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ABSTRACT: This paper proposes an automated detection framework for transmission facilities using a feature-
attention multi-scale robustness network (FAMSR-Net) with high-fidelity virtual images. The proposed framework
exhibits three key characteristics. First, virtual images of the transmission facilities generated using StyleGAN2-ADA
are co-trained with real images. This enables the neural network to learn various features of transmission facilities to
improve the detection performance. Second, the convolutional block attention module is deployed in FAMSR-Net to
effectively extract features from images and construct multi-dimensional feature maps, enabling the neural network
to perform precise object detection in various environments. Third, an effective bounding box optimization method
called Scylla-IoU is deployed on FAMSR-Net, considering the intersection over union, center point distance, angle,
and shape of the bounding box. This enables the detection of power facilities of various sizes accurately. Extensive
experiments demonstrated that FAMSR-Net outperforms other neural networks in detecting power facilities. FAMSR-
Net also achieved the highest detection accuracy when virtual images of the transmission facilities were co-trained in
the training phase. The proposed framework is effective for the scheduled operation and maintenance of transmission
facilities because an optical camera is currently the most promising tool for unmanned aerial vehicles. This ultimately
contributes to improved inspection efficiency, reduced maintenance risks, and more reliable power delivery across
extensive transmission facilities.

KEYWORDS: Object detection; virtual image; transmission facility; convolutional block attention module; Scylla-IoU

1 Introduction

Electricity is a key source of energy that supports technological advancement in modern societies. Stable
supply is essential for addressing the growing electricity demand, particularly with the advent of artificial
intelligence, which is a core technology of the Fourth Industrial Revolution [1]. Stable electricity supply
can be achieved by incorporating proactive maintenance of transmission facilities, as damages and faults to
these facilities might result in large-scale power outages and serious incidents such as blackouts [1,2]. Hence,
effective inspection strategies for transmission facilities are essential to prevent these issues and ensure a
stable electricity supply.
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Conventionally, the inspection of transmission facilities is carried out manually by electricians who
must climb transmission towers to examine equipment with specialized tools. This labor-intensive process
not only demands considerable manpower and expertise but also exposes workers to a range of hazards,
including the risk of falling from significant heights and potential electric shock from high-voltage power
lines [3]. Moreover, the efficiency of inspections depends on the expertise of the workers. These limitations
have motivated automated inspection methods incorporating unmanned aerial vehicles (UAVs) equipped
with noncontact sensors [4]. UAV-based approaches not only reduce the safety risks for workers but also
enhance the speed and accuracy of inspections, ultimately leading to more reliable maintenance and overall
operational efficiency (Fig. 1). However, inspection images of transmission facilities captured by UAVs often
include background interference or various obstacles because transmission facilities are located in diverse
terrains [5], thereby reducing the accuracy of automated detection. Overcoming these limitations is vital for
ensuring reliable inspection and maintenance of the power infrastructure. Conventional computer vision
approaches have been studied to effectively separate the background and objects, including color segmen-
tation [6,7], the Hough transform [8], and texture features [9]. These methods contribute to improving the
detection accuracy and inspection efficiency for noncontact sensors deployed on UAVs [10,11]. However,
these approaches still have limitations when detecting objects in complex backgrounds, because they can
only recognize a limited range of features within an image. As a result, their accuracy may decrease when
dealing with cluttered or highly varied scenes, underscoring the need for more robust algorithms capable of

handling diverse visual conditions [12].
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Figure 1: A UAV-based automated framework for transmission facilities inspection

Deep learning-based object detection has been studied to address the limitations of conventional
computer vision approaches, offering significant flexibility and adaptability across various backgrounds [13].
Object detection with convolutional neural networks (CNNs) is the most effective because the architecture
of CNNs effectively extracts the features of power facilities from images [14]. This neural network can also
handle complex backgrounds and varying environmental conditions, ultimately leading to more accurate
and robust detection outcomes. This neural network includes you look only once (YOLO) [15], single-shot
multi-box detector (SSD) [16], and Faster R-CNN [17]. Specifically, YOLO v3 addresses a multi-feature
fusion and mapping module to enhance the insulator detection accuracy in complex backgrounds [18].
YOLO v5 uses a dynamic weight allocation architecture to enhance the learning capability of complex
images of insulators [19]. SSD employs coarse and specific fine-tuning to effectively detect insulators in
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aerial images [20]. Faster R-CNN improves the object detection performance via integration with the U-Net
architecture to perform global detection and local segmentation, effectively identifying insulators in complex
backgrounds [21]. These studies suggest that deep neural networks used for object detection may improve
the detection performance of power facilities. However, these approaches remain challenging to detect small
and structurally complex transmission facilities, including lightning arresters, spacers, Stockbridge dampers
(SB dampers), and marker balls, because previous studies have primarily focused on insulator detection,
limiting their applicability to other types of facilities. These approaches also encounter difficulties in reliably
identifying insulators under various environmental conditions, particularly when the training datasets lack
sufficient diversity in insulator states, including different defect types, contamination, and aging conditions
[22]. These limitations imply that alternatives are required to supplement the diversity of power-facility
images in various environments.

Several studies have focused on generative adversarial networks (GANSs) to overcome the limitations
of diversity in image sets and improve the detection performance of power facilities [23]. A hybrid GAN
combining a super-resolution GAN and a deep convolutional GAN (DCGAN) was proposed to generate
virtual insulator images [24]. Co-training virtual images with real images demonstrated that a hybrid
GAN enhanced the insulator detection performance of the YOLO v3. CycleGAN was also proposed for
generating diverse virtual insulator images. The virtual images generated from this neural network improved
the insulator detection performances when training YOLO v4 and YOLO v5 [25,26]. A DCGAN was also
proposed to generate virtual insulator images. Co-training virtual images generated from the DCGAN with
real images enhances the detection performance of SSD and Faster R-CNN in identifying insulators [27].
However, the virtual images generated in these studies are of low quality because the number of insulator
images trained using the GAN is limited, resulting in insufficient representation of diverse defects and
realistic environmental conditions [28]. These studies also have the limitation of not effectively improving
the detection performance of neural networks, because they focus more on increasing the quantity and
diversity of images rather than on improving the architecture of the neural network. These limitations
indicate the need for a new GAN model that can generate high-quality images from limited input data while
incorporating architectural improvements for more robust object detection.

To enhance the performance of neural networks in object detection, the bounding boxes should be
accurately inferred by defining the location, size, and classification of the objects. Various methods have
been proposed for optimizing the bounding boxes by considering the intersection over union (IoU), a
metric widely employed to quantitatively measure the degree of overlap between predicted and ground-
truth bounding boxes, thereby enabling improved optimization of object localization, size estimation,
and classification accuracy [29]. Specifically, a Generalized-IoU was proposed by employing the smallest
enclosing box C, which contains both the ground truth and predicted bounding boxes, to address the
gradient vanishing problem between the predicted and ground truth bounding boxes [30]. A Distance-IoU
was proposed by considering the center coordinates of the ground truth and predicted bounding boxes to
enhance the convergence speed and accuracy [31]. Moreover, Complete-IoU was proposed, considering the
aspect ratio between the predicted and ground truth bounding boxes to improve training stability and ensure
accurate object detection [32]. However, these methods have limitations when detecting objects with varying
sizes, because the size of the bounding box is a relative value that changes depending on the size of the objects,
leading to unstable detection performance for small or elongated objects [33]. These limitations indicate that
a new method is required for bounding box optimization to enhance the detection performance of neural
networks and improve their robustness to object sizes.
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To address these limitations, this study proposes a new framework with a feature-attention multi-size
robustness network (FAMSR-Net) and high-fidelity virtual images. The key contributions of the proposed
framework are as follows:

o FAMSR-Net employs a convolutional block attention module (CBAM) to improve the detection accu-
racy of transmission facilities in various environments. The CBAM fusing channel and spatial attention
modules contribute to emphasizing one-dimensional features and highlighting two-dimensional fea-
tures.

o FAMSR-Net also employs Scylla-IoU (SIoU) bounding box optimization to enhance the robustness of
power facilities of various sizes, specifically incorporating angle loss to align the predicted and ground
truth bounding boxes, distance loss to minimize the center distance, shape loss to match the predicted
bounding box size to the ground truth, and IoU to calculate their intersection area.

« High-fidelity virtual transmission facility images were co-trained by addressing StyleGAN2-ADA to
provide sufficient images for various environments. Modulation and demodulation were addressed
in StyleGAN2-ADA to maintain correlations among feature maps, while adaptive discriminator aug-
mentation and invertible distribution transformation were also applied in StyleGAN2-ADA to enable
high-quality image generation from a limited number of inputs. The input skip connections and residual
architectures in StyleGAN2-ADA helped minimize information loss in the feature maps.

o Extensive validation with various measured and public image sets demonstrated that FAMSR-Net
accurately detects transmission facilities. A systematic analysis further confirmed that FAMSR-Net
achieves the best detection performance when virtual transmission facility images are co-trained with
real images, indicating that the proposed framework is both accurate and robust.

The remainder of this paper is organized as follows. Section 2 introduces the neural network for gen-
erating virtual images and various methods aimed at improving the performance of FAMSR-Net. Section 3
explains the image set used in the experiments and the evaluation metrics, and Section 4 analyzes the
effectiveness of FAMSR-Net and virtual images based on the experimental results. Finally, Section 5 presents
the conclusions of this study and suggests directions for future research.

2 The Proposed Framework

The proposed framework comprises two phases to detect transmission facilities with high accuracy
(Fig. 2). First, image argumentation is executed with real transmission facility images () in Fig. 2).
Specifically, StyleGAN2-ADA generates virtual images based on real images to reflect realistic conditions
using diverse colors, shapes, and other variations [34]. This augmentation not only increases the quantity
of training data but also improves the robustness of the network when detecting facilities under various
scenarios. Second, all real and virtual images are trained through the feature-attention multi-size robustness
network (FAMSR-Net), incorporating CBAM and SIoU ((@ in Fig. 2). Specifically, CBAM sequentially
applies channel and spatial attention mechanisms to emphasize significant features, enabling the proposed
neural network to focus on key elements [35]. SIoU further improves the accuracy of bounding box
localization by considering the angle, shape, distance, and IoU of the bounding box [33]. This characteristic
of the SIoU promotes the convergence of network training and enhances the detection performance for
transmission facilities of varying sizes. Note that these features, that is, the CBAM and SloU, are different
from the architecture of the original YOLO v7. Hence, FAMSR-Net outperforms the other object detection
networks in terms of detection accuracy and robustness. The features of each phase are described in detail
in the following subsections.
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Figure 2: Detection method for transmission facilities with feature-attention multi-size robustness network and
generative adversarial network

2.1 Virtual Data Generation

This study uses StyleGAN2-ADA for virtual image generation because it has the advantages of distin-
guishing and controlling various characteristics, maintaining correlations between feature maps, and stably
generating high-quality images even with limited data [34,36,37]. Specifically, the StyleGAN2-ADA employs
a mapping mechanism (D) in Fig. 3), a modulation and demodulation architecture in the generator (the
blue dashed-line box in Fig. 3), adaptive discriminator augmentation (ADA, (¥ in Fig. 3), and invertible
distribution transformation (IDT, (5 in Fig. 3) in the discriminator. This subsection presents details of
these characteristics.

First, the StyleGAN2-ADA introduces a mapping mechanism ((D) in Fig. 3) that transforms the latent
space Z into W. The latent space Z used by the conventional Progressive Growing of GANs (PGGAN) [38]
for image generation follows a Gaussian distribution and tends to be nonlinearly entangled with the data
distribution [36]. This makes it difficult for the neural network to distinguish features clearly, and attempts
to adjust one specific feature can unintentionally alter other unrelated features. For example, adding a beard
feature alone could also change unrelated features such as gender or hairstyle when generating an image of
a man. The mapping process transforms the latent space W into a more linear and less entangled space than
Z, enabling clearer distinction and control of various features [36].
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Second, the generator (the blue dashed-line box in Fig. 3) addresses the architecture of modulation and
demodulation for virtual image generation (2 in Fig. 3). First, modulation and demodulation adjust the
weight w instead of the entire feature map to preserve the correlation between the feature maps, thereby
minimizing the loss of unique characteristics [37,39]. Specifically, modulation was implemented by scaling
the convolution weights to adjust the style of the feature maps as follows:

’

Wiik = Si " Wijko 1)

where w; ji and w;j; denote the modulated and original weights, respectively, with s; being the scaling factor
corresponding to the i — th input feature map. The subscripts j and k denote the output feature map and
spatial position, respectively. Demodulation is addressed to prevent modulated values from becoming biased
toward a specific style, as follows:

0j = szik )
\ %

This equation represents demodulation, where the L2 norm is used to compute the sum of the
modulated weights w;?k across all input feature maps i and spatial positions k, thereby calculating the
standard deviation o; for each output feature map j. The standard deviation o; is then used to scale each
output feature map by 1/0; to ensure that the output maintains a standard deviation of 1. Finally, the
modulation and demodulation are combined into a single step at each layer to improve the computational
efficiency, as follows:
W ik

ijk = ) >
1\ /Zi,k Wijk+ €

where w;'] « denotes the final weight after the modulation and demodulation. Note that a constant ¢ is added

(3)

to prevent the denominator from becoming zero. Hence, the final weight, w:; . adjusts the style of the feature
maps while maintaining the weights within a consistent range to prevent the style effect from becoming overly
biased. The generator also utilizes the architecture of input skip connections ((3) in Fig. 3) for generating
virtual images. This architecture combines the RGB outputs of different resolutions through an upsampling
technique, facilitating the balanced learning of diverse features across various resolutions while minimizing
information loss in deep networks.

The discriminator executes ADA ((®» in Fig. 3) and IDT (() in Fig. 3) before evaluating the images.
First, the ADA augments both real and virtual images through rotation, cropping, filtering, and color
transformation. This characteristic of ADA overcomes the limitations of feature extraction caused by limited
data and resolves the overfitting issues of the discriminator, because ADA generates diverse data during
the training process. ADA also enhances the stability of the neural network during training, thereby
preventing the collapse of learning. Second, IDT is used to reduce the occurrence of abnormal images,
because excessively augmented images may decrease the similarity between real and virtual data during
the training phase. For example, assuming a normal orientation of 0°, uniformly augmenting images by
rotating them by 0°, 90°, 180°, and 270° results in each angle having an equal probability of 25% (P =1 at
(® in Fig. 3). This situation makes it challenging for the neural network to learn the normal orientation (0°),
because all orientations appear with equal frequency and the neural network cannot clearly distinguish the
normal orientation from other orientations. This issue can be resolved through IDT, because IDT adjusts
the probability distribution during data augmentation to preserve the characteristics of the original data
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while making the augmented data useful for training. Specifically, IDT reduces the overall augmentation
probability P of random rotations to less than 1 and fixes the probability of 0° rotation, thereby increasing
the relative frequency of 0° (P <1 at (3 in Fig. 3). Consequently, the proportion of normal orientations
in the augmented data increases, reducing the augmentation of abnormal orientations. Note that IDT
can be used not only for rotation augmentation, but also for various augmentations, including cropping,
filtering, and color transformation [34]. The discriminator also utilizes a residual architecture (red dashed-
line box in Fig. 3) to analyze features across various resolutions. This architecture comprehensively utilizes
information from various resolutions to accurately evaluate the generated images and provide feedback,
enabling the generator to produce realistic images.

2.2 Feature-Attention Multi-Scale Robustness Network

This study proposes a FAMSR-Net comprising three phases: backbone, neck, and head (Fig. 4). Each
phase integrates various modules of a neural network to enhance the performance of object detection,
including the CBAM (Fig. 4b) and SIoU ((D at the pink box in Fig. 4a). Hence, FAMSR-Net effectively
distinguishes objects of interest from the background and provides robust object detection for power facilities
of different sizes in diverse environments.

(a) Feature-attention multi-size robustness network [l : CBAM

i ‘
PN i1’ %%
» I : \elCw 1
j ; E (bcx'b")') Cy :
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Figure 4: (Continued)
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Figure 4: The architecture of the object-attention multi-scale detection network (FAMSR-Net); (a) The process of the
FAMSR-Net; (b) The architecture of CBAM

First, the backbone (green box in Fig. 4a) extracts diverse features from the input image by address-
ing the multi-scale architecture with an Efficient Layer Aggregation Network (ELAN) [40] (green block
in Fig. 4a). ELAN comprises multiple Convolution Batch Normalization SiLU activation function module
(CBS) blocks with kernel sizes of 1 x1 and 3 x 3 (red and blue blocks in Fig. 4a), where each CBS block
contains a convolution layer, batch normalization, and Sigmoid Linear Unit (SiLU) activation function.
The multi-scale architecture of the ELAN expands the channels of the input image, shuffles the image
into multiple gradient paths for parallel processing, and performs four concatenation processes. The main
gradient path comprises five CBS modules, and the additional gradient path comprises a single CBS. Hence,
this architecture allows each path to learn various features with different scales from the input image,
reducing training and calculation times and the number of parameters compared to previous networks.
ELAN merges the multi-scale, diverse features learned from each path into a final output comprising a single
CBS to minimize feature loss and facilitate interactions among various features.

Second, the neck (orange box in Fig. 4a) strengthens the feature maps from the backbone by addressing
several modules, including PANet, SPPCSPC (spatial pyramid pooling cross-stage partial connections),
ELAN-H, the re-parameterized convolution block, and CBAM. PANet (purple dashed-line box in Fig. 4a) is
an improved version of Feature Pyramid Network (FPN) that minimizes information loss [41,42], because
it adds a bottom-up path to FPN (sky-blue dashed-line box in Fig. 4a), enabling information from the
lowest feature map to reach the final feature map through a shortcut path (red arrow in Fig. 4a). SPPCSPC
(cyan block in Fig. 4a) combines spatial pyramid pooling (SPP) and cross-stage partial connections (CSPC)
to utilize multi-scale spatial features and perform six concatenation processes. Specifically, SPP processes
input data through max pooling three times with kernel sizes 5 x 5, 9 x 9, and 13 x 13, to help learn features
at various scales, whereas CSPC enhances data processing efficiency and learning performance by adding
a gradient path comprising a single CBS to split the input data path in parallel. ELAN-H (orange block
in Fig. 4a) extends the computations of the base ELAN through six concatenation processes to efficiently
handle multi-scale features in the neck. Then, the re-parameterized convolution block (gray block in Fig. 4a)
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combines 3 x 3 convolution layer, 1 x 1 convolution layer, and an identity connection during training (train in
the orange dashed-line box in Fig. 4a) to minimize the prediction loss from previous feature maps, enhancing
the interaction between features. The reparameterized convolution block is simplified into a single path of a
3 x 3 convolution layer in the inference phase (inference in the orange dashed-line box in Fig. 4a) to enhance
the inference speed and efficiency of feature transmission to the head. The CBAM is also located in the final
layer of PANet and the first layer of the reparameterized convolution block (magenta block in Fig. 4a). Note
that CBAM plays a critical role in enhancing the performance of object detection in the proposed FAMSR-
Net. The detailed architecture of CBAM is shown in Fig. 4b. Specifically, CBAM deploys both channel and
spatial attention modules. The channel attention module (1) in Fig. 4b) focuses on extracting key features
from an image through average pooling and max pooling. Average pooling extracts global features by
calculating the mean values, whereas max pooling extracts distinct features by utilizing the most significant
activation values, resulting in distinct feature maps with dimensions of R1¥1 The extracted features are
shared through a multi-layer perceptron (MLP), normalized to a range of 0-1 with a sigmoid function, and
produce a one-dimensional channel attention feature map M¢ (F) as follows:

Mc (F) = 6 (MLP (AvgPool (F)) + MLP (Maxpool (F))) = o (W (Wy (ES,,)) + Wi (Wo (Fpar))) (4)

avg max

where F and o denote the input feature map and a sigmoid function, respectively; and W; and W, represent
the weights of two fully connected layers in an MLP. The spatial attention module ((2) in Fig. 4b) focuses on
the localization of key features in an image. This module utilizes the spatial information obtained by applying
average and max pooling along the channel axis. Average pooling emphasizes the overall distribution of
features, whereas max pooling highlights the strength of prominent features, thereby enabling a clearer
representation of important spatial localizations. Feature maps with dimensions of R”"** generated from
the pooling processes were concatenated and then passed through a convolutional layer with a 7 x 7 kernel
to efficiently process the spatial information. Subsequently, a sigmoid function is applied for normalization
to produce a two-dimensional spatial attention feature map M; (F") as follows:

Mg (F') = o (f77) [AvgPool (F'); MaxPool (F')]) = o (f77) ([Fin g Frax]))s (5)
where F' and f(7*7) denote the channel-refined feature map and convolution kernel of size 7 x 7. This unique
architecture of the CBAM module not only emphasizes important features in the feature map through the
channel attention module, but also highlights their locations through the spatial attention module, with the
overall process as follows:

F'=Mc(F)®F (6)
F'=Ms(F)®F (7)
CBAM feature =F + F". (8)

Specifically, the input feature map F € R*"*" is multiplied by the channel attention feature map

Mc (F) € R®™ to produce the channel-refined feature map F’ € R**"*" (Eq. (6)), which serves as the input
feature map for spatial attention. Subsequently, the channel-refined feature map F’ is multiplied by the spatial
attention feature map M; (F'") € R™"" to produce the channel and spatial-refined feature map F”" € R**"*¥
(Eq. (7)). The final CBAM feature map was obtained by concatenating F’’ and the input feature map F
(Eq. (8)) using the residual architecture.

Third, the head (pink box in Fig. 4a) detects the objects of interest by addressing the SIoU with the input
of the enhanced feature map F”. Note that the SIoU is addressed in all multi-scale layers (() at the pink
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box in Fig. 4a) to enhance the detection performance for objects with various sizes instead of the Complete-
IoU (CIoU), which is used in the conventional neural network for object detection [32]. Note that the SIoU
accounts for the angle loss A, distance loss A, shape loss Q2 and IoU to provide robust detection performances
for objects with various sizes [33]. First, the angle loss A is used to ensure that ground truth and predicted
bounding boxes are well-aligned along the x or y axes as follows:

A =1-2x*sin’ (arcsin (X) - %) )
X = %h = sin () (10)
cp = max (bfyt, bf;e) - min (bfyt, b‘f;e) (11)
o= (0 o) (b2 -0’ )

where X, ¢;, 0 and « respectively denote the relative vertical position for ground truth and predicted
bounding boxes, the vertical distance by the difference between the y-center coordinates bfj and bf;e of
ground truth and predicted bounding boxes, the Euclidean distance between ground truth and predicted
bounding boxes calculated using their center coordinates (bfxt, bfyt) and (b, bfy’e), and alignment degree
of ground truth and predicted bounding boxes. Second, the distance loss A is used to reduce the distance
difference between the center coordinates of the ground truth and predicted bounding boxes as follows:

A=Y (1-eP7) (13)
t=x,y
Y
Py = (—x) (14)
Cw
bft _ b}ﬁ)re 2
py = (u) (15)
Ch
Cyy = max (b‘fj, bfxre) — min (bf:, b‘fxre) (16)
cp = max (bggyt, bf;e) - min (bfyt, bf;e) (17)
y=2-A, (18)

where p;, ¢, and c¢;, denote the squared normalized distance along the axis t (t € {x, y}) between the
center points of ground truth and predicted bounding boxes, the horizontal distance between the x-center
coordinates b8’ and b2" of ground truth and predicted bounding boxes, and the vertical distance between
ground truth and predicted bounding boxes. y is also used to regulate the influence of the distance loss A.
Note that the angle loss A contributes to the calculation of the scaling factor y, which directly modulates the
magnitude of the distance loss A. This contribution indicates that the angle loss A not only serves to ensure
alignment between bounding boxes but also plays a pivotal role in regulating how distance discrepancies
are penalized. The angle loss A has also substantial physical significance beyond mere angular alignment
and is deeply integrated into the loss computation. The shape loss ) is used to adjust the size of a predicted
bounding box to match the size of the ground truth bounding box as follows:

Q=Y (1-e)’ (19)
t=w,h
gt _ . pre
wy = 2 ] (20)
max (w8t, wpre)
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__r& - nPr] (21)

" max (hgt, hpre)’
where w; denotes the normalized absolute difference of ground truth and predicted bounding boxes in
dimension ¢ (t € {w, h}), and 0 is used for the contribution of the shape loss. The final SIoU equation that

considers all losses is as follows:

A+Q

Lpox =1-IoU + (22)
|Bgt N Bpre|

IoU=+———, (23)
|Bgt U Bprel

where IoU denotes the intersection ratio between ground truth and predicted bounding boxes.

3 Experiment
3.1 Data Acquisition and Collection

This subsection describes the four image sets used in this study. These image sets aim to help the
proposed network train various features of images through realistic scenarios and diverse augmentation
examples, while enhancing the detection performance of the proposed network under various conditions,
such as object scales, class types, and backgrounds. Detailed information for all image sets is presented
in Table 1.

Table 1: Information for all image sets

Overall information for all image sets

Image set Image type Label information Number of images
Real 24,171
T . . f '1' . Y bl
ransmission facilities Virtual es 10,997
Fault insulators Real No 1600
Forest Real No 5108
PASCAL VOC2012 Real Yes 17,125

Detailed information for image set of transmission facilities

Image Insulator Lightening arrester SB damper Spacer Tower Marker ball Alllabels  All

type images

Real 27,826 5426 19,937 7495 5258 2014 67,956 24,171
Virtual 4000 2000 2871 1079 757 290 10,997 10,997
Real + 31,826 7426 22,808 8574 6015 2304 78,953 35,168
Virtual

Detailed information for image set of PASCAL VOC2012

Aero plane  Bicycle Bird Boat Bottle All labels All images
1002 837 1271 1059 1561
Bus Car Cat Chair Cow
685 2492 1277 3056 771 40,138 17,125
Dining table  Dog Horse Motorbike Person
800 1598 803 801 17,401

(Continued)
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Table 1 (continued)

Overall information for all image sets

Potted plant  Sheep Sofa Train TV monitor
1202 1084 841 704 893

The first set included images from the transmission facilities. This image set was utilized for FAMSR-
Net training and generating virtual images of transmission facilities through StyleGAN2-ADA, with the
generated virtual images expanding the training and validation sets. Specifically, a custom UAV from
the Korean Electric Power Corporation (KEPCO) recorded these images following the procedure in [43,44].
The UAV maintained a 30 m safe distance due to strong magnetic fields [45] and was equipped with an
SPMY FDR-AX-100 (Sony, Japan) camera, capturing 1920 x 1080 and 1440 x 1080 images. In particular, 1920
x 1080 images were collected at 12 locations, including Asan-Yesan and Shinseosan-Shinanseong, while 1440
x 1080 images were obtained at Daeduck-Duckjin, resulting in 24,171 transmission-facility images (Fig. 5a).
Images of the transmission facilities were then labeled into six classes for training the FAMSR-Net, including
insulators, lightning arresters, SB dampers, spacers, towers, and marker balls (1) to (¢) in Fig. 5a). Detailed
information regarding each class in the image set is presented in Table 1.

Figure 5: (Continued)
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Figure 5: Example images from four datasets used in this study; (a) real images of transmission facilities; (a-@))
insulator; (a-(2)) lightening arrester; (a-(3)) SB damper; (a-(4)) marker ball; (a-®%)) tower; (a-(®) spacer; (b) virtual
images of transmission facilities; (b-(D) fault insulator; (b-(2)) lightening arrester; (b-®3)) SB damper; (b-(®)) marker
ball; (b-(®) tower; (b-(®)) spacer; (c) real images of fault insulators; (d) aerial images of forests; (e) images of PASCAL
VOC2012; (e-(D) aero plane; (e-(2)) bus; (e-B3)) dog

The second image set included fault insulator images provided by the Electric Power Research Insti-
tute (EPRI) (Fig. 5¢) [46]. This image set is utilized to generate virtual faulty insulator images through
StyleGAN2-ADA, aiming to effectively account for the various features of insulators in fault situations. Note
that this image set was originally constructed for research aimed at improving the efficiency of transmission
facility operation and maintenance, and training machine learning models capable of fault detection. Hence,
this image set includes various types of fault insulators collected from a UAV equipped with cameras or
photographs taken by operators [46]. Note that this image set was utilized to generate virtual fault insulator
images in this study because the more diverse the available insulator images, the more effectively the proposed
network can learn various features. Specifically, this image comprises 1600 photos of contaminated or
damaged faulty insulators in high resolution, including 4288 x 2848 and 6000 x 4000.

The third image set comprises forest aerial images recorded by satellites (Fig. 5d) [47]. The image set
was originally constructed to support research on rural land development and environmental protection.
Hence, this image set included various land-cover terrains and agricultural areas, including farms, orchards,
forests, and fields. Note that this image set is utilized as the background image in this study when generating
virtual fault insulator images (1) in Fig. 5b), aiming to make the virtual fault insulator images resemble
the environment of real images, because power transmission facilities are generally installed in rural areas.
The proposed network uses virtual images with these backgrounds for training, implying that it can detect
insulators more accurately in various environments. This image set comprises 5108 images, including forests
and fields, with all images having a resolution of 256 x 256.

The fourth image set was PASCAL VOC2012 (Fig. 5¢) [48]. This image set was used to enhance
and verify the robustness and generalization capability of the proposed neural network across various
classes, resolutions, and backgrounds. This image set comprises photos captured from diverse backgrounds,
including indoor and outdoor environments as well as urban and natural scenes, aimed at advancing research
in various computer vision fields, including object detection, classification, and segmentation [48]. The image
set includes 20 object classes such as airplanes, buses, and dogs ((D to (3) in Fig. 5¢), with a variety of image
resolutions, including 500 x 375 and 375 x 500. This image set contains 17,125 images with 40,138 labels,
providing numerous complex scenes with multiple objects.
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3.2 Generating Virtual Images for Transmission Facilities

This subsection presents the detailed procedure for generating virtual images for transmission facilities.
Virtual images generated for power transmission facilities include faults and normal conditions. Specifically,
virtual images for the insulator include fault images, whereas the virtual images for other facilities only
include normal images because most faults of power transmission lines originate from insulators, suggesting
that the FAMSR-Net needs to learn various conditions of insulators to secure robustness in object detection
[49]. Note that the image set of the transmission facilities contains a large number of normal insulator
images compared to the fault insulator images, as listed in Table 1. This imbalance in the image set resulted
in a decrease in the object detection accuracy of FAMSR-Net across various insulator conditions. Hence,
generating virtual faulty insulator images was prioritized to address these issues. Virtual images of all the
transmission facilities were generated using StyleGAN2-ADA. Three Tesla V100 (32 GB) graphics processing
units (GPUs) with two Intel Xeon Gold 5220R central processing units were used to generate virtual images
through StyleGAN2-ADA; the batch size of StyleGAN2-ADA was set to 48, a multiple of the three GPUs,
to enable efficient data distribution. The number of real images used to generate the virtual images is listed
in Table 2.

Table 2: Information on the input images in StyleGAN2-ADA

Class State Source Number of input images
Insulator Fault EPRI 1228
Lightening arrester Normal Field experiment 1552
SB damper Normal Field experiment 1350
Spacer Normal Field experiment 1350
Tower Normal Field experiment 990
Marker ball Normal Field experiment 804

StyleGAN2-ADA, comprising a generator and a discriminator, was constructed to generate virtual
images. First, eight MLP layers transform the 512-dimensional latent vector Z into a 512-dimensional linear
latent space W. The latent space W contains various features that are utilized by the generator when generating
virtual images. Specifically, the generator extracts various features from the latent space W and dynamically
adjusts the convolution weights of the feature maps through modulation and demodulation, effectively
embedding the extracted features into the feature maps. The generator comprised upsampling layers with
3 x 3 kernels to progressively increase the feature map size from 4 x 4 to 256 x 256 and produced feature
maps of seven scales. Two convolution operations were performed on each feature map during modulation
and demodulation to adjust and learn the features. The first convolution operation aims to learn and adjust
the features, and the second convolution operation was deployed to learn fine-grained features in the feature
maps. Then, the Leaky Rectified Linear Unit (ReLU) activation function was used with a slope of « = 0.2
for nonlinear space transformation. Note that Leaky ReLU maintains gradients in the negative region as a
nonlinear function, which prevents dead nodes in the generator and helps the generator reflect complex
patterns and fine details during image generation. This process progressively increases the number of feature
maps from low to high resolutions, enabling the generator to learn features at various scales and fine patterns,
ultimately generating high-quality virtual images. Second, the discriminator executes ADA, including
rotation, cropping, filtering, and color transformation, on both the generated virtual and real images, while
simultaneously using IDT to suppress overfitting and abnormal image augmentation. Specifically, ADA
was designed to maintain the proportion of normally augmented images at 0.6 by dynamically adjusting
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the overall augmentation probability P through the IDT. An IDT set P close to 1 decreased the relative
proportion of normally augmented images, whereas an IDT set P close to 0 increased the relative proportion
of normally augmented images. The discriminator comprises downsampling layers with 3 x 3 kernels to
perform discrimination with augmented virtual and real images. Specifically, the discriminator progressively
reduces the feature map size of the input image from 256 x 256 to 4 x 4, and produces feature maps of
seven scales. The activation function Leaky ReLU with a slope of a = 0.2 was also deployed to enable the
discriminator to learn complex information across various scales. Hence, the discriminator distinguishes
real images from virtual images based on information from various scales of feature maps, and provides the
results as feedback to the generator.

Next, the virtual images for the insulator and lightning arrester underwent modification processes
(Fig. 6) because these virtual images lacked characteristics such as orientation, unlike real images. Virtual
images of other transmission facilities ((3) to (6) in Fig. 6b) did not undergo such modification processes
because other transmission facilities had backgrounds such as real images and remained fixed in directional
orientation in real-world environments. Specifically, virtual images for the insulator were rotated at angles of
0°, 45°,135°, and 180° ((3® in Fig. 6) and then inserted to forest images ((4) in Fig. 6), because insulators are
mostly installed in forests in Korea in various orientations ((D) in Fig. 6). Note that virtual insulator images
without these processes lacked orientation and background ((2) in Fig. 6), resulting in a sense of disparity and
potentially degradation in the detection performance of the FAMSR-Net. Virtual lightning arrester images
were also rotated at 0°, 90°, and 270° angles ((7) in Fig. 6) in the same manner as for real lightning arresters
(® in Fig. 6), because fixed virtual lightning arrester images ((©) in Fig. 6) cannot reflect the orientation of
real lightning arresters. Note that background insertion was not necessary for the virtual lightning arrester
images because the real lightning arrester images used as the input for StyleGAN2-ADA already included
backgrounds. Hence, the generated virtual lightning arrester images () in Fig. 6b) include background.
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Figure 6: Modification processes of virtual images
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3.3 Construction of the FAMSR-Net

This subsection presents the construction of FAMSR-Net. Three Tesla V100 (32 GB) GPUs with two Intel
Xeon Gold 5220R CPUs were used for the training, validation, and testing of FAMSR-Net. The resolution of
the input images was adjusted to 512 x 512 to ensure the detection accuracy, because different aspect ratios
or inconsistent resolutions in the input images might result in variations in the number of layers and feature
map sizes required by the neural network.

The architecture of FAMSR-Net comprises a CNN-based backbone, neck, and head. First, the backbone
comprised downsampling layers with two kernels of 2 x 2 and 3 x 3 to progressively reduce the input image
size from 512 x 512 to 16 x 16. Specifically, downsampling with 2 x 2 kernels effectively halves the spatial
dimensions, preserving essential structural details, while the 3 x 3 kernels enrich the extracted features by
capturing broader contextual information within local receptive fields. The backbone produces feature maps
at five scales: 16 x 16, 32 x 32, 64 x 64, 128 x 128, and 256 x 256. ELAN was used with multiple CBS blocks
in the backbone network to extract diverse features. Second, the neck addressed the PANet architecture
by incorporating upsampling and downsampling layers. The upsampling layers employed nearest-neighbor
interpolation to progressively expand the feature map from 16 x 16 to 64 x 64, whereas the downsampling
layers employed 2 x 2 kernels to progressively reduce the feature map from 64 x 64 to 16 x 16. This repeated
interplay between upsampling and downsampling effectively integrated multi-scale information, enhancing
the model’s capability to accurately detect objects across diverse scales. Hence, the neck produced feature
maps at three scales: 16 x 16, 32 x 32, and 64 x 64. SPPCSPC was applied to a 16 x 16 feature map to handle
diverse spatial features. ELAN-H with multiple CBS blocks and reparameterized convolution blocks was
applied to 16 x 16, 32 x 32, and 64 x 64 feature maps to efficiently utilize and process diverse features. CBAM
was also applied to 16 x 16 and 64 x 64 feature maps to enhance key characteristics along both channel and
spatial dimensions. Third, the head with SIoU optimizes the bounding box with three scaled feature maps:
16 x 16, 32 x 32, and 64 x 64. Several feature maps have been used to accurately detect objects of various sizes.
Note that the contribution factor 6 was set to 4 because this value was the midpoint of the 6 range from 2 to
6 for securing stability of the shape loss in the SIoU [33].

The image set of transmission facilities, comprising only real images, was divided into 16,920 (70%),
4834 (20%), and 2417 (10%) images, whereas the image set with additional virtual transmission facility images
was divided into 25,718 (73.1%), 7033 (20%), and 2417 (6.9%) images for training, validation, and testing,
respectively. The image set of PASCAL VOC2012 was also divided into 11,987 (70%), 3425 (20%), and 1713
(10%) images for comparing the performance of the FAMSR-Net with other neural networks. The training
and validation image sets were used for hyperparameter optimization through Bayesian optimization (BO),
whereas the test image set was used to evaluate the accuracy and robustness of FAMSR-Net. BO was
used because it can converge in a shorter time and easily find the global minimum compared to other
optimization methods such as grid search and genetic search [50,51]. Specifically, BO randomly selects
hyperparameter combinations in the initial stage to evaluate the performance of these combinations, and
then uses a Gaussian process to model the distribution of the objective function, enabling exploration of the
optimal hyperparameter combination. BO was examined to optimally tune the learning rate, momentum,
and weight decay, ensuring that these hyperparameters were adjusted to maximize mean Average Precision
(mAP). The initial range of hyperparameters optimized through BO was selected based on preliminary
experiments and prior domain knowledge (Table 3). A suitably small learning rate helps maintain a balance
between convergence speed and stability, a high momentum value sustains training momentum without
causing excessive oscillations, and an appropriate level of weight decay provides sufficient regularization to
mitigate overfitting without overly constraining the model parameters. This optimization procedure ensures
the best performance of FAMSR-Net. The optimized hyperparameters are presented in Table 3. Note that
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YOLO v7 and YOLO v7 with CBAM (YOLO v7-CBAM) were also trained and optimized using BO for
comparative studies. The batch size of FAMSR-Net was set to 63, which is a multiple of the three GPUs, to
efficiently distribute the images across the GPUs.

Table 3: Initial and optimal hyperparameters for each image set

Image set of transmission facilities

Range of initial settings

Hyperparameters
Network
crwor Learning rate Momentum Weight decay
All 1.0 x107°~8.0 x 1072 0.9~0.999 2.0x1074~5.0 x 1074
Optimal hyperparameters from BO
Hyperparameters
Network I t
crwor fage type Learning rate Momentum Weight decay
YOLO v7 7.85 x 1073 0.955 492 x107*
YOLO v7-CBAM Real 4.08 x1073 0.960 3.22x107*
FAMSR-Net 1.38 x 1073 0.967 3.02x 1074
YOLO v7 5.31x1073 0.954 2.48 x107*
YOLO v7-CBAM  Real + Virtual 2.56 x 1073 0.975 2.50 x 1074
FAMSR-Net 5.34 x 1073 0.921 3.77 x107*
Image set of PASCAL VOC2012
Range of initial settings
Hyperparameters
Network
crwor Learning rate Momentum Weight decay
All 1.0 x 1073~8.0 x 1073 0.9~0.999 2.0 x107%~5.0 x 107*
Optimal hyperparameters from BO
Hyperparameters
k I
Networ mage type Learning rate Momentum Weight decay
YOLO v7 5.28 x 1073 0.980 210 x 1074
YOLO v7-CBAM Real 1.04 x 1073 0.971 3.56 x 1074
FAMSR-Net 1.01 x 1073 0.948 418 x107*

3.4 Evaluation Metrics

This subsection presents the evaluation metrics for the performance comparison. First, the Fréchet
inception distance (FID) is used to compare the results of the virtual images [52]. This metric calculates the
difference between real and virtual images based on the data distribution as follows:

1
FID = | = o3 + Tr (31 + 25 - 2(2%) ), (24)

where y;, U2, 21 and X, denote the mean vector of the real data distribution, the mean vector of the virtual
data distribution, the covariance matrix of the real data, and the covariance matrix of the virtual data,
respectively. The first term ||y — p2 ||§ represents a squared Euclidean distance, implying that this term is
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used to evaluate the difference in the centers of the real and virtual data distributions through y; and
Y2. The second term Tr (21 +2,-2 (2122)1/ 2) represents the covariance difference between the real and
virtual images. This term is used to estimate the variability and similarity between the real and virtual data
distributions through the sum of the covariance ¥, + £, and the geometric mean of covariance (2122)1/ 2,
Hence, the FID evaluates the similarity between real and generated data by considering both the difference in
mean values and covariance. Note that a lower FID indicates better performance, because a smaller difference
in the mean vectors and covariance matrices implies that a generated image more accurately mimics a

real image.

Second, the mAP was used to evaluate the detection performance of the neural networks. Note that
mAP was calculated by increasing the IoU thresholds from 0.5 to 0.95 with increments of 0.05. This metric
comprehensively considers various thresholds to accurately reflect the overall detection performance of a
neural network, as follows:

1 n
mAP = — " AP, (25)
n iz

where n and AP denote the number of classes and metric that provides the detection performance of
the network for each class, respectively. Hence, the overall detection accuracy of the neural network is
represented by the mAP (Eq. (25)), which was calculated as the mean AP (Eq. (26)) across all classes,
considering both precision and recall as follows:

1
AP, - f P (R;) dR, (26)
0
TP
Precision(P) = ————— (27)
TP+ FP
TP
Recall(R) = ———, 28
ecall(R) = 757N (28)

where TP, FP, and FN denote the true positives, false positives, and false negatives, respectively. Specifically,
TP denotes cases in which the true values are correctly identified as true, FP indicates that the false values
are incorrectly identified as true, and FN indicates that the true values are incorrectly identified as false.
Hence, the precision (Eq. (27)), and recall (Eq. (28)) denotes the ratio of actual true cases among those that
the network predicted as true cases and the ratio of cases where the network predicted true among the actual
true cases.

4 Results and Discussion
4.1 Fidelity Evaluation of Virtual Images

This subsection evaluates the fidelity of virtual images generated using StyleGAN2-ADA. A comparative
study was also conducted using StyleGANI and StyleGAN?2, in which StyleGAN2-ADA outperformed Style-
GANI and StyleGAN2 in generating virtual images. StyleGAN1 employs adaptive instance normalization
(AdaIN) because it is effective in controlling the features of feature maps [36]. Specifically, this method
normalizes the entire feature map using its mean and standard deviation of the feature map, along with
the vector and bias derived from the latent space W. StyleGAN2 employs a modulation-and-demodulation
architecture because it is effective in controlling feature maps [37]. StyleGAN?2 also addresses the input skip
connection architecture of the generator and the residual architecture of the discriminator to minimize
feature loss [37].



1032 Comput Model Eng Sci. 2025;144(1)

The FID values of the three neural networks are listed in Table 4. Interestingly, StyleGAN2-ADA
and StyleGAN?2 exhibited lower FID values than StyleGANI. Specifically, those of StyleGANI, StyleGAN2,
and StyleGAN2-ADA were 73.9, 61.1, and 24.0, respectively, suggesting that virtual images generated by
StyleGAN2 and StyleGAN2-ADA show significant improvements in issues including noise, blotches, and
corrupted shapes, which are observed in the virtual images generated by StyleGANI (Fig. 7). This analysis
also implies that the architecture of modulation and demodulation in StyleGAN2-ADA and StyleGAN2
is more effective than AdaIN in StyleGANI, because the architecture of modulation and demodulation
effectively extracts distinct features from real images. The input skip connection architecture and residual
architecture addressed in StyleGAN2-ADA and StyleGAN2 may also contribute to improving the fidelity
of virtual images because these architectures are effective in preventing feature loss during training. A
comparative study between StyleGAN2-ADA and StyleGAN2 showed that StyleGAN2-ADA is better than
StyleGAN?2 at generating virtual images because StyleGAN2-ADA has a lower FID than StyleGAN2.
Specifically, the mean FID of StyleGAN2-ADA was 24.0, representing a reduction of 37.1 in FID compared
with StyleGAN?2. This analysis implied that the issue of distorted shapes in the virtual images generated
by StyleGAN2 was also resolved in StyleGAN2-ADA (Fig. 7). This analysis suggests that the ADA and IDT
addressed in StyleGAN2-ADA are effective in generating high-quality and high-fidelity virtual images, even
with a limited number of input images, because the ADA and IDT effectively increase feature diversity while
reducing overfitting during virtual image generation. Hence, StyleGAN2-ADA is the most effective among
the three neural networks for generating virtual images in transmission facilities.

Table 4: FID comparison of three neural networks for virtual image generation. Bold indicates the best performance
in each category

Network FID for virtual images

Insulator Lightening arrester SB damper Spacer Tower Marker ball Mean

StyleGAN1 68.1 67.7 76.7 82.3 77.5 71.2 73.9
StyleGAN2 53.9 52.5 673 76.0 59.9 571 61.1
StyleGAN2-ADA 19.9 21.5 17.9 299 26,5 28.1 24.0

Interestingly, the virtual images for the SB damper achieved the lowest FID among those generated
using StyleGAN2-ADA. This result implies that extracting distinct features from the SB damper is easier
than extracting distinct features from other classes, because the SB damper features a simple shape of two
connected dampers. A large number of input images for the SB dampers also contributes to training the
neural network by effectively learning the features. The FID of the virtual insulator images was the second
lowest, although the insulators had complex and bumpy shapes. The high fidelity of virtual images originates
from two sources. First, the absence of a background in the input images for the insulators contributes to
the high fidelity of virtual images, because there is no need to consider the background during virtual image
generation, and the neural network focuses more on learning insulators, effectively reflecting the features of
the insulators in the virtual images. Second, the high resolution of input images for insulators is required
because the input images of the insulator have a higher resolution than the input images of other transmission
facilities, allowing the neural network to effectively learn the detailed features of the insulator. By contrast, the
FID of the virtual images for the spacers was the largest among the virtual images generated by StyleGAN2-
ADA. This low fidelity originates from the fact that spacers have two types of 4-conductor or 6-conductor
types in real images, depending on the voltage of the transmission line. Note that the two types of spacers
increase the complexity when extracting distinct features from images of the spacer, in consideration of the
limited number of images of the spacers. The FID of the virtual images for the marker balls was the second
largest because the number of input images for the marker balls was smaller than the average number of
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input images for the transmission facilities. This comprehensive analysis suggests that a large number of
input images and their high resolution of input images contribute to enhancing the fidelity of virtual images,
whereas the complex shape and diversity of input images disturb the extraction of the features of input images
to generate virtual images.

(b)

Figure 7: The virtual image results for (a) StyleGANI; (b) StyleGAN2; (c) StyleGAN2-ADA

4.2 Detection Performance of the FAMSR-Net

This subsection evaluates the detection performance of FAMSR-Net by comparing the mAP of FAMSR-
Net with those of YOLO v7 and YOLO v7 with CBAM (YOLO v7-CBAM). The performance analysis of
these networks was conducted using only real images of transmission facilities and using both real and
virtual images together (Table 5). The mAP graph of these networks was also analyzed based on the use of
only real images of transmission facilities and the use of both real and virtual images (Figs. 8 and 9). The
detection accuracies of the three neural networks were also analyzed using the PASCAL VOC2012 image
set to confirm the superiority of the proposed neural network over the YOLO series. Note that FAMSR-Net
addresses CBAM and SIoU bounding box optimization to effectively learn object features and enhance the
detection performance for objects of various sizes.

Table 5: Comparison of three neural networks for detecting transmission facilities. Bold indicates the best performance
in each category

mAP for real images (%)

Network Insulator Lightening SB Spacer Tower Marker Mean
arrester  damper ball
YOLO v7 731 60.4 69.8 75.2 71.6 70.1 70.0

mAP for real images (%)

(Continued)
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Table 5 (continued)

Network Insulator Lightening SB Spacer Tower Marker Mean
arrester  damper ball
YOLO v7-CBAM 74.6 62.8 71.2 76.6 72.2 71.7 715
FAMSR-Net 74.7 64.3 71.6 76.2 72.5 72.2 71.9

mAP for images combining real and virtual images (%)

YOLO v7 75.3 62.5 71.9 75.9 72.9 72.1 71.8
YOLO v7-CBAM 75.0 63.0 71.9 76.4 73.2 72.3 72.0
FAMSR-Net 75.5 63.1 71.8 76.4 73.9 73.5 72.4
(@ (b)
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Figure 8: The mAP graph of the three networks when trained only on real transmission facility images; (a) Insulator;
(b) Lightening arrester; (c) SB damper; (d) Spacer, (e) Tower; (f) Marker ball
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First, the YOLO v7-CBAM and the FAMSR-Net demonstrated a 1.5% and 1.9% improvement in mAP
for detecting transmission facilities compared with the YOLO v7 (Table 5). This analysis indicates that the
CBAM addressed in both FAMSR-Net and YOLO v7-CBAM enhances the learning capability of neural
networks, because the proposed neural network emphasizes the key features of objects and their locations on
the feature map through the channel and spatial attention modules. Especially, the AP for lightning arresters
significantly increased by 2.4% and 3.9% with the YOLO v7-CBAM and the FAMSR-Net compared with the
YOLO v7. This significant enhancement suggests that CBAM is effective in detecting objects exposed to large
portions of the background, because images including lightning arresters generally contain large portions of
the background, including support structures. The architecture of the CBAM also contributes to detecting
objects with complex shapes and small objects, because the AP for insulators, which have the most complex
shapes among transmission facilities, as well as for smaller objects, including spacers, SB dampers, and
marker balls, improves by more than 1% in both the YOLO v7-CBAM and the FAMSR-Net compared with
the YOLO v7. The mAP graph also demonstrates that the detection performance of the network improves
when CBAM is applied (Fig. 8). Note that detecting spacers, SB dampers, and marker balls is challenging
because their mean bounding box sizes are 1609, 1865, and 2878, respectively, which are smaller than the
mean bounding box size of transmission facilities (4791) (Table 6). The detection accuracy of the PASCAL
VOC2012 image set also supports this hypothesis; the YOLO v7-CBAM and the FAMSR-Net improve the
mAP by 1.4% and 1.9% compared with the YOLO v7, respectively, confirming the effectiveness of the CBAM
(Table 7).

Table 6: Information on the bounding box size of transmission facilities in the input images

Insulator Lightening arrester SB damper Spacer Tower Marker ball

Mean(p) 7245 8162 1865 1609 4687 2878
Standard deviation (o) 13,144 10,940 2623 1511 7072 5417
Coefficient of variation (g) 1.81 134 1.41 094 151 1.88

Table 7: Comparison of three neural networks for PASCAL VOC2012 image set. Bold indicates the best performance
in each category

mAP for PASCAL VOC2012 image set (%)

YOLO v7 YOLO v7-CBAM FAMSR-Net
Aero plane 71.1 70.9 73.8
Bicycle 63.1 64.6 66.1
Bird 68.3 72.2 71.0
Boat 51.1 51.5 49.8
Bottle 41.5 45.3 45.2
Bus 74.7 75.5 76.9
Car 62.5 61.8 62.4
Cat 81.8 83.9 85.9
Chair 44.6 44.6 48.0
Cow 61.9 64.1 63.2
Dining table 54.7 55.2 55.0

(Continued)
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Table 7 (continued)

mAP for PASCAL VOC2012 image set (%)

YOLO v7 YOLO v7-CBAM FAMSR-Net
Dog 78.5 78.8 80.9
Horse 50.0 54.4 49.3
Motorbike 69.6 70.3 71.4
Person 64.7 65.2 65.2
Potted plant 33.8 35.9 35.9
Sheep 64.6 66.1 65.3
Sofa 53.6 55.6 59.2
Train 74.1 72.9 76.0
TV monitor 48.2 50.4 50.6
Mean 60.6 62.0 62.5

Second, FAMSR-Net outperforms YOLO v7-CBAM, indicating that the architecture of the SIoU
addressed in FAMSR-Net contributes to improving the neural network’s performance in detecting objects
of various sizes. This analysis also suggests that the SIoU is more robust than the CloU addressed in YOLO
v7-CBAM and YOLO v7, because the SIoU accounts for angle loss, distance loss, and shape loss instead of
relying on relative aspect ratio values. Specifically, the mAP of classes with a large coeflicient of variation
improved in the FAMSR-Net compared with the YOLOv7-CBAM, with lightning arresters showing the
highest improvement of 1.5% (Table 5). The mAP graph also indicates that the detection performance of the
network improves when SIoU is applied (Fig. 8). This result supports the hypothesis that the SIoU employs
robustness for object detection with various sizes when the coefficient of variation for a bounding box size is
low, because the coeflicient of variation for the bounding box size of the lightning arrester is 1.34 (Table 6).
However, the mAP of the spacer decreased by 0.4% in the FAMSR-Net compared to the YOLOv7-CBAM.
This result indicates that the contribution of the SIoU is small for sizes with very low variations, because
the spacer has the lowest coefficient of variation in the bounding box size among the transmission facilities
(Table 6). The detection accuracy of the FAMSR-Net on the PASCAL VOC2012 image set further supports
the hypothesis that the SToU makes FAMSR-Net robust against various sizes of objects, because FAMSR-Net
achieves a 0.5% higher mAP than that of YOLO v7-CBAM on the PASCAL VOC2012 image set (Table 7).

Third, the detection accuracy of all three neural networks improved when virtual transmission facility
images were incorporated into the training process. Specifically, the improvements in YOLO v7, YOLO v7-
CBAM, and FAMSR-Net were 1.8%, 0.5%, and 0.4%, respectively, when training both real and virtual images,
suggesting that high-fidelity virtual images contribute to enhancing the detection accuracy of three neural
networks (Table 5). The mAP graph also shows that the detection performance of the network improves
when virtual images are used for training (Fig. 9). Interestingly, the AP of both the tower and marker ball
increased by more than 0.6% in all three neural networks when virtual images were incorporated into the
training process, indicating that virtual images would be effective for training neural networks on a small
number of objects because the number of marker balls in the real images was the lowest and that of towers
was the second lowest (Table 1). The virtual images also enhanced the detection accuracy of the neural
networks for complex shapes, such as the insulators, because the AP of the insulator for all three neural
networks increased by more than 0.4%. Furthermore, virtual images were effective in object detection in
complex environments because the neural networks that trained on both real and virtual images accurately
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detected insulators obscured by towers and backgrounds (in Fig. 10e-g). In contrast, the neural networks
trained only on real images tend to either redundantly detect or fail to detect insulators in the same scenarios
(in Fig. 10b-d). However, the addition of virtual images yielded a 1.2% decrease in the AP of the FAMSR-
Net for lightning arresters compared to that using only real images. This result indicates that the extensive
backgrounds present in the virtual lightning arrester images negatively affect the detection performance
of FAMSR-Net, because the backgrounds of the virtual arrester images are monotonous and decrease the
robustness in diverse environments. These backgrounds also act as noise during the network training process,
reducing the detection performance of FAMSR-Net for lightning arresters.

100 100
(a) (b)
] L
. #®0 &
g g
~ &
E n E m
60 60
s0 50 -
YOLO v7 YOLO v7-CBAM FAMSR-Net YOLO v7 YOLO v7-CBAM FAMSR-Net
100 100
() (d)
% %
. @ . ®0
& &
3 H

YOLO v7 YOLO v7-CBAM FAMSR-Net YOLO v7 YOLO v7-CBAM FAMSR-Net
100 100
() ®
0 »
a0 80

mAP (%)
mAP (%)

YOLO v7 YOLO v7-CBAM FAMSR-Net YOLO V7 YOLO v7-CBAM FAMSR-Net

Figure 9: The mAP graph of the three networks when co-trained on real and virtual transmission facility images; (a)
Insulator; (b) Lightening arrester; (c) SB damper; (d) Spacer, (e) Tower; (f) Marker ball
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Figure10: (a) Inputimage and detection results for transmission facilities using (b) YOLO v7; (c¢) YOLO v7 with CBAM;
(d) FAMSR-Net; (e) YOLO v7 with virtual images. (f) YOLO v7 with CBAM and virtual images; (g) FAMSR-Net with
virtual images

4.3 Superiority Compared to Other Neural Networks

This subsection evaluates the detection performance of FAMSR-Net by comparing its mAP with those
of other neural networks, including Faster R-CNN [17], RefineDet [53], Deformable Detection Transformer
(DETR) [54], and Co-DETR [55], in the sense that these networks are widely used in object detection
owing to their superior performances. Faster R-CNN is a two-stage detector that sequentially performs
region proposal and classification. Specifically, the region proposal network in Faster R-CNN addresses
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anchor boxes of varying sizes and aspect ratios to generate region proposals for bounding boxes on
the feature map [56]. RefineDet is a one-stage detector that simultaneously performs region proposal
and classification, thereby enabling fast and accurate object detection. RefineDet features an architecture
comprising an anchor refinement module (ARM), transfer connection block (TCB), and object detection
module (ODM) to achieve accurate yet fast performances [53]. Deformable DETR is a one-stage detector
that performs object localization and classification simultaneously using a transformer-based architecture
with deformable attention. This neural network integrates deformable attention modules (DAM) in both
the encoder and decoder to focus on a small set of key sampling points around a reference, significantly
reducing computational complexity and accelerating training convergence. Note that Deformable DETR
inherently supports multi-scale feature aggregation without using FPNs and thereby enhances performance
through iterative bounding box refinement and a two-stage variant where region proposals are generated and
refined for improved accuracy [54]. Co-DETR is also a one-stage detector that performs region proposals and
classification simultaneously, comprising a transformer-based encoder-decoder architecture. Specifically,
Co-DETR applies a DAM to the encoder to selectively learn information from relevant regions and employs
multiple auxiliary heads in the decoder to infer object locations and classes [54,55].

The mAP of the five neural networks is listed in Table 8. The mAP was calculated with the test
image set of the transmission facilities. Remarkably, FAMSR-Net outperforms other neural networks for
all objects of interest for power facilities. Specifically, FAMSR-Net achieved a 23.9% improvement in mAP
compared to that of Faster R-CNN. This improvement suggests that the architecture of PANet in FAMSR-
Net would effectively extract feature maps by minimizing the loss of feature maps in the training phase,
because the PANet facilitates effective integration of multi-level features and thereby enables the neural
network to retain essential details that are critical for detecting small or partially hidden components.
Furthermore, the bottom-up path aggregation and a shortcut path in PANet contribute to preserving
fine-grained features from lower layers, which are often lost in conventional top-down architectures. This
characteristic is particularly beneficial for identifying small transmission facilities. The FAMSR-Net achieved
a10.3% higher mAP compared to that of RefineDet. This result indicates that the FAMSR-Net effectively
addresses information across multi-scale information because the ELAN deployed in the FAMSR-Net
effectively extracts multi-scale information from feature maps through multiple paths, and the SPPCSPC
of the FAMSR-Net also properly handles multi-scale spatial information through multiple paths. These
modules work in a complementary manner to enhance the representation of objects with varying sizes
and spatial characteristics, which is particularly beneficial for detecting small or complicated structured
components in transmission facilities. Therefore, the architecture of FAMSR-Net, which utilizes ELAN
and SPPCSPC, enables more accurate detection of transmission facilities with complex structures through
robust feature extraction and refined spatial context modeling. In contrast, the architecture of RefineDet
tends to simplify multi-scale feature extraction, resulting in relatively lower detection performance. FAMSR-
Net also demonstrated a 7.3% improvement in mAP over Deformable DETR. This result indicates that the
CBAM of FAMSR-Net enhances the feature map information more effectively than the DAM of Deformable
DETR. This analysis suggests that the architecture of the CBAM extracts both key features and localization
information from the feature map, whereas DAM enhances only selective region information from the
feature map. This result also demonstrates that CBAM would be advantageous for detecting small or occluded
objects, which are commonly shown in transmission facilities. Additionally, the integration of channel and
spatial attention in CBAM contributes to more robust representations by explicitly reinforcing informative
channels and spatial positions across the entire feature map. This integrated approach contrasts with DAM’s
limited attention strategy, validating CBAM’s superior capability in capturing object details, essential for
precise detection in complex operational environments. FAMSR-Net also achieved a 1.2% higher mAP
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compared to that of Co-DETR. This result suggests that the SIoU deployed on FAMSR-Net would exhibit
greater robustness to object sizes than the Generalized-IoU (GIoU) employed on the multiple auxiliary
heads of Co-DETR, because the GIoU only considers the intersection ratio and area difference between
the ground truth and predicted bounding boxes, without considering the center distance or directional
alignment between the ground truth and predicted bounding boxes [30]. The SIoU addresses geometric
alignment and angle, enabling more precise and robust localization, particularly in complex scenes with
diverse orientations and partially occluded components. The SIoU also provides more efficient and accurate
performance than the approach of Co-DETR, which iteratively refines bounding boxes through multiple
auxiliary heads based on GIoU. This systematic analysis finally confirms that the proposed architecture
contributes to constructing effective feature maps in FAMSR-Net and thereby enhances detection accuracy
for power facilities of interest.

Table 8: Detection performance of each neural network for transmission facilities. Bold indicates the best performance
in each category

mAP for transmission facilities (%) FPS

Network Insulator Lightening SB damper Spacer Tower Marker ball Mean

arrester

FasterR-CNN 479 34.7 49.5 571 48.6 504 48.0 159
RefineDet 58.2 46.9 62.6 68.9 65.1 68.0 61.6 20.0
Deformable DETR 67.5 51.0 66.0 70.0 66.2 66.5 64.6 141
Co-DETR 73.4 60.7 70.9 75.0 72.6 71.6 70.7 113
FAMSR-Net 74.7 64.3 71.6 76.2 72.5 72.2 71.9 175

The Frames Per Second (FPS) of the five neural networks is listed in Table 8. Overall, FAMSR-Net
exhibited a reasonable inference speed, even though the accuracy of object detection was the highest.
Specifically, the FPS of FAMSR-Net increased by 1.6 times compared to that of Faster R-CNN, although
the accuracy of FAMSR-Net was approximately 1.5 times compared to that of Faster R-CNN. This result
suggests that the deep and wide architecture of FAMSR-Net efficiently extracts multi-scale information from
feature maps, whereas the shallow architecture of the Faster R-CNN struggles to extract information from
feature maps. This result also demonstrates that depth and architectural complexity in FAMSR-Net are well
balanced to maintain efficiency without severely compromising processing time. The FPS of FAMSR-Net
was 17.5, which is lower than that of RefineDET. This result also implies that the architecture of FAMSR-Net
is deeper and wider than that of RefineDet, because FAMSR-Net includes a diverse architecture, including
ELAN, ELAN-H, SPPCSPC, CBAM, and PANet, whereas RefineDet has a simpler architecture with ARM,
TCB, and ODM connected. Nevertheless, the gap in FPS between FAMSR-Net and RefineDet was only 2.5,
showing that the enhanced accuracy did not come at a substantial cost in inference speed. Remarkably, the
FPS of FAMSR-Net was 3.4 times higher than that of Deformable DETR and 6.2 times higher than that
of Co-DETR. This result suggests that deploying a transformer architecture to a one-stage detector would
slow down the inference speed compared to a conventional one-stage detector, because the transformer
architecture deployed on Deformable DETR and Co-DETR requires substantial computational costs and
memory [55]. This result also confirms that FAMSR-Net strikes a better balance between accuracy and speed,
especially compared to transformer-based neural networks that often sacrifice inference time.
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In summary, FAMSR-Net enables accurate real-time inference for object detection in environments
with complex and diverse objects, because this neural network demonstrates the best detection performance
among the five neural networks while showing no significant difference in FPS compared with RefineDET,
the fastest neural network.

5 Conclusion

This study proposes a new neural network for fault inspection of transmission facilities. The proposed
framework exhibits three key characteristics. First, StyleGAN2-ADA was utilized to generate virtual images
of the transmission facilities to support neural network training. Specifically, StyleGAN2-ADA generates
high-quality virtual images even with limited input images through the ADA and IDT. Second, CBAM
was deployed in FAMSR-Net to improve the detection performance by enhancing the key information
of the feature maps. Specifically, CBAM enhances the one- and two-dimensional information of feature
maps through the channel and spatial attention modules. Third, SIoU was employed in FAMSR-Net to
improve the robustness of the neural network for object localization of various sizes. Specifically, SloU
improves the robustness to bounding box sizes by considering the angle loss, distance loss, shape loss,
and intersection area. The BO is further utilized for hyperparameter optimization of the neural network.
Extensive experimental validation demonstrates that FAMSR-Net outperforms other neural networks, and
the detection performance of FAMSR-Net for transmission facilities is maximized when virtual transmission
facility images are co-trained. Hence, the proposed framework is effective for fault inspection of power
transmission facilities considering their diverse environments. Future research should include minimizing
the background noise to improve detection performance of the neural network and utilizing a high-
resolution camera with automatic zoom to more accurately detect distant transmission facilities because the
proposed framework has limitations in detection accuracy when objects are distant, obscured by background
interference, or visually unclear.

Acknowledgement: The authors would like to thank the Korea Electric Power Corporation, the National Fire Agency
of Korea, and the Ministry of the Interior and Safety of Korea for their support.

Funding Statement: This research was supported by the Korea Electric Power Corporation (R22TA14, Development of
Drone System for Diagnosis of Porcelain Insulators in Overhead Transmission Lines), the National Fire Agency of Korea
(RS-2024-00408270, Fire Hazard Analysis and Fire Safety Standards Development for Transportation and Storage Stage
of Reuse Battery), and the Ministry of the Interior and Safety of Korea (RS-2024-00408982, Development of Intelligent
Fire Detection and Sprinkler Facility Technology Reflecting the Characteristics of Logistics Facilities).

Author Contributions: The authors confirm their contributions to the paper as follows: Yunho Na: Conceptualization,
Data curation, Formal analysis, Methodology, Software, Validation, Visualization, Writing—original draft; Munsu
Jeon: Data curation, Formal analysis, Validation; Seungmin Joo: Data curation, Methodology, Validation; Junsoo
Kim: Data curation, Investigation, Validation; Ki-Yong Oh: Conceptualization, Data curation, Methodology, Project
administration, Supervision, Resources, Validation, Writing—original draft; Min Ku Kim: Data curation, Supervision,
Resources, Writing—original draft; Joon-Young Park: Data curation, Funding acquisition, Resources. All authors
reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Fault insulator images dataset is publicly available in IEEE DataPort at https://
ieee-dataport.org/competitions/insulator-defect-detection (accessed on 25 June 2025). Forest aerial images dataset
is publicly available in Kaggle at https://wwwkaggle.com/datasets/quadeerl5sh/augmented-forest-segmentation
(accessed on 25 June 2025). PASCAL VOC2012 dataset is publicly available in PASCAL Visual Object Classes
Homepage at http://host.robots.ox.ac.uk/pascal/ VOC/voc2012/index.html (accessed on 25 June 2025). Real and virtual
transmission facilities images data is not available due to commercial restrictions.


https://ieee-dataport.org/competitions/insulator-defect-detection
https://www.kaggle.com/datasets/quadeer15sh/augmented-forest-segmentation
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html

1042 Comput Model Eng Sci. 2025;144(1)

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References

1. YuC, Liu Y, Zhang W, Zhang X, Zhang Y, Jiang X. Foreign objects identification of transmission line based on
improved YOLOV7. IEEE Access. 2023;11:51997-2008. d0i:10.1109/ACCESS.2023.3277954.

2. ChenY, Liu H, Chen J, Hu J, Zheng E. Insu-YOLO: an insulator defect detection algorithm based on multiscale
feature fusion. Electronics. 2023;12(15):3210. doi:10.3390/electronics12153210.

3. Sampedro C, Martinez C, Chauhan A, Campoy P. A supervised approach to electric tower detection and
classification for power line inspection. In: International Joint Conference on Neural Networks (IJCNN); 2014 Jul
6-11; Beijing, China. p. 1970-7. doi:10.1109/IJCNN.2014.6889836.

4. Martinez C, Sampedro C, Chauhan A, Campoy P. Towards autonomous detection and tracking of electric towers
for aerial power line inspection. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS); 2014
May 27-30; Orlando, FL, USA. p. 284-95.

5. Souza BJ, Stefenon SE, Singh G, Freire RZ. Hybrid-YOLO for classification of insulators defects in transmission
lines based on UAV. Int ] Electr Power Energy Syst. 2023;148:108982. doi:10.1016/j.ijjepes.2023.108982.

6. LiuY, Liu D, Huang X, Li C. Insulator defect detection with deep learning: a survey. IET Generation Trans & Dist.
2023;17:3541-58. d0i:10.1049/gtd2.12916.

7. ZhaiY, Wang D, Zhang M, Wang J, Guo F. Fault detection of insulator based on saliency and adaptive morphology.
Multimed Tool Appl. 2017;76:12051-64. doi:10.1007/s11042-016-3981-2.

8. ZhaiY, Chen R, Yang Q, Li X, Zhao Z. Insulator fault detection based on spatial morphological features of aerial
images. IEEE Access. 2018;6:35316-26. doi:10.1109/ACCESS.2018.2846293.

9. WuQ, An]J, Lin B. A texture segmentation algorithm based on PCA and global minimization active contour model
for aerial insulator images. IEEE ] Sel Top Appl Earth Obs Remote Sens. 2012;5:1509-18. doi:10.1109/JSTARS.2012.
2197672.

10. ZouM, LiuY, FuM, Li C, Zhou Z, Meng H, et al. Combining spectral and texture feature of UAV image with plant
height to improve LAI estimation of winter wheat at jointing stage. Front Plant Sci. 2024;14:1272049. doi:10.3389/
fpls.2023.1272049.

11.  Silva RRda, Escarpinati MC, Backes Aé R. Sugarcane crop line detection from UAV images using genetic algorithm
and Radon transform. Signal, Image Video Process. 2021;15:1723-30. d0i:10.1007/s11760-021-01908- 3.

12. Oberweger M, Wendel A, Bischof H. Visual recognition and fault detection for power line insulators. In: 19th
Computer Vision Winter Workshop; 2014 Feb 3-5; Krtiny, Czech Republic. p. 1-8.

13. Tao X, Zhang D, Wang Z, Liu X, Zhang H, Xu D. Detection of power line insulator defects using aerial images
analyzed with convolutional neural networks. IEEE Trans Syst Man Cybern Syst. 2020;50:1486-98. doi:10.1109/
TSMC.2018.2871750.

14. O’Shea K. An introduction to convolutional neural networks. arXiv:1511.08458. 2015.

15. Farhadi A, Redmon J. Yolov3: an incremental improvement. In: Computer vision and pattern recognition 1804.
Berlin/Heidelberg, Germany: Springer; 2018.

16. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, et al. SSD: single shot multibox detector. In: Comput
Vis—-ECCV 2016. Proceedings of the 14th European Conference; 2016 Oct 11-14; Amsterdam, The Netherlands.
p. 21-37.

17.  Girshick R. Fast r-cnn; 2015. arXiv:1504.08083.

18. Liu C, Wu Y, Liu J, Sun Z. Improved YOLOv3 network for insulator detection in aerial images with diverse
background interference. Electronics. 2021;10(7):771. doi:10.3390/electronics10070771.

19. LiY,ZouG, ZouH, Zhou C, An S. Insulators and defect detection based on the improved focal loss function. Appl
Sci. 2022;12:10529. doi:10.3390/app122010529.

20. Miao X, LiuX, ChenJ, Zhuang S, Fan ], Jiang H. Insulator detection in aerial images for transmission line inspection
using single shot multibox detector. IEEE Access. 2019;7:9945-56. doi:10.1109/ACCESS.2019.2891123.


https://doi.org/10.1109/ACCESS.2023.3277954
https://doi.org/10.3390/electronics12153210
https://doi.org/10.1109/IJCNN.2014.6889836
https://doi.org/10.1016/j.ijepes.2023.108982
https://doi.org/10.1049/gtd2.12916
https://doi.org/10.1007/s11042-016-3981-2
https://doi.org/10.1109/ACCESS.2018.2846293
https://doi.org/10.1109/JSTARS.2012.2197672
https://doi.org/10.1109/JSTARS.2012.2197672
https://doi.org/10.3389/fpls.2023.1272049
https://doi.org/10.3389/fpls.2023.1272049
https://doi.org/10.1007/s11760-021-01908-3
https://doi.org/10.1109/TSMC.2018.2871750
https://doi.org/10.1109/TSMC.2018.2871750
https://doi.org/10.3390/electronics10070771
https://doi.org/10.3390/app122010529
https://doi.org/10.1109/ACCESS.2019.2891123

Comput Model Eng Sci. 2025;144(1) 1043

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

3L

32.

33.

34.

35.

36.

37.

38.
39.

40.

Li X, Su H, Liu G. Insulator defect recognition based on global detection and local segmentation. IEEE Access.
2020;8:59934-46. doi:10.1109/ ACCESS.2020.2982288.

Luo L, Hsu W, Wang S. Data augmentation using generative adversarial networks for electrical insulator anomaly
detection. In: Proceedings of the 2020 2nd International Conference on Management Science and Industrial
Engineering; 2020 Apr 7-9; Osaka, Japan. 2020 Apr 7-9. p. 231-6. d0i:10.1145/3396743.3396790.

Goodfellow I, Pouget-Abadie ], Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. Adv
Neural Inf Process Syst. 2014;27:139-44. doi:10.1145/3422622.

Akella R, Gunturi SK, Sarkar D. Enhancing power line insulator health monitoring with a hybrid genera-
tive adversarial network and YOLO3 solution. Tsinghua Sci Technol. 2024;29:1796-809. doi:10.26599/TST.2023.
9010137.

Li Y, Li ], Zhai Y, Meng P. Detection of self-explosive insulators in aerial images based on improved YOLO v4.
J Phys Conf S. 2022;2320(1):012025. doi:10.1088/1742-6596/2320/1/012025.

Ebadollahi S, Gill B, Khosravani H, Pour FM. Assessing the contamination intensity of Porcelain insulators using
deep learning networks by UAV. In: 14th Annual Computing and Communication Workshop and Conference
(CCWC); 2024 Jan 8-10; Las Vegas, NV, USA. p. 111-8. doi:10.1109/CCWC60891.2024.10427557.

Lyu Y, Han Z, Zhong J, Li C, Liu Z. A generic anomaly detection of catenary support components based on
generative adversarial networks. IEEE Trans Instrum Meas. 2020;69:2439-48. doi:10.1109/TIM.2019.2954757.
Tseng HY, Jiang L, Liu C, Yang MH, Yang W. Regularizing generative adversarial networks under limited data. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2021 Jun 20-25; Nashville,
TN, USA. p. 7917-27. doi:10.1109/CVPR46437.2021.00783.

Rahman MA, Wang Y. Optimizing intersection-over-union in deep neural networks for image segmentation. In:
International Symposium on Visual Computing. Cham, Switzerland: Springer; 2016. p. 234-44.

Rezatofighi H, Tsoi N, Gwak J, Sadeghian A, Reid I, Savarese S. Generalized intersection over union: a metric and
aloss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition; 2019 Jun 15-20; Long Beach, CA, USA. p. 658-66. doi:10.1109/CVPR.2019.00075.

Zheng Z, Wang P, Liu W, Li ], Ye R, Ren D. Distance-IoU loss: faster and better learning for bounding box regression.
AAAL 2020;34(7):12993-3000. doi:10.1609/aaai.v34i07.6999.

Zheng Z, Wang P, Ren D, Liu W, Ye R, Hu Q, et al. Enhancing geometric factors in model learning and inference
for object detection and instance segmentation. IEEE Trans Cybern. 2022;52:8574-86. doi:10.1109/TCYB.2021.
3095305.

Gevorgyan Z. SIoU loss: more powerful learning for bounding box regression; 2022. arXiv:2205.12740.

Karras T, Aittala M, Hellsten ], Laine S, Lehtinen J, Aila T. Training generative adversarial networks with limited
data. Adv Neural Inf Process Syst. 2020;33:12104-14.

Woo S, Park J, Lee JY, Kweon IS. Cbam: convolutional block attention module. In: Ferrari V, Hebert M,
Sminchisescu C, Weiss Y, editors. Proceedings of the European Conference on Computer Vision (ECCV). Cham,
Switzerland: Springer International Publishing; 2018. p. 3-19. d0i:10.1007/978-3-030-01234-2_1.

Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2019 Jun 15-20; Long Beach, CA,
USA. p. 4401-10.

Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T. Analyzing and improving the image quality of stylegan.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020 Jun 13-19;
Seattle, WA, USA. p. 8107-16. doi:10.1109/CVPR42600.2020.00813.

Karras T. Progressive growing of GANs for improved quality, stability, and variation; 2017. arXiv:1710.10196.
Salimans T, Kingma DP. Weight normalization: a simple reparameterization to accelerate training of deep neural
networks. Adv Neural Inf Process Syst. 2016;29.

Wang CY, Liao HYM, Yeh IH. Designing network design strategies through gradient path analysis; 2022. arXiv:
2211.04800.


https://doi.org/10.1109/ACCESS.2020.2982288
https://doi.org/10.1145/3396743.3396790
https://doi.org/10.1145/3422622
https://doi.org/10.26599/TST.2023.9010137
https://doi.org/10.26599/TST.2023.9010137
https://doi.org/10.1088/1742-6596/2320/1/012025
https://doi.org/10.1109/CCWC60891.2024.10427557
https://doi.org/10.1109/TIM.2019.2954757
https://doi.org/10.1109/CVPR46437.2021.00783
https://doi.org/10.1109/CVPR.2019.00075
https://doi.org/10.1609/aaai.v34i07.6999
https://doi.org/10.1109/TCYB.2021.3095305
https://doi.org/10.1109/TCYB.2021.3095305
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1109/CVPR42600.2020.00813

1044

41.

42.

43.

44.

45.

46.
47.

48.

49.

50.

51.
52.

53.

54.

55.

56.

Comput Model Eng Sci. 2025;144(1)

Lin TY, Dollar P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for object detection. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2017 Jul 21-26; Honolulu, HI,
USA. p. 936-44. d0i:10.1109/CVPR.2017.106.

Liu S, Qi L, Qin H, Shi ], Jia J. Path aggregation network for instance segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition; 2018 Jun 18-23; Salt Lake City, UT, USA. p. 8759-68.
doi:10.1109/CVPR.2018.00913.

Kim D, Kim S, Jeong S, Ham JW, Son S, Moon J, et al. Rotational multipyramid network with bounding-box
transformation for object detection. Int J Intell Syst. 2021;36:5307-38. doi:10.1002/int.22513.

Moon J, Jeon M, Jeong S, Oh KY. RoMP-transformer: rotational bounding box with multi-level feature pyramid
transformer for object detection. Pattern Recognit. 2024;147:110067. doi:10.1016/j.patcog.2023.110067.

Park JY, Kim ST, Lee JK, Ham JW, Oh KY. Method of operating a GIS-based autopilot drone to inspect ultrahigh
voltage power lines and its field tests. ] Field Robot. 2020;37:345-61. doi:10.1002/rob.21916.

Lewis D, Kulkarni P. Insulator defect detection. IEEE DataPort; 2021. doi:10.21227/vkdw-x769.

Shaikh Q. Forest aerial images for segmentation. Kaggle; 2018. [cited 2025 May 16]. Available from: https://www.
kaggle.com/datasets/quadeerl5sh/augmented- forest-segmentation.

Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A. The PASCAL visual object classes (VOC)
challenge. Int ] Comput Vis. 2010;88(2):303-38. d0i:10.1007/s11263-009-0275-4.

Michaelis C, Mitzkus B, Geirhos R, Rusak E, Bringmann O, Ecker AS, et al. Benchmarking robustness in object
detection: Autonomous driving when winter is coming; 2019. arXiv:1907.07484.

Snoek J, Larochelle H, Adams RP. Practical bayesian optimization of machine learning algorithms. Adv Neural Inf
Process Syst. 2012;25.

Frazier PI. A tutorial on Bayesian optimization; 2018. arXiv:1807.02811.

Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S. Gans trained by a two timescale update rule
converge to a local Nash equilibrium. Adv Neural Inf Process Syst. 2017;30:25. d0i:10.18034/ajase.v8il.9.

Zhang S, Wen L, Bian X, Lei Z, Li SZ. Single-shot refinement neural network for object detection. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition; 2018 Jun 18-23; Salt Lake City, UT, USA.
p- 4203-12. doi:10.1109/CVPR.2018.00442.

Zhu X, Su W, LuL, Li B, Wang X, Dai J. Deformable detr: deformable transformers for end-to-end object detection;
2020. arXiv:2010.04159.

Zong Z, Song G, Liu Y. Detrs with collaborative hybrid assignments training. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision; 2023 Oct 1-6; Paris, France. p. 6725-35. doi:10.1109/ICCV51070.
2023.00621.

Ren S, He K, Girshick R, Sun J.Faster R-CNN. Towards real-time object detection with region proposal networks.
IEEE Trans Pattern Anal Mach Intell. 2017;39:1137-49. doi:10.1109/TPAMI.2016.2577031.


https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/CVPR.2018.00913
https://doi.org/10.1002/int.22513
https://doi.org/10.1016/j.patcog.2023.110067
https://doi.org/10.1002/rob.21916
https://doi.org/10.21227/vkdw-x769
https://www.kaggle.com/datasets/quadeer15sh/augmented-forest-segmentation
https://www.kaggle.com/datasets/quadeer15sh/augmented-forest-segmentation
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.18034/ajase.v8i1.9
https://doi.org/10.1109/CVPR.2018.00442
https://doi.org/10.1109/ICCV51070.2023.00621
https://doi.org/10.1109/ICCV51070.2023.00621
https://doi.org/10.1109/TPAMI.2016.2577031

	Transmission Facility Detection with Feature-Attention Multi-Scale Robustness Network and Generative Adversarial Network
	1 Introduction
	2 The Proposed Framework
	3 Experiment
	4 Results and Discussion
	5 Conclusion
	References


