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ABSTRACT: Accurate and e�cient brain tumor segmentation is essential for early diagnosis, treatment planning, and
clinical decision-making. However, the complex structure of brain anatomy and the heterogeneous nature of tumors
present signi�cant challenges for precise anomaly detection. While U-Net-based architectures have demonstrated
strong performance in medical image segmentation, there remains room for improvement in feature extraction and
localization accuracy. In this study, we propose a novel hybridmodel designed to enhance 3Dbrain tumor segmentation.
�e architecture incorporates a 3D ResNet encoder known for mitigating the vanishing gradient problem and a 3D
U-Net decoder. Additionally, to enhance themodel’s generalization ability, Squeeze andExcitation attentionmechanism
is integrated. We introduce Gabor �lter banks into the encoder to further strengthen the model’s ability to extract
robust and transformation-invariant features from the complex and irregular shapes typical in medical imaging. �is
approach, which is not well explored in current U-Net-based segmentation frameworks, provides a unique advantage
by enhancing texture-aware feature representation. Speci�cally, Gabor �lters help extract distinctive low-level texture
features, reducing the e�ects of texture interference and facilitating faster convergence during the early stages of training.
Our model achieved Dice scores of 0.881, 0.846, and 0.819 for Whole Tumor (WT), Tumor Core (TC), and Enhancing
Tumor (ET), respectively, on the BraTS 2020 dataset. Cross-validation on the BraTS 2021 dataset further con�rmed
the model’s robustness, yielding Dice score values of 0.887 for WT, 0.856 for TC, and 0.824 for ET. �e proposed
model outperforms several state-of-the-art existing models, particularly in accurately identifying small and complex
tumor regions. Extensive evaluations suggest integrating advanced preprocessing with an attention-augmented hybrid
architecture o�ers signi�cant potential for reliable and clinically valuable brain tumor segmentation.

KEYWORDS: 3D MRI; arti�cial intelligence; deep learning; AI in healthcare; attention mechanism; U-Net; medical
image analysis; brain tumor segmentation; BraTS 2021; BraTS 2020

1 Introduction

Tumors in the brain result from uncontrolled cellular growth, which can interfere with neural processes
and harm adjacent healthy tissues. Because the brain is essential for regulating bodily activities, such growths
can greatly a�ect its functioning, making them some of the most critical health threats to individuals.
�e incidence of malignant brain tumors is currently high, impacting both individuals and society as
a whole [1]. �e most common type of brain tumor is glioma, which occurs in the brain and exhibits
varying degrees of aggressiveness. Gliomas can present with di�erent symptoms and a�ect di�erent brain
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sub-regions. �ese sub-regions can be categorized into peritumoral edema, necrotic core, and enhancing
and non-enhancing tumors [2]. Magnetic Resonance Imaging (MRI) sequences are highly bene�cial while
assessing gliomas as they provide complementary information [3]. Radiologists choose MRI scans for
diagnosing and assessing brain tumors. Complementary MRI modalities are T1-weighted (T1), contrast-
enhanced T1-weighted (T1CE), T2-weighted (T2) and Fluid Attenuated Inversion Recovery (FLAIR). �ese
scans are acquired based on the repetition and excitation durations, allowing their use alongside additional
information to identify di�erent tumor subregions [4–6].

Identifying brain tumor sub-regions manually using MRI data is a subjective process that is time-
consuming and prone to errors. Radiologists may face challenges distinguishing brain cell nuclei from
the MRI image background, adding complexity to the medical interpretation [7]. �e complex shapes
and positions of brain tumors in multimodal images pose segmentation challenges in MRI scans, which
makes tumor identi�cation in brain MRI images challenging. However, accurate tumor segmentation
and delineation are essential for diagnosing and characterizing brain tumors [8]. Accurate segmentation
enables the extraction of qualitative and quantitative data, distinguishing between benign and malignant
tumors. �is information aids in tailoring optimal therapies for patients and assists healthcare providers in
devisingmore e�ective treatment strategies. Simplifying image analysis and segmentation facilitates e�cient
tumor identi�cation.

Given the complexity of tumor segmentation in MRI images, numerous algorithms and techniques,
ranging from manual to fully automated approaches, have been developed to address this challenge.
Automated segmentation of gliomas from multimodal MRI scans can assist in surgical planning and
diagnosis for clinicians. Furthermore, it provides a reliable and consistent method for future tumor research
and monitoring [9]. Computer-Aided Detection (CAD) systems, particularly those using deep learning and
Convolutional Neural Networks (CNNs), have shown strong potential in brain tumor identi�cation from
MRI scans [10]. Studies have demonstrated that AI systems can surpass human performance in various
medical imaging tasks, including segmentation and diagnosis [11]. CAD systems o�er numerous bene�ts,
including improving radiologists’ subjective judgment and accelerating the screening process. As in other
medical imaging �elds, machine learning and Arti�cial Intelligence (AI) play signi�cant roles in CAD
systems for brain tumor classi�cation and identi�cation. Various CAD methods have been proposed for
diagnosing and categorizing brain tumors. Several CAD approaches have been presented in the literature for
diagnosing and categorizing brain tumors.

�e emerging deep learning techniques can address traditional machine learning methods’ limitations
[12]. �e capacity for self-learning may help create new imaging features that are bene�cial for statistical
brain MRI analysis. Numerous research studies have concentrated on utilizing CNNs for delineating brain
tumors. Deep Convolutional Neural Networks (DCNNs) have proven to be capable of performing tasks
such as segmenting brain tumors in both real-world and clinical image datasets [13]. U-Net [14] and
Fully Convolutional Networks (FCN) [15] stand out as the most commonly employed DL-based methods
for medical image segmentation. Among them, U-Net has proven to be the most e�ective in terms of
performance.While U-Nets have demonstrated accuracy comparable to human performance in segmenting
2D images, their application to volumetric medical images requires treating 3D images as multiple 2D
slices. �is approach obstructs the capture of connections between adjacent slices. Consequently, several
subsequent studies encourage volumetric extensions of the U-Net to achieve �ner localization.�e creator of
the U-Net has proposed a practical solution to the volumetric segmentation challenge, known as 3D-U-Net
[16], which replaces the U-Net’s 2D convolutions with their 3D counterparts.

Various advanced �ltering methods have been utilized to extract meaningful image representations.
Among them, deformable �lters [17] improve the model’s capability to handle geometric transformations
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by adapting their shape to the input features. However, this �exibility comes at the cost of increased model
complexity and higher computational demands during training. Another notable approach involves the
application of rotating �lters. For instance, Zhou et al. [18] proposed actively rotating �lters that dynamically
rotate during convolution, enabling the generation of feature maps that explicitly encode spatial position
and orientation. Despite their innovation, these �lters are more e�ective when applied to small and relatively
simple �lter con�gurations.

In computer vision and image processing, the Gabor �lter [19] is one of themost renowned texture anal-
ysis and feature extractionmechanisms. A recent study [20] showed that themeaningful features extracted by
the Gabor �lter enhances the accuracy of the model and also help modulate learned representations, thereby
expanding the network’s interpretability.

Many researchers have adapted attention mechanisms [21], initially developed in natural language
processing (NLP), for machine vision tasks. �is integration aims to enhance the capability of CNNs in
the analysis of images, particularly for precision-demanding tasks such as segmenting brain tumor. In the
complex task of predicting 3D medical image segmentation, it is essential to consider both local and global
features. Hatamizadeh et al. [22] introduced the U-NET Transformer (UNETR), an innovative architecture
that employed Transformers as encoders to learn sequential representations from input volumes.�is design
e�ciently extracted global multiscale information while incorporating an e�ective “U-shaped” encoding
and decoder system. SwinBTS [23] was a novel approach that combined transformers, CNN, and an
encoder-decoder architecture for 3D medical image segmentation.

In dense prediction tasks like segmentation, capturing local and global information is highly signi�cant.
However, splitting images into patches overlooks local structures. �is limitation is particularly signi�cant
in medical volumetric data, such as 3D MRI scans, where modeling local features across continuous slices
(the depth dimension) is essential for accurate segmentation [24]. �erefore, an e�cient model that can
capture local and global features without overlooking the signi�cant details in volumetric segmentation is
indispensable. Traditional image segmentation approaches are restricted by their ability to detect highly
precise objects.

As neural networks deepen, the vanishing gradient problem o�en arises during training, where the
gradient norms in early layers diminish toward zero. In conventional U-Net architectures, down-sampling
operations tend to suppress low-level features essential for accurate segmentation in favor of high-level
semantic information. Consequently, important local and positional details are progressively lost in deeper
layers due to successive convolutional and non-linear operations. Although incorporating residual layers
in the encoder helps mitigate the vanishing gradient issue by enabling gradient �ow through shortcut
connections, this strategy alone is not su�cient to achieve optimal segmentation performance.�e network
must dynamically emphasize the most important features across di�erent channels enhancing the model’s
generalization ability. �is is where the Squeeze-and-Excitation (SE) mechanism becomes essential. By
recalibrating channel-wise feature responses, the SEmechanism enhances the network’s ability to emphasize
signi�cant features and suppress less important ones.�is adaptive feature prioritization helps retain crucial
spatial and contextual information, leading to more accurate segmentation results.

Incorporating the SE mechanism with Residual networks minimizes the vanishing gradient problem
and improves the network’s capacity to generalize better by focusing on the most relevant features. �is dual
approach ensures that low-level and high-level features are e�ectively utilized, enhancing the model’s overall
performance in brain tumor segmentation tasks.

Although prior studies have individually explored residual connections, attention mechanisms, or
texture-based �ltering in medical imaging, no previous study has combined a ResNet-based encoder, SE
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attention mechanisms with skip connections, and Gabor �ltering into a uni�ed 3D U-Net framework for
brain tumor segmentation. �is architecture is speci�cally designed address the complexity of tumor subre-
gions delineation in 3D MRI, and our experimental results on the BraTS datasets con�rm its e�ectiveness
over conventional methods.

�is novel study emphasizes the importance of addressing the vanishing gradient problem and the need
for adaptive feature prioritization through integrating Residual Networks and SE attention mechanisms,
ensuring enhanced generalization and improved accuracy in brain tumor segmentation. To address the
limitations of current segmentation approaches, we propose a novel architecture named dSEAT-UNet, which
integrates deep residual encoding, SE Attention, and a 3D UNet-based decoder for e�ective brain tumor
segmentation in multimodal MRI scans.

To achieve accurate and e�cient brain tumor segmentation, we have implemented the following steps,
which represent signi�cant contributions to this study,

• Conventional spectral techniques are integrated into themultimodal segmentationmodel to incorporate
the feature maps by utilizing a �xed and optimized Gabor �lter tomitigate the complexity of segmenting
complex tumor shapes.

• A Hybrid 3Dmodel is designed based on the residual encoder and U-Net decoder.�e residual encoder
e�ectively addresses the issue of vanishing gradients. Skip connections are employed to accelerate the
training process.

• A Squeeze-and-Excitation based attentionmechanism is introduced in the skip connections making the
model automatically focus solely on signi�cant features crucial for brain tumor segmentation.

• To address the class imbalance problem in brain tumor images, we incorporate a combined dice loss and
focal loss in the total loss function.

• An in-depth comparison of the developed and evaluated hybrid 3D model is presented for Whole
Tumor (WT), Tumor Core (TC), and Enhancing Tumor (ET) with the state-of-the-art brain tumor
segmentation methods to highlight the model’s signi�cantly improved performance.

2 RelatedWork

�is section contains related work that emphasizes the application of implementing CNN architectures
in brain tumor segmentation and integrating the attentionmechanisms in deep neural networks.�e related
work for both areas is separately presented in the following sections.

2.1 CNN Architectures in Brain Tumor Segmentation

In recent years, automated segmentation of brain tumors from multimodal MRI scans has gained
signi�cant attention within the healthcare imaging sector. Various advanced AI models have been proposed
to mitigate the complexities regarding segmentation of brain tumors. One such approach, proposed by Raza
et al. [25], introduced the dResU-Net model for 3D brain tumor segmentation. �e dResU-Net architecture
is based on the U-Net framework, enhanced with residual connections to improve segmentation accuracy.
By leveraging multimodal MRI data, including T1, T1CE, T2, and FLAIR images, the model aims to provide
robust brain tumor segmentation results. Incorporating residual connections enables e�cient information
�ow and gradient propagation, facilitating the segmentation of complex brain tumor structures. While the
dResU-Net architecture signi�cantly advances brain tumor segmentation, ongoing research further explores
novel deep-learning approaches and data augmentation techniques to improve segmentation accuracy
and robustness.
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Wang et al. [26] introduced the TransBTS architecture, which e�ectively integrates a transformer into a
three-dimensional convolutional neural network structured around an encoding-decoding pipeline. Initially,
a 3D convolutional backbone is employed to capture detailed local features and spatial representations. A
transformer is fed with these extracted features extract global features. Subsequently, the decoder module
combines these local and global features during upsampling to generate segmentation results. �e experi-
ments were conducted using the BraTS 2019 and 2020 datasets, demonstrating comparable performance.

Chen et al. [27] proposed a separable 3D U-Net architecture to overcome the limitations of traditional
2D CNNs, which o�en fail to fully capture the spatial context of volumetric data. To reduce memory
consumption while preserving spatial information, their model replaces standard 3D convolutions with a
sequence of two layers: a 2D convolution for extracting spatial features and a 1D convolution for capturing
temporal dependencies.�is approach e�ciently processes 3D brain volumes by decomposing convolutions
into three separate branches. Additionally, separable temporal convolutions were integrated into a residual
inception framework. �e model was independently trained on axial, sagittal, and coronal views, with the
outputs from each orientation combined using a multi-view fusion strategy to boost performance. �e
e�ectiveness of this design was demonstrated through strong results on the BraTS 2018 test dataset. In
segmentation tasks, capturing both local and global features is essential for accurate predictions. However,
as the network depth increases, the gradients associated with low-level features such as edges, boundaries,
and �ne textures tend to vanish, reducing their in�uence during training. Maji et al. [28] presented a
ResUNetmodel that incorporates attentionmechanisms alongside a decoder guided by auxiliary features for
brain tumor segmentation. �is model guided the learning process at each decoder layer. Bene�ting from
attention mechanisms, the model focused on signi�cant features rather than including all features, thereby
reducing the introduction of noisy features into the decoder for segmentationmapping.�e proposedmodel
outperformed the other methods when evaluated on the BraTS 2019 dataset.

2.2 Integrating Attention Mechanism in CNN Architectures

Researchers suggest that integrating the attention mechanism into CNNs could enhance the expression
of local features and improve regions’ segmentation performance. Similarly, some features are more impor-
tant than others for accurate segmentation. �erefore, attention mechanisms have become valuable tools
for highlighting the essential features while minimizing the impact of less important ones. Attention mech-
anisms have also demonstrated strong potential in broader decision-making applications beyond medical
imaging. Kia [29] applied attention-guided deep learning tomulti-criteria decision analysis, highlighting the
e�ectiveness of attention modules in directing computational focus toward the most relevant information.
�is cross-domain success further supports the growing adoption of attention-based strategies in brain
tumor segmentation tasks.

Zhang et al. [30] proposed the AResU-Net, a model designed to perform volumetric brain tumor
segmentation. �eir approach incorporated attention mechanisms and residual units into up and down-
sampling layers. �e enhancement was intended to strengthen local feature responsiveness in the process
of down-sampling to improve feature restoration while increasing the resolution. Given the constraints in
computational power, the evaluations were conducted using 2D images from two datasets i.e., BraTS 2017
and 2018. Cao et al. [31] introduced a novel architecture namedMBANet, which incorporates a multi-branch
attention mechanism into 3D CNNs. Building upon this approach, this study emphasizes the importance
of integrating attention mechanisms into brain tumor segmentation networks. �is integration aims to
minimize the focus on irrelevant data while enhancing the precise identi�cation of brain tumor regions.
Akbar et al. [32] presented the modi�ed U-Net method by integrating attention-based skip connections.
Additionally, they developed theMulti-path Residual Attention Block (MRAB), which combines two deeply
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convolutional sequences linked with an attention block and a residual path. Zhang et al. [24] introduced an
innovative brain tumor segmentation method that addresses the e�ect of using an attention mechanism. By
leveraging the attention mechanism into U-Net, segmentation becomes more robust, enhances local feature
expression, and improves medical image segmentation performance. Liu et al. [33] presented a lightweight
3D method integrating an attention mechanism.�is feature enables the network to autonomously concen-
trate on the tumor region, thereby strengthening the correlation between the whole tumor and tumor core,
resulting in improved segmentation accuracy. Li et al. [34] developed an intelligent method for brain tumor
identi�cation and classi�cation from MRI data. �eir approach includes a preprocessing step to remove
image background and identify brain tissue, followed by a novel segmentation technique based on parallel
CNNs to classify tumor types. Yuan et al. [35] implemented channel attention as an SEnetwork to improve the
e�ciency of the T2T-ViT backbone to implement a transformer-based application for image classi�cation.

3 Methodology

�is section presents details on the dataset used in the study, the preprocessing strategies applied, and
the architectural design of the proposed model.

3.1 Brain Tumor Dataset

In this study, we used a benchmark dataset, i.e., BraTS (Brain Tumor Segmentation) 2020 [36–38], for
training and testing the designed model. �is multimodal BraTS 2020 dataset contains four channels (T1,
T1CE, T2, and T2-FLAIR). Various image modalities and sequences are used in MRI scans for diagnosing
brain tumors, including T1, T1CE, T2, and FLAIR. T1 predominantly evaluates healthy tissues, while T2
highlights tumor regions. T1 images are obtained through sagittal or axial 2D acquisitions with slice
thicknesses ranging from 1 to 6 mm. T1CE, and T1 images acquired via 3D acquisitions featuring a voxel size
of 1 mm isotropic. T2 images acquired through axial 2D acquisitions, with slice thicknesses varying from 2
to 6 mm. FLAIR contains T2-weighted FLAIR images acquired in axial, coronal, or sagittal 2D acquisitions,
with slice thicknesses ranging from 2 to 6 mm. However, T1CE emphasizes tumor borders. FLAIR scans
assist in distinguishing edema from Cerebrospinal Fluid (CSF) [39,40]. �e mask contained four labels: i.e.,
Background, Edema (ED), Enhancing Tumor (ET) and Non-Enhancing Tumor (NET). BraTS 2020 dataset
sample images are displayed in Fig. 1.

Figure 1: Multimodal dataset samples shown here are provided in the BraTS 2020 benchmark for four modalities, i.e.,
T1, T1CE, T2, and FLAIR (in actual dimensions)
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3.2 Dataset Preprocessing

Segmenting brain tumors in MRI is a di�cult task due to the brain’s complex structure, di�erent types
of tissues, and varying image quality. Even though deep learning models can handle some noise, proper data
preprocessing is still essential to enhance segmentation accuracy. We performed data preprocessing on the
original BraTS 2020 dataset to make it suitable for the model. �e following sections provide an explanation
of these steps.

�e BraTS 2020 dataset contains 369 images with a 240 × 240 × 155 resolution.�e original dimensions
of the BraTS2020 dataset are 240 × 240 × 155. Brain tumor sample images for all modalities and respective
ground truth are presented in Fig. 2. In our analysis, we resized the images to 160 × 160 × 128. While some
studies have resized the images to 128 × 128 × 128, we observed that this resolution did not cover the entire
tumor in some cases. �erefore, we chose 160 × 160 × 128 to ensure better coverage of the tumor regions,
improving our segmentation results’ accuracy, reliability, and analysis.

Figure 2: Samples of multimodal MRI BraTS 2020 images with segmentation mask (ground truth)

As shown in Fig. 1, there are extra pixels that should be resized to avoid computational overload. Finally,
the dataset is resized to 160 × 160 × 128 pixels, which contains the required region of interest. Fig. 3 shows
the resized dataset samples with channels and masks. �e dataset is divided into 75% for training, 15% for
validation, and 10% for testing.

Figure 3: Resized BraTS 2020 sample MRI images with mask (ground truth)

We employed a min-max scaler, also called normalization, regarded as one of the simplest scaling
techniques. Improper feature scaling can lead the model to give too much importance to features with larger
numerical values, such as the second feature in this case. To avoid this, normalization is applied to transform
the data into a standard range between 0 and 1 [41]. �is process adjusts each minimum and maximum
feature value, standardizing the distribution and preventing scale-related bias during training.

�is normalization ensures fair comparisons between images and enables each pixel to contribute
proportionally to the overall image, a critical step emphasized in recent segmentation frameworks that
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combine preprocessing with optimized model pipelines [42]. Image normalization is also performed to
adjust the scaled pixel values to havemean and standard deviation values of 0 and 1.Mean values is subtracted
from scaled value, the result is divided by standard deviation [20]. Normalization can be computed using the
following Eq. (1).

znorm = Vsc − µ
σ

(1)

where znorm is the calculated normalized value for each image patch, Vsc is the scaled image value obtained
from the �rst step ofmin-max scaling. µ and σ are themean and standard deviation of the scaled pixel values.

�e BraTS 2020 dataset contains four main tumor classes with labels i–e, Background (Label 0), NET
(Label 1), ED (Label 2), and ET (Label 4). Label 3 is missing; therefore, for better data handling, label four is
reorganized as label 3, as Table 1 presents.

Table 1: Information related to tumor classes with labels (before and a�er re-arrangement)

Actual Re-arranged

Tumor class Label Tumor class Label

Background 0 Background 0
Necrosis/Non enhancing tumor (NET) 1 Necrosis/Non enhancing tumor (NET) 1

Edema (ED) 2 Edema (ED) 2
Enhancing tumor (ET) 4 Enhancing tumor (ET) 3

3.3 Gabor Filter

In computer vision, di�erent ways of image �ltering are used to show speci�c features in images. One
such method is the Gabor �lter, made from wave patterns with di�erent frequencies and directions. �ese
�lters help capture details in images. �eir functions can be explained using mathematical equations [43].
�emathematical formulation of the Gabor �lter, including its equation, variable de�nitions, and parameter
design considerations, is detailed in Appendix A.

Before application, the �lter parameters, wavelength (λ), orientation (θ), phase o�set (ψ), standard
deviation (σ), and aspect ratio (γ), were empirically optimized.�e selected value ranges and their functional
roles are summarized in Table A1 (Appendix A).

For 3D brain tumor segmentation, we implemented a volumetric Gabor �lter with a kernel size of (3, 3,
3). Sample slices of this 3DGabor �lter across the x, y, and z axes are illustrated in Fig. 4, showing how varying
parameter combinations a�ect texture response. �ese are arranged in a 3 × 5 grid to visually demonstrate
the diversity and directional sensitivity of the �lter design.
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Figure 4: An illustration of whenGabor �lter banks were applied to a sample input image and generated �ltered sample
images. A�er experimenting with di�erent parameter values, the most suitable parameters are selected as optimization
parameters

Gabor �lters are widely acknowledged for their ability to identify spatial and frequency domain
characteristics, making them a preferred tool in numerous pattern analysis tasks.

Fig. 5 illustrates the architecture of the system.�e architecture displays themainmodules of the system.
In the �rst stage, the brain tumor dataset is preprocessed with the normalization method, min-max scaling,
and dimensionality reduction following this, Gabor �lter operations are applied to enhance spatial frequency
features and improve texture representation in the MRI images. �e enhanced images are then used to train
the hybrid 3D model a�er tuning the appropriate hyperparameters. Finally, the trained model is tested on
unseen MRI images, and the segmented brain tumor regions are produced in the output stage.

Figure 5: An overview of the system architecture: dataset preprocessing, implementation of Gabor �lters, model
integration, and illustration of tumor segmentation with tumor classes

3.4 Model Architecture

�e proposed dSEAT-UNet architecture for 3D brain tumor segmentation combines elements of a 3D
ResNet encoder and a 3DU-Net decoder [17]. It resembles a typical U-Netwith encoder and decoder sections
interconnected through skip connections that incorporate SE attention. �e model inputs a 4-channel 3D
MRI scan, where each channel represents a di�erent MRI modality: T1, T2, T1CE, and FLAIR. �is image
has dimensions of 160 × 160 × 128 voxels. ResNet-based encoder extracts features from this multi-modal
data, reducing spatial resolution (160 × 160 × 128 to 16 × 16 × 8) while increasing feature map depth.

Residual connections and SE attention within the encoder boost feature learning and focus on infor-
mative channels. �e complete model design is displayed in Fig. 6. �e U-Net decoder utilizes transposed
convolutions to expand feature maps (16 × 16 × 8 to 160 × 160 × 128) and incorporates skip connections
for detailed segmentation. SE attention re�nes feature maps throughout the network, aiding in essential
area classi�cation.
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Figure 6: �e proposed architecture of dSEAT-UNet

�e �nal output is a segmented image classifying each voxel into one of four tumor classes:

• Background
• Necrosis/Non-enhancing tumor (NET)
• Edema (ED)
• Enhancing tumor (ET)

�is hybrid approach leverages residual connections, SE attention, and skip connections for improved
brain tumor segmentation.

3.4.1 3D ResNet Encoder and Feature Learning

In the 3D ResNet Encoder, we begin with a 3D convolutional layer to process the input data, utilizing
16 �lters and a kernel size of (3, 3, 3). �is initial layer extracts basic features from the input volume. �e
encoder consists of multiple residual stages, each containing residual blocks for feature extraction. In each
stage, the number of �lters is doubled to capture increasingly complex features. �e residual blocks play
a key role in hierarchical representations learning of the input data. Each block is composed of two 3D
convolutional layers, each followed by a ReLU activation function, and then batch normalization. To improve
computational e�ciency, 3D max pooling with a kernel size of (2, 2, 2) is applied a�er each residual stage,
reducing the spatial dimensions of the feature maps.

�e feature learning part involves reducing the input data size using residual (ResNet) blocks. �ese
blocks use a shortcut connection, which adds the original input to the output a�er passing through some
layers. �is shortcut helps improve training speed and accuracy without adding more parameters. As
mentioned above, each ResNet block in the encoder has two convolution layers: activation function and
batch normalization. Our design is based on four feature learning modules before feeding the features to
the bottleneck module, as shown in Fig. 6. �e operation of residual block [28,44] can be expressed in the
following Eq. (2).

y = F (x , {Wi}) + x (2)

where x and y are input and output vector, and function F (x , {Wi}) is themapping function for the residual
path. �e resultant dimensions of both input x and function F (x , {Wi}) should be the same. �e shortcut
method in the residual block helps avoid the problem of gradients vanishing and speeds up the network’s
learning. It e�ciently combines detailed local features with broader global features. �e structure of the
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residual block is shown in Fig. 7. �is block includes convolution operations (3 × 3 × 3) followed by batch
normalization and ReLu activation function. �e shortcut connection and element-wise addition operation
are �nally combined and computed as the output of residual block.

Figure 7: Residual block architecture: demonstrating the modules processing the input to generate the output

3.4.2 3D U-Net Decoder

�e 3D U-Net decoder, utilizes skip connections to combine low-level features from the encoder
with high-level features from the decoder, facilitating precise localization and segmentation. We start
the decoder with a contracting path comprising two 3D convolutional layers with ReLu activation and
max pooling, followed by dropout regularization to prevent over�tting. �e expansive path consists of
transpose convolutional layers (Conv3DTranspose) to up-sample the feature maps and recover the spatial
resolution lost during encoding. Skip connections are established between the corresponding encoder and
decoder layers, allowing the model to access local and global features. Finally, output layer is based on a
3D convolutional layer with so�max activation, generating probability maps for each of four classes, i.e.,
Background, ED, NET, ET.

3.4.3 Attention Mechanism

We integrated the SE attention mechanism into our model. �is mechanism is known for its compact
design and high e�ciency and lightweight design. �e SE block consists of two primary operations, i.e.,
squeeze and excitation.

As shown Fig. 8, in the initial phase, feature maps F ∈ RH×W×D×C are provided as input, where H,W, D,
and C represent height, width, depth, and number of channels. Global average pooling operation transforms
these features by squeezing global spatial information into 1 × 1 × 1 × C format, generating channel wise
statistics.�emathematical formulation of the squeeze operation is presented in Appendix B.�is operation
reduces spatial dimensions while retaining essential channel-speci�c information.

Figure 8: Architecture of squeeze and excitation mechanism. �e global average pooling performs the squeeze
operation to aggregate global information for each channel of the entire image. �e squeeze operation is followed by
the excitation phase, which is based on two fully connected layers connected with ReLU activation followed by the
activation function sigmoid before scaling
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In the excitation phase, the process begins with a fully connected layer that applies a reduction factor r,
followed by a ReLU activation. �is is then followed by an additional fully connected layer, with a sigmoid
activation to generate the excitation output. Finally, a scaling operation integrates this re�ned channel
information to enhance feature selectivity.

3.5 Model Integration

�e hybrid model architecture e�ectively integrates the strengths of both ResNet and U-Net architec-
tures, leveraging residual connections for feature extraction and skip connections for accurate segmentation.
Combining these components, our model exhibits promising 3D brain tumor segmentation results. Addi-
tionally, we incorporated the SE mechanism, which is signi�cant for improving the performance of the
model.�eSEmechanismdynamically recalibrates the featuremaps, allowing themodel to focus on themost
informative features while suppressing less useful ones.�is results in improved representation learning and
better segmentation accuracy. Overall, enhanced with the SE mechanism, this hybrid architecture enables
accurate and e�cient brain tumors segmentation in 3D MRI images.

�e value of the dropout rate is typically speci�ed as a parameter when adding a dropout layer in a
neural networkmodel. In the designedmodel, the dropout rate is set to 0.1 for the contracting path (encoder)
and 0.2 for the expansive path (decoder). �is means that 10% of the input units will be randomly set to 0
during training in the contracting path and 20% in the expansive path.�ese dropout rates are chosen based
on experimentation preventing over�tting and improving the generalization ability of the model.

4 Implementation

�is study implements the model using the Keras library and TensorFlow 2.8.0. We designed the model
using Python and executed the computations on NVIDIA RTX 3080 12GB GPU. For model training, Adam
optimizer is selected with a learning rate of 0.0001. �e selection of activation function and normalization
techniques is ReLU and batch normalization, respectively. �e model training is performed for 150 epochs.
�e image dimension is 160 × 160 × 128 to locate the tumor area properly. Initially, we tried to train the
model on an actual dimension of 240 × 240 × 155, but it o�ers an intensive load on the GPU and halts the
execution with GPU memory over�ow errors. A batch size of 1 is selected to load the 3D images properly
by considering the memory constraints of the GPU. In the encoder, a dropout of 0.1 is applied a�er the
convolution operation, while in the decoder, a dropout of 0.2 is applied a�er each convolution operation.
�is con�guration helps regularize the model and prevent over�tting during training. As the decoder is
responsible for generating the �nal segmentation output, it typically has more parameters and may be prone
to over�tting. �erefore, a higher dropout rate can help regularize the decoder’s parameters and prevent it
from �tting noise in the training data too closely. Hyperparameter values are listed in Table 2.

Table 2:Hyperparameter values for the proposed model

Hyperparameter Value

Image input size 160 × 160 × 128 × 4
Batch size 1

Activation function (Hidden layer) ReLu
Learning rate 1 × 10−4
Optimizer Adam
Epochs 150
Loss Dice Loss + Focal Loss

Dropout rate (Enc.) 0.1

(Continued)
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Table 2 (continued)

Hyperparameter Value

Dropout rate (Dec.) 0.2
Activation function (Output) So�max

Segmented output size 160 × 160 × 128 × 4

4.1 Combined Loss Function

Choosing the suitable loss function is highly important for deep learning models, especially when
working on brain tumor segmentation. Latest research suggests that there is not a universal loss function that
always works great for all segmentation tasks. Deep learning model’s performance also depends on selecting
a suitable loss function [45]. Combined loss functions, integrating two or more types of losses, have become
the most robust and e�ective in various situations [46]. Combining dice and focal loss allows the model to
bene�t from their complementary e�ects. We aim to mitigate the class imbalance by combining two loss
functions, i.e., dice loss and focal loss. Together, they provide a robust training objective that enables the
model to e�ectively learn from both majority and minority classes, leading to better segmentation results on
imbalanced datasets like BraTS [47].

Using Eq. (3), we can calculate the dice loss for all tumor classes: Background, NET, ED, and ET.

Ld ice (a, b) = 1 − 1

N

c∑
c=1

2 ×∑mn acmnbcmn + ∈
(∑m ,n a

2 +∑m ,n b
2
cmn)+ ∈ (3)

where a and b represent predicted output and its mask, respectively. m is voxel representation, c is class, n
denotes the total number of tumor classes, and ∈ is a negligible constant value used to avoid division by zero.
L f ocal (x , y) = − 1

N

N∑
n=1

c∑
c=1

(1 − anc)γ bnc log anc (4)

where a represents predicted output, b is the ground truth, c represents the class, and n is the total number
of classes. Eq. (5) represents the combined loss used in this study.

Loss = Ld ice + L f ocal (5)

where Ld ice and L f ocal are dice and focal losses.

In this study, the combined loss for each class is computed as a total loss by adding the dice loss and
focal loss. �is loss function ensures that the model focuses on the most critical parts of the tumor during
segmentation, connecting the relevance of each tumor area with the network’s predictions. �is helps the
model prioritize the most clinically signi�cant regions, vital for getting the best segmentation results.

4.2 Performance Evaluation

Our study used the Dice Similarity Coe�cient (DSC), sensitivity, and speci�city measuring the model’s
e�ectiveness. DSC is the most used evaluation metric in Brain Tumor Segmentation studies. �e DSC
calculates the overlapping between the segmentation and actual area in the segmentation range between
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0 and 1. 0 represents no overlap, and 1 shows complete overlap between the actual and predicted tumor
regions. Eq. (6) can be used to calculate the DSC.

DSC (A, B) = 2 ∣A∩ B∣
∣A∣ + ∣B∣ (6)

where A and B represent predicted and ground truth values.

Sensitivitymeasures the proportion of actual tumor area that is correctly predicted. Speci�citymeasures
the proportion of actual healthy area that is correctly predicted as non-tumor. Both sensitivity and speci�city
can be calculated using Eqs. (7) and (8).

Sensitiv ity = TP

TP + FN (7)

Speci f icity = TN

TN + FP (8)

where the terms TP, TN, FP, and FN represent true positive, true negative, false positive, and false
negative, respectively. Fig. 9 shows separate tumor classes and areas for better understanding when analyzing
segmentation results.

Figure 9: Brain tumor segmentationmethod depicting the tumor classes (NCR/NET, ET, ED) and tumor regions (WT,
TC, ET). For better analyses and understanding of segmentation results, Tumor classes are separately displayed
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5 Experiments and Results

dSEAT-UNet was trained, validated, and tested on the benchmark BraTS 2020 MRI dataset with a
separation weightage of 75%, 15%, and 10% for training, validation, and testing, respectively. While testing
themodel performance on random test dataset samples, we observed that dSEAT-UNet accurately generated
the 3D segmentation volumes with tumor classes. Prediction results show the model’s generalization ability.
Results analysis for three tumor classes, i.e.,WT, TC, and ET, show high similarity between ground truth and
predictions. As shown in Fig. 9, tumor classes and regions are separately displayed for a better understanding
of the segmentation results, highlighting the WT, TC, and ET tumor regions.

To optimize the performance of our proposed model, we conducted empirical hyperparameter tuning
using a combination of grid search and validation-based selection. �e learning rate was varied across a
range from 1 × 10−3 to 1 × 10−5 and the optimal value of 1 × 10−4 was selected based on validation dice
scores. Dropout rates were tested in the range of 0.0 to 0.3, with 0.1 and 0.2 providing the best balance
between regularization and model capacity. �e Adam optimizer was chosen due to its stable convergence
behavior, and the ReLU activation function was selected a�er comparing it with GELU and LeakyReLU, as
it provided slightly better performance and training stability. �ese hyperparameters were validated on a
subset of the BraTS 2020 dataset to ensure generalization and stability before full-scale training. Training
stability was monitored across epochs using validation loss and dice score to ensure smooth convergence
and prevent over�tting.

�e performance metrics, including dice score, speci�city, and sensitivity, are computed and presented
in Table 3. Fig. 10 displays the training and validation losses for each epoch, for 150 epochs, providing
insight into themodel’s learning progress and performance. In the initial stages, both training and validation
losses decrease sharply, indicating e�ective learning and the ability of model to identify data patterns. As
training progresses, loss continues to decrease consistently, re�ecting the model’s ability to reduce error on
the training data. Although the validation loss experiences some �uctuations, it generally trends downward,
suggesting that the model is enhancing its ability to generalize to unseen data.�e overall trend in validation
loss highlights the ability of model to adapt and learn relevant data features, even though it faces typical
challenges such as minor over�tting. �e consistent decline in training loss and the ultimate stabilization
of validation loss re�ects the model’s robustness and e�ciency in handling the training process over a
long period.

Table 3: dSEAT-UNet dice score, speci�city, and sensitivity for WT, TC, and ET

Method
DSC Speci�city Sensitivity

WT TC ET WT TC ET WT TC ET

dSEAT-UNet 0.881 0.846 0.819 0.996 0.991 0.987 0.985 0.978 0.967

Fig. 11 presents a box plot displaying three tumor regions dice scores such as WT in blue, TC in green,
and ET in purple. �e box indicates the interquartile range, with the median value marked by the red line
inside the box. �e whiskers reach the minimum and maximum values within 1.5 times the interquartile
range, and outliers are shown as separate dots. �e plot shows that WT has the highest median dice score,
followed by TC and ET, indicating better segmentation performance for WT than the other regions. �e
presence of outliers suggests variability in segmentation accuracy across di�erent samples.
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Figure 10: dSEAT-UNet training and validation loss

Figure 11: Box plot for the dSEAT-UNet dice score corresponding to WT, TC, and ET

5.1 Importance of Suitable Data Preprocessing Technique

It is highly signi�cant to highlight the importance of a suitable data preprocessing technique. One of the
major factors other than designing a reliable and robust deep learning architecture is choosing a suitable data
preprocessing technique. As mentioned in Section 3.3 about Gabor �lter optimization, we observed notable
improvement in the segmentation performance of the model. �e performance of the proposed model is
observed on both datasets, i.e., regular BraTS 2020 and �ltered BraTS 2020 datasets. As shown in Table 4, it
is evident that a�er selecting a suitable data preprocessing technique, the segmentation performance of the
proposed model improved in segmenting all three tumor areas, i.e., WT, TC, and ET.

Table 4: Choosing a suitable data preprocessing technique

Con�guration WT TC ET Preprocessing techniques

Proposed model without Gabor
�ltered data

0.856 0.827 0.796 Few preprocessing operations
were used.

(Continued)
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Table 4 (continued)

Con�guration WT TC ET Preprocessing techniques

Proposed model with Gabor
�ltered data

0.881 0.846 0.819 Gabor �lter with multiple
techniques, as discussed in the

preprocessing section.

5.2 Comparison with State-of-the-Art Methods

We compared our dSEAT-UNet model with state-of-the-art methods on the BraTS 2020 dataset and
presented an in-depth quantitative results analysis. Later, we also cross-veri�ed the performance of ourmodel
on BraTS 2021 dataset samples. �e following sections contain the proposed model’s evaluation on both
datasets, i.e., BraTS 2020 and BraTS 2021.

5.2.1 Comparison with State-of-the-Art-Methods on the BraTS2020 Dataset

Segmenting brain tumors accurately is a complex task, particularly for regions like tumor core and
enhancing tumor. Segmenting these smaller regions presents additional di�culties. To assess the per-
formance of the proposed model, dSEAT-UNet, was compared with benchmark methods on BraTS2020
benchmark dataset. Our comparison is based on published results from these methods, which we referenced
for a comprehensive analysis and comparison with our study. Our model outperformed most previously
published studies, in terms of TC and ET segmentation performance, as shown in Table 5. �e highest DSC
values for each tumor class are highlighted in bold. Fig. 12 presents the segmentation results of the model
on the BraTS 2020 dataset. �e precision of any deep learning model completely lies in how precisely it
segments the tumor regions, as it is signi�cant in medical treatment.�e segmentation results shown by our
model for each tumor region show the accurate de�nition of boundaries, especially in the case of tumor core
and enhancing tumor. Our model’s precision in detecting and segmenting tumor regions shows the model’s
e�ectiveness and o�ers competitive performance compared to the state-of-the-art methods. Quantitative
analysis fromTable 5 shows that the study presented byWang et al. [26] shows the highest dice score of 0.900
in segmenting whole tumor, exceeding our score of 0.881. However, our model achieved 2.9% (TC) and 2.9%
(ET) gains over Wang et al.’s study [26]. Without using any postprocessing technique, our model surpasses
all other studies regarding TC and ET with values of 0.846 and 0.819, respectively. Our model has 30.63 M
parameters. Our model has fewer parameters than the state-of-the-art and the model by Wang et al. [26],
which has 32.99 M parameters. �ere are 19.06 M parameters of the baseline 3D U-Net [17], and Raza et al.’s
model [24] has 30.47 M parameters. Even though our model has 30.63 M parameters, our model has shown
improved performance and obtained DSC of 0.881 for WT, 0.846 for TC, and 0.819 for ET.

Table 5: Comparison with state-of-the-art methods on the BraTS 2020 dataset

Comparison study Model Image size WT TC ET Dataset

Çiçek et al. [16] 3D UNet 128 × 128 × 128 0.841 0.790 0.687 BraTS 2020
Ballestar [48] 3D CNN 64 × 64 × 64 0.846 0.752 0.621 BraTS 2020
Wang et al. [26] TransBTS 128 × 128 × 128 0.900 0.817 0.787 BraTS 2020
Messaoudi et al.

[49]
E�.Net-3D

UNet
192 × 160 × 108 0.806 0.752 0.695 BraTS 2020

Wang et al. [50] 3D UNet 128 × 128 × 128 0.852 0.798 0.778 BraTS 2019

(Continued)
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Table 5 (continued)

Comparison study Model Image size WT TC ET Dataset

Zhang et al. [24] Att.gate-
ResUnet

128 × 128 × 128 0.870 0.777 0.709 BraTS 2019

Raza et al. [25] dResU-NET 128 × 128 × 128 0.866 0.835 0.800 BraTS 2020
Colman et al. [51] DR-UNet 240 × 240 0.867 0.798 0.751 BraTS 2020
Tang et al. [52] MultiResUNet 80 × 96 × 64 0.892 0.789 0.703 BraTS 2020
Jiang et al. [23] SwinBTS 240 × 240 × 155 0.890 0.803 0.772 BraTS 2020
Abd-Ellah et al.

[53]
TPCUAR-Net 128 × 128 0.870 0.830 0.760 BraTS 2017

Ren et al. [54] Optimized 3D
UNet

240 × 240 × 155 0.675 0.721 0.715 BraTS 2023

Proposed dSEAT-UNet 160 × 160 × 128 0.881 0.846 0.819 BraTS 2020

Note: �e highest DSC values for each tumor class are highlighted in bold.

Figure 12: Qualitative visualization of model segmentation results when randomly selecting four test sample images
from the dataset. Prediction shows separate illustrations of segmentations for WT, TC, and ET
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5.2.2 Model Cross-Validation on BraTS 2021 Dataset

We also evaluated our model on the BraTS 2021 dataset to analyze the performance. �e BraTS 2021
dataset is also pre-processed as BraTS2020 to make it suitable for testing. An unbiased performance of the
model can be measured by testing the model on another dataset [55]. Our model also showed competitive
results on unseen test samples from BraTS 2021.�e sample preprocessed images of the BraTS 2021 dataset
are shown in Fig. 13. We observed enhanced generalization ability and promising results of our model, as
shown in Fig. 14, and quantitative results in Table 6. �is highlights the e�ectiveness and robustness of our
model, which outperformed other state-of-the-art studies with DSC values of 0.856 for TC and 0.824 for
ET, respectively.

Figure 13: Resized BraTS 2021 sample MRI images with mask (ground truth)

Figure 14: Brain tumor segmentation results on the axial axis. Prediction results show separate tumor regions for WT,
TC, and ET
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Table 6: Cross-validation of the model on the BraTS 2021 dataset

Model
Dice Score Speci�city Sensitivity

WT TC ET WT TC ET WT TC ET

Model cross-validation (dSEAT-UNet) 0.887 0.856 0.824 0.991 0.988 0.990 0.991 0.984 0.972

5.3 Ablation Study

�e dSEAT-UNet outperforms state-of-the-art methods in the accurate segmentation of WT, TC, and
ET brain tumor regions. An ablation study is also conducted to highlight the importance of a combined
network with residual blocks and SE mechanisms in skip connections. �is network is compared with
residual network-based encoder network and baseline 3D network, which do not contain squeeze and
excitationmechanisms.�e dSEAT-UNet has shown the highest performance compared to the twomethods.
�e dice scores, speci�city, and sensitivity metrics values for the three methods are shown in Table 7. �e
dice scores are plotted, and a comparison chart for the baseline 3DU-Net, proposedmodel without attention
mechanism, and dSEAT-UNet is presented for three tumor regions, i.e., WT, TC, and ET, in Fig. 15.

Table 7: Ablation study performed on BraTS 2020 dataset

Method DSC Speci�city Sensitivity

WT TC ET WT TC ET WT TC ET

Baseline 3D U-Net 0.834 0.796 0.752 0.971 0.973 0.894 0.942 0.937 0.842
Proposed model (without
Attention Mechanism)

0.848 0.813 0.784 0.973 0.971 0.966 0.947 0.933 0.914

dSEAT-UNet 0.881 0.846 0.819 0.996 0.991 0.987 0.985 0.978 0.967

Figure 15: Comparison of dice scores on baseline 3D U-Net, proposed model without attention, and dSEAT-UNet for
WT, TC, and ET
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�e quantitative analysis shows that dSEAT-UNet, which incorporates the SE attention mechanism,
signi�cantly outperforms both the baseline 3D U-Net and the proposed model without the attention
mechanism across all three tumor regions. �e dice score improvements for dSEAT-UNet indicate the
e�ectiveness of the attention mechanism in enhancing segmentation performance. Speci�cally, for the WT
region, dSEAT-UNet shows a performance improvement of 5.63% over the baseline and 3.89% over the
proposed model without the attention mechanism, highlighting its superior ability to segment the entire
tumor region accurately. For the TC region, the 6.28% improvement over the baseline and 4.06% over
the proposed model without the attention mechanism underscores the attention mechanism’s impact on
accurately identifying the tumor core.�emost signi�cant improvement is observed in the ET region, where
dSEAT-UNet achieves an 8.51% enhancement over the baseline and 4.08% over the proposed model without
the attention mechanism, demonstrating the attention mechanism’s critical role in capturing the enhancing
tumor region, which is o�en more challenging to segment due to its variability and complexity.

To further quantify the contribution of the SE attention mechanism in dSEAT-UNet, we analyzed the
performance improvements by comparing the model without SE attention to the full dSEAT-UNet. �is
comparison isolates the e�ect of the attention mechanism on segmentation accuracy.�e results show that
integrating SE attention leads to an increase in dice scores by approximately 3.3% forWT region, 3.3% for TC,
and 3.5% for ET region. �ese improvements underscore the e�ectiveness of the SE module in enhancing
feature recalibration and model sensitivity, particularly for complex and challenging tumor subregions.

�e quantitative analysis highlights the substantial performance gains achieved by incorporating the
attentionmechanism in dSEAT-UNet.�ese improvements across all tumor regions demonstrate the critical
importance of the attention mechanism in enhancing segmentation accuracy, proving dSEAT-UNet as the
best-performing model among the three evaluated in the ablation study.

5.4 Limitations, Risks and Computational Trade-O�s

While the proposed dSEAT-UNet demonstrates strong segmentation accuracy on benchmark datasets,
several challenges and deployment considerations must be addressed to ensure its real-world applicability in
clinical settings:

• Computational Resource Constraints:�e model architecture, integrating a deep ResNet encoder, SE
attention mechanisms, and Gabor �lters, improves segmentation accuracy but increases computational
demands. Deploying such a model in clinical environments especially those with limited GPU availabil-
ity can be challenging. Reducing the input volume size to 160 × 160 × 128 helped mitigate GPUmemory
over�ow during training, but further optimizations such as model pruning, quantization, or knowledge
distillation could enhance deployability without signi�cant performance loss.

• Latency and Real-Time Processing: �e depth and complexity of dSEAT-UNet, particularly in pro-
cessing high-resolution 3D MRI scans, may introduce latency in inference. In time-sensitive clinical
work�ows, this could limit the model’s usability. E�cient model variants or hybrid encoder-decoder
designs with fewer parameters could reduce inference time while preserving segmentation accuracy.

• Sensitivity to Variability in MRI Scans: Real-world MRI data o�en contain artifacts, inter-slice
inconsistencies, or intensity variations across devices and institutions.�ese inconsistencies can degrade
model performance, especially when segmenting small or di�use tumor regions. Enhanced preprocess-
ing strategies such as bias �eld correction and deep-learning-based denoising are essential to mitigate
these issues in deployment scenarios.

• Generalization across Institutions: While the model performed well on the BraTS 2020 and 2021
datasets, its robustness on unseen clinical data from diverse scanners and acquisition protocols remains
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to be validated. Incorporating more heterogeneous training data and domain adaptation strategies can
help improve the model’s generalization and reliability.

Addressing these challenges is critical for transitioning dSEAT-UNet from a research prototype to a
practical tool for automated brain tumor segmentation in clinical environments.

5.5 Segmentation Challenges Analysis

While the proposedmodel demonstrates strong overall performance, several challenging cases highlight
its limitations particularly segmenting ET, more critically segmenting NET regions, as illustrated in Fig. 16.

Figure 16: Segmentation challenges faced by dSEAT-UNet when segmenting narrow boundaries and small tumor
regions

NET regions are especially di�cult to segment due to their small size, di�use and in�ltrative nature,
and low contrast against surrounding tissues.�ese characteristics o�en result in misclassi�cation or under-
segmentation. Unlike ET regions, NETs lack distinct intensity information in conventional MRI modalities,
making them di�cult to distinguish even for human experts.

�e model’s underperformance in these regions may also come from its limited ability to capture �ne
intensity variations or its insu�cient sensitivity to weak boundaries. In some cases, these regions were
completely missed or partially segmented, which can critically impact the overall tumor characterization.

To address these challenges, future improvements could include:

• Re�ning the attention mechanisms to enhance sensitivity to weak gradients and boundary regions.
• Incorporating domain-speci�c priors, such as anatomical constraints or tumor growth patterns.
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• Applying post-processing techniques like Conditional Random Fields (CRFs) or morphological opera-
tions to sharpen segmentation outputs.

• Training with dedicated loss functions, e.g., boundary loss or focal loss, suitable for underrepre-
sented regions.

By including and analyzing these failure cases, we provide amore realistic picture of themodel’s behavior
in clinical settings and identify areas where further optimization is needed for robust, tumor-subregion-
level segmentation.

5.6 Clinical Applicability and Future Integration

While dSEAT-UNet demonstrates promising results on benchmark datasets, its deployment in clinical
settings presents several challenges that require future exploration. Integration into radiology work�ows
would require compatibility with clinical imaging systems such as PACS, robust inference speed suitable for
real-time use, and output formats interpretable by clinicians. Enhancing the model’s explainability, through
visual interpretability tools like attention heatmaps, could further facilitate clinician trust and adoption.

In addition, rigorous validation across diverse clinical cohorts and institutions is essential to ensure
generalizability. Both retrospective analyses using real patient scans and prospective evaluation within
clinical work�ows will be needed to assess model robustness, safety, and usability. �ese steps, along with
adherence to regulatory guidelines (e.g., FDA, CE), will be key to translating this research into a deployable
clinical solution. Future work will focus on addressing these practical and regulatory challenges.

6 Conclusion

�is study proposed dSEAT-UNet, a novel 3D brain tumor segmentation model that enhances the
conventional 3D U-Net by integrating a deep ResNet-based encoder and squeeze-and-excitation (SE)
attention mechanisms within the skip connections. �e ResNet encoder improves semantic representation
while maintaining stable training, and the SE blocks adaptively recalibrate features, leading to better gener-
alization.�ese design enhancements collectively contributed to signi�cant performance gains, especially in
segmenting complex tumor regions across benchmarks datasets.

Additionally, the integration of Gabor �lter banks into the encoder contributed to improved
texture-aware feature extraction.�is enhancement enabled themodel to capture low-level, transformation-
invariant features and mitigate texture interference, particularly in irregular tumor boundaries. �ese
contributions facilitated faster convergence during early training and improved segmentation accuracy in
small and complex tumor regions.

Our experiments on the BraTS 2020 dataset demonstrated that dSEAT-UNet obtained dice scores
of 0.881 for Whole tumor (WT), 0.846 for Tumor core (TC), and 0.819 for Enhancing tumor (ET),
outperforming several state-of-the-art models. �e model’s generalizability was further con�rmed on the
BraTS 2021 dataset, maintaining strong performance across test cases.

Despite these promising results, challenges remain in accurately segmenting small or di�use subregions,
particularly under the presence of real-world imaging artifacts such as noise, motion blur, and inter-slice
inconsistencies. Moreover, the model’s computational demand is considerable, given the complexity of its
components, which limited training to a batch size of one and constrained the input volume size due to GPU
memory limitations.

To improve practical applicability, future work will explore testing dSEAT-UNet on external clinical
datasets from local hospitals to evaluate performance under varying MRI conditions, scanner types, and
artifact scenarios. �is validation step is critical for understanding the model’s real-world robustness and
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clinical reliability. Furthermore, lightweight versions of the model will be investigated using techniques such
as model pruning, quantization, and knowledge distillation to reduce computational overhead andmake the
model more suitable for deployment in resource-limited clinical environments.

In terms of architectural innovation, future extensions will explore deformable convolutions, boundary-
aware re�nement modules, and hybrid CNN-transformer designs. �ese additions aim to enhance global
context modeling and boundary localization. Further improvements in preprocessing including bias �eld
correction, deep-learning-based denoising, and advanced data augmentation will support themodel’s ability
to handle diverse clinical data.

Overall, the proposed dSEAT-UNet demonstrates strong potential as a reliable and accurate solution
for 3D brain tumor segmentation. Ongoing e�orts to validate and optimize the model across diverse settings
will be crucial to its successful integration into real-world clinical work�ows.
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Appendix A Gabor Filter Mathematical Formulation and Parameters

�is appendix provides the mathematical background and con�guration details of the Gabor �lter used
in this study. �e �lter’s core formulas are shown in Eqs. (A1)–(A3). Table A1 de�nes the parameters and
their roles, along with the optimized values selected during experimentation.

Table A1:Gabor wavelet parameters optimization. Optimized value(s) are presented for each parameter where themost
suit-able results are achieved

Parameter Description Optimized

value range

Lambda (λ) Wavelength of the sinusoidal factor (spatial period of
the cosine wave).

{1: 10}
�eta (θ) Orientation of the normal to the parallel stripes of the

Gabor function (typically in radians).
{0, π/4, π/2,
3π/4, π}
(Continued)
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Table A1 (continued)

Parameter Description Optimized

value range

Phi (ψ) Phase o�set of the sinusoidal function, controlling the
symmetry of the �lter.

{0}
Sigma (γ) Standard deviation of the Gaussian envelope,

determining the spatial extent of the �lter.
{1, 3}

Gamma (γ) Spatial aspect ratio, specifying the ellipticity of the
Gabor function (i.e., the ratio between the x and y axes

of the Gaussian).

{1}

�ese wavelets can be described mathematically in the following Eqs. (A1)–(A3).

g (x , y; λ, θ ,ψ, σ , γ) = exp(−x
′2 + γ2y′2
2σ 2

) × cos(2π x′
λ
+ ψ) (A1)

x′ = x cos (θ) + y sin (θ) (A2)

y′ = −x cos (θ) + y cos (θ) (A3)

Appendix B Squeeze and Excitation (SE) Attention Formulation

�is appendix details the squeeze phase of the SE attentionmechanism. Table A2 describes the symbols
used and formula is provided in Eq. (A4).

Table A2: Variable de�nitions for the squeeze operation in the SE attention mechanism

Symbol Description

s Output of the squeeze operation for channel c
Fsq Squeeze function that aggregates spatial information
uc Feature map value for channel c

i, j, k Indices over height (H), width (W), and depth (D) dimensions
H Height of the input feature map
W Width of the input feature map
D Depth of the input feature map (number of slices)
C Number of channels in the feature map

�e squeeze operation that aggregates global spatial information is de�ned as,

s = Fsq(uc) = 1

H ×W × D
H∑
i=1

W∑
j=1

D∑
k=1

uc (i , j, k) (A4)
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