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ABSTRACT: Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications, yet it remains
challenging to be accurately characterized due to complex microstructure-flow interactions. This study establishes a
pore-scale numerical framework integrating Monte Carlo-generated fractal porous media with Volume of Fluid (VOF)
simulations to unravel the coupling among pore distribution characterized by fractal dimension (Dy), flow dynamics,
and displacement efficiency. A pore-scale model based on the computed tomography (CT) microstructure of Berea
sandstone is established, and the simulation results are compared with experimental data. Good agreement is found
in phase distribution, breakthrough behavior, and flow path morphology, confirming the reliability of the numerical
simulation method. Ten fractal porous media models with D ranging from 1.25~1.7 were constructed using a Monte-
Carlo approach. The gas-liquid two-phase flow dynamics was characterized using the VOF solver across gas injection
rates of 0.05-5 m/s, in which the time-resolved two-phase distribution patterns were systematically recorded. The results
reveal that smaller fractal dimensions (Df = 1.25~1.45) accelerate fingering breakthrough (peak velocity is 1.73 m/s at
Dy = 1.45) due to a bimodal pore size distribution dominated by narrow channels. Increasing Dr amplifies vorticity
generation by about 3 times (eddy viscosity is 0.033 Pa-s at Dy = 1.7) through reduced interfacial curvature, while
tortuosity-driven pressure differentials transition from sharp increases (0.4~6.3 Pa at Dy = 1.25~1.3) to inertial plateaus
(4.8 Pa at Dy = 1.7). A nonlinear increase in equilibrium gas volume fraction (f,, = 0.692 at Dy = 1.7) emerges from
residual gas saturation and turbulence-enhanced dispersion. This behavior is further modulated by flow velocity, with
fav peaking at 0.72 under capillary-dominated conditions (0.05 m/s), but decreasing to 0.65 in the inertial regime (0.5
m/s). The work quantitatively links fractal topology to multiphase flow regimes, demonstrating the critical role of D¢ in
governing preferential pathways, energy dissipation, and phase distribution.

KEYWORDS: Fractal porous media; gas-liquid two-phase flow; fractal dimension; vortex evolution; VOF model;
displacement efficiency

1 Introduction

Gas-liquid two-phase flow in porous media is widely encountered in various engineering applications,
including oil and gas recovery, geological CO, sequestration, and groundwater contamination remediation
[1-4]. The pore structure of natural porous media exhibits pronounced heterogeneity, making it difficult for
conventional Euclidean geometry to capture its complex topological characteristics. Fractal theory, which
can be used to quantify the self-similarity of pore structures through fractal dimensions, offers a novel
paradigm for constructing microscale models of porous media [5-9]. However, the quantitative relationship
between fractal dimensions and key flow characteristics, including vortex evolution dynamics and two-phase
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distribution patterns, remains poorly characterized [10-12]. A systematic analysis of the impact of fractal
dimension on displacement efficiency during gas-driven water processes is still lacking [13-16]. Modeling
approaches for fractal porous media evolved from early simplified capillary bundle models to more advanced
stochastic generation techniques based on the Monte Carlo method [17-19]. These methods enable the
construction of pore networks with statistical similarity by tuning the fractal dimension, thereby significantly
enhancing the geometrical realism of the models.

The vast majority of porous media in nature have been shown to exhibit fractal characteristics
[20-22], and the fractal geometry theory has been successfully applied to analyze the transfer performance
in porous media with random and complex microstructures [18]. Many researchers have studied the flow
resistance [23], permeability [24], and threshold pressure gradient [25] in porous media using the fractal
theory. Fractal theory provides a mathematical framework for describing the complex pore structures of
natural porous media. Early studies generated idealized fractal structures based on statistical fractal models
[8,26], but these models failed to capture the topological characteristics of real rocks. The Monte Carlo
method, which controls stochastic iterations through probabilistic thresholds, enables the precise generation
of two- and three-dimensional porous media with different fractal dimensions (Df), making it a mainstream
approach [27].

The two-phase flow behavior in porous media is a core scientific issue in fields such as oil and
gas extraction, groundwater contamination remediation, and CO, geological sequestration. Natural rock
and soil media (e.g., sandstone and shale) generally exhibit highly heterogeneous pore structures, where
complex branching channels and multi-scale pore distributions directly affect fluid migration paths and
displacement efficiency. Traditional homogeneous models (e.g., the spherical particle packing assumption)
fail to accurately characterize the microscopic structural heterogeneity of real media, leading to significant
deviations in macroscopic flow predictions. Fractal theory provides a mathematical tool for describing the
complex pore networks of natural porous media, with the fractal dimension (Df) quantitatively characterizing
the geometric complexity and connectivity of the pore structure. This approach has become a key focus in
recent multiphase flow research. Based on fractal theory and a fractal capillary bundle model, Huang et al.
[28] developed a theoretical model for the non-Darcy coefficient in porous media, establishing quantitative
relationships between the non-Darcy coefficient and microstructural parameters such as porosity, perme-
ability, and tortuosity. The model showed good predictive capability in higher-permeable porous media when
validated against experimental data. Wu and Yu [23], integrating fractal geometry theory with a pore-throat
network model, proposed a fractal model for flow resistance in porous media. Using the Volume of Fluid
(VOF) method, Yuan et al. [29] simulated gas-liquid two-phase flow at the pore scale and found that during
the invasion of fracturing fluid, the flow predominantly occurred through smaller pore channels, which
accounted for over 90% of the flow paths.

However, existing research has mainly focused on relationships between fractal dimensions and
static parameters, whereas the coupling mechanisms controlling dynamic flow characteristics still lack a
comprehensive analysis. The interaction between flow velocity and fractal structures in gas-driven water
displacement processes has yet to be fully understood, limiting the optimization of operational parameters
in engineering applications. Therefore, quantifying the impact of fractal dimension on flow paths, phase
distribution, and energy dissipation, as well as establishing a quantitative model linking fractal characteristics
with flow parameters, holds significant theoretical and engineering value. This study investigates gas-liquid
two-phase flow in porous media using a validated numerical approach. A pore-scale model based on
the CT microstructure of Berea sandstone is established, and the simulation results are compared with
experimental data from Liu et al. [30]. Good agreement is found in phase distribution, breakthrough
behavior, and flow path morphology, confirming the reliability of the numerical model. Ten fractal porous
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media models with Dy ranging from 1.25 to 1.7 were constructed using a Monte-Carlo approach. Systematic
quantification of porosity and mean pore diameter variations across the fractal series was conducted. Gas-
liquid two-phase flow dynamics was characterized using ANSYS Fluent’s VOF solver, with gas injection rates
covering 0.05-0.5 m/s in digital. Time-resolved two-phase distribution patterns were recorded throughout
the displacement processes. Flow field characteristics, including streamline distributions, velocity vector
fields, and localized vorticity patterns, were analyzed at ¢t = 1.2 s of flow development. Temporal evolution
of phase volume fractions was continuously monitored. Equilibrium-state eddy viscosity contours were
systematically quantified. Pressure differentials across the media were measured as a function of injection
velocity. Volumetric gas fraction dependencies on both fractal dimension and flow rate were statistically
evaluated, with empirical correlations subsequently established.

2 Modeling Approaches for Fractal Porous Media and Two-Phase Flow Simulation
2.1 Pore Size Calculation Using the Monte Carlo Method

The pore microstructures (including pore sizes and interfaces) in such porous media exhibit fractal
characteristics. The Monte Carlo technique for modeling fractal porous media is formulated based on fractal
theory and statistical principles. The key equations and implementation steps are described as follows.

The cumulative pore size distribution follows a fractal scaling law [27,31]:

D¢

Am X

N(Lz)t):(—a) 1)
A

where Dy is the pore area fractal dimension (1 < Ds < 2 in 2D); Ajn.x denotes the maximum pore diameter.

Differentiating Fq. (1) with respect to pore diameter A results in the number of pores with sizes lying within

the infinitesimal interval [A, A + dA].

~dN = DeAD A~ (P d) (2)

max

where dA > 0. The negative sign in Eq. (2) implies that the pore number decreases with the increase of pore
size,and —dN > 0. Eq. (1) describes the scaling relationship of the cumulative pore number. The total number
of pores, from the smallest diameter A, to the largest diameter Ap,x, can be obtained from Eq. (1) as

/\max Df
Nt(L>Amin):(A ' ) (3)
Dividing Eq. (2) by Eq. (3) gives:
AN DAPE AP ) = £(1)dA (4)

t

where (1) = DeARt A(Pr#1) is the probability density function and f(1) > 0. Following probability theory,
the probability density function f(A) should satisfy the following normalization relationship or total
cumulative probability [31]:
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The integration of Eq. (5) demonstrates that Eq. (5) holds if and only if
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is satisfied. This mathematical constraint implies that A, << Amax for valid fractal characterization of
porous media. In general, A in /Amay < 1077 is empirically observed in most natural porous systems, ensuring
the approximate validity of Eq. (6) and consequently justifying the application of fractal techniques for
microstructural characterization.

The cumulative distribution function for pore sizes in the interval [Ayin, A] is defined by [18]

2 )
R(A) = fA F(A)dA = f)L DeAR: -(Pr gy %

This formulation exhibits two essential boundary conditions: (i) R—0 as A—>Apin, (ii) R=>1as A=A ax.
The asymptotic behavior at A, directly stems from the scaling constraint established in Eq. (6). For porous
media with broad pore size distributions (Anin << Amax), the cumulative probability R(1) generates quasi-
uniform variates over [0, 1), providing statistical foundation for Monte Carlo simulations of pore networks.

From Eq. (7), we can obtain

. Df
d-R= (*;m) (8)
From Eq. (8), A is expressed as
Amin _ Amin Amax
A= arye T (Amax) (1- R)VPx ©

Eq. (9) is a probability model for pore size distribution in the present simulation. For the ith capillary
tube chosen randomly, Eq. (9) can be written as

A' _ Amin _ (/\min ) /lmax
(1-R)"™r (1-R;)

Amax 1/Dx (10)
where i =1,2,3,...,],and ] is the total number of pores. Dy is intrinsically related to the effective porosity

¢ through the scaling relationship [27]

Di=d- lnf (1)
In o

where d denotes the Euclidean dimension (d = 2 for 2D systems; d = 3 for 3D systems). This expression is

rigorously valid for deterministic self-similar fractal geometries and serves as an accurate approximation

for stochastic/disordered fractal porous media. The derivation implies that statistical self-similarity persists

across the characteristic length scales spanning from A, to Ay, €ven in heterogeneous systems where

exact geometric replication is absent.

Ten fractal porous media models with 30 mm in width and 60 mm in length were generated using
the Monte Carlo method. Each model has a unique D¢ ranging from 1.25 to 1.70 (See Fig. 1). Geometric
parameters include the pore area (A), pore perimeter (S), minimum pore size (A, = 0.5), and maximum
pore size (Amax = 50 mm). The total pore number (N) increases significantly with Dy, varying from 316 to 2511.
As shown in Fig. 2, the average pore diameter (A,y.) decreases from 17.03 to 11.93 mm as Dy increases. The
porosity (Py) increases from 0.60 to 0.91, demonstrating enhanced void space complexity at higher fractal
dimensions. All models maintain fixed Ay and Ap,y, isolating the influence of Dr on structural evolution.
Detailed geometric parameters are summarized in Table 1.
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Figure 1: Geometric characteristics of the generated fractal porous media. Ds represents fractal dimension of pore
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Table 1: Geometric parameters of fractal porous media

No. D A(mm?) S(mm) A, (mm) A, (mm) N A... (mm) p,

1 125 1337 678.56 0.5 50 316 17.032 0.604
2 1.3 1407 705.97 0.5 50 398 15.951 0.636
3 135 1550 729.03 0.5 50 501 15.226 0.701
4 1.4 1728 656.93 0.5 50 631 13.76 0.781
5 145 1743 753.81 0.5 50 794 13.739 0.788
6 1.5 1744 772.66 0.5 50 1000 13.173 0.788
7 155 1824 756.99 0.5 50 1259 12.337 0.825
8 1.6 1959 530.45 0.5 50 1584 12.306 0.886
9 165 2009 470.98 0.5 50 1995 11.697 0.908
10 17 2014 592.49 0.5 50 2511 11.93 0.911

2.2 Volume of Fluid (VOF) Model

The VOF method extends conventional single-phase flow equations by introducing a phase fraction
field («) to track interfacial dynamics between immiscible fluids. This formulation solves coupled governing
equations for pressure (P), velocity (v), and phase fraction («), with interface reconstruction achieved
through geometric schemes. For two-phase flow in porous media, the continuity and momentum equations
incorporating gravitational effects are expressed as:

v-(U)=0 (12)
opU
7+v~(pUU)—V-T:—v11>+pg+1? (13)

where U represents the velocity tensor; p represents the average density of phases; 7 represents the shear
stress at the two-phase interface; p represents the pressure; F represents the surface tensor of the two-phase
interface; g represents the acceleration of gravity, taken as 9.8 m/s”.

The average density is defined as follows:
p=ap +(1-a)p, (14)

When the wetting phase fluid is a Newtonian fluid, the shear stress at the interface between two phases
can be calculated as:

t=u(VU+vVU") (15)
where y represents the average viscosity in a grid. The calculation formula for y is as follows:
CU = + gl (16)

where p) represents the viscosity of the liquid phase in the grid; u, represents the viscosity of the gas phase
in the grid. When the wetting phase fluid is a non-Newtonian fluid, the shear stress and fluid viscosity are
related to the shear rate. The power rate model is used to calculate the non-Newtonian fluid viscosity [32,33]:

r=2ky"'D 17)
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u=k(y)"! (18)

1
y == V2D :D = \/2Diiji = \/E (VjUi + V,-Uj) (VjUi + Vin) 19)

where D =1/2 (VU + (VU)T); the consistency index k has a unit of Pa - s”, ensuring dimensional homo-
geneity; n represents dimensionless parameters related to fluid properties; y represents the shear rate; i
represents the sequential index for discretized grid columns along the Cartesian x-axis; j represents the
sequential index for discretized grid columns along the Cartesian y-axis. Any cell for the computational
region satisfies & = a; + ag = 1. The surface tensor in FEq. (13) is defined by the continuous surface force
model [34] as follows:

_ prNVa ]
F=0|+—F—7""— (20)
[% (Ps+p1)

where ky represents the curvature at the two-phase interface; o represents the interfacial tension coefficient;
p1 represents the liquid phase density in the grid; p, represents the gas phase density in the grid. The value
of x is related to the divergence of the unit normal vector n at the phase interface [35]:

Va
KNZ—V'DZ—V'(W) (21)

The value of the phase fraction « is related to the fluid properties, independent of the flow process. The

phase fraction field equation for incompressible two-phase flow can be expressed as follows:

Ja
—+U- =0 22
ot va (22)

Eq. (22) is the phase equation of the VOF model. For incompressible systems, where pressure acts as a
relative value and the differential pressure serves as the primary driving force, the cell pressure is defined to
simplify the momentum equation, Eq. (13), as follows:

prgn=p—pg-h (23)

where h represents the center position vector. Gradient calculation for Eq. (23) yields:

Vprgn =Vp—g-hVp-pg (24)
Bringing Eqs. (24) and (20) to Eq. (13) for simplification, Fq. (25) can be obtained as follows:

opU .

5 V- (pUU) = V- (uVU) + VDyen +g-th=20[M:| (25)

(pg +p1)

Egs. (12), (22), and (25) together form the mathematical model for the VOF model of the two-phase
flow system.
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2.3 Numerical Simulation Method

The gas-liquid two-phase flow in fractal porous media was simulated using the VOF model in ANSYS
FLUENT, which is a finite volume method-based computational fluid dynamics (CFD) solver [36,37].
The governing equations for mass and momentum conservation were discretized using a pressure-based
transient solver, with the pressure-velocity coupling resolved via the PISO (Pressure-Implicit with Splitting
of Operators) algorithm to enhance the stability for multiphase flows [38].

The VOF method was employed to track the gas-liquid interface, in which the volume fraction of air
(primary phase) and water (secondary phase) were solved using an explicit geometric reconstruction scheme.
The surface tension between phases was modeled via the Continuum Surface Force (CSF) formulation, with
a constant interfacial tension coefficient of o = 0.032 N/m. A sharp interface resolution was ensured by setting
the Courant number below 0.25 through a fixed time step of At =1 x 107 s, which is critical for capturing
transient phenomena such as bubble breakup and coalescence.

The physical properties of the phases were defined as follows: air density p; = 0.67 kg/m?®, dynamic
viscosity pg =111 x 10~ Pa-s; water density p; =1000 kg/m?®, and viscosity uL =1 x 10~ Pas. As shown in Fig. 3,
a velocity inlet boundary condition was applied with a range of v = 0.01-0.5 m/s to investigate flow regime
transitions, while the outlet was set to atmospheric pressure (poy: = 0 Pa). No-slip conditions were enforced
at the pore walls. Spatial discretization utilized the second-order upwind scheme for momentum equations
and the PRESTO (Pressure Staggering Option) scheme for pressure to minimize numerical diffusion. The
iterative residual convergence criterion was set to £ = 1 x 10~ for all equations. Simulations were advanced
for t = 1.2 s to achieve quasi-steady flow patterns, with results sampled every 1 x 10~* s for post-processing.
More detailed calculation parameters are listed in Table 2.

Impermeable boundary

Velocity inlet
Pressure outlet

Impemeagle boundary

water  Solid Air  Interface

Figure 3: Initial boundary condition setup for the gas-liquid VOF numerical models

Table 2: Parameters used in the VOF model

Fluid parameters Value Fluid parameters Value
Gas density p, (kg/m*) 0.67 Interfacial tension ¢ (N/m)  0.032
Liquid density p; ( kg/m?) 1000 Calculation duration £ (s) 1.2
Gas viscosity pg (Pa-s)  1.11x107 Time step At (s) 1x107°
Water viscosity py (Pa-s)  1x107° Iterative residual &(-) 1x107°

Inlet velocity v (m/s) 0.01~0.5 Outlet pressure poy (Pa) 0
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3 Results and Discussion

3.1 Validation of the Numerical Simulation Method

To validate the accuracy and reliability of the numerical simulation method, the comparison was
conducted between the simulation results and the experimental data reported by [30] using the same porous
structure (Fig. 4). The porous structure is derived from a series of CT micrographs of a Berea sandstone
based on the original work of [26] and [39]. This pore structure is very typical and has been used in published
experimental [39] and numerical works [40].

0.64 mm )

0.32 mm L_

Figure 4: Pore structure reconstructed from CT micrographs of Berea sandstone, adapted from Sirivithayapakorn et al.
[26]. The red regions indicate the pore space, while the black regions represent the impermeable solid matrix

The validation focused on the progression of the air invasion front, which is quantified by the
breakthrough distance (L) of preference path distances, defined as the farthest continuous extension of the
air phase within the porous domain. Contour plots of the preference path distances at incremental air volume
fraction (fy =0.1,0.2,...,0.8) were extracted from the simulations. As is shown in Fig. 5 and Table 3,
these results were compared to the numerical data from Case Al in Fig. 1 of Liu et al. (2019), in which
Lim and L,.s represent the simulated and reference breakthrough distances, respectively. The simulation
results demonstrated robust agreement with experiments at intermediate to higher air fractions (f,y =
0.6~0.8), exhibiting deviations below 2%, with exact matches at foy = 0.7 (Lsim = Lexp = 0.57 mm) and
fav = 0.8 (0.64 mm). Notably, the discrepancies emerged at smaller air fractions. The simulated distances
underestimated experimental values by 29% at f,, =0.1 (0.12 vs. 0.17 mm), and decreased to 16% (f.y =
0.2) and 7.5% (fay = 0.3) as wider channels dominated invasion. However, the simulation results show 14%
overestimation of the distances occurred at f,, = 0.5 (0.49 vs. 0.43 mm), which may be attributable to transient
capillary effects during narrow-channel invasions. While deviations exist at low gas fractions (f,y = 0.1-0.3),
the relative errors decrease systematically from 29.4% (f,, = 0.1) to 7.5% (f,y = 0.3) as the gas fraction increases.
Importantly, the simulation aligns closely with experiments at intermediate to high gas fractions (f,, > 0.6),
with deviations below 2% and exact matches at f,, = 0.7 and 0.8. The discrepancies at low gas fractions are
attributed to transient capillary effects during the initial invasion of narrow pores. These effects diminish
as wider channels dominate flow at higher gas fractions, leading to improved agreement. The strong linear
correlation between simulated and experimental breakthrough distances is further evidenced by regression
analysis: y = 0.67x + 0.14 (Fig. 6). The higher coefficients of determination (R* = 0.93 for Lexp and R?>=0.95 for
Lgim) confirm a good agreement across the entire invasion process. The overall alignment under capillary-
dominated conditions confirms the reliability of the utilized numerical simulation method in predicting
macroscopic air-water interface dynamics while highlighting sensitivities to transient capillary interactions
and grid-resolved pore geometry.
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(a) Numerical result with f;, = 0.1 (b) Numerical result with £, = 0.2 (c) Numerical result with f;, = 0.3 (d) Numerical result with f;, = 0.4

(e) Experimental result with f,, = 0.1

(i) Numerical result with £,y = 0.5 (j) Numerical result with f,, = 0.6 (k) Numerical result with f;, = 0.7 (1) Numerical result with f,, = 0.8

(m) Experimental result with f,, = 0.5  (n) Experimental result with f,, = 0.6 (0) Experimental result with f,, = 0.7 (p) Experimental result with f;, = 0.8

Figure 5: Comparison between numerical simulation results from this study and experimental observations reported
by Liu et al. [30]. The red regions represent the liquid phase, the blue regions indicate the gas phase, and the black
regions correspond to the solid matrix

Table 3: Comparison of preferential flow path distances between numerical simulation results and experimental results

Lgim (mm) Lg, (mm) Relative deviations (%)
fav s1im exp

0.1 0.12 0.17 29.41
0.2 0.29 0.25 16.00
0.3 0.37 0.4 7.50
0.4 0.43 0.46 6.52
0.5 0.49 0.43 13.95
0.6 0.56 0.55 1.82
0.7 0.57 0.57 0.00

0.8 0.64 0.64 0.00
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Figure 6: Comparison of preferential flow path distances between numerical simulation results and experimental
data. The preferential path refers to the earliest breakthrough route of the gas phase through the porous medium. f,,
represents air volume fraction

3.2 Preferential Flow Dynamics and Vortex Formation Mechanisms

As shown in Fig. 7, the fluid flow through models with varying D exhibits pronounced fingering
behavior, with low-dimensional models (D = 1.25-1.45) demonstrating faster finger breakthrough (e.g.,
1.73 m/s peak air velocity at Dy = 1.45 vs. 2.19 m/s at D = 1.7, Table 4). This phenomenon increases from
the intrinsic relationship between the fractal dimension and the pore network topology. Smaller Df values
correspond to pore structures characterized by more pronounced dual-scale features, such as narrower
primary flow channels and reduced proportion of secondary pores. This leads to an intensified flow resistance
localization effect. The results indicate that as Dr increases from 1.25 to 1.7, the tortuosity of preferential
flow paths increases. altering the dynamics of the gas-liquid interface due to changes in the underlying
geometric features.

(a) Ds=1.25,t=0.1s (b) Dr=1.25,1=04s (c)Ds=1.25,t=0.8s (d)Dr=125,t=12s

%

(€) Dr=1.45,¢t=0.1s () Ds=1.45,t=04s (g) Ds=1.45,t=038s (h) Dr=145,t=12s

Figure 7: (Continued)
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(QDr=17,1=0.15s M Df=1.7,t=04s (8)Dr=1.7,1=0.8s () Dr=1.7,1=12s

Water Air Interface Solid

Figure 7: Contour maps of gas-liquid two-phase flow through porous media for v = 0.5 m/s and t = 0.1~1.2 s. Here, v
is the flow velocity of fluids, and ¢ is the flow time

Table 4: Hydraulic properties of fluid flow through fractal porous media

D Air volume Maximum Maximum Maximum air Pressure
fraction eddy viscosity  eddy viscosity  velocity (m/s)  difference (Pa)
(Pa-s) (Pa-s)
1.25 0.467 0.00547656 0.006 0.58 0.4
1.3 0.436 0.0335274 0.033 1.01 6.3
1.35 0.473 0.00878769 0.0079 1.02 1.1
1.4 0.362 0.0106093 0.011 0.45 0.2
1.45 0.528 0.0310655 0.031 1.73 33
1.5 0.485 0.00772587 0.0077 0.62 0.56
1.55 0.484 0.00721846 0.0072 0.55 0.52
1.6 0.666 0.0124182 0.0124 0.61 0.59
1.7 0.692 0.00566516 0.0057 2.19 4.8

The vortex structures observed near pore throats (Fig. 8) can be interpreted using the vorticity trans-
port Eq. (13), in which enhanced surface complexity at higher Dr reduces local curvature radii, amplifying
vorticity generation by ~3x (peak eddy viscosity reaches 0.033 Pa-s at Df =1.3 vs. 0.0057 Pa-s at D¢ = 1.7). The
vortices in preferential channels exhibit higher intensity than isolated pores due to shear layer instabilities at
higher-velocity/stagnant zone interfaces. In higher-dimensional models (e.g., Df = 1.7), the increased surface
complexity reduces the local radius of curvature, thereby enhancing vorticity generation. Notably, vortices
are more intense in pores connected to preferential channels than in isolated ones, primarily due to shear
layer instabilities at the interface between higher-velocity zones and stagnant regions. These findings align
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with the phenomena demonstrated in Fig. 9, in which the maximum eddy viscosity increases nonlinearly
with Dy, confirming the role of complex pore networks in enhancing turbulent kinetic energy dissipation.

(a) Streamline with Dr=1.3 (b) Velocity contour with Dr= 1.3 (c) Enlarged view of velocity vector

(d) Streamline with Dr= 1.4 (e) Velocity contour with Dy = 1.4 (f) Enlarged view of velocity vector

(g) Streamline with Dr= 1.5 (h) Velocity contour with Dr=1.5 (i) Enlarged view of velocity vector

(j) Streamline with Ds= 1.6 (k) Velocity contour with Dy= 1.6 (1) Enlarged view of velocity vector

Figure 8: Distribution of streamlines, velocity contours and enlarged view of vector vectors for v=05m/satt=12s

Fe=0.011 Pa 588
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Figure 9: (Continued)



302 Comput Model Eng Sci. 2025;144(1)

&
Yy ¢
A
4
Ve=0.0124 Pa's

(g) Dr=1.55 (h) Dr=1.6 (i) De=1.7
0 I | — B 0.05 Pa's
eddy viscosity

Figure 9: Variations in eddy viscosity (V) at v = 0.5 m/s and ¢ = 1.2 s with fractal dimension (D) ranging from 1.25
to 17

The time evolution of the gas volume fraction (Fig. 10) indicates that dynamic equilibrium is reached
after approximately 1.1 s. At this stage, higher-dimensional models (Df = 1.7) retain a higher overall gas
fraction compared to smaller-dimensional counterparts. This behavior can be attributed to two primary
mechanisms: first, the increased fractal dimension leads to a higher specific surface area, which strengthens
residual gas saturation; second, turbulence-induced fluctuations within the complex flow pathways (e.g.,
peak eddy viscosity reaching 0.033 Pa:s in Fig. 9) promote enhanced bubble breakup and dispersion. The
combined effects govern the final gas-liquid distribution pattern under dynamic conditions.

0.0 T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

1(s)

Figure 10: Variations in f,, over the time range t =0to1.2s

As illustrated in Fig. 11, the pressure difference exhibits a non-monotonic dependence on Dy, with
distinct regimes emerging across the tested fractal dimensions. At smaller D values (1.25-1.3), the pressure
difference increases sharply (e.g., from 0.4 Pa at Df = 1.25 to 6.3 Pa at D¢ =1.3), attributed to localized
flow resistance within dual-scale pore structures dominated by narrow primary channels and sparse
secondary pores. However, for Ds > 1.5, the pressure difference plateaus or slightly decreases (e.g., 4.8 Pa at
Dr = 1.7), suggesting that enhanced pore connectivity in higher-Df models mitigates localized resistance
despite increased energy dissipation from turbulent vortices (peak eddy viscosity: 0.033 Pa-s at Df = 1.3).
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The flow velocity governs the transition between viscous and inertia-dominated regimes. At v < 0.2 m/s,
the linear AP-v relationship aligns with Darcy’s law, as seen in the low-Dr models (Df = 1.25, AP = 0.4 Pa at
v =0.58 m/s).

30
® D=125
—y=11335, R*=09
® D=13

——=50.26x, R =0.98
Dp=135
y=23.4x,R*=0.87

® D=14
——y=1261x,R*=0.74
D;=145
y=5498x, R*=0.96
® D=15
——»=30.13x, R* = 0.66
® D;=155
——=19.84x, R*=0.76
® D=16
——»=1891x,R>=0.86
® D;=165
——y=11.09x, R*=0.98
® D=17

——=19.63x, R =0.85

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
v (m/s)

Figure 11: Variations in pressure difference (- VP) with v ranging from 0.05 to 0.5 m/s and D from 1.25 to 1.7

The equilibrium air volume fraction (f,,) demonstrates a nonlinear increase with rising D¢ from 1.25 to
1.7, as shown in Fig. 12. At Df = 1.7, f,, reaches 0.692, reflecting enhanced air entrapment due to increased pore
network complexity. This trend aligns with residual gas saturation effects, in which higher specific surface
area promotes air retention in secondary pores. Turbulence-driven dispersion further contributes, as peak
eddy viscosity (0.033 Pa-s at Df = 1.3) enhances bubble fragmentation. The v modulates these dynamics. When
vis below 0.2 m/s, f,y increases monotonically with D¢ under capillary dominance (e.g., fay = 0.72 at v = 0.05
m/s for Dr = 1.7), while when v is above 0.3 m/s, inertial forces reduce f,y, though higher-Df models retain
greater air retention (e.g., fay =0.65 at v = 0.5 m/s for Df =1.7). The intermediate velocities (0.1-0.3 m/s) exhibit
maximal sensitivity, with f,, increasing from Df =1.5 to 1.7 despite only 15% pressure difference growth. This
highlights microstructure dominance over macroscopic resistance in multiphase systems

Fractal geometry directly governs energy dissipation and turbulence generation through the self-
similarity and multiscale connectivity of pore networks. With increasing Dy, P, rises from 0.60 to 0.91,
while A,y decreases from 17.03 to 11.93 mm (Fig. 2), significantly amplifying flow path tortuosity and
specific surface area. In high-D; models, the enhanced specific surface area intensifies energy dissipation
via viscous shear effects (e.g., peak eddy viscosity of 0.033 Pa-s at Dy = 1.7, Fig. 9), while velocity disparities
between primary channels and secondary pores (velocity gradients up to 1.73 m/s, Fig. 7) induce shear layer
instabilities, triggering turbulent vortices. Additionally, reduced pore curvature radii exacerbate streamline
bending (Fig. 8), elevating localized vorticity generation and driving a sixfold surge in pressure differentials
(0.4 to 6.3 Pa) across Dy = 1.25 — 1.3 (Fig. 11). This “dual effect” of fractal topology—enhanced connectivity
mitigating macroscopic resistance vs. turbulence-dominated dissipation—ultimately governs the transi-
tion from viscous to inertial flow regimes, highlighting the pivotal role of microstructure in regulating
macroscopic energy evolution.
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4 Conclusions

This study systematically investigates the complex mechanisms of gas-driven liquid displacement in
ten fractal porous media through a series of pore-scale numerical simulations. The results elucidate the
nonlinear regulatory role of fractal dimension in governing both pore structure characteristics and dynamic
flow behavior. The main conclusions are summarized as follows.

Smaller Dr models (1.25~1.45) exhibit accelerated viscous fingering instability behaviors, with peak air
velocities reaching 1.73 m/s at Ds = 1.45, compared to 2.19 m/s at D = 1.7. This disparity stems from simplified
dual-scale pore structures in low-Ds systems, dominated by narrow primary channels (mean hydraulic
diameter that is 1703 mm at D = 1.25) and sparse secondary pores. As Dy increases from 1.25 to 1.7, the
tortuosity increases by 1.8 times, delaying breakthrough time and amplifying localized flow resistance, as
evidenced by a pressure difference surge from 0.4 Pa (Dr = 1.25) to 6.3 Pa (Dr = 1.3). The enhanced surface
complexity in higher-Dr models reduces local curvature radii, amplifying vorticity generation by about 3
times. The peak eddy viscosity reaches 0.033 Pa-s at Dy = 1.7, which is significantly higher than 0.0057 Pa-s
at Dr = 1.3. The vortices predominantly form at interfaces between higher-velocity zones (e.g., preferential
channels) and stagnant regions, driven by shear layer instabilities. These dynamics correlate with nonlinear
increases in turbulent kinetic energy dissipation, as confirmed by vorticity transport equation analyses. The
pressure difference (AP) transits from a sharp increase (0.4-6.3 Pa over D = 1.25-1.3) to a plateau (4.8 Pa at
Dr = 1.7), indicating a shift from viscous to inertia-dominated regimes. The equilibrium gas volume fraction
(fav) increases nonlinearly with Dy, reaching 0.692 at D¢ = 1.7, driven by residual gas saturation (specific
surface area increase) and turbulence-induced bubble dispersion (eddy viscosity that is 0.033 Pa-s). The flow
velocity modulates these effects. The f,, peaks at 0.72 under low-velocity capillary dominance (v = 0.05 m/s)
but declines to 0.65 at v = 0.5 m/s due to inertial forces.

The current model is suitable for two-dimensional simplified structures. Future works will incorporate
higher-resolution 3D pore network reconstructions using CT imaging to achieve realistic geometries.
Moreover, by coupling the effects between wettability gradients and fractal characteristics, the rheological
behavior of non-Newtonian fluids in fractal media, and multi-physics interactions involving thermal and
chemical processes will be the key areas of exploration.
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