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ABSTRACT: At present, noise reduction has become an urgent challenge across various fields. Whether in the context
of household appliances in daily life or in the enhancement of stealth performance in military equipment, noise control
technologies play a critical role. This study introduces a computational framework for simulating Helmholtz equation-
governed acoustic scattering using a boundary element method (BEM) integrated with Loop subdivision surfaces.
By adopting the Loop subdivision scheme—a widely used computer-aided design (CAD) technique—the framework
unifies geometric representation and physical field discretization, ensuring seamless compatibility with industrial CAD
workflows. The core innovation lies in the novel integration of conditional generative adversarial networks (CGANs)
into the subdivision surface BEM to assist and accelerate the numerical computation process. In this study, for the
two cases examined, the results show that the CGAN-enhanced approach achieves substantial gains in computational
efficiency without compromising accuracy. A hierarchical acceleration strategy is further proposed: the fast multipole
method (FMM) first reduces baseline computational complexity, while CGAN-driven secondary acceleration and data
augmentation enable real-time parameter exploration. Benchmark validations and practical engineering applications
demonstrate the method’s robustness and scalability for large-scale structural-acoustic analysis.
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1 Introduction
Nowadays, widely used numerical tools such as finite element methods (FEM) [1–5] and boundary

element methods (BEM) [6–9] rely heavily on geometric fidelity to ensure reliable structural and acoustic
simulations. Recent advances integrate computer-aided design (CAD) techniques—including nonuniform
rational B-splines (NURBS) [10], T-splines [11], and subdivision surfaces [12,13]—to bridge the gap between
geometric modeling and numerical analysis. Among these, subdivision surfaces offer a distinct advantage
for complex topologies. Unlike NURBS, which require laborious surface stitching to maintain continuity
[14], subdivision schemes iteratively refine coarse polygonal meshes into smooth limit surfaces, inherently
preserving geometric continuity without manual intervention.

Early subdivision methods, including Catmull-Clark [15], Loop [16], and Butterfly [17], have been
widely adopted in 3D modeling and structural analysis. Among these, the Loop subdivision scheme stands
out for its ability to handle complex geometries with sharp features or discontinuities. By reconstructing
an initial coarse mesh (Fig. 1a), the algorithm iteratively refines the topology to generate smooth limit
surfaces (Fig. 1c) with minimal subdivision steps. This efficiency, achieving visually smooth results in just
a few iterations, demonstrates the computational advantage of Loop subdivision over traditional meshing
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techniques. Subdivision surfaces [18,19] are uniquely suited for engineering applications due to their ability to
model arbitrary topological structures while maintaining strict control over computational and storage costs.
Unlike conventional spline-based approaches, subdivision operates through local refinement rules, enabling
scalable and adaptive geometric representations [20,21]. These properties make subdivision surfaces, and
the Loop scheme in particular, a robust foundation for isogeometric analysis, where seamless integration of
geometric modeling and numerical discretization is critical.

Figure 1: The initial mesh model (a), the model refined by the subdivision surface (b), and the limit surface model (c),
with smooth transitions at the joints

Compared to finite element methods (FEM), the boundary element method (BEM) [22] offers a critical
advantage through dimensionality reduction [23], as it discretizes only the boundary of the domain rather
than the entire volume. This property makes BEM particularly effective for solving wave propagation
and scattering problems in infinite or semi-infinite domains. For exterior acoustic scattering governed
by the Helmholtz equation, BEM inherently satisfies the Sommerfeld radiation condition at infinity [24],
eliminating the need for artificial absorbing boundary layers required in FEM.

However, BEM’s reliance on dense matrix assembly—a consequence of its Green function-based
formulation—poses significant computational challenges for large-scale problems. Recent advances address
this through hierarchical acceleration techniques such as the fast multipole method (FMM) [6,25], which
reduces computational complexity from O(N2) to O(N logN). Further efficiency gains are achieved by
integrating subdivision surfaces with BEM [22], allowing adaptive geometric refinement without repeated
regeneration of the mesh. This approach automatically generates hierarchical models (Fig. 1) that bal-
ance accuracy and computational cost during pre-processing. Despite these advancements, two critical
bottlenecks persist:

• Escalating computational load with increasing subdivision iterations, as finer meshes amplify matrix size
and increase computation time.

• Hardware limitations, where memory constraints and serial processing bottlenecks hinder large-scale
simulations, even with FMM acceleration.

Aiming at such challenges, recent advances in deep learning have demonstrated its potential for
acoustic simulations: Qu et al. [26] employed deep neural networks (DNNs) for data augmentation and
accelerated uncertainty quantification. Chen et al. [27] conducted rapid analysis of uncertainties arising from
different material parameters in acoustic-vibration coupling problems using a simple neural network model.
Meanwhile, Zhou et al. [28] accelerated vibroacoustic analysis and proposed a neural network-based method
to expedite numerical computations, collectively showcasing deep learning’s efficacy in computational
acoustics. Building on these foundations, Conditional Generative Adversarial Networks (CGANs) offer
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unique advantages for frequency-domain optimization, including targeted data augmentation within user-
defined frequency bands [29] and high-fidelity prediction of acoustic fields. The prior application [30]
of CGANs in the field of structural acoustics [31] has preliminarily validated their practicality, but their
integration with subdivision surface BEM remains unexplored. This study introduces CGANs into boundary
element computations for the first time, exploring their feasibility in numerical simulations. By using
small-scale datasets to predict large-scale data, CGANs serve as a secondary acceleration strategy to assist
traditional numerical computations. CGANs still lack rigorous theoretical proof in numerical computations
and currently have only partial empirical applications. Therefore, in this study, CGANs are embedded into
the numerical simulation workflow as an auxiliary tool to improve overall computational efficiency.

The structure of this paper is as follows: Section 2 introduces the Loop-based subdivision sur-
face method. Section 3 presents a boundary element discretization method for Helmholtz analysis
based on subdivision basis functions. Section 4 describes the CGAN-based accelerated computation
approach. Section 5 demonstrates the effectiveness of the proposed method through numerical simulation
examples. Finally, Section 6 summarizes the conclusions of this study.

2 Methods of Loop Subdivision
In this study, the isogeometric analysis (IGA) framework is integrated with loop subdivision surfaces

for high-fidelity mesh generation, conducted prior to numerical simulation [32]. The loop subdivision
method refines triangular elements by iteratively subdividing edges and faces [33]. As illustrated in Fig. 2,
the subdivision process begins by inserting midpoints along each edge. Connecting these midpoints divides
the original triangular element into four smaller triangles. The valence (nv), defined as the number of edges
incident to a vertex, distinguishes regular vertices (nv = 6) from irregular vertices (nv ≠ 6). The Loop scheme
produces C2-continuous surfaces at regular vertices and C1-continuous surfaces at irregular vertices. The
refinement process is further detailed in Fig. 3, where:
• At subdivision level k, a new vertex xk+1

e is inserted at the midpoint of each edge.
• The position of each original vertex from level k is denoted as xk+1

v .
The vertex positions at level k + 1 are computed as follows:

xk+1
e = 1

8
x1 +

3
8

x2 +
1
8

x3 +
3
8

x4, (1)

xk+1
v = 3

8nv

v
∑
i=1

xi +
5
8

xk
v . (2)

A key advantage of subdivision surfaces is their data-efficient representation, requiring only a compact
initial mesh. While the number of irregular vertices (those with valence ≠ 6) may vary across elements in
the original triangular mesh, a single iteration of the Loop subdivision scheme ensures that each refined
triangular element contains exactly one irregular vertex, significantly simplifying topological complexity.

Figure 2: The positions of edge points “E” and vertex points “V”
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Figure 3: Refinement in loop subdivision

Analysis of Surface Fitting
Successive subdivisions of the initial mesh produce a smooth limit surface. Within subdivided surfaces,

a triangular element is defined as regular if all its vertices are regular (valence nv = 6) [34] (see the red
triangular element in Fig. 4). For a point x e with local coordinates (θ1 , θ2) (θ1 , θ2 ∈ [0, 1]) in the regular
element, its global coordinates can be directly interpolated using the quartic box-spline basis functions Bi
and the coordinates of the corresponding control points x i (i.e., the 12 surrounding vertices):

x e(θ1 , θ2) =
12
∑
i=1

Bi(θ1 , θ2)x i . (3)

Figure 4: Control mesh vertices of a regular triangular element

For regular elements, Stam [35] defines the explicit form of these basis functions, which form the
foundation for subdivision surface parameterization (Eq. (3)).
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For irregular elements consist of irregular vertices (nv ≠ 6), the direct interpolation for points in regular
elements is no longer applicable. To this end, a feature-based subdivision matrix method is adopted, whereby
the irregular element is iteratively refined until the fitting point is relocated into a regular sub-element. Fig. 5
illustrates this process for a red triangular element containing vertex 1 (nv ≠ 6), which is subdivided into three
regular sub-elements (Γ1

1 , Γ1
2 and Γ1

3) and one irregular sub-element. If the fitting point x e falls into one of the
three regular sub-elements, then its parametric coordinates can be computed using the direct interpolation
(see Eq. (3)). If x e falls into the irregular sub-element, this sub-element will be subdivided iteratively until
x e locates in a regular sub-element. Detailed numerical implementation of the subdivision matrix method
can refer to reference [35], Hence, the point in the irregular element can also be interpolated as:

x e(θ1 , θ2) =
nv+6
∑
i=1

Ni(θ̃1 , θ̃2)x i , (5)

which uses nv + 6 control points, and the local coordinates in sub-elements (θ̃1 , θ̃2) = (θ1 , θ2)/2l , and l
denotes the level of subdivision. More details can refer to [36].

Figure 5: The control mesh vertices of irregular triangular elements in Loop subdivision surfaces

3 BEM for Acoustics
For acoustic scattering problems, the governing Helmholtz equation can be transformed into a

conventional boundary integral [13].

c(x)p(x) − ∫
Γ

G(x , y)q(y)dΓ(y) + ∫
Γ

p(y)∂G(x , y)
∂n(y) dΓ(y) − pinc(x) = 0, x ∈ Γ, (6)
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where n(y) refers to the exterior normal direction, q(y) = ∂ p(y)
∂n , the Green’s function G(x , y) = e ikr

4πr , and
r denotes the distance between the source point x and field point y. pinc(x) represents the sound pressure
caused by the incident wave, and Γ denotes the boundary of the structure. If the boundary is smooth, the
coefficient c(x) = 1

2 . The total sound pressure p(x) is the summation of the incident sound pressure and the
scattered sound pressure.

For acoustic problems, the boundary conditions are typically expressed as:

p(y) = p̄(y), y ∈ Γp , (7)
∂p
∂n
(y) = q̄(y), y ∈ Γq . (8)

where the boundary Γ is divided into boundary Γp with Dirichlet boundary condition and Γq with Neumann
boundary conditions, i.e., Γ = Γp + Γq .

During the meshing process, the boundary was discretized and can be expressed as:

Γ =
Nel

∑
e=1

Γe , (9)

where e denotes boundary element, and Nel is the total number of elements. For a field point y in the
reference element with local coordinates (θ1 , θ2), the acoustic pressure p(y) and its normal derivative q(y)
can be expressed as:

p(y) =
Nv

∑
k=1

Nk(θ1 , θ2)pk ,

q(y) =
Nv

∑
k=1

Nk(θ1 , θ2)
∂pk

∂n
. (10)

where Nv represents the number of basis functions Nk for a fitted boundary element with both regular and
irregular elements (see Figs. 4 and 5, respectively), while k denotes the local index within the element patch.

Hence, the boundary integral Eq. (6) can be discretized as:

c(x)p(x) =
Nel

∑
e=1

Nv

∑
k=1

Nk(θ1 , θ2)∫
Γe
[G(x , y)

∂pe
k

∂n
− ∂G(x , y)

∂n(y) pe
k] dΓe(y) + pinc(x). (11)

After assembling the equations for all collocation points and expressing them in matrix form [31], one
can obtain the following system of linear algebraic equations:

pinc = Kp −Nq. (12)

where p and q represent vectors of sound pressures and flux coefficients, respectively, pinc denotes the
incident wave results at the collocation points, while the BEM coefficient matrices K and N are associated
with the subdivision surface [37].

However, in numerical implementation, density and asymmetry of the coefficient matrices K and N
result in an O(N2) complexity for a problem of N degrees of freedom. The Fast Multipole Method (FMM)
[38] can significantly accelerate the computation of subdivision surface BEM [39,40] and reduce memory
consumption. For wideband problems, FMBEM uses a partial wave expansion to obtain the solution in
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low-frequency range, and a plane wave expansion method incorporating rapid interpolation and filtering
techniques for the solution in the high-frequency range.

To accelerate numerical computation of subdivision surface BEM, the FMM algorithm needs to generate
eight higher level child boxes from the lower level parent computational box surrounding the boundary
elements. This refinement process continues until the number of boundary elements within each box falls
below a specified threshold, thereby determining the highest subdivision level in the broadband FMBEM.
During the construction of the tree structure, the total boundary integral is decomposed into two parts,
i.e., the near-field and far-field as shown in Fig. 6. When the distance between x and y is relatively small,
the coefficient matrix Cnear (where C represents either K or N) is calculated using the BEM, otherwise the
far-field component C f ar is computed using the FMM.

Figure 6: The coefficient matrix of the boundary element method is decomposed into two parts: the near-field and the
far-field. Here, C = K, N

The kernel function expansion, based on the Gegenbauer addition theorem, can be written as:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

G(x , y) = ik
4π

∞

∑
n=0

n
∑

m=−n
(2n + 1)Īm

n (k,�→yc y)Om
n (k,�→yc x), ∣�→yc x∣ > ∣�→yc y∣,

G(x , y) = ik
4π

∞

∑
n=0

n
∑

m=−n
(2n + 1)Īm

n (k,�→x c x)Om
n (k,�→x c y), ∣�→x c y∣ > ∣�→x c x∣,

(13)

where yc and x c represent points near y and x, respectively. The term Īm
n denotes the complex conjugate of

Im
n , with the coefficients Im

n and Om
n defined as:

Im
n (k,�→v ) = jn(kr)Y m

n (θ , ϕ), (14)

Om
n (k,�→v ) = h(1)n (kr)Y m

n (θ , ϕ), (15)

where (r, θ , ϕ) represent the spherical coordinates of vector �→v , jn is the Bessel function of the n-th order,
h(1)n is the Hankel function of the first kind, and γm

n is the spherical harmonic.
Partial derivative of the expanded kernel function with respect to the normal vector n can then be

written as:

∂G(x , y)
∂n(y) ≈

ik
4π

∞

∑
n=0

n
∑

m=−n
(2n + 1) Om

n (k,�→yc x)
∂Īm

n (k,�→yc y)
∂n(y) . (16)

By using Eqs. (13) and (16), the boundary integral terms in the governing equation can be re-expressed
as:

∫
Γ f ar

[∂G(x, y)
∂n(y) ∂n(y)p(y) −G(x, y)q(y)] dΓ(y) ≈ ik

4π

∞

∑
n=0

n
∑

m=−n
(2n + 1)Om

n (k,�→ycx)Mm
n (k, yc). (17)
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In this context, Γf ar represents the region C f ar illustrated in Fig. 6. The multipole expansion coefficient
Mm

n is expressed as:

Mm
n (k, yc) = ∫Γfar

[
∂Īm

n (k,�→ycy)
∂n(y) p(y) − Īm

n (k,�→ycy)q(y)]dΓ(y). (18)

For more details of the FMM algorithm, please refer to [41,42].

4 CGAN for Accelerated Computation
Although FMM can greatly accelerate the computation of acoustic problems using subdivision sur-

face BEM, the computational cost of large-scale and highly complex models is still unmanageable. To
this end, neural networks have been extensively investigated in terms of accelerating computation of
acoustic problems.

Typically, neural networks require a large number of training samples to achieve high prediction
accuracy. However, obtaining such data is often complex, time-consuming, and computationally expensive.
To address this limitation, this study employs a Conditional Generative Adversarial Network (CGAN)
[43,44], which is capable of maintaining high prediction accuracy even with limited training data. The study
first generates sample data through numerical simulations and uses this data as the training and testing
dataset. The dataset was split into training and testing sets with a ratio of 9:1. Section 4.1 introduces the CGAN
model and its numerical implementation.

CGAN Model
As shown in Fig. 7, the Conditional Generative Adversarial Network (CGAN) [45] comprises two

adversarial neural networks: a generator that produces synthetic data and a discriminator that differentiates
between real and generated data. In this study, the generator G receives random noise Z (a vector of random
values between 0 and 1) and conditional input Y (representing frequency, e.g., 100 Hz) as input data, and
produces (i.e., outputs) synthetic data G(Z , Y) that mimics the statistical distribution of real data. By
integrating the conditional information Y, the model shifts from an unsupervised to a supervised learning
paradigm, which facilitates precise control over the generated outputs.

The discriminator D distinguishes real data from synthetic data, and thus its inputs include the real
sound pressure data X (sound pressure values) with its corresponding condition Y (frequency), and the
generated data G(Z , Y) paired with the same condition Y, while its output will be a binary value (0 or 1)
denoting whether the data is real or synthetic data. During training, the generator and discriminator engage
in an adversarial process, iteratively improving their performance. This dynamic resembles a minimax game,
where both networks progressively converge toward a Nash equilibrium. At this equilibrium, the generator
produces data indistinguishable from real data, and the discriminator cannot reliably differentiate between
the two. Finally, the Table 1 presents the input and output structure of the CGAN model. In the CGAN model,
the generator takes as input the random noise Z and the conditional information Y (i.e., frequency), and
outputs G(Z , Y), which represents the generated data that follows the same pattern and distribution as the
sound pressure. The discriminator receives the real sound pressure data X along with the corresponding
condition Y, and outputs a binary result (0 or 1) indicating whether the input data is real or generated. Table 1
presents the input and output structure of the CGAN model.
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Figure 7: CGAN’s network structure

Table 1: Inputs and outputs of the generator and discriminator in the CGAN model

Component Input Output
Generator G Z (noise), Y (frequency) G(Z , Y) (synthetic data)

Discriminator D X (sound pressure values), Y (frequency) D(X , Y) (0 or 1)

Eq. (19) defines the CGAN’s adversarial objective function, which incorporates conditional information
to establish a minimax optimization framework:

min
G

max
D

V(D, G) = EX∼Preal(X)[log D(X , Y)] + EZ∼PZ(Z)[log(1 − D(G(Z , Y), Y))]. (19)

Here, V denotes the value function of the adversarial game, and E represents the expectation operator.
D(X , Y) corresponds to the discriminator’s output probability when evaluating real data X paired with its
associated condition Y. Preal(⋅) and PZ(⋅) denote the probability distributions of the real data and latent
noise, respectively. D(G(Z , Y), Y) reflects the discriminator’s evaluation of the generator’s synthetic output
G(Z , Y) taking into consideration the conditional input Y.

In this architecture, the discriminator D operates as a binary classifier tasked with distinguishing real
data from synthetic samples, whereas the generator G aims to synthesize data that matches the statistical
distribution of the real data Preal(⋅). By explicitly conditioning both networks on Y, CGAN addresses
the inherent limitations of traditional Generative Adversarial Networks (GANs), such as uncontrolled
generation, and enables targeted synthesis of outputs aligned with specific frequency-based constraints.

During adversarial optimization, the generator G and the discriminator D iteratively refine their
performance until reaching an equilibrium state where the discriminator cannot reliably differentiate
between real and synthetic data. The training alternates between updating G and D, with the global loss
function L(D, G) unifying their individual objectives:

L(D, G) = EX ,Y∼Preal(X ,Y)[log D(X , Y)] + EY∼PY(Y),Z∼pZ(Z)[log(1 − D(G(Z , Y), Y))], (20)
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while the loss functions for D and G can be expressed as:

LD = −E(X ,Y)∼Preal(X ,Y) [log D(X , Y)] − EZ∼PZ(Z),Y∼PY(Y) [log (1 − D (G(Z , Y), Y))]
LG = EZ∼PZ(Z),Y∼PY(Y) [log (1 − D (G(Z , Y), Y))] .

(21)

Notably, CGAN’s generator inherently produces diverse synthetic datasets by sampling from Preal(⋅)
and PZ(⋅). These generated samples further refine the discriminator’s accuracy during training, creating a
mutually reinforcing cycle. This capability enables CGAN to address the challenges outlined in this study,
such as generating targeted outputs under conditional constraints while maintaining data diversity.

5 Numerical Examples
In this study, the isogeometric analysis method described in Section 3 was implemented using custom

Fortran 90 code, while the CGAN framework outlined in Section 4 was developed in Python. All simulations
were performed on a laptop with an Intel Core i5 processor and 8 GB of RAM. All models in this study use
structural steel as the material, with a density of 7.86 × 103 kg/m3, a Young’s modulus of 2.10 × 1011 Pa, and
a Poisson’s ratio of 0.30. Numerical examples were conducted to validate the efficiency and accuracy of the
proposed CGAN-based accelerated computational method. The workflow for these numerical experiments
is illustrated in Fig. 8.

Figure 8: CGAN workflow for accelerating three-dimensional acoustic analysis

5.1 Spherical Model
We employ the boundary element method based on subdivision surfaces to analyze a spherical object

with a radius of 1.2 m subjected to a unit-amplitude plane wave incident along the x-axis, the wave number
is 0.100. The observation point is located at the coordinates (3, 0, 0 m), and additional geometric details
are illustrated in Fig. 9. As a canonical three-dimensional acoustic problem [46], this spherical model has
an analytical solution, making it a reliable benchmark for evaluating the accuracy and efficiency of the
proposed algorithm.
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Figure 9: Acoustic scattering of a spherical model

The spherical mesh was refined iteratively using the Loop subdivision surface method (Fig. 10). Starting
from a coarse polyhedral mesh, successive subdivision steps generated progressively smoother surfaces.
Thus, it can bring higher computational accuracy.

Figure 10: Sphere model meshes at different levels of subdivision

The Table 2 presents the errors between the numerical solutions obtained by the Boundary Element
Method (BEM) and the analytical solutions for the spherical model with an initial mesh of 768 elements
after two successive refinements. It can be observed that the refined mesh obtained through subdivision
exhibits significantly smaller errors between the numerical and analytical solutions in the low-frequency
range compared to the coarse mesh, resulting in an overall improvement in computational accuracy relative
to the unrefined mesh. The spherical model in the example is based on an initial mesh of 768 elements,
refined two times.
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Table 2: Comparison between Analytical and CBEM results using different numbers of elements (100–400 Hz)

Frequency Analytical CBEM (Pa) Error

(Hz) (Pa) 768 Elements 12,288 Elements 768 Elements 12,288 Elements
100 0.04622 0.04555 0.04616 1.452% 0.133%
130 0.06614 0.06520 0.06606 1.430% 0.132%
160 0.09029 0.08903 0.09018 1.396% 0.131%
190 0.11787 0.11628 0.11772 1.352% 0.132%
220 0.14735 0.14542 0.14715 1.311% 0.139%
250 0.17740 0.17509 0.17712 1.300% 0.157%
280 0.20750 0.20472 0.20710 1.340% 0.195%
310 0.23801 0.23480 0.23760 1.345% 0.170%
340 0.26950 0.26568 0.26898 1.415% 0.190%
370 0.30216 0.29769 0.30153 1.479% 0.211%
400 0.33561 0.33048 0.33484 1.529% 0.230%

The discretized spherical model was solved via the Boundary Element Method (BEM), and a CGAN
model was then trained to predict acoustic responses. To validate the proposed method’s correctness, an
initial dataset generated by BEM calculations was divided into training and testing sets, with the CGAN
training process detailed in Appendix A. After training, the model’s accuracy was evaluated on the test set,
as shown in Figs. 11 and 12.

Figure 11: Real and imaginary parts of the acoustic pressure at point (3, 0, 0) obtained using different methods based
on the subdivision surface
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Figure 12: Sound pressure at point (3, 0, 0) obtained using different methods based on the subdivision surface:
Comparison between results obtained from analytical solution, CBEM and (a) CGAN predictions; (b) DNN predictions

Fig. 11 compares the real and imaginary components of the acoustic pressure predicted by CGAN,
DNN, and conventional models, while Fig. 12 illustrates their performance in predicting sound pressure
magnitude. The CGAN model outperforms other methods in capturing both the complex components and
overall pressure trends. By incorporating generator-synthesized data during training, CGAN maintains high
accuracy even at dataset boundaries (100 and 400 Hz), where DNNs [47–49] struggle due to sparse boundary
data. Notably, CGAN predictions align closely with analytical solutions, achieving accuracy comparable to
the conventional BEM (CBEM).

The subdivision surface method enhances computational accuracy by iteratively refining meshes.
However, this refinement significantly increases mesh density, leading to higher computational costs and
prolonged simulation times. Consequently, traditional boundary element methods (BEM) struggle to
efficiently handle complex models with fine meshes due to these scalability limitations. To mitigate this
trade-off, the CGAN model was introduced to augment sparse datasets and accelerate computations.

To do this, the conventional boundary element method (CBEM) first computed sound pressure values at
the observation point (3, 0, 0) across the 100–400 Hz frequency range using coarse 10 Hz intervals. This sparse
dataset served as the training input for the CGAN model. After training, the CGAN generated predictions
at a refined 1 Hz resolution, effectively augmenting the dataset. The augmented results were then rigorously
validated against both CBEM outputs and analytical solutions, as demonstrated in Figs. 13 and 14, confirming
the method’s ability to balance accuracy and efficiency.
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The CGAN-augmented data shows a high degree of agreement with both the analytical solution and the
CBEM results, confirming that the model successfully learned the underlying data patterns and generalized
effectively to unseen frequencies. As shown in the subfigure, relative errors at the dataset boundaries (100 nd
400 Hz) with respect to both algorithms are less than 2%. Specifically, the Fig. 14 demonstrates that CGAN
and CBEM achieve nearly identical accuracy, as the errors are very small. These findings validate CGAN
as an effective tool for accelerating computations without sacrificing precision. Furthermore, comparison
with CBEM results reveals that CGAN achieves comparable predictive accuracy while significantly reducing
computational effort, establishing its dual advantage in both accuracy and efficiency for acoustic analysis.

Figure 13: Comparison of CGAN-augmented data and CBEM results
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Figure 14: Comparison of CGAN-augmented data and analytical solutions

Table 3 provides a validation of the CGAN model’s predictive accuracy in the mid-frequency range,
confirming that CGAN and CBEM achieve statistically indistinguishable error levels relative to analytical
solutions, with discrepancies below 0.5% in mid-range frequencies. However, CGAN reduces computational
time by orders of magnitude compared to CBEM when processing equivalent datasets. Typically, training a
well-performing CGAN model takes about 30 min, while generating the initial dataset through numerical
simulation with a frequency step of 10 Hz requires approximately 35 min. Overall, compared to computing all
frequency points, this approach reduces computational costs. However, in practical applications, it is usually
unnecessary to calculate the sound pressure at every frequency point. This condition is set here mainly to
verify that CGAN can effectively assist computations in certain specific cases.

Table 3: Comparison of CBEM and CGAN Results at 200–300 Hz

Frequency (Hz) Analytical (Pa) Methods (Pa) Error Total time

CBEM CGAN CBEM CGAN CBEM CGAN
200 0.12756 0.12739 0.12575 0.133% 1.419%
210 0.13741 0.13722 0.13548 0.136% 1.405%
220 0.14735 0.14715 0.14531 0.139% 1.384%
230 0.15735 0.15712 0.15519 0.143% 1.373%
240 0.16737 0.16712 0.16510 0.149% 1.356%

(Continued)
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Table 3 (continued)

Frequency (Hz) Analytical (Pa) Methods (Pa) Error Total time

CBEM CGAN CBEM CGAN CBEM CGAN
250 0.17740 0.17712 0.17502 0.157% 1.342% 17,224.95s 1.5646s
260 0.18742 0.18711 0.18493 0.167% 1.329%
270 0.19745 0.19710 0.19484 0.179% 1.322%
280 0.20750 0.20710 0.20476 0.195% 1.320%
290 0.21759 0.21713 0.21472 0.214% 1.319%
300 0.22775 0.22738 0.22489 0.163% 1.256%

From this example, it can be observed that the subdivision surface method further enhances computa-
tional accuracy by generating smooth, high-quality meshes through iterative refinement of coarse polyhedral
models. This approach produces multi-resolution meshes capable of handling complex geometries while
improving numerical integration accuracy—a critical factor for precise boundary element calculations. Its
adaptability to intricate structures, coupled with widespread software integration, makes it indispensable
for 3D acoustic problems requiring geometric fidelity. However, finer meshes increase computational costs,
exacerbating the trade-off between accuracy and efficiency.

This challenge is mitigated by the CGAN model, which uniquely addresses data scarcity inherent to
high-fidelity 3D acoustic modeling. Conventional neural networks struggle in such scenarios due to the
prohibitive computational cost of generating large training datasets. CGAN circumvents this limitation
by leveraging conditional information (e.g., frequency) to synthesize physically realistic data through its
adversarial framework. The generator produces virtual data distributions that mimic real data, while the
discriminator refines its validation criteria iteratively. This process enables robust training on sparse datasets,
achieving accuracy rivaling CBEM with far less computational overhead. By integrating subdivision surfaces
for computational accuracy and CGAN for data-efficient acceleration, the proposed framework offers a
balanced solution to the accuracy-efficiency trade-off in 3D acoustic analysis.

5.2 Washing Machine Model
To validate the generalizability of the CGAN framework across complex geometries and diverse acoustic

scenarios, we analyzed a washing machine model in this section. The observation point was positioned at
(0.5, 0, 0 m), with geometric and boundary condition details illustrated in Fig. 15. First, we considered a
unit-amplitude plane wave incident along the positive x-axis, analogous to the spherical model case.

The model was discretized using Loop subdivision surfaces, with mesh refinement levels shown
in Fig. 16 and quantified in Table 4. Each subdivision level quadruples the number of nodes and elements,
progressively approximating the ideal subdivided surface. However, higher subdivision levels impose
prohibitive computational and memory demands, rendering BEM calculations impractical. To balance
accuracy and resource constraints, we selected the Level 1 mesh (43,658 nodes, 87,272 elements) for
subsequent analyses.
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Figure 15: Acoustic scattering of a washing machine model

Figure 16: Meshes of washing machine model at different levels of subdivision

Table 4: Nodes and elements number of washing machine at different subdivision levels

Level number L 0 1 2
Nodes 10,920 43,658 17,4588

Elements 21,818 87,272 349,088

BEM simulations for the washing machine model proved computationally prohibitive, with even
sparse initial datasets requiring substantial calculation time. To address this, we implemented a two-stage
acceleration strategy. First, the fast multipole method (FMM) was integrated with the Loop subdivision
surface technique to create an accelerated BEM framework (FMBEM) for efficient initial data generation.

The accuracy of this FMBEM implementation was validated by comparing real and imaginary sound
pressure components at the observation point against conventional BEM results, as illustrated in Fig. 17.
The near-identical agreement confirms that FMBEM preserves BEM’s precision while drastically reducing
computation time. This validated FMBEM served as the foundation for generating training data.
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Figure 17: The acoustic pressure at point (0.5, 0, 0) using different methods based on the subdivision surface: (a) Real
part and (b) Imaginary part of the aoustic pressure

Subsequently, the CGAN model was deployed as a secondary acceleration stage. Leveraging the
FMBEM-computed dataset, CGAN performed data augmentation to predict high-resolution frequency
responses, further accelerating the workflow without compromising accuracy. This hybrid approach—
combining FMBEM for initial acceleration and CGAN for predictive augmentation—effectively addresses
the computational bottlenecks of complex acoustic simulations.

The predicted results in Fig. 17 were generated after validating the accuracy of the fast multipole
algorithm. Training data were computed at 20 Hz intervals in (200–300 Hz) using the fast multipole
boundary element method (FMBEM). The trained CGAN model then augmented this dataset to a finer
10 Hz resolution, and the predictions were compared with numerical solutions. The results show close
agreement between the CGAN-augmented data and numerical benchmarks, with only minor deviations at
specific frequencies.

The subfigures in Fig. 17 also compare the computational time required for calculating 10 data points
using the boundary element method (BEM), fast multipole method (FMM), and CGAN. The FMM
significantly reduces computation time compared to conventional BEM. During BEM simulations, real and
imaginary components are computed simultaneously, whereas the CGAN model bypasses this complexity by
learning data patterns directly. As shown in the right subfigure, CGAN generates large datasets rapidly, with
computation time remaining nearly constant regardless of data volume. This efficiency confirms CGAN’s
ability to accelerate computations without compromising accuracy.

The sound pressure distribution across the model surface was analyzed at four distinct frequencies,
as shown in Fig. 18. At lower frequencies (100–200 Hz), the surface pressure distribution exhibits min-
imal variation. In contrast, at higher frequencies (400–600 Hz), significant changes occur, particularly
on the washing machine’s outer surface where incident wave energy concentrates. These variations grow
increasingly pronounced with rising frequency, highlighting the dynamic response of the structure under
acoustic excitation.
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Figure 18: Sound pressure contour on the surface of the washing machine at different frequencies: (a) Frequency =
100 Hz; (b) Frequency = 200 Hz; (c) Frequency = 400 Hz; (d) Frequency = 600 Hz

5.3 Vibration Issues in the Washing Machine Model
Results of this study can help address a critical engineering challenge: understanding how vibrations

generated during washing machine operation influence acoustic phenomena. These vibrations, an inevitable
result of mechanical activity, often produce complex noise patterns. To investigate this interaction, vibrations
were systematically applied to the washing machine model, and their effects on sound pressure distribution
and acoustic performance were analyzed. The findings aim to advance theoretical insights and practical
strategies for mitigating vibration-induced noise in industrial applications.

This study evaluates the CGAN model’s applicability to vibration acoustics by treating the wash-
ing machine as a rigid structure. The primary objective is to assess CGAN’s capability in predicting
vibration-dependent sound pressure distributions. To quantify noise impacts under realistic conditions, two
operational scenarios were simulated: Case 1 represents an observation point located at (0.5, 0, 1), while
Case 2 represents an observation point at (0.5, 0, 1.8). These cases represent noise exposure at distinct
heights, mimicking human ear levels in different positions. Corresponding CGAN predictions (labeled
Case x-CGAN) are illustrated in Fig. 19, demonstrating the model’s ability to map vibration patterns to
acoustic responses.

The results in Fig. 20 reveal distinct trends in acoustic pressure characteristics at the two observation
points. Case 1 (0.5, 0, 1) exhibits markedly higher magnitudes in the real part, imaginary part, and total sound
pressure compared to Case 2 (0.5, 0, 1.8). Furthermore, the acoustic pressure in Case 1 increases more sharply
with frequency, suggesting that lower positions experience greater noise exposure.
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Figure 19: The acoustic pressure at computation points (0.5, 0, 1) and (0.5, 0, 1.8) obtained using the subdivision surface:
(a) Real part; (b) Imaginary part; (c) Total sound pressure

Figure 20: (Continued)
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Figure 20: Sound pressure contour on the surface of the washing machine at different frequencies

The CGAN model achieves excellent agreement with reference data in predicting both complex
components (real/imaginary) and total sound pressure, validating its ability to learn vibration-acoustic
correlations and deliver high-fidelity predictions. This underscores CGAN’s key strength: its capacity to
uncover latent data patterns irrespective of problem complexity, enabling reliable generalization across
diverse scenarios.

In addition to localized noise analysis, Fig. 20 illustrates the spatial sound pressure distribution
across the washing machine surface, further demonstrating the interplay between structural vibrations and
acoustic responses.

6 Conclusion
A novel acceleration algorithm is proposed based on the loop subdivision surface method for BEM

computation of acoustic scattering problems. This algorithm first accelerates computations using the fast
multipole boundary element method (FMBEM) and then achieves secondary acceleration through data
augmentation with the CGAN model. The accuracy of the BEM and CGAN model was validated using
the spherical model example, confirming their high precision. The FMBEM’s accuracy was further verified
with the washing machine model, demonstrating that the CGAN model retains high precision even for
complex geometries. Practical engineering applications validated the algorithm’s effectiveness for real-world
problems. The proposed secondary acceleration algorithm offers three key advantages:

1. Smoother geometric models generated via Loop subdivision surfaces, ensuring high-precision compu-
tational inputs.

2. Higher computational efficiency than traditional methods while maintaining accuracy.
3. Broad applicability to diverse acoustic problems.

The limitations of the method are as follows: if the initial mesh quality is poor, it may compromise
the smoothness of the subdivided geometry and the accuracy of the BEM discretization, thereby
limiting the method’s applicability to complex geometries. Moreover, for highly complex models, the
training time of the CGAN increases significantly, which may diminish the efficiency advantage of the
proposed algorithm.

Future work will focus on applying this algorithm to three-dimensional acoustic sensitivity analysis
and noise reduction optimization in practical engineering scenarios, through shape optimization or the
application of adhesive sound-absorbing materials. In addition, the integration of Bayesian Neural Networks
(BNNs) will be considered for uncertainty quantification, aiming to investigate the influence of material
properties and other factors on sensitivity.
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Appendix A Arrangements for Network Training
The neural network training process requires careful selection of hyperparameters—such as learning

rate, activation function, and optimizer—which critically influence model performance and training effi-
ciency. To ensure network effectiveness and accuracy, hyperparameter tuning and optimization are essential.
This appendix details the training of the CGAN model using spherical model data computed across the
100–400 Hz frequency range. This training workflow includes three key steps: data preprocessing, feature
normalization, and network architecture design, all implemented to ensure training stability and conver-
gence. The same procedure was applied to other models, enabling the CGAN network to generalize effectively
across diverse acoustic analysis tasks while maintaining computational acceleration. A complete summary
of hyperparameters and configurations is provided in Table A1.

Table A1: Development environment

Operating system Language Framework Memory GPU
Windows 11 Python 3.7 TensorFlow 2.6.0 8 GB GTX 1650

For data preprocessing, the CGAN network employs min-max normalization (Eq. (A1)) to scale input
features into a unified numerical range. This mitigates biases caused by varying data magnitudes and
enhances training robustness.

x′ =
xin put −min(xin put)

max(xin put) −min(xin put)
(A1)

Here, xin put refers to the real data input into both the generator and the discriminator.
For regression-type acoustic problems, the loss function is defined as the Mean Squared Error (MSE),

which quantifies the deviation between predicted and true values:

MSE = 1
N

N
∑
i=1
(yi − ŷi)2 (A2)
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where yi and ŷi represent the true and predicted values of the i-th sample, respectively.
After initializing key hyperparameters, the CGAN training process begins. The learning rate and

number of hidden layers are iteratively optimized by monitoring loss convergence. The Sigmoid activation
function is selected for both the discriminator and generator. For the discriminator, Sigmoid outputs a
probability (0 or 1) to classify real vs. synthetic data. For the generator, Sigmoid ensures output consistency
with the discriminator’s input format. Training outcomes, including loss dynamics and model performance,
are illustrated in Fig. A1, demonstrating stable convergence and effective adversarial learning.

Figure A1: The CGAN training loss: (a) Learning rate; (b) Hidden layer

The results demonstrate that a learning rate of 0.0001 enables faster loss convergence with minimal
oscillations compared to a rate of 0.001. Similarly, a network configuration with six hidden layers achieves
rapid and stable loss convergence, outperforming other layer configurations. These findings underscore
the importance of optimizing both learning rate and hidden layer count for enhancing model stability
and performance. The finalized architecture and hyperparameters of the CGAN model are summarized
in Table A2.

Table A2: Configuration of the CGAN model network structure

Network Hidden layers Loss function Activation function Learning rate
Generator 6 MSE Sigmoid 0.0001

Discriminator 6 MSE Sigmoid 0.0001

Table A3 provides multiple regression evaluation metrics, all satisfying predefined thresholds, collec-
tively validating the model’s high accuracy. The consistent performance across metrics demonstrates the
model’s ability to effectively capture data patterns and deliver reliable predictions.

Table A3: Regression evaluation metric

Variables RMSE MAE MAPE R2

Sound pressure 0.000306 0.000179 0.38475038 0.984
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For other examples in this study, the training follows the same workflow as the spherical model. To
ensure CGAN accuracy, a dedicated model must be trained for each new geometry or data distribution.
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