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ABSTRACT: Effectively handling imbalanced datasets remains a fundamental challenge in computational modeling
and machine learning, particularly when class overlap significantly deteriorates classification performance. Traditional
oversampling methods often generate synthetic samples without considering density variations, leading to redundant
or misleading instances that exacerbate class overlap in high-density regions. To address these limitations, we propose
Wasserstein Generative Adversarial Network Variational Density Estimation WGAN-VDE, a computationally effi-
cient density-aware adversarial resampling framework that enhances minority class representation while strategically
reducing class overlap. The originality of WGAN-VDE lies in its density-aware sample refinement, ensuring that
synthetic samples are positioned in underrepresented regions, thereby improving class distinctiveness. By applying
structured feature representation, targeted sample generation, and density-based selection mechanisms strategies,
the proposed framework ensures the generation of well-separated and diverse synthetic samples, improving class
separability and reducing redundancy. The experimental evaluation on 20 benchmark datasets demonstrates that this
approach outperforms 11 state-of-the-art rebalancing techniques, achieving superior results in Fl-score, Accuracy,
G-Mean, and AUC metrics. These results establish the proposed method as an effective and robust computational
approach, suitable for diverse engineering and scientific applications involving imbalanced data classification and
computational modeling.

KEYWORDS: Machine learning; imbalanced classification; class overlap; computational modelling;
adversarial resampling; density estimation

1 Introduction

Machine learning applications have expanded dramatically across various domains such as medical
diagnosis [1], finance and risk management [2], fault diagnosis [3], cybersecurity, and anomaly detection [4].
However, one recurring computational modelling challenge in these applications is handling imbalanced
datasets, where the minority class contains significantly less data than the majority class. This distortion
affects the performance of classifiers, mostly recognizing the minority class patterns, and degrading the over-
all system accuracy [5,6]. This challenge is especially important in situations where predicting such examples
is crucial, like fraud, rare diseases, and intrusion detection [7]. Since real-world datasets often exhibit varying
degrees of imbalance, addressing this issue has become a fundamental concern in classification tasks [8].
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To address these issues, many data-level and algorithm-level methods have been introduced in the
literature. Some examples of conventional methods are undersampling and oversampling. While undersam-
pling reduces the size of the majority class to balance the dataset, it risks discarding valuable information.
Oversampling, on the other hand, increases the minority class by generating synthetic samples, often using
methods like the Synthetic Minority Oversampling Technique (SMOTE) [9-11]. Although SMOTE and
similar methods improve class balance, they often generate redundant samples or exacerbate the problem of
overfitting by placing synthetic points in high-density regions, leading to overlapping between classes, which
further reduces model generalization and increases classification errors.

Recent advancements in deep learning have introduced Generative Adversarial Networks (GANs) [12]
as a promising alternative for synthetic data generation. Unlike traditional resampling methods, GANs
employ an adversarial framework where the generator learns to create realistic synthetic samples that
resemble the real data distribution. While GANs provide a more data-driven approach to resampling, they
also suffer from training instability, mode collapse, and a lack of control over sample placement in feature
space. The introduction of Wasserstein GAN (WGAN) and its many variants [13,14] helped to address some
of these issues by improving training stability and diversity [15], but existing GAN-based approaches still
lack a mechanism to control where synthetic samples are placed in feature space, which often results in class
overlap and sample redundancy, similar to traditional resampling methods.

To overcome these computational modelling challenges, we introduce a novel generative resampling
framework, WGAN-VDE (Wasserstein Generative Adversarial Network with Variational Density Estima-
tion), that strategically refines synthetic sample placement to enhance class separability while preserving
minority class diversity. Contrary to existing GAN-based resampling techniques, WGAN-VDE does not
generate synthetic samples indiscriminately. Instead, it incorporates structured representation learning,
density-aware adversarial training, and statistical refinement mechanisms to ensure that synthetic samples
contribute meaningfully to the classification task.

The first key innovation in this framework is structured minority class representation learning using
Variational Autoencoders (VAE). Conventional GAN-based oversampling methods generate synthetic data
from random noise, often failing to maintain the intrinsic feature distribution of the minority class. In
contrast, VAE encodes minority class instances into a structured latent space, ensuring that synthetic samples
retain key statistical properties of real samples, leading to more diverse and representative synthetic data.

The second innovation is density-aware synthetic sample generation using a modified Wasserstein GAN
(WGAN). Traditional GANs often suffer from mode collapse, where the generator produces a limited set
of synthetic variations, reducing diversity. While WGAN improves stability, it lacks an explicit mechanism
to optimize sample placement in feature space. To address this, a density-constrained Wasserstein loss
is introduced, ensuring that synthetic samples are generated in underrepresented feature space regions
rather than high-density areas dominated by the majority class. This controlled placement of synthetic
instances reduces class overlap and enhances class separability, making it more effective than conventional
GAN-based resampling.

The final innovation is post-generation sample refinement using Kernel Density Estimation (KDE).
Unlike conventional oversampling methods that assume all generated samples are useful, this framework
evaluates and selectively filters synthetic instances before they are added to the dataset. KDE is applied
to measure the density distribution of synthetic samples relative to real minority class instances, ensuring
that redundant samples in already well-represented areas are removed, while informative samples in sparse
regions are retained. Unlike static threshold-based filtering, a dynamic KDE thresholding mechanism is
used, where only synthetic samples with densities lower than 80% of real minority class samples are retained,
thereby ensuring optimal sample placement and preventing class overlap.



Comput Model Eng Sci. 2025;144(1) 513

By introducing density constraints into the generative process and incorporating a structured sample
selection mechanism, this generative resampling framework overcomes key limitations in both traditional
oversampling and GAN-based methods. While SMOTE and similar techniques introduce synthetic points
without considering density distributions, and GAN-based resampling lacks explicit sample placement con-
trol, this framework ensures that each generated sample enhances class separability rather than contributing
to redundancy. Unlike conventional hybrid approaches that combine oversampling with undersampling, this
method does not rely on majority class reduction but instead optimizes synthetic sample distribution to
improve classifier performance.

Extensive experimental evaluations on 20 benchmark datasets demonstrate that this generative resam-
pling framework outperforms 11 state-of-the-art resampling techniques, including traditional oversampling,
hybrid sampling, and GAN-based methods. Results show consistent improvements in Fl-score, Accuracy, G-
Mean, and AUC metrics, highlighting the effectiveness of structured representation learning, density-aware
adversarial training, and KDE-based refinement in improving class separability and classifier generalization.
The ability to strategically refine synthetic samples rather than blindly generating data represents a signif-
icant advancement in imbalanced learning, making this framework particularly well-suited for real-world
high-stakes classification tasks.

2 Related Work

In this section, we present a brief overview of GANs and their variants, including WGANs and
their usage in dealing with class imbalance. Furthermore, we discuss their efficacy and also highlight the
shortcomings of these methods, particularly in dealing with class overlap and poor sample diversity in
class imbalance that led to the groundwork of our proposed method WGAN-VDE (Wasserstein GAN with
Variational Density Estimation).

2.1 GANs

The Generative Adversarial Networks (GANs), proposed by Goodfellow et al. [12], train two neural
networks, a generator and a discriminator, in an adversarial setting. The generator learns to produce
synthetic samples that the discriminator attempts to distinguish from real data. While effective for various
generative tasks, GANs and their variants encounter multiple challenges while working with datasets with
imbalanced distributions. A crucial problem with GANs is mode collapse, which results in the generator
creating few sample variations while missing out on the complete diversity of the minority class. GANs
usually experience unpredictable training instabilities, making convergence hard to achieve when operating
in complex data distributions with severe class imbalances. These limitations reduce the reliability of
GAN-based oversampling strategies in addressing class imbalance issues.

2.2 WGAN:s

To address these instabilities and mode collapse limitations in Traditional GANSs, Arjovsky et al. [15]
proposed Wasserstein Generative Adversarial Networks (WGANSs), which address GAN instabilities by
replacing the original loss function with the Wasserstein distance, offering smoother gradients and improved
convergence. Enhanced versions, such as the gradient penalty [16], incorporate gradient penalties to better
enforce the Lipschitz constraint. However, even with these improvements, WGANs lack mechanisms to
control sample density or prevent class overlap, making them insufficient for nuanced oversampling in
imbalanced settings. As shown in Fig. I, the WGAN architecture uses the Wasserstein distance to guide
adversarial training between the generator and critic.
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Figure 1: A framework of the WGAN model

However, beyond this, the main focus of WGAN-based hybrid oversampling methods lies in the
creation of synthetic samples. Still, these methods do not handle the density and overlapping issues that
occur in tabular datasets.

2.3 Recent Advancements and Challenges

In recent years, several advancements have emerged in the application of GANs and WGANs for
imbalanced classification, with a focus on enhancing sample diversity and addressing the limitations of
traditional oversampling techniques [17]. Several architectures have incorporated domain-specific enhance-
ments to guide the generation of synthetic data more effectively. For instance, Conditional Wasserstein
GANs (CWGAN and CWGAN-GP) [18-20] utilize conditional learning strategies, enabling the generator
to focus on class-specific characteristics, thereby improving the relevance of generated samples. Similarly,
GNP-WGAN [21] enhances distribution matching by incorporating global non-local priors, enabling the
model to capture more generalized data structures.

Building upon these concepts, AWGAN [22] adopts adaptive weighting mechanisms to better model
minority class variability, while OWGAN-GP [23] introduces a meta-learning framework combined with
Wasserstein optimization to improve the placement of synthetic samples, ultimately seeking better class
separability. Although these innovations contribute to improved performance over basic GAN-based over-
sampling, they continue to suffer from a fundamental limitation, namely the lack of explicit density-aware
control during the generative process. Most of these methods generate synthetic instances based on global
distribution patterns, often leading to sample redundancy in high-density regions or overlapping with
majority class boundaries, which deteriorates classifier performance.

To address this issue, recent research has also introduced density estimation methods into oversampling
pipelines [24-26]. Techniques such as GADE [27] employ Kernel Density Estimation (KDE) to align the
distribution of synthetic samples more closely with that of the real minority class. Others use KDE-driven
filtering to detect and remove overlapping or uninformative sample problems [28-30]. However, these
approaches typically apply KDE as a global, static post-processing step, failing to account for local variations
in feature space density. As a result, their ability to reduce class overlap and improve sample utility remains
limited in complex imbalanced scenarios.
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In contrast, our proposed WGAN-VDE framework introduces a novel approach by embedding KDE
directly within the generative process. This dynamic, density-aware filtering mechanism ensures that
synthetic samples are generated and retained only if they reside in low-density, underrepresented regions
of the minority class, thereby minimizing class overlap and increasing class separability. Moreover, WGAN-
VDE leverages a structured encoding of the minority class into a latent space, effectively preserving key
statistical characteristics and enhancing the quality and diversity of the generated synthetic samples. By
combining this structured representation with density-aware adversarial resampling, the framework directly
addresses the dual challenge of poor sample diversity and uncontrolled spatial distribution that plagues
earlier methods.

Ultimately, while prior GAN and WGAN variants have advanced the field of generative oversampling,
they fall short of optimizing sample placement in the feature space. WGAN-VDE transcends these limitations
by integrating structured feature learning, localized density estimation, and adaptive refinement, resulting
in a scalable and robust solution for imbalanced learning challenges across diverse, real-world applications.

3 Methodology

In this paper, we design a generative resampling framework, WGAN-VDE (Wasserstein Generative
Adversarial Network with Variational Density Estimation), to address the challenges of class imbalance and
overlapping distributions in imbalanced datasets. In contrast to the traditional resampling technique, where
samples are generated in areas of high-density regions, WGAN-VDE employs a structured, density-aware
approach to strategically place generated minority class samples in low-density regions, ensuring enhanced
class separability and reduced misclassification risks. The proposed method consists of the following key
steps, and the detailed framework is depicted in Fig. 2.
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Figure 2: Overview of WGAN-VDE framework



516 Comput Model Eng Sci. 2025;144(1)

3.1 Data Preprocessing

First of all, in order to ensure optimal model performance, the dataset undergoes preprocessing,
which includes feature normalization, class labeling, and data partitioning. First, all numerical features are
normalized using z-score standardization to bring them to a common scale. This transformation is computed
as:

x' = 6)

where x’ is the standardized value, x is the original feature value, y is the mean, and o is the standard
deviation. This transformation step protects features with broad numerical scales from controlling the model
training process while preserving stability across training phases.

After normalization, the class labelling process is applied, which separates the majority instances (y = 0)
from the minority ones (y = 1). Special attention has been paid to maintaining the original class distribution
within the imbalanced dataset before generating synthetic samples.

The dataset is divided into separate training and testing sections at the final stage. During the training
phase, both synthetic sample generation and classification models use the training set, but the test set
stays hidden to prevent bias in model evaluation. The proposed method undergoes testing to evaluate its
generalization capability when applied to fresh data that was not present for training purposes.

3.2 Structured Feature Representation for Minority Class

After data preprocessing, the next critical step in WGAN-VDE is constructing a structured feature
representation for the minority class. Traditional oversampling techniques generate synthetic data either
by random perturbations or interpolations between existing samples, which often fail to capture the
underlying feature distribution of the minority class. This results in synthetic instances that are either too
similar to real data (redundant) or poorly representative (outliers), ultimately increasing class overlap. To
enhance the diversity along with the realistic outcome of minority class samples, we apply a Variational
Autoencoder (VAE) to discover structured latent minority class distributions. VAE differs from deterministic
autoencoders because it uses a probabilistic approach to encode data while achieving better minority class
variation representation in the latent space. During encoding, the minority class instances get transformed
into a lower-dimensional latent representation that includes (¢), and (o) for mean and standard devi-
ation, respectively. VAE performs input mapping through sampling variable collections by applying the
reparameterization trick.

Z=p+o-e e~N (0,1) (2)

The model incorporates two components where Z represents the latent space and e refers to the standard
normal distribution noise. The incorporation of random noise into the model through this formulation
successfully creates data variability.

During optimization, the VAE applies both reconstruction loss to measure decoder reconstruction
accuracy and Kullback-Leibler (KL) divergence loss to maintain a structured distribution in the latent space.

LVAE = Lreconstruction + /3~LKL (3)

where f3 is a regularization parameter that controls the trade-off between sample reconstruction accuracy
and latent space smoothness. This structured representation prevents the generator from overemphasizing
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certain features, ensuring that synthetic samples reflect the entire minority class distribution rather than a
subset of repeated patterns.

3.3 Density-Aware Generative Resampling

The resulting latent variables processing becomes input to the Wasserstein Generative Adversarial
Network (WGAN) for producing credible minority class samples. As the main components of the WGAN
framework, the generator generates new data samples while the Critic checks sample quality to teach the
generator how to produce more realistic outcomes. The generator within the WGAN system uses the latent
Z variables obtained from the VAE to create synthetic feature vectors that match minority class samples. The
generator functions will generate X, data points that accurately match the minority class statistical patterns.

After this, these generated samples move to the Critic for authenticity assessment through comparison
against authentic minority-class samples. Unlike conventional GANs, WGAN does not use a binary classifier
as a discriminator. Instead, it uses a Critic function that assigns each sample a real-valued authenticity
score while measuring the Wasserstein distance between the real and generated data distributions. The
Critic receives optimization through a density-weighted Wasserstein loss function that integrates density
estimation to reduce majority-class to minority-class misalignments.

Lcritic =E [P (Xreal) f (Xreal)] -E [P (Xsyn) f (Xsyn)] +1.GP (4)

where p(X) is the density score, giving higher importance to low-density samples, f(X) is the Critic’s output
for the input X, and GP is the gradient penalty:

GP=Eg.x,. [(|Vef (X)],-1)’] (5)

where X;,t.r, represents samples obtained by interpolating between real and synthetic data. The gradient
penalty stabilizes training and prevents the Critic from becoming overly confident in distinguishing real
and generated samples. The critic loss is computed using Wasserstein loss, where real samples receive
high authenticity scores, while synthetic samples are adjusted to minimize the distance to the real data
distribution. This loss function ensures better sample diversity and stability in training. The generator seeks
to reduce the score of the critic for synthetic samples, bringing the generated data distribution nearer to the
real minority class distribution. The loss function of the generator is defined as:

LGenerator = —E [f (Xsyn)] (6)

This encourages the generator to create such synthetic samples to which Critic assigns high authenticity
scores, rendering them indistinguishable from real minority class samples. This step uses density-based
weighting in Critic’s loss function to position synthetic samples optimally throughout minority class regions,
which results in reduced class overlap and preserves data diversity.

3.4 Density-Based Sample Refinement

Following the creation of synthetic minority samples using density-aware WGAN, we apply density-
based methods for refining these samples to optimize overlap reduction and preserve diversity. Traditional
resampling techniques often produce more redundant synthetic data in dense areas, causing overlap with the
majority class rather than improving class separability. To address this issue, a density estimation technique
is used to evaluate the location of each synthetic sample and filter those that cause extreme overlap.

To address this, we employ Kernel Density Estimation (KDE) to evaluate how “crowded” or “sparse” a
region is around each synthetic sample, based on the distribution of real minority class data. KDE allows us
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to statistically estimate the probability density function of the minority class distribution in a non-parametric
way, using a smooth kernel (typically Gaussian). Let X,,;, = x1,x2,...,x, be the set of real minority class
samples. The density score p (X) for a synthetic sample x is computed using the KDE formula as defined
in Eq. (7):

P00 = K () 7)

i=1

where K is a kernel function, & is the bandwidth parameter, d is the feature dimension and # is the number
of real minority samples. In this work, we adopt the Gaussian Kernel defined as:

K (u) = exp(~) ®)

Substituting Eq. (8) in Eq. (7) gives the simplified expression for density estimation:
1 X — x,
p(X)= nZexp( e = xill” I ) )

This score reflects the local density of the synthetic sample x relative to real minority samples. Higher
values indicate that x lies in a dense (potentially overlapping) region, while lower values suggest it is located
in a sparse area, which is desirable for improving coverage.

To reduce class overlap, we apply a threshold-based density strategy. A KDE model is first fitted using
only the real minority class samples. Then, the KDE score of each synthetic sample is evaluated using Eq. (10).
We retain only those synthetic samples whose density scores are lower than a threshold 7 defined as:

Xselected = {X,’ € Xsyn|P(xi) < T} (10)

In our implementation, the selection threshold 7 is set as the 20th percentile of KDE density scores
computed on real minority class samples. This ensures that synthetic samples are only retained if their
densities are lower than at least 80% of real minority samples, preventing overlapping in already dense
regions. This density-based refinement significantly reduces intra-class redundancy and inter-class overlap,
thereby enhancing the quality of the synthetic dataset.

To quantitatively compare how different methods address class overlap, we compute the average KDE
score of their synthetic samples as:

p= | Yoeex.. P(x) (11)

o] S0

Lower values of p indicate that the synthetic samples lie in sparser regions, reducing the likelihood of
overlap with majority class samples. In the results section, we demonstrate that WGAN-VDE consistently
achieves the lowest average KDE scores, verifying its ability to avoid densely packed, overlapping zones.

After density-based sample refinement, the selected synthetic samples are integrated with the original
dataset to create a balanced and well-separated dataset. The refined dataset contains:

«  All original majority class samples for preserving real-world information.
o  Original minority class samples to maintain true minority class characteristics.
Filtered synthetic minority class samples generated by WGAN and refined via density estimation.
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The balanced dataset is then used to train classifiers, evaluating the effectiveness of WGAN-VDE against
traditional resampling methods. By integrating density-based refinement with dataset balancing, WGAN-
VDE ensures superior class separability and improved classifier performance on imbalanced datasets.

4 Experimental Setup
4.1 Dataset Description

To evaluate the effectiveness of the proposed E-WGAN model, we conduct the following experiments
using 20 binary imbalanced datasets. Among these, nine datasets are obtained from the UCI Machine
Learning Repository (http://archive.ics.uci.edu) (accessed on 7 July 2025), while the rest of the 13 datasets are
publicly available at the KEEL repository (http://www.keel.es) (accessed on 7 July 2025). Table 1 presents an
overview of the dataset characteristics, regarding dataset size, imbalance ratio (IR), the counts of minority
samples (P), the counts of majority samples (N), and the counts of features (Feat.). The datasets exhibit diverse
characteristics, with IR values ranging from 1.33 to 129.44, the number of features extending from 5 to 85,
and dataset sizes ranging from 129 to 9822 samples.

Table 1: Introduction of 20 datasets

Dataset name Size Neg. Pos. Feat. IR
D1 Amphibiansl 189 108 81 14 1.33
D2 winel 178 119 59 13 2.02
D3 Vehiclel 846 629 217 18 2.9
D4 glass-0-1-2-3_vs_4-5-6 214 163 51 9 3.2
D5 new-thyroidl 215 180 35 5 5.1
D6 glass6 214 185 29 9 6.38
D7 Amphibians7 189 168 21 14 8.0
D8 ecoli3 301 35 336 7 8.6
D9 yeast-2_vs._4 514 463 51 8 9.08
D10 Speaker Accent Recognitionl 329 300 29 12 10.34
D11 seismic-bumps 2584 2414 170 18 14.2
D12 Coil2000 9822 9236 586 85 15.76
D13 dermatology6 358 338 20 34 16.9
D14 shuttle-c2-vs-c4 129 123 6 9 20.5
D15 glass5 214 205 9 9 22.78
D16 leaf31 340 329 11 15 29.91
D17 yeast 1484 1440 44 8 32.73
D18  winequality-white-3_vs_7 900 880 20 11 44
D19 poker-8-9_vs_6 1485 1460 25 10 58.4
D20 KDD Cup Land vs. Satan 1610 1589 21 41 75.67
D21 poker-8_vs_6 1477 1460 17 10 85.88
D22 Abalonel9 4174 4142 32 8 129.44

4.2 Performance Metrics

When dealing with imbalanced classification models, these measures must be taken into account
accurately to note the results of the models. Common metrics include:
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i. Precision

True Positives

Precision = — —
True Positives + False Positives
ii. Recall
True Positives
Recall =

True Positives + False Positives
iii. F1-Score

Precision - Recall
F1=2

Precision + Recall

iv. G-Mean

G — Mean =+/Sensitivity - Specificity

where sensitivity and specificity evaluate the quality of minority and majority classes, respectively [31,32].

4.3 Comparison Methods

In this research, we examine the effectiveness of our proposed method, WGAN-VDE, by performing a
baseline comparison with 12 other existing resampling approaches. It divides into five major groups, includ-
ing Undersampling, Oversampling, Hybrid Sampling, Advanced Oversampling, and Deep Learning-based

Comput Model Eng Sci. 2025;144(1)

approaches. Table 2 provides full explanations regarding the procedures used for these methods.

Table 2: Comparison methods

S# Group Imbalanced approaches
1 Under-sampling methods TL: Tomeklinks [33]
2 Oversampling methods SM: SMOTE [34]
BS: BorderlineSMOTE [35]
3 Hybrid sampling SME: SMOTEENN [36]
methods
SMT: SMOTETomek [37]
4 Advanced oversampling GSM: Gaussian_Smote [38]
methods
SMOTEWB Smote with boosting Procedure [39]
5 Deep learning methods WGAN-GP: Wasserstein GAN with Gradient Penalty [13]

RVGAN-TL: Improved GAN with Transfer Learning [40]
GNP-WGAN: Generative Nonlocal Prior Augmented WGAN

VAE-WACGAN: Improved Data Augmentation Method Based

[21]

on VAEGAN [14]

In case of undersampling, we perform baseline comparison with Tomek Links (TL) as it eliminates
nearby majority class samples that reduce boundary separation. The oversampling category includes SMOTE
and Borderline-SMOTE (BS) for creating artificial minority samples to stabilize class distributions. In the
hybrid sampling methods, we analyze SMOTEENN (SME) and SMOTETomek (SMT) as they enhance
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class distributions by minimizing noise through undersampling and oversampling approaches. In addi-
tion, we also use two advanced oversampling techniques for comparison, like Gaussian_SMOTE (GSM)
and SMOTEWB (SMOTE with Boosting Procedure), which bring new mechanisms for improving class
imbalance and synthetic sample quality.

In the deep learning category, we compare WGAN-VDE with four state-of-the-art GAN-based resam-
pling methods, including WGAN-GP, RVGAN-TL, GNP-WGAN, and VAE-WACGAN. These methods
use generative models to generate synthetic data that is consistent with the underlying data distribution,
improving the classifier’s performance in imbalanced learning circumstances.

We implement all methods on the same 20 imbalanced datasets (Given in Table 1) as WGAN-VDE for
better comparability of the outcomes. This assessment enables us to analyze the capability of our proposed
method, reducing overlap and improving the quality of synthetic samples compared to the existing 11
resampling techniques.

4.4 Parameter Settings

In this study, to perform a fair baseline comparison across 12 resampling techniques, we use an Extreme
Gradient Boosting (XG-Boost) classifier [41] with the scale_pos_weight parameter set to 1, which is then
trained on the refined dataset acquired after synthetic sample generation and density-based filtering. Thus,
5-fold cross-validation is used to provide a more stable and impartial assessment across all the datasets.
Another advantage of this approach is that the performance of the classifier is checked on a different split of
the training and validation set, so that the variability of datasets does not influence it.

The WGAN-VDE framework is configured with carefully tuned hyperparameters to optimize synthetic
data generation while minimizing class overlap. The training process involves 100 epochs, with the Critic
and Generator trained iteratively to achieve stable convergence. The learning rate for both the Generator
and Critic is set to 0.0002, while the gradient penalty coefficient (#) is fixed at 10 to enforce the 1-Lipschitz
constraint, ensuring stable training.

The VAE component is trained on a latent space, resulting in a diversified and well-structured represen-
tation of the minority class. Batch Normalization is used to stabilize learning, while LeakyReLU activation
functions introduce non-linearity, allowing the model to capture complex feature interactions. The output
layer of the Generator uses a Tanh activation function, ensuring that generated samples align with the original
feature distribution. The Critic network consists of fully connected layers with Batch Normalization and
LeakyReLU activation, which gradually reduce the dimensionality of input samples before mapping them
to a scalar output, representing the Wasserstein distance between real and generated samples. Importantly,
Batch Normalization is not applied in the final layer of the Critic to ensure the preservation of Wasserstein
distance and allow for a stable Wasserstein loss computation.

Table 3 contains all necessary hyperparameter configurations for WGAN-VDE alongside Table 4
depicting the architectural information for both the Generator and Critic networks.

Table 3: Hyperparameter settings

Hyperparameter Value
Epochs 100
C (Critic Training Times per Epoch) 2
G (Generator Training Times per Epoch) 1
C learning rate 0.0002

(Continued)
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Table 3 (continued)

Hyperparameter Value
G learning rate 0.0002
1 (Gradient Penalty Coefficient) 10

Table 4: Structure settings

Generator Critic
Layers name Parameter Layers name Parameter
Input layer Latent dim Input Feature dim (Input_dim)
Dense 100 — 128 Dense 512
Batch normalization 128 Batch normalization 512
LeakyReLU - LeakyReLU -
Dense 128 — 256 Dense 512 - 256
Batch normalization 256 Batch normalization 256
LeakyReLU - LeakyReLU -
Dense 256 — 512 Dense 256 — 128
Batch normalization 512 - -
LeakyReLU - LeakyReLU
Output layer 512 — output_dim Output 128 - 1
Tanh - Linear -

Using Batch Normalization and LeakyReLU activation, the Generator transforms latent vectors to
high dimensions through steadily growing fully connected layers, which provides training stability. The
Critic network performs input compression by using smaller dense layers that guarantee proper Wasserstein
distance approximation. Gradient Penalty (GP) finalizes the stability of the network design while maintaining
true synthetic sample output and stopping mode collapse issues.

As for the KDE filtering stage, a percentile-based threshold is used to identify synthetic samples that
lie within low-density regions of the minority class distribution. To empirically justify the choice of the 20th
percentile, we conducted an ablation study on benchmark datasets D5 and D17, evaluating performance at
thresholds ranging from 10% to 50%. As illustrated in Fig. 3, the 20% threshold consistently offered the best
trade-off across G-Mean, F1-Score, and AUC. Lower thresholds (e.g., 10%) were overly restrictive, discarding
potentially useful samples, while higher thresholds (e.g., 30% to 50%) introduced redundancy and increased
the likelihood of class overlap. These results validate the 20th percentile as an optimal setting that balances
performance with overlap minimization.
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Figure 3: Sensitivity of WGAN-VDE to KDE threshold (1)

5 Results and Discussion

5.1 Numerical Analysis

523

To analyze the efficacy of our method, we perform a baseline comparison of the WGAN-VDE with 11
other resampling and deep learning techniques as mentioned in Table 2. The evaluation process is carried
out on 22 benchmark imbalanced datasets by using four important performance metrics: G-Mean, F1-Score,
Accuracy, and AUC. A detailed numerical comparison of G-Mean is present in Table 5, while F1-Score,
Accuracy, and AUC metrics are visualized using figures to improve interpretability.

Table 5: Comparison of G-mean metric across 12 rebalancing methods on 22 experimental datasets

TL SMOTE BS SME SMT GSM SMOTE WGAN- RVGAN- GNP- VAE- WGAN-

WB GP TL WGAN WCGAN VDE

D1 0.8002 0.8347 0.6829 0.6419 0.6395 0.6798 0.6808 0.84 0.875  0.8603 0.8574 0.9528
D2 0.8145 0.85 0.8624  0.8222 0.8662 0.8726 0.8499  0.855 0.875 0.8625 0.8648  0.9157
D3 0.7312  0.8765 0.75221 0.7646  0.8261  0.8824  0.9372 0.878  0.9085 0.9824 0.9976 0.9976
D4 0.7735  0.8922 0.82 0.85 0.8365  0.8312  0.9371 0.928 0.9351 0.934 09174  0.9478
D5 0.8246  0.875 0.895 0.915 0.8923  0.8941 09309 09514 09514 09309 0.9486 0.9753
D6 0.7348 0.79 0.805 0.835  0.8206  0.8182  0.9083  0.9257 0.9422  0.937 09132  0.9529
D7 0.7048 0.77 0.758 0.783 0.7612  0.7584 0.8726  0.9423 0.9324 0.9536 0.9448 0.9536
D8 0.6912 0.74 0.7511 0.735 0.758 0.7359  0.7318 0.8016 0.7928 0.8209 0.8791 0.8863
D9 0.6674 0.71 0.715 0.725  0.7084 0.7003 0.7943 0.8633 0.8844 0.8804 0.8813  0.9114
D10 0.6971 0.73 0.735 0.765 0.7543  0.7506  0.8223  0.8961  0.9357  0.8722  0.9041  0.9581
D1l 0.8743 0.912 0.4519 0.6234  0.4315 0.4246  0.4163 0.907 0.92 0.9082 09119 0.9445
D12 0.325 0.348 0.385 0.396 0.418 0.432 0.5722  0.6752  0.708 0.7522 0.765  0.8412
D12 0.6544 0.6943 0.7144 0.79886 0.8987 0.8995 0.8997 0.9694 09738 0.9642 0.9716 0.9878
D13 0.7452  0.6366 0.8 0.83 0.589  0.6483 0.6369 0.8535 0.6384 0.8214 0.8535 0.8535

(Continued)
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Table 5 (continued)

TL SMOTE BS SME SMT GSM SMOTE WGAN- RVGAN- GNP- VAE- WGAN-
WB GP TL WGAN WCGAN VDE

D14 0.539  0.4804 0.5975 0.739 0.5975 0.739 0.5975 0.6804 0.8804 0.8996 0.8804 0.9105
D15 0.6534  0.6115  0.6911  0.7482 0.791 0.8131 0.8115  0.8331 0.8131  0.8558 09131 0.9467

D16 0 0 0 0.2532  0.2312  0.3914  0.4265 0.4487 0.6012  0.7432 0.8538 0.7984
D17 0.2414  0.2971  0.2997 0.3357  0.0991 0.298 0.3414 05414 0.7511 0.8132  0.8114 0.8363
D18 0 0.0894 0.1063  0.2041 0.3433 0.4676 0.4887 0.4133  0.5232 0.5436  0.5152 0.6676
D19 0 0 0 0.0894  0.1881  0.2155  0.3122  0.4252 05233 0.6744 0.6735 0.7299
D20 0 0 0.3 0.5047  0.5047 0.6047 0.3 0.6467  0.1155  0.5569  0.6233  0.7855
D22 0 0 0 0 0.2654  0.1084 0.081 0.1744  0.2833 0.4652 0.5922 0.7788

Note: Bold values indicate the best performance achieved for each dataset across all methods.

Table 5 presents the G-Mean values for WGAN-VDE and the compared methods across all datasets.
G-Mean is a crucial metric in imbalanced classification as it captures the balance between sensitivity
and specificity. The results indicate that WGAN-VDE consistently outperforms traditional oversampling
techniques (such as SMOTE, BS, SME, GSM, and SMOTEWB) and also surpasses advanced generative
models (such as WGAN-GP, RVGAN-TL, GNP-WGAN, and VAE-WCGAN) in most cases. The highest G-
Mean value for each dataset is bolded, and it is evident that WGAN-VDE achieves the best performance
in the majority of datasets. Notably, WGAN-VDE shows similar performance on D3, D7, and D14, but its
improvement is particularly significant in datasets with a high imbalance ratio (e.g., D18, D19, D20, D21),
highlighting the effectiveness of our method in handling extreme class imbalance. This improvement can be
attributed to density-based sample refinement, which reduces class overlap while maintaining diversity in
the generated minority samples. Two large sizes of imbalanced datasets, D12 and D22, also demonstrate the
scalability of our proposed WGAN-VDE method, especially on D22, where traditional resampling methods
failed due to the extreme imbalance ratio. This underscores the robustness of WGAN-VDE in large-scale,
highly Imbalanced datasets.

The F1-Score results are presented in Fig. 4, which shows the relative performance of different methods
across 22 imbalanced datasets. The Fl-score is particularly useful in assessing the trade-off between precision
and recall for the minority class. From Fig. 3, it is evident that the red bold line of our proposed method,
WGAN-VDE, achieves consistently high F1-Scores across all datasets, outperforming conventional oversam-
pling techniques and even advanced GAN-based methods. The improvement is especially pronounced in
datasets where the minority class is highly underrepresented. The ability of WGAN-VDE to refine synthetic
samples based on density estimation plays a crucial role in preventing redundant sample generation and
enhancing classification robustness. Moreover, WGAN-VDE maintains competitive Fl-score performance
even on challenging large-scale datasets like D12 and extremely imbalanced datasets such as D22, where

traditional methods often fail to produce meaningful predictions.

The column chart in Fig. 5 illustrates the Accuracy performance of all 12 resampling methods across
22 experimental datasets with varying imbalance ratios. While Accuracy is often not the best metric for
imbalanced classification, it still provides insights into the overall performance of a classifier. The results show
that WGAN-VDE achieves the highest accuracy in most datasets, reinforcing its ability to generate high-
quality synthetic samples that improve classification. A key takeaway from Fig. 4 is that accuracy differences
become more noticeable in datasets with extreme class imbalance. Traditional oversampling methods, such
as SMOTE, tend to overfit to the minority class, resulting in only marginal improvements, whereas WGAN-
VDE is better at generalizing due to its density-based refinement step.
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Figure 4: Line chart comparing Fl-score performance of 12 rebalancing methods on 22 experimental datasets
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Figure 5: Column chart comparing the accuracy performance of 12 rebalancing methods on 22 experimental datasets

The AUC (Area Under the ROC Curve) values for all 12 resampling methods across 22 datasets are

shown in Fig. 6. AUC evaluates the classifier’s ability to distinguish between classes, making it a robust
metric for imbalanced learning. The figure demonstrates that WGAN-VDE appears in the red solid line,
which covers all other lines, and achieves the highest AUC values in most datasets, further confirming its
superiority. Other GAN-based deep learning resampling methods, such as WGAN-GP and VAE-WCGAN,
also show strong performance, but with some variations across datasets. Traditional methods like SMOTE
and TL exhibit fluctuations in performance, indicating their limited adaptability to certain imbalance levels.



526 Comput Model Eng Sci. 2025;144(1)

The strong AUC performance of WGAN-VDE highlights that our approach not only improves recall but also
ensures that false positive rates remain low, leading to a well-calibrated classifier.

AUC
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Figure 6: Radar chart comparing AUC performance of 12 rebalancing methods on 22 experimental datasets

To further evaluate the generalizability of WGAN-VDE, we conducted a classifier sensitivity analysis
under cost-sensitive settings. While our original experiments used XG-Boost with scale_pos_weight = 1,
this analysis explores how WGAN-VDE performs across three classifiers: Support Vector Machine (SVM),
Random Forest (RF), and XG-Boost, each now configured with cost-sensitive adjustments. Specifically, we
applied class_weight = ‘balanced’ for SVM and RF, and used an updated scale_pos_weight value for XG-Boost
based on the ratio of majority to minority class instances. As illustrated in Fig. 7, WGAN-VDE maintains
strong performance across all classifiers across 22 datasets, with RF and XG-Boost achieving the highest
scores in G-Mean, AUC, Accuracy, and Fl-Score. SVM also shows notable improvement, demonstrating
that WGAN-VDE is not only effective across diverse classification architectures but also compatible with
cost-sensitive configurations.
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Figure 7: Performance of WGAN-VDE across cost-sensitive classifiers across 22 datasets

To provide quantitative insight into the overlap control ability of different resampling methods, we
conducted a KDE-based analysis of the synthetic samples generated by each method. Table 6 presents the
average kernel density estimation (KDE) scores for synthetic minority samples across 22 benchmark datasets
and 12 resampling techniques. These scores measure the likelihood that generated samples lie within high-
density regions of the minority distribution, a proxy for potential class overlap. KDE scores were computed

using a Gaussian kernel with fixed bandwidth, applied over the real minority class samples as the reference

distribution. Lower KDE scores imply that the synthetic samples are generated in sparser regions of the
feature space, away from already dense clusters, hence reducing the risk of class overlap and enhancing

class separability.

Table 6: Average ranking of 12 resampling methods across 20 datasets

TL SMOTE BS SME SMT GSM Smote WGAN- RVGAN- GNP- VAE- WGAN-

WB GP TL WGAN WCGAN VDE

D1 -1.95 -2.01 —-2.181 —-2.057 =212 -2275 -2206 -2.587 -2132 -2.644 -1935 -2.633
D2 -2.014  -2159 -2.105 -1.95 -2.015 -2.086 -2.053 -2.688 -1.988 -2.764 -2.353 -2.597
D3 -1.935 -2.071 -2.079 -2.014 -2.057 -2.077 2192 -2.43 -2.16 -2.614 -2.098 -2.803
D4 -1.848 -2.006 -1.928 —-2.115 -1.97 -1.837 -1945 -2569 -1861 -2.594 2328 2717
D5 -2.023 -2132 -1999 -2.014 -2137 -2.103 -2178  -2.736  -2.071 -2.542  -2.214 -2.731
D6 -2.023  -1979 =221 -1.896  -2.099 -2.053 -2.132 —2.551 -2219 -2545 -2.058 -2.749
D7 -1842  -2.077 -2.001 -2.054 -2106 -2.087 -2.019 2714 -2.24 —2.788 -2.16 —-2.507
D8 -1923  -2.046 -2.072 -1.894 -2.2I3 =22 -2.223 2538 -2.085 -2.744 -2274 -2.643
D9 -2.047 -2.077 -2101 -2312 -2.037 -1969 -2.077 -2501 2156 -2.598 -2.238 -2.809
D10 -1.946 -1.831 -1972 -1968  -2.041 -2.008 -1969 -2.699 -2.062 -2599 -2.099 -2.592

(Continued)
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Table 6 (continued)

TL SMOTE BS SME SMT GSM Smote WGAN- RVGAN- GNP- VAE- WGAN-

WB GP TL WGAN WCGAN VDE

D11 -2.046  -2.018 -1.93 -2.041 -2.066 -2.004 -2.261 -2.52 -2.086  —2.598 -2.24 —2.471
D12 -2.047  -2122 -1.94 -2.08 -2.09 -2174  -2.082  -2.575 -2141  -2.265 2145 —-2.58
D13 -1.976  -1934 =2.117 -2.041 -2.208 -1943 -2.074 -2.534 2218 2593 -2162  -2.835
D14 -2.191 -2139 -2.064 -2249 -2109 -2.224 -2.022 -2.427 -2285 -2.536 2232 -2.732
D15 -2172  -1.996 -2 -2.072  -2.101 -2.025 -2224 -2.641 -2178  -2.555 -1952  -2.557
D16 -2.056 -2.213 -1936 -2.014 -2147 -1.864 -2.232 -2.692 -2.048 -2585 -2.103 -2.754
D17 -2.101 —2.149 -2.081 -1902 -2.083 -2.182 -2.048 -2706 -2112 -2.682 -2369 -2.639
D18 -1.969  -1997 -2.052 -2102 -2.026 -214 -2.07 -2.698 -2.258 2574 2148 -2.606
D19 -2.091 -1943  -2.144 -2.131 -1.878 -2.073 -2.075 -2.624 -2116 -2.727  -2.233 -2.776
D20 -2.141 -2 -2.153 =21 -2.049 -2134 -2.065 -2583 -2.095 -2.674 -2.081 -2.689
D21 -1.853  -2.028 -1952 -1958 -2.041 -2.238 -2168 -2.589 -2.222 -2.699 -2246 -3.007
D22 -2.023 -2.047 -1898 -2.017 -2.074 -2.076 -2.077 -2.534 2118  -2.642 -2178 -2.786

From the results, it is clear that WGAN-VDE consistently achieves the lowest KDE scores across almost
all datasets, including highly imbalanced and high-dimensional ones such as Coil2000 and Abalonel9. This
indicates that our method is highly effective in placing synthetic samples in low-density, non-overlapping
regions, thus addressing one of the core challenges in imbalanced classification, class overlap. Traditional
techniques like SMOTE or ADASYN produce higher KDE scores, suggesting greater overlap and redun-
dancy in synthetic data. This KDE-based overlap analysis complements our primary evaluation metrics
(F1, G-Mean, AUC, Accuracy) and provides an additional layer of interpretability and evidence for the
effectiveness of the proposed WGAN-VDE framework.

5.2 Statistical Analysis

To show the rigorous and unbiased performance of WGAN-VDE, we also conduct a statistical analysis
test, i.e., the Friedman test [42] to validate ranking performances. The Friedman test operates as a non-
parametric statistical method to evaluate the importance of differences among multiple groups of means.
Using the XG-Boost classifier, we compute average ranking calculations for 12 resampling techniques across
22 datasets to evaluate their performance based on four metrics, as shown in Table 7.

Table 7: Average ranking of 12 resampling methods across 20 datasets

Comparison methods Gmean Fl1-score Accuracy AUC
TL 10.85 10.3 10.36 11
SMOTE 9.45 8.7 8.32 9.55
BS 9.04 7.727 8.81 6.8
SME 8.05 7.86 9.36 71
SMT 8.5 7.9 7.77 6.45
GSM 7.75 6.95 7.85 6.1
SMOTEWB 6.95 6.8 7.3 6
WGAN-GP 4.7 5.27 4.77 5.4
RVGAN-TL 3.8 5.68 4.77 6.9
GNP-WGAN 3.55 3.86 3.63 5.09
VAE-WCGAN 3.09 4.73 35 5.8

WGAN-VDE 1.05 1 11 1.05
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To determine the statistical significance, we compute the critical value by utilizing the null hypothesis
Hy to analyze distinct effects between 12 resampling methods for 20 datasets at a 0.05 significance level as
shown in Eq. (16):

Fo.os (12-1), (12 -1) (22 =1) = Fy 05 (11)(209) = 1.83 (16)

The Friedman statistic is calculated as:

12N Kk ., K(K+1)?
Fr= &+ (ZR - T) )

And the F-distribution-based test statistic is calculated as:

g _N-DE .

N(K-1)-F,

Here, N = 22 denotes the number of datasets used for evaluation, and K = 12 represents the total number
of methods used for comparison. Based on the computed statistics, the Fy computed from Eq. (18) across
G-Mean, F1-Score, Accuracy, and AUC are found to be 31.8461, 11.8291, 28.3961, and 14.7741, respectively.
Since all the test statistics are greater than the critical value of 1.83, we reject the null hypothesis across all
the metrics, pointing out to the fact that the performance differences among the 15 resampling techniques
are significant.

In order to study these differences in more detail, we also conducted a Nemenyi post hoc test [43] in
the context of comparing the resampling methods by calculating the critical difference (CD) at a significance
level of 0.5. Fig. 8 shows that if the solid black ranking line of one method aligns with the red dashed line
of another method, then they are essentially similar. However, Fig. 8 shows that the WGAN-VDE performs
better in terms of ranking across various datasets, showing that it is more useful for improving class balance,
increasing separability, and increasing classification accuracy when used on imbalanced datasets.
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Figure 8: (Continued)
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Figure 8: Ranking comparison results of Nemenyi post-hoc tests of 12 rebalancing methods across 22 imbalanced
datasets

A rebalanced method with excellent performance should not only excel in predictive metrics but also
demonstrate efficient training behavior. Fig. 9 presents the average training time per sample across several
advanced GAN-based oversampling methods, evaluated on dataset D11 over 100 epochs. Among these,
WGAN-VDE achieves the lowest runtime at 0.8426 s per sample, outperforming WGAN-GP (1.3952 s),
RVGAN-TL (1.105 s), GNP-WGAN (1.245 s), and VAE-WACGAN (0.998 s). This superior efficiency is
attributed to the lightweight VAE encoder and the density-aware KDE filtering, which selectively generates
only informative synthetic samples and avoids redundancy. Despite its three-stage architecture, WGAN-VDE
offers competitive computational efficiency compared to other deep learning resampling methods. However,
it still carries higher overall computational complexity than conventional techniques like SMOTE, due to its
adversarial and variational components. Nevertheless, the performance gains and scalable design make it a
practical solution for large-scale imbalanced learning tasks.
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Figure 9: Average training time per sample for WGAN-VDE and four deep learning methods on D11
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5.3 Discussion

As demonstrated by the study results in Sections 5.1 and 5.2, WGAN-VDE achieves superior perfor-
mance than both conventional as well as deep learning-based oversampling practices throughout various
evaluated datasets. The proposed approach effectively enhances data diversity and minimizes the risk of
synthetic-majority class overlap by learning structured feature representations, generating high-quality
synthetic samples, and refining their placement based on density distributions. This ensures that syn-
thetic instances are well-separated and strategically positioned in underrepresented regions, preventing
redundancy and improving overall class balance. The experiments revealed that established oversampling
approaches, SMOTE, Borderline-SMOTE (BS), and Gaussian-SMOTE (GSM) consistently produce inferior
results when dealing with severe class imbalance. The approach of creating new minority class instances
through these methods often produces artificial data points in dense areas that make interpretation and
generalization less effective. This problem is noticeable in datasets with high imbalance ratios (e.g., D16, D18,
D19, and D20), where standard approaches fail to enhance classification performance. On the other hand,
the GAN-based techniques WGAN-GP, GNP-WGAN, and VAE-WCGAN demonstrate superiority over
traditional oversampling methods by achieving more accurate learning of the underlying data distribution,
but these methods are suppressed by WGAN-VDE. Mode collapse represents a widespread problem in
these techniques because the generator produces similar unintelligible minority class samples, which fail
to show diversity effectively. WGAN-VDE solves the mode collapse issue by implementing density-based
sample refinement that removes repetitive synthetic examples without eliminating minority class diversity.
Similarly, WGAN-VDE also shows superior outcome performance than RVGAN-TL and VAE-WCGAN
on all metrics according to the obtained G-Mean, F1-Score, Accuracy, and AUC results. KDE integration
allows the WGAN-VDE to generate meaningful samples because it focuses on underrepresented minority
class regions.

The key feature of WGAN-VDE lies in its ability to intentionally place synthetic samples in less-density
areas where the minority class is underrepresented. The placement evaluation through Kernel Density
Estimation (KDE) eliminates unbeneficial samples, thereby generating a well-balanced synthetic dataset that
enhances class separability. This refinement process becomes essential in high-dimensional datasets since
it reduces class overlap, which causes major degradation of classifier performance. WGAN-VDE exhibits
strong performance, which indicates that it would work effectively in real-world applications involving rare
event identification, such as fraud detection in financial transactions, medical diagnosis for rare diseases,
intrusion detection in cybersecurity, and manufacturing defect detection.

Despite its strong performance, WGAN-VDE presents certain areas for improvement. While our
runtime analysis (Fig. 7) shows that WGAN-VDE is more efficient than other deep GAN-based oversampling
methods, it remains computationally more intensive than traditional resampling approaches such as SMOTE
or Random Oversampling. This added complexity arises from the integration of VAE encoding, adversarial
training, and KDE-based filtering. Furthermore, WGAN-VDE’s performance is sensitive to several hyper-
parameters, including the number of training epochs, learning rates, and KDE threshold settings. To further
enhance efficiency and generalization, future work will focus on automated hyperparameter tuning strategies
such as Bayesian Optimization, as well as potential architecture simplifications to reduce overhead without
compromising sample quality. In addition, possible strategies to reduce training time include applying early
stopping based on validation loss, batch-wise KDE approximation to speed up refinement, and exploring
parameter sharing between the VAE encoder and GAN generator. Lightweight model variants with fewer
hidden layers or reduced dimensionality could also help balance performance and computational cost.
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6 Conclusion

In this research, we present WGAN-VDE, a computationally efficient adversarial resampling designed
to tackle the dual challenge of class imbalance and overlap issues in tabular datasets. The originality
of WGAN-VDE lies in its density-aware synthetic sample refinement, which strategically reduces class
overlap while preserving minority class diversity. Unlike conventional oversampling techniques that generate
synthetic samples without structural considerations, WGAN-VDE strategically refines the placement of
synthetic instances to enhance class separability. By employing structured feature encoding, targeted sample
generation, and density-based refinement, the proposed framework mitigates the risk of redundant or
misleading synthetic samples. Experimental evaluations across 20 datasets show that WGAN-VDE surpasses
all other 11 traditional resampling and advanced GAN-based methods in terms of metrics G-Mean, F1-Score,
Accuracy, and AUC. These findings establish WGAN-VDE as a robust and scalable solution for real-world
applications where imbalanced learning and rare event detection remain critical challenges.

While this work focuses on binary classification tasks, future research should explore extending
WGAN-VDE to multi-class and multi-label settings. This will involve adapting class-conditional generation
mechanisms, performing density-aware refinement in a class-specific manner, and incorporating appropriate
loss functions to handle label dependencies. Addressing these challenges will broaden the usability of
WGAN-VDE in complex classification scenarios.
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