberg’s number.
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• An increase in the electro-osmotic parameter and the Helmholtz-Smoluchowski velocity resulted in a
steeper velocity profile.

• The temperature profile showed behaviour by raising the Prandtl number.

This study offers a strong and quick computational tool for simulating complicated electro-osmotic
flows in Carreau fluids. Easily expanded to additional non-Newtonian models and geometrical configura-
tions, the framework provides possible uses in industrial fluid management systems, biomedical engineering,
and microfluidic device design.

Future research could extend this work by incorporating fluid-structure interaction, three-dimensional
geometries, and multi-frequency electric field effects, often present in practical BioMEMS configurations.
Additionally, experimental validation and integration with real-time control algorithms would further
support the deployment of such models in innovative microfluidic systems.

Limitations of Existing Electro-Osmotic Flow Models: Even though there is more and more research
on modelling electro-osmotic flow, there are still some major problems with the current methods, especially
regarding non-Newtonian Carreau fluids. Much research uses Newtonian or power-law models to make the
rheological behaviour easier to understand. These models don’t do a good job of showing the shear-thinning
and rate-dependent viscosity properties always present in Carreau fluids. In addition, most classical models
only look at steady-state solutions and don’t consider transient or oscillatory boundary conditions typical
in lab-on-a-chip and BioMEMS devices. When using numerical methods, implicit schemes or linearization
procedures are typically used. These can make the behaviour of non-linear solutions less accurate or make the
calculations more difficult. Also, important physical processes like changing thermal conductivity, moving
reactive species, and interacting with magnetic fields are ignored or looked at separately, making such models
less useful in real-world electro-thermal microfluidic systems. These problems show the importance of
having a strong, clear, and very accurate computational framework that can model the complex interactions
of non-linear, transient, and multi-physical effects in Carreau fluid dynamics when electro-osmotic forces
are present.
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Nomenclature
Symbol Description
u∗ , v∗ Dimensional velocity components in x∗ and y∗ directions
u, v Dimensionless velocity components
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T Temperature of the fluid
C Species concentration
C∞ Ambient concentration
Tw Wall temperature
Cw Wall concentration
t∗ Dimensional time
y∗ Dimensional coordinate perpendicular to plate
x∗ Dimensional coordinate along the plate
g Acceleration due to gravity
B○ Magnetic field strength
σ Electrical conductivity
b Forchheimer coefficient (non-Darcy resistance)
cp Specific heat capacity
DB Mass diffusion coefficient
ε1 , ε2 Dimensionless thermal sensitivity parameters
Da Darcy number
M Magnetic parameter
Sc Schmidt number
N Buoyancy ratio
me Electro-osmotic parameter (related to EDL)
Sh Local Sherwood number
θ Dimensionless temperature
ϕ Dimensionless concentration
t Dimensionless time
y Dimensionless vertical coordinate
Γ Carreau fluid parameter
m Power-law index in Carreau model
ν Kinematic viscosity
ρ Fluid density
μ Dynamic viscosity
βT Coefficient of thermal expansion
βc Coefficient of solutal expansion
Ex Applied electric field strength
k Permeability of the porous medium
k1 First-order chemical reaction rate constant
K (T) Variable thermal conductivity
q′′′ Internal volumetric heat generation
We Weissenberg number (fluid elasticity)
Fs Forchheimer number (inertial porous resistance)
Pr Prandtl number
γ Dimensionless reaction rate
UHS Helmholtz–Smoluchowski slip velocity
A∗ , B∗ Heat generation/absorption coefficients
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