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ABSTRACT: The traditional topology optimization method of continuum structure generally uses quadrilateral ele-
ments as the basic mesh. This approach often leads to jagged boundary issues, which are traditionally addressed through
post-processing, potentially altering the mechanical properties of the optimized structure. A topology optimization
method of Movable Morphable Smooth Boundary (MMSB) is proposed based on the idea of mesh adaptation to solve
the problem of jagged boundaries and the influence of post-processing. Based on the ICM method, the rational fraction
function is introduced as the filtering function, and a topology optimization model with the minimum weight as the
objective and the displacement as the constraint is established. A triangular mesh is utilized as the base mesh in this
method. The mesh is re-divided in the optimization process based on the contour line, and a smooth boundary parallel
to the contour line is obtained. Numerical examples demonstrate that the MMSB method effectively resolves the jagged
boundary issues, leading to enhanced structural performance.

KEYWORDS: Movable Morphable Smooth Boundary; continuum structure; topology optimization; jagged boundary;
ICM method

1 Introduction

Due to the rapid development of additive manufacturing technology, its integration with topology
optimization is becoming increasingly close, expanding the design space available for topology optimiza-
tion. Combining them will be a new revolution with significant development prospects in the modern
manufacturing industry [1,2]. However, the final structure produced through topology optimization is
generally challenging to be directly used for manufacturing because most of the structural design domains
in topology optimization use quadrilateral elements or hexahedral elements, and they inevitably result in
jagged boundaries and gray-scale elements. Although many researchers have studied the jagged boundary
problem, most solutions involve post-processing after the optimization iterations terminate. Although this
method can make the boundaries smoother, it can compromise the advantages of topology optimization,
potentially reducing the mechanical properties of the structure and diminishing its engineering value.
Therefore, developing an optimization method that achieves smooth boundaries automatically during the
optimization process is of great significance.

In 2012, Fu [3] obtained satisfactory optimization results based on the level set optimization method
using a geometric reconstruction technique to fit the topology-optimized boundaries. In 2022, Zhang et al.
[4] binarized the results of the topology optimization design to obtain the boundaries without gray elements
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and then extracted the corner points of the boundaries. Finally, the focus of these corner points was fitted to
the curve to achieve a smooth and clear boundary. Although this method results in smooth boundaries, the
mechanical properties of the overall structure are altered. In 2022, Li et al. [5] used a pre-constructed look-
up table to transform the shapes of the boundary elements obtained in topology optimization and finally
generated a topology configuration with smooth boundaries, which improved the jagged boundaries. In
2022, Liuetal. [6] employed a topological design method based on discrete variables that were based on SAIP
(sequential approximate integer programming) and CRA (canonical relaxation algorithm), which helped to
avoid gray elements and achieve clear 0-1 solution in topology optimization.

In addition to post-processing methods, some researchers have also used mesh adaptive refinement.
Adaptive mesh refinement algorithms were first proposed by Maute et al. [7] in 1995, using independent mesh
analysis and smoothing algorithms. Using cubic spline or Bezier spline approximation not only reduces the
number of design variables and obtains smoothed results but also can be directly combined with traditional
shape optimization methods. In 2018, Thomas et al. [8] used the Tyson polygonal division of the mesh to
implement the adaptive strategy. They applied four numerical examples to validate the comparison between
the Tyson polygonal and the complete refinement and found that the adaptive strategy was able to reduce
the computation time and obtain clear material distribution and boundaries.

Since the level set optimization method itself can ameliorate the jagged boundary problem, many
researchers have combined the method with topology optimization methods with jagged boundaries to
solve the problem. In 2018, Da et al. [9] employed node sensitivity to construct a level set function to
implicitly determine a smooth structural topology based on the jagged boundary problem that exists in
the bidirectional asymptotic structural optimization method. In 2019, Liu et al. [10] proposed a topology
optimization method using floating projection for the jagged boundary problem arising from the Bi-
directional Evolutionary Structural Optimization (BESO) method, which first uses floating projection
constraints to fit the intermediate density elements more closely to the 0/1 design variables, and then
uses the zero contour of the level-set function to depict the boundary to obtain the result of a smooth
boundary. In 2024, Muayad and Majid [11] proposed a plastic limit probability-based structural topology
optimization method utilizing an extended BESO approach. Compared to traditional design methods, this
method demonstrates significant improvements in terms of load-bearing capacity, stress intensity, stiffness,
and yield load. Gomez-Silva et al. [12] implemented a novel approach to obtain the optimal volume fraction of
the materials forming the structure using the BESO method. In 2020, Fu et al. [13] proposed an algorithm for
the optimal design of continuum topology based on element volume fraction, which thoroughly investigated
the effects of parameters, mesh sizes, and penalty coefficients in the Heaviside smoothing function on the
efficiency of performance computation and topology design, and used the zero level-set function to implicitly
extract smooth topological boundaries to effectively improve the jagged boundaries.

The development of machine learning, as well as deep learning, makes topology optimization have a lot
of development space. In 2021, Yu [14], based on the method of movable deformation components for the
unsmooth boundary problem, employed the convolution operator to establish the connection of the topology
description functions of the mutually independent formations and utilized the radius of the convolution to
control the effect of the smoothness. The topological description function uses the Kreisselmeier-Steinhauser
(KS) function instead of the Max function. In 2022, Huang et al. [15] proposed a problem-independent
machine learning-enhanced multiresolution topology optimization method based on the Solid Isotropic
Material with Penalization (SIMP) method, which focuses on the shape function for structural finite element
analysis and establishes the numerical interpolation between the density of the fine mesh elements within the
coarse mesh elements and the corresponding nodes of the coarse mesh elements through machine learning
implicit relationship between the shape functions.
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The Independent Continuum Mapping (ICM) method used for modeling in this study was initially
proposed by Sui and Yang [16] in 1996, which restores the independence of topological design variables
by removing their dependence on dimensional optimization variables, such as material parameters or
geometrical properties. The ICM method represents the presence or absence of elements in a manner that
is independent of their specific physical properties. This method overcomes the difficulty encountered in
variable-density approaches and similar methods to a certain extent, where it is challenging to handle multi-
loading-condition problems when the objective is to optimize compliance. Topology optimization under
stress, displacement, frequency, and vibration constraints for continuum structures has been investigated by
Peng and others [17-19]. Long et al. [20-22] proposed a node-independent variable-based approach and a
hybrid interpolation modeling method to study the topology optimization of a continuum under harmonic
response. In 2022, Yan et al. [23] used the power function as a filtering function and investigated the effect
of power exponents with different parameters on the convergence of the optimization results. In 2023, Du
et al. [24] used an ICM approach to investigate the topology optimization of continuum structures under
the consideration of the breakage-safety topology optimization of randomly broken structures in this case.
No researcher has studied the sawtooth boundary problem for the ICM method, which also exists in the
same way.

This study explores the jagged boundary problem of the ICM method in topology optimization.
It develops a topology optimization model with minimum weight as the goal and displacement as the
constraint. A new Movable Morphable Smooth Boundary (MMSB) method is proposed. The method uses
a triangular mesh as the basic mesh, which can directly improve the jagged boundary in the optimization
process without changing the mechanical properties of the structure.

2 Displacement-Constrained Topology Optimization Model Based on the ICM Method
2.1 Establishment of Optimization Model

The topology optimization model based on the ICM (Independent Continuous and Mapping) method
with weight minimization as the objective and displacement as the constraint is established as follows:

Find teEY
N
Make W =3 w; - min
2 1)
s.t. ui<uj(j=1,....J)
0<t;<t;<1(i=1,...,N)

where i and j are the index of design variables and the index of constraints, respectively; N and J are the total
number of design variables and the total number of displacement constraints, respectively; ¢ is the vector of
topology design variables; t; is the i-th variable; EV is an N-dimensional Euclidean space; W is the weight of
the structure; w; is the weight of the i-th element; 1; is the j-th displacement constraint; u; is the upper limit
of the j-th displacement constraint

The initial element topology variable values in the entire design domain in the topology optimization
model are all 1. During the iteration process, the element topology variable will change, presenting the values
as continuous values in the interval [0, 1], for which it is necessary to introduce a filtering function to achieve
the transformation between the discrete topology variable and the continuous topology variable.

The filter functions of element weight and element stiffness in the ICM method are given in the following
equations:

wi = fu (t) Wi ki = fr (t;) k;° (2)
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where w,° and k;° are the intrinsic weight and stiffness of the i-th element, respectively; k; is the element
stiffness of the i-th element; f,, is the filter function for element weight; fi is the filter function for
element stiffness.

The rational fractional function is chosen to solve the problem, and this filter function can reduce the
intermediate gray elements and also improve computational efficiency.

#

1+ w(l )f"() 1+qc (1-t;) 3)

where g, is the parameter of the element weight filter function; gy is the parameter of the element stiffness
filter function; g,, = 3 and g = 63 are used in this study [25].

fw (ti)

The optimization model built by introducing the filtering function becomes:

Find teEN
Make W = wa(t)w — min

s.t. u](fk(t))<uj(]—1 J)
0<t <t <1(i=1,....N)

(4)

2.2 Explicitation of Displacement Constraint

Based on Mohr’s principle, the generalized displacement of any node in the given direction of the
structure can be seen as follows:

N VT]
= i ,‘d 5
;f(a)sv (5)

where o;" is the stress vector of the element i by applying one element of imaginary load in the
displacement direction; &;” is the strain vector of the element i by applying real load.

Based on the principle of virtual work mentioned in “the work done by the external force on the virtual
displacement is equal to the virtual work done by the internal force on the virtual deformation caused by the
virtual displacement”, it can be obtained as follows:

N N
> [ (o) elav =3 (") F/ ©
i=1 =

where u;" is the imaginary displacement; F;’ is the force vector of the element node under real load.

Eq. (6) can be described as the following equation using the overall stiffness equation of Finite Element
Analysis (FEA):

T N T _
Z/ o) eddv =5 (B w = 3 (F) KR %
i=1 i=1 i=1
where F;" is the element node force vector under the imaginary load.

Introducing a filter function establishes the following explicit expression for the displacement constraint
when proceeding to the first iteration:

N fk( (V))

F) 8
= fi(ti) ( l) i ®)

Llj_
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Assuming

N, v
Aij:(F,‘) u; (9)
C,'j ZAijfk(t:-/) (10)

The explicit expression for the optimization model is as follows:

Find teEN

N

Make W=wa(ti)W?_>min

i=1 N . ~ . (11)

s.t. uj(t):lglmSuj(]:L...,])
0<ti<t;<l (i=1,---,N)

If the design variablesx; = 1/ fi (¢;), the second-order Taylor approximate expansion of the objective
function, and omit the constant term, the following mathematical model of quadratic programming can be
derived:

Find x¢eEN

N
Make > (a,-xl- + b,-xl.z) w? — min

i (12)
s.t. ZC,’inSu_j(jZI,...,])

1<x;<x;(i=1...,N)

where g; and b; are the coefficients of the second-order Taylor approximation of the objective.

This is obtained by substituting the rational fractional filtered functional form into Eq. (12):

Find x¢eEN

N
1+ 0 .
Make ¢W — min
2 gys (g i

(13)

N
s.t. Yocijxi<uj(j=1,...,])
i1

1<x;<x;(i=1,...,N)

Since the objective function in Eq. (13) is also more complicated for its direct second-order Taylor
expansion, first- and second-order derivations of the objective function are obtained:

o 1+ g T -+ (+q.)
Ju (1) [(1+qw)xi+(4k—qw)] [(1+ ) xi + (g5 — qw)]’ "

” 2
1:}l(xi)=|: ]'+qk :| - 2(1+qk) (1+QW) (15)

(1+gw) xi + (gx — qw) [(1+qW)Xi+(Qk—qW)]3

The following can be obtained from the second-order Taylor approximation of the objective function
in Eq. (13):

Zb,' = 1:,, (Xi) (16)
2bix; +a; = £, (xi) 17)
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Substituting the specific formulas for the first-order derivatives as well as the second-order derivatives,
i.e., Substituting Eq. (15) and (16) into Eqgs. (17) and (18):

L 1ra) 1+ g)[-301+90) %Y - (g - u)] 18)
[(1+ ) % + (g - )]
(1+4x) (1+qu)°

[0+ gu) %+ (gx - gn)]’

(19)

2.3 Solution of the Optimization Model

Since the number of design variables in Eq. (13) is much larger than the number of constraints in the
displacement-constrained topology optimization model, Eq. (13) is transformed into a dual optimization
problem [26] as shown in the following equation to reduce the computational effort to solve it with the dual
sequence quadratic programming algorithm:

Find AecE/
Make @ (1) - max (20)
st. A;20(j=1...,])
®(A) = min (L(x,A)) (21)
1<x;<x;

L(x,A) = i(bixl-z+€lin)+Z (icuxl uj) (22)
i=1

j=1 i=1

After the second-order Taylor approximation of the objective function @ (1) and the omission of the
constant term, a new quadratic programming model is obtained as follows:

Find AeF/
Make -®(1)=1A"DA+H"A - min (23)
s.t. /\jZO(jZl,...,])
where
Jk = Z Cz] 2 (24)

i=1

Zc,]x +u]+z ](be +a;) (25)

iel,

It is sufficient to solve using the sequential quadratic programming algorithm until the convergence
condition of the following equation is satisfied.

w+) _ ()

W |<e (26)

where W) and W+ are the total weight of the structure for the previous and current iterations; ¢ is the
convergence accuracy. The value of € used in the examples of this study is 0.001.
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3 A Topology Optimization Framework for Moving Morphable Smooth Boundary
3.1 Moving Morphable Smooth Boundary Method

In previous topology optimization efforts utilizing the ICM method, a quadrilateral mesh usually
served as the base mesh, often resulting in jagged boundaries that hinder manufacturability. The ICM
topology optimization relies on finite element analysis, where meshing is crucial, as each element functions
as a topological variable. Mesh delineation involves converting the physical model into a mathematical
representation, and traditional quadrilateral meshing tends to exacerbate the issue of jagged boundaries.
Therefore, employing a free mesh delineation approach, typically using triangular elements, presents a
viable alternative.

This study proposes a novel topology optimization method known as Movable Morphable Smooth
Boundary (MMSB), which primarily utilizes the triangle mesh as the base mesh due to its inherent flexibility
and ease of deformation. The specific steps of the method are illustrated in the flow chart presented in Fig. 1.
Initially, the triangle elements are treated as topology variables, with a threshold value, h, to be set as 0.5.
With a Patran Command Language (PCL) program subscribed to the MSC. Patran & Nastran software,
elements whose topology variables exceed the threshold are identified, and then common edges between
these elements are checked. Ifa common edge is found, an interpolation method is applied to create threshold
points based on individual elements. Then, the number of these threshold points is adjusted to ensure
continuity. The Loft multipoint curve in the spline curve method is then utilized to connect the points,
forming a curve that represents the contour corresponding to the threshold value of 0.5. Finally, the mesh is

redrawn along this contour.

Triangular elements as
topological variables
le
v
Finds the element whose topology
variable is greater than threshold

Whether there is a
common edge

If the topology value of the adjacent element
is less than A, the point with / is found by
interpolation

)

Model is created for all points whose
threshold is 4

l

The threshold points are
connected to form isoline

Mesh repartition

<

End

Figure 1: Flowchart of the Moving Morphable Smooth Boundary (MMSB) method
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The whole optimization process is shown in Fig. 2, with six main steps. First, establish the initial
finite element model, determine the geometric parameters of the model (length, width, thickness), material
parameters (Poisson’s ratio, modulus of elasticity), mesh element size, displacement boundary conditions,
and load boundary conditions; second, set the optimization parameters, which mainly include the value of
the displacement constraints and the accuracy of the convergence; third, use the ICM topology optimization
method combined with the finite element analysis to perform the optimization iteration and structural
analysis; Fourth, determine whether the optimization iteration to the fourth step, if the iteration to the fourth
step to find the threshold 4 value of 0.5 contour and along the curve for the mesh re-division, which is the
first time the boundary line; Fifth, on the basis of a new round of finite element structural analysis and
optimization iteration; Sixth, the number of iterations in the second optimization iteration is increased by
four steps on the basis of the first optimization, to observe whether the boundary is smooth and similar to
the first boundary, if similar and smooth to meet the convergence that is the end of the iteration, and output
the topological map.

Start
Establish an initial finite Element Delete the last optimized finite element
model mesh
Set the optimization parameters Find the isoline and re-divide the grid

along it

) }

Iteration step: k=0

Record each topological boundary isoline

l l

—>| structural analysis

Solve the topology value

Solve the optimization model
parameters k=k+4

No Yes

Observe whether the isoline
of the front and back topological
boundaries are similar and smooth

End

Figure 2: Overall optimization flow chart
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3.2 Threshold Point

Since the topology optimization needs to be operated by the finite element method, it needs to be applied
to the finite element software platform for the study, and this study mainly uses the PCL language in the MSC.
Patran and Nastran software for the study. The study of the Movable Morphable Smooth Boundary method
mainly involves the selection of threshold points because only by finding the corresponding threshold points
can the connection of curves be achieved to form the contour and ultimately realize the smoothness of
the boundary.

Threshold points are selected as shown in Fig. 3. The red triangular elements represent the elements with
topological values located at [0.5, 1], and the white triangular grids represent the elements with topological
values located at [0, 0.5]. Points A and B represent the center of the two grids, and the topological value of
the point is the topological value of the element. The topological value of the point is the topological value of
the element, and the topological value of the point is interpolated using interpolation to find the threshold
point between the line segments AB, and the default threshold point is 0.5.

3

2

Figure 3: Introduction to the threshold points of the triangular mesh

The coordinates of the threshold point are mainly found using interpolation. Assume that the point
whose topological value is greater than 0.5 is B(x;, y1, 0), and the point whose topological value is less than
0.5 is A(x2, 2, 0). Then, the coordinates of a point between these two points are expressed as follows:

——[(m=h)x2+ (h—n)x]
m1 n (27)
[(m=h)y2+ (h-n)n]

X3 =

V3 =

m-—n

where h is a threshold value; m is a topology value that is greater than or equal to the threshold value; n is a
topology value that is less than the threshold value. Thus n < h < m.

4 Numerical Examples
4.1 Numerical Example 1

Example 1: The planar body base structure shown in Fig. 4 has dimensions of 100 x 200 x 6 mm, the
finite element model is shown in Fig. 5. The modulus of elasticity of the material is 68.89 GPa, Poisson’s ratio
is 0.3, and the centralized load F = 15.6 kN acts on the midpoint of the right boundary, and the left boundary
is fixed constraint. The displacement constraint is that the vertical downward displacement of the loaded
point is less than or equal to 0.5 mm. The mesh is a three-node triangular element.
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The final topological configuration obtained in the literature [27] using a traditional quadrilateral mesh
is shown in Fig. 12. The five boundary movement changes in example 1 indicate that the boundary of the fifth
time is relatively smooth. There is almost no change with the topological configuration of the fourth time so
that the convergence condition can be reached. The weight iteration curve obtained from the five boundaries
is shown in Fig. 13, and the final converged weight is 22.5 kg. Comparing the results of the method without
Movable Morphable Smooth Boundary (MMSB) and the results of the method, as listed in Table 1, indicates
that the boundary using the MMSB method is smooth enough to facilitate direct manufacturing at a later
stage. The boundary using the MMSB method is smooth enough to facilitate direct fabrication at a later stage.

Figure 11: Final topological configuration of the MMSB  Figure 12: Traditional optimization results from the liter-

approach ature [27]
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Figure 13: Five iterative curves for the weight of the MMSB
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Table 1: Comparison results of different optimization methods

Methods Whether the boundary is smooth or not
MMSB Yes
Without using MMSB No
literature [27] No

4.2 4.2 Numerical Example 2

Example 2: The base structure shown in Fig. 14 is 520 x 260 x 6 mm, and to reduce the computational
amount of the symmetric structure is used for the analysis, its symmetric base structure is shown in Fig. 15,
and the finite element model is illustrated in Fig. 16. The modulus of elasticity of the material is 68.89 GPa,
Poissons ratio is 0.3, and the centralized load P = 21 kN acts at the midpoint of the lower boundary, and the
structure is hinged at the lower left corner and simply supported at the lower right corner. The displacement
constraint is that the vertical downward displacement of the loaded point is less than or equal to 0.8 mm.

520 260
ik
260 260
iz
I . ”
Figure 14: Basic structure Figure 15: Symmetrical basic struc-  Figure 16: Example 2 Finite element
ture model

A total of eight boundary shifts in Example 2 are performed using the MMSB method, and after the
eighth boundary shift, the boundary shift is more similar to the seventh boundary shift, and the overall
boundary of the eighth shift is smoother so that the conditions for convergence can be achieved. The topology
graph with a smooth boundary containing only 0-1is finally obtained, and the iterative curves of the weight
of the structure with eight boundary shifts are shown in Fig. 17. The weight of the structure is 101.4 kg after
the final convergence, and the topology graph with smoother boundary is illustrated in Fig. 18. The mesh
re-division is conducted to obtain the boundary shifting diagram as shown in Fig. 19.

Since the example uses a symmetric structure, the overall weight of the structure should be doubled for
the original structure. The results obtained by optimizing the traditional topology and the results obtained
using the MMSB method using mirror symmetry are shown in Figs. 20 and 21, respectively, and the results
based on the quadrilateral mesh in the literature [27] are depicted in Fig. 22. The topology diagrams obtained
by comparing the three approaches demonstrate that the topological configurations obtained by using the
triangular mesh but not using the MMSB method are different from the results obtained by using the MMSB
method as well as based on the results obtained by using the quadrilateral mesh in the literature [28], which
is attributed to the existence of laziness in the mesh. However, it can be appropriately ignored. The results
obtained from the three methods are compared as listed in Table 2, where the weight of the structure is the
overall structural mass after mirroring. The results obtained by using the MMSB method are smoother, which
is favorable for direct fabrication at a later stage, and it also shows that the MMSB method is a very effective
method to improve the jagged boundary.
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Figure 20: Symmetry diagram without MMSB methodin  Figure 21: Symmetry diagram of the MMSB method in
example 2 example 2

R

Figure 22: Traditional optimization results from literature [28]

Table 2: Comparison results of different optimization methods for example 2

Methods Whether the boundary is smooth or not
MMSB Yes
Without using MMSB No
literature [28] No

4.3 4.3 Numerical Example 3

Example 3: The base structure is depicted in Fig. 23, with basic dimensions of 80 x 50 x 1 mm, and
its finite element model is shown in Fig. 24. The modulus of elasticity of the material is 1.0 x 10° MPa, and
the Poisson’s ratio is 0.3, and a centralized load of F = 9000 N is applied to the lower-right corner of the
model, and a fixed constraint supports the left boundary, and the displacement constraint is that the vertical
downward displacement at the point of the load effect is less than or equal to 0.5 mm. The edge length of the
element is set to 3 mm.

The inverse topology optimization configuration obtained without using the MMSB method is shown
in Fig. 25, where the jagged boundary is more severe.

A total of seven boundary shifts in Example 3 are performed using the MMSB method, and after the
seventh boundary shift, the boundary shift was more similar to the sixth boundary shift, and the overall
boundary is smoother in the seventh shift so that the convergence condition can be achieved. The mesh
re-division is conducted to obtain the boundary shifting diagram as shown in Fig. 26. The final topological
graph with smooth boundary containing only 0-1 is obtained as shown in Fig. 27. The final topological
configuration of this algorithm obtained in the literature [29] using a quadrilateral based mesh is shown
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in Fig. 28. The structure weight iteration curves for seven boundary shifts obtained using the MMSB method
are shown in Fig. 29. The final converged structure weight obtained is 1.65 kg.
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Figure 26: Seven boundary shifts



Comput Model Eng Sci. 2025;144(1) 807

JLIITTI VALY
]ll#

ams

Figure 27: Final topological configuration of the MMSB  Figure 28: Traditional optimization results from litera-

method in Example 3 ture [29]
404 =
3.5 \
\
|
%" 3.0 \
= 2.5 ‘m .,
2.0 \I-I.._.,-..,._....
...-.’I-I-I-I\. -
-m-m-.
1.5
T T T T T T T
0 5 10 15 20 25 30

Iterations

Figure 29: Seven iterative curves for weight of MMSB

The topological configurations obtained without using the MMSB topology optimization method, those
in the literature [29], and those of the MMSB method are the same. The results obtained by the three methods,
as listed in Table 3, do not differ much in terms of the weights of the structures. The results obtained using
the MMSB method are smoother, indicating that the MMSB method is a very effective method to improve
the jagged boundary.

Table 3: Comparison results of different optimization methods for calculation example 3

Methods Whether the boundary is smooth or not
MMSB Yes
Without using MMSB No

literature [29] No
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5 Conclusion

This study develops a topology optimization model for weight minimization with multiple displace-
ment constraints utilizing the ICM method. It uses the triangular meshing during the structural design
optimization as the base mesh and achieves the boundary movement through contour redistribution of the
mesh, resulting in an optimal topology with smooth boundaries. The Movable Morphable Smooth Boundary
(MMSB) method effectively addresses the jagged boundary problem, and numerical examples demonstrate
its effectiveness and feasibility.

However, the movable deformation boundary method requires multiple times of re-meshings, which
limits computational efficiency. Future work will focus on enhancing the computational efficiency. In
addition, the numerical examples provided are based on a two-dimensional model. If the Movable Morphable
Smooth Boundary (MMSB) is to be extended to a three-dimensional model, it will require re-establishing
three-dimensional boundary curves, increasing the complexity. This issue shall be addressed in future
studies.
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