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ABSTRACT: Reliable human action recognition (HAR) in video sequences is critical for a wide range of applications,
such as security surveillance, healthcare monitoring, and human-computer interaction. Several automated systems
have been designed for this purpose; however, existing methods often struggle to effectively integrate spatial and
temporal information from input samples such as 2-stream networks or 3D convolutional neural networks (CNNs),
which limits their accuracy in discriminating numerous human actions. Therefore, this study introduces a novel deep-
learning framework called the ARNet, designed for robust HAR. ARNet consists of two main modules, namely, a refined
InceptionResNet-V2-based CNN and a Bi-LSTM (Long Short-Term Memory) network. The refined InceptionResNet-
V2 employs a parametric rectified linear unit (PReLU) activation strategy within convolutional layers to enhance spatial
feature extraction from individual video frames. The inclusion of the PReLU method improves the spatial information-
capturing ability of the approach as it uses learnable parameters to adaptively control the slope of the negative part
of the activation function, allowing richer gradient flow during backpropagation and resulting in robust information
capturing and stable model training. These spatial features holding essential pixel characteristics are then processed by
the Bi-LSTM module for temporal analysis, which assists the ARNet in understanding the dynamic behavior of actions
over time. The ARNet integrates three additional dense layers after the Bi-LSTM module to ensure a comprehensive
computation of both spatial and temporal patterns and further boost the feature representation. The experimental
validation of the model is conducted on 3 benchmark datasets named HMDB51, KTH, and UCF Sports and reports
accuracies of 93.82%, 99%, and 99.16%, respectively. The Precision results of HMDB51, KTH, and UCF Sports datasets
are 97.41%, 99.54%, and 99.01%; the Recall values are 98.87%, 98.60%, 99.08%, and the F1-Score is 98.13%, 99.07%,
99.04%, respectively. These results highlight the robustness of the ARNet approach and its potential as a versatile tool
for accurate HAR across various real-world applications.
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1 Introduction
In computer vision (CV), HAR is employed to identify and classify human activities in videos or real-

time camera visuals [1–3]. It is the process of automatically recognizing various activities, such as walking,
running, jumping, and waving, from input samples [4]. The process of HAR includes various phases, such
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as detecting and tracking individuals in the video, extracting relevant features from their movements, and
classifying these features using various machine learning (ML) or deep learning (DL) approaches [5,6].
There exist various real-world applications of HAR across various domains, i.e., surveillance and security,
where such systems can detect suspicious or anomalous behavior in public spaces, which can ultimately
enhance communal safety and aid regulation implementation efforts [7]. Further, in sports analytics, such
HAR systems can deliver a detailed analysis of the movements and actions of sportsmen, which can be
used by the players for performance and strategy development. In addition, healthcare units can use such
systems to look after elderly patients or those with movement disorders by recognizing specific actions that
can generate alerts for caregivers to signify falls or other critical situations [8]. In the domain of human-
computer interaction, HAR applications can provide more spontaneous interfaces that permit users to
control devices through gestures and can enhance accessibility and user experience. The importance of such
systems lies in their potential to reliably understand human behavior through visual data [9]. Accurately
recognizing actions, such as HAR applications, can deliver valuable insights and real-time responses in
numerous domains. In security, effective HAR systems deliver quicker and more accurate threat detection.
However, in the areas of sports and healthcare, such systems translate to better performance monitoring
and patient care, respectively [10]. In addition, due to the modern advances in technology, the integration
of HAR systems with other applications can lead to the development of smart environments and innovative
applications, such as driving progress in fields such as robotics, virtual reality, and others [11]. So, automated
design HAR systems hold significant promise for improving safety, efficiency, and quality of life.

Researchers have employed a variety of advanced techniques for effective HAR, utilizing both traditional
methods (ML) [12,13] and cutting-edge DL approaches [14,15]. Traditional ML approaches are based on hard-
coded feature descriptors, such as Histogram of Oriented Gradients [16], Scale-Invariant Feature Transform
(SIFT) [17], and Spatio-Temporal Interest Points [18]. Such computed features are later recognized into
various groups with the help of numerous ML predictors such as Support Vector Machines (SVMs) [19]
or Random Forests (RFs), and others [20]. These conventional approaches are very efficient in accomplish-
ing CV tasks; however, they have significant limitations. Handcrafted features require extensive domain
knowledge and manual tuning, which makes them less flexible and scalable. In the area of HAR, which
comprises long video sequences, these approaches often fail to capture complex motion patterns and are
sensitive to variations in lighting, viewpoint, and occlusion. Therefore, these methods show suboptimal
HAR performance in real-world scenarios [21]. The field of HAR has been revolutionized with the advent
of DL frameworks such as CNNs and Recurrent Neural Networks (RNNs) to overcome these limitations
[1]. CNNs are utilized to automatically learn spatial features from video frames by eliminating the need
for manual feature extraction [22]. These approaches are robust in learning complicated patterns and are
effective in tackling the variations in the input data. RNNs, with their variants such as Long Short-Term
Memory (LSTM) networks, are skillful at modeling temporal dependencies between frames and permit the
effective capture of motion dynamics with time [23]. In addition, the latest approaches involve 3D CNNs,
which compute spatiotemporal aspects of videos simultaneously by applying 3D convolutions over the video
data. Such techniques permit the direct modeling of temporal progression within the spatial context of the
video sequences [24]. Further techniques include Transformer approaches, which were originally designed
for natural language processing and have been explored for HAR as well due to their capability to handle
long-range dependencies and parallelize training [25]. Techniques such as Two-Stream Networks combine
spatial and temporal information by processing RGB frames and optical flow separately before merging
their representations and can effectively capture both appearance and motion cues. In literature, attention
mechanisms have also been incorporated by researchers to focus on the most informative parts of a video
sequence to enhance the ability of approaches to differentiate between similar actions and improve overall



Comput Model Eng Sci. 2025;144(1) 431

accuracy. These diverse DL models are often combined and fine-tuned to drive the current advancements
in HAR [24]. These methods deliver a more robust and precise understanding of human actions in diverse
domains by significantly outperforming traditional methods and paving the way for more sophisticated and
scalable solutions [14].

Despite significant progress in the area of DL for effective HAR applications, there remain several
limitations, including one major issue is the requirement for large-scale labeled datasets to train such models
effectively [26]. In addition, DL approaches such as those based on CNNs and RNNs have shown impressive
performance; however, they are computationally intensive and require considerable hardware resources
for both model tuning and inference. Such dense frameworks are a barrier for real-time applications
or deployment on edge devices with limited processing power. Another limitation is the generalization
capability of these models. DL models are sensitive to changes in the environment, such as variations in
lighting, background, and viewpoint. Such techniques potentially lead to decreased performance when
applied to different datasets or real-world scenarios separate from the training conditions [27]. These models
struggle with occlusions and complex interactions involving multiple individuals and are unable to effectively
learn delicate and complex dynamic interactions. Interpretability of the DL approaches is also another
concern due to their black-box nature, making it difficult to understand their decision-making processes and
diagnose errors. Lastly, the imbalanced data samples where specific actions are over-represented while others
are under-represented can introduce model biases, which can affect their ability to recognize less frequent
actions precisely. Therefore, addressing these limitations is crucial to ensure the reliable and robust delivery
of the HAR systems in diverse real-world settings [7].

This study proposes an effective DL approach called ARNet to address the existing issues in this field. The
ARNet framework utilizes both the spatial and temporal information of input samples and comprises two
main modules, which are CNN and Bi-LSTM networks. The CNN part proposed a refined InceptionResNet-
V2 architecture utilizing the parametric rectified linear unit (PReLU) activation approach in the convolution
layers to effectively extract spatial features from individual video frames as the PReLU method uses learnable
parameters to adaptively control the slope of the negative part of the activation function, allowing richer
gradient flow during backpropagation for more robust information capturing and stable model training.
These spatial features are then passed to the Bi-LSTM model to execute temporal analysis and understand the
dynamic behavior of actions over time. Next, the ARNet model incorporates three additional dense layers
to refine and nominate the relevant features. This step ensures a comprehensive learning of both spatial and
temporal information. Finally, the computed features are passed to the classification part to execute the HAR
task. This architecture of the ARNet assists it in accurately recognizing complex actions in videos and makes
it a powerful tool for various HAR applications. The significant contributions of this study are listed below:

• The indicated ARNet architecture introduces a refined InceptionResNet-V2 architecture by incorporat-
ing the PReLU activation function in the convolutional layers. This innovation enhances the model’s
ability to learn a more detailed set of spatial features from videos at the frame level by addressing the
limitations of the traditional activation function.

• The advantages of CNN for spatial feature extraction are combined with Bi-LSTM networks to embed
spatiotemporal learning behavior in the ARNet architecture, which leads to a more comprehensive
understanding of the dynamic behavior of actions over time.

• The incorporation of the additional dense layers in the ARNet model enhances the representation of
extracted features and ensures a thorough capture of both spatial and temporal aspects, which ultimately
enhances the capability of the model to recognize complex actions in videos.
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• A strong experimental analysis is performed to confirm the robustness of the ARNet in effectively
addressing existing issues in the field and confirm its scalability, recall, and generalization across various
video datasets and transformation conditions.

The remaining sections are organized in the paper as follows: Section 2 discusses existing studies on
AR, Section 3 provides details about the proposed ARNet, Section 4 introduces the datasets, parameters,
and results, and Section 5 presents the conclusions. In addition, Table 1 provides the complete forms of the
abbreviations used in this study.

Table 1: Abbreviations and their definitions

Abbreviation Full form
CNN Convolutional Neural Network

PReLU Parametric Rectified Linear Unit
HAR Human Action Recognition
ML Machine Learning
DL Deep Learning
CV Computer Vision

SIFT Scale-Invariant Feature Transform
SVM Support Vector Machines
LSTM Long Short-Term Memory

RF Random Forest
SSD Single-shot detector
MLP Multi-layer perceptron

MoCap Motion capture
IMU Inertial measurement units
NB Naïve Bayes

DNN Deep neural network
STO Spider Monkey Optimization
STA Spatio-temporal attention

V Video sequence
f Frames
y Predicted value
s Refined InceptionResNet-V2 values
z Enhanced features

W Weights
b Biases

FC Fully Connected
TP True Positive
FP False Positive
TN True Negative
FN False Negative
CM Confusion Matrix
ELU Exponential linear unit

SELU Scaled exponential linear unit
LRCN Long-term recurrent convolutional network

(Continued)
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Table 1 (continued)

Abbreviation Full form
CAM Channel attention mechanisms
GRU Gated recurrent unit

STHARNET Spatio-temporal human action recognition network
CBVR content-based video retrieval
AGOP Adaptive Genetic Optimization Procedure

2 Related Work
This section analyzes the existing works performed for action recognition from visual data. The existing

studies used for the said problem are broadly distributed into 2 types, termed conventional ML approaches
and DL works.

Initially, ML approaches were discussed and used recently by the research community for performing
HAR. Garcia-Gonzalez et al. [28] developed a conventional ML approach for HAR. For this, the work initially
developed a dataset containing various actions performed by humans in the world. After this, various ML
techniques were applied to the collected samples using different hyperparameter descriptions. The approach
attains the best results using the random forest (RF) classifier with a maximum accuracy score of 92.97%;
however, the results need improvement. Kapoor et al. [29] discussed another ML approach, where the
researchers employed the OpenPose tool to compute the features of humans present in the visual sample.
Next, for classification, the approach used various ML and DL classifiers such as SVM, LSTM, multi-layer
perceptron (MLP), and others. The approach has attained an accuracy result of 87.77% along with the SVM
predictor; however, the scores need enhancements. Azmat et al. [30] proposed an approach to perform
the classification of various human activities. For this, the indicated approach first distributed the video
into frames and used a bilateral filter to boost the area of interest. Next, the work employed quick shift
segmentation to separate the human shape. Next, 13 skeleton features were computed along with location,
angular relationships, and 3D point clouds. An expectation-maximization technique with a Gaussian mixture
approach designed for elliptical groups. The focused points on the ellipses were traced throughout the
activity. The NB optimizer was utilized to optimize the computed feature set, while a deep classifier was
applied to categorize activities. The approach performs well for HAR; however, the approach needs to be
evaluated on a more complex data sample to prove its robustness. Even though ML approaches have been
extensively employed for HAR, these methods fail to perform well in real-world scenarios.

The robustness and effectiveness of the DL approaches have led researchers to utilize them for HAR.
Cob-Parro et al. [31] projected a DL network for recognizing actions from the visual data. For this, the
work employed a MobileNetv2-based single-shot detector (SSD) to locate people with various actions by
drawing the bounding boxes around them. Next, the located actions are passed to the LSTM approach to
perform the classification task. The method reported the highest precision of 99.28% on the KTH dataset;
however, it was not effective in locating the smallest movements, such as teeth brushing. Zhang et al. [32]
proposed a hierarchical video action classification model by designing a video-language learning approach.
The model learns the relationships between various hierarchical video levels and employs a top-down
constraint to enhance the accuracy of recognition predictions. The work performs well for action recognition;
however, it is specifically designed for medical field-related actions and needs evaluations on a generic and
standard data sample to prove its effectiveness. Disabling person activity recognition is vital for various
clinical applications, including intensive care, epileptic seizure diagnosis, and home sleep monitoring. Precise
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determination of in-bed actions from visuals is essential, but several challenges exist. These include the gap
between lab and clinical settings, the need for non-intrusive nursing, and the restricted availability of labeled
medical activity data. Therefore, Karácsony et al. [10] proposed an approach to focus on epileptic seizure
classification and examine the challenges and trends in video-based in-bed monitoring, including monocular
3D motion capture (MoCap) and automated seizure classification. The work highlighted the potential of
using 3D MoCap and skeleton-oriented HAR along with transfer learning to improve clinical diagnoses,
though several issues remain, such as spatiotemporal permanency, tackling hidden objects, and robustness.
Mekruksavanich et al. [33] proposed a DL model to address the challenges of recognizing activities when
device positioning is uncontrolled. For this purpose, the approach proposed a progressive residual DL
approach called Att-ResBiGRU, which performed well for location-dependent and independent HAR tasks.
The approach is tested using 3 data samples and reported F1 scores of 86.69%, 96.23%, and 96.44% on the
PAMAP2, REALWORLD16, and Opportunity datasets, respectively. The work performs well for HAR, with a
huge computational burden. Khan et al. [34] indicated a DL model that utilized wearable devices, including
inertial measurement units (IMUs), Ambient sensors, GPS, along Audio sensors, to accurately detect and
classify human activities. Utilizing data from the Opportunity and Extrasensory data samples, the study
introduced an advanced methodology with novel feature extraction techniques. The framework employed
the GPS, audio, and IMU sensors to perform the localization task, while the IMU and Ambient sensors
were applied for locomotion HAR. The methodology employed CNNs for recognizing indoor/outdoor
actions and LSTM networks for locomotion activities. Evaluated with k-fold cross-validation, the system
achieved classification results of 97% for locomotion on the Opportunity dataset, 89% on the Extrasensory
dataset, and 96% for indoor/outdoor activities on the Extrasensory repository; however, it needs further
performance improvements.

Khan et al. [8] discussed another DL model, where the dense keypoints are first calculated with the help
of the CNN approach VGG19. Next, key points at varying angles were taken from horizontal and vertical
gradients. Then, features from both previous steps were combined and later passed to nominate the relevant
information based on relative entropy, mutual information, and strong correlation coefficient (SCC). At last,
the selected optimal set of sample features was utilized to train the Naïve Bayes (NB) predictor to estimate the
label. The approach was tested on various data samples and reported the highest accuracy value of 99.40% on
the YouTube dataset; however, the work requires evaluation on a more challenging dataset. Kaya et al. [35]
proposed a DL approach for HAR from the visual data. For this, the samples were initially preprocessed to
make them appropriate for the DL approach. The processed data was then passed to the 1D-CNN approach
to compute the visual information of samples and accomplish the classification of numerous human actions.
The approach executes effectively for HAR; however, it is unable to tackle the unbalanced data. Kolkar et al.
[36] developed a dense model for performing HAR from the video samples. For this, the approach is located
around 156 temporal and frequency-oriented keypoints. Then, a deep neural network (DNN) approach with
the Spider Monkey Optimization (DNN-SMO) strategy was proposed for categorizing human activities
employing sensor data. The fitness method of the spider monkey was introduced in the hidden layer of
the NN to boost classification results. Local and global leader fitness methods enhanced the information-
capturing capabilities of the model, executing keypoint-level fusion and beforehand categorization. The
work was evaluated using four different datasets, and the highest results were reported at 98.92% over the
WISDM dataset; however, the results need further improvements. Brishtel et al. [37] also suggested a DL
approach that transformed radar data into spectrograms for HAR. For this, the approach computed three
maps, covering around 1 s, and processed them independently by employing the ResNet-18 approach. The
keypoints computed from the last three frames were stored in a ring buffer, so only the newest frame needs
processing when it arrives. The information captured from 3 frames was then combined and categorized
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by a fully connected layer. The work also introduced a dataset for model evaluation; however, it needs
evaluation on a standard sample to prove its robustness. Surek et al. [38] evaluated a DL approach employing
the residual model with a vision transformer for performing HAR from the video samples. The approach
shows an efficient solution for HAR; however, categorization performance needs improvement. Alhakbani
et al. [39] employed a pre-trained CNN model, VGG16, for accomplishing HAR in an end-to-end way,
where the utilized CNN approach computed a dense group of visual characteristics and performed the
recognition task. The approach was evaluated using the KTH dataset, and an accuracy rate of 98% was
reported. The approach performs well for HAR; however, it comes at the cost of increasing the computing
burden. Many researchers have adopted the idea of using both spatial and temporal information of the videos
for HAR, such as Dwivedi et al. [40] proposed a DL approach for HAR by using spatiotemporal sample
analysis. Initially, Inceptionv3 was used for feature estimation from the input videos at the spatial level.
The computed features were later communicated to the LSTM approach to perform the sequence analysis
and accomplish the classification task. The approach reported the highest classification score of 98.87%,
however, with a huge computing burden. The literature highlighted numerous DL works for unethical HAR,
which effectively learn low-level time-based and pixel-level keypoints; however, face challenges with high-
level visual information, limiting their performance. This issue leads to poor learning capabilities in deep
learning models. In digital forensics, detailed video analysis is crucial for cybercrime examination and
anticipation. For this, a spatiotemporal HAR approach was proposed in [41], which combined a 2-stream
inflated 3D ConvNet (I3D) and spatiotemporal units. The I3D technique boosted 3D CNN performance by
converting 2D conv windows into 3D, while the spatio-temporal attention (STA) unit enhanced knowledge
by concentrating on the pixel and time-based information of each video frame. The approach was tested using
four different datasets and attained the highest accuracy value of 97.20% over the NPDI dataset; however, the
work needs extensive samples for training. A comparison of the existing approaches is provided in Table 2.

Table 2: Comparative analysis of the existing techniques

Reference Technique Dataset Accuracy
(%)

Limitations

[28] Conventional
features + RF

Custom dataset 92.97 Needs evaluation on a larger and
standard dataset

[29] OpenPose + SVM Drone-Action
dataset

87.77 The model needs evaluation on
datasets with more complex human

activities

[30]
13 skeleton features UAVGesture 95 The approach needs to enhance
+ Deep classifier DroneAction 90 its generalization power

UAVHuman
dataset

44

[31] MobileNetv2-
based SSD detector

+ LSTM

KTH 98 The model is not effective in
locating the tiny movements

[32] Hierarchical
features

Custom dataset 98 The work is designed for medical
field-related actions only

[33]
PAMAP2 96.61 The work is computationally

Att-ResBiGRU REALWORLD16 96.11 complex

(Continued)
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Table 2 (continued)

Reference Technique Dataset Accuracy
(%)

Limitations

Opportunity
datasets

90.27

[34] CNN + LSTM Opportunity 97 The work needs further
Extrasensory

dataset
89 performance improvements

[8] SCC + NB YouTube dataset 99.40 The approach needs evaluation on
a more advanced dataset

[35] 1D-CNN UCI-HAPT 96.90 The work is unable to tackle the
unbalanced data

[36] 156 temporal and
frequency-oriented

features +
DNN-SMO

WISDM 98.92 The work requires performance
improvements

[37] ResNet-18 Custom dataset 71.30 The work requires performance
improvements and testing on a

more challenging dataset
[38] Vision transformer HMDB51 41.90 The approach needs further

enhancements
[39] VGG16 KTH 98 The work is computationally

complex
[40] Inceptionv3 +

LSTM
Custom dataset 98.87 The work lacks capturing

long-range dependencies in visual
data

[41] I3D NPDI 97.20 The work needs extensive samples
for training

The comparison provided in Table 2 indicates that while various ML, DL, and hybrid approaches
achieve competitive accuracy, several challenges persist in the domain of HAR. Common limitations
include reliance on handcrafted or shallow features, poor generalization to complex or diverse datasets,
computational inefficiencies, inability to model long-range dependencies, and limited integration of spatial
and temporal information. In addition, some high-performing models require extensive training data or
are designed for specific application domains, restricting their scalability and adaptability. The proposed
ARNet framework introduces a unified and robust approach that combines the strengths of both CNNs and
RNNs for comprehensive spatial-temporal modeling to address these limitations. First, the spatial feature
extractor is built on a refined InceptionResNet-V2 architecture that integrates PReLU activation functions
within convolutional layers, enabling adaptive learning of complex spatial features while maintaining model
stability and efficient training. This directly mitigates the issues of shallow feature extraction and poor
adaptability to visual variations such as lighting, background clutter, and subtle motions. Second, the
Bi-LSTM module captures long-range temporal dependencies in both forward and backward directions,
enabling the model to understand dynamic action sequences more effectively than models relying solely on
short-term temporal features. Third, to enhance representation and decision-making capacity, three dense
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layers are appended after the Bi-LSTM, supporting deeper fusion and refinement of learned features. This
layered integration not only ensures effective spatial-temporal cooperation but also raises scalability across
varied datasets. In addition, ARNet is trained and evaluated with cross-corpus testing to demonstrate its
generalization power, making it suitable for real-world applications such as surveillance, healthcare, and
human-computer interaction.

3 Proposed Method
This study introduces a novel framework called the ARNet architecture, which is designed for robust

HAR in video sequences. The approach comprises two main modules, which are the CNN and a Bi-
LSTM network. The CNN part proposed a refined InceptionResNet-V2 architecture by utilizing the PReLU
activation approach in the convolution layers to effectively extract spatial features from individual video
frames. These spatial features are then passed to the Bi-LSTM model to execute temporal analysis to
understand the dynamic behavior of actions over time. Next, the ARNet model incorporates three additional
dense layers to refine and nominate the relevant features. This step ensures a comprehensive learning of
both spatial and temporal information. Finally, the computed features are passed to the classification part to
execute the HAR task. Such architecture of the ARNet assists it in accurately recognizing complex actions
in videos and makes it a powerful tool for various HAR applications. A detailed overview of the ARNet is
provided in Fig. 1, and detailed steps are explained in Algorithm 1.

Figure 1: The workflow of the ARNet
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Algorithm 1: ARNet—human activity recognition framework
Input: A video sequence V = {f 1, f 2, ..., f n} where fi are video frames
Output: Predicted activity label y
//Preprocessing:

For each frame f i ∈ V :
Resize and normalize f i.

//Spatial Feature Extraction:
For each frame f i ∈ V : //f = frames, V = video sequence

si ← Refined InceptionResNet-V2(f i) using PReLU activation //s =
refined inceptionresnetv2 values

//Temporal Feature Learning:
T ← Bi-LSTM({s1, s2, ..., sn}) //T = temporal features

//Feature Enhancement via Dense Layers:
z1 ← ReLU(W1T + b1) //z1 = enhanced features of dense layer-1

z2 ← ReLU(W2z1 + b2) //z2 = enhanced features of dense layer-2
z3 ← ReLU(W3z2 + b3) //z3 = enhanced features of dense layer-3

//Classification:
y ← Softmax(Wf z3 + bf ) //y = predicted values

Return the predicted label y

3.1 CNN Module
The work focuses on proposing an automated framework for HAR in video sequences called the ARNet

approach. The first part of the ARNet is a CNN model that utilizes a pre-trained InceptionResNet-V2 [42]
model. The utilization of the pre-trained CNN approach is advantageous in several ways, as it utilizes the
previously learned knowledge from a large data sample such as ImageNet to solve a new problem such as
HAR. The pre-trained CNNs are skillful at learning hierarchical visual aspects by initially computing low-
level features such as edges and textures, then developing to middle-level features such as shapes and patterns
and eventually taking high-level features that represent complex objects and scenes. Therefore, using the
capabilities of the InceptionResNet-V2 model in the ARNet architecture ensures that the proposed model can
effectively capture the spatial patterns present in each video frame. These feature capabilities are mandatory
for the reliable implementation of HAR, as low-level features help identify basic motion and contours,
middle-level features assist in recognizing specific body parts and their movements, and high-level features
enable the understanding of complex interactions and activities. So, the employment of a pre-trained model
in the ARNet architecture enables it to vigorously process and interpret the complicated details of each frame
and ensure robust spatial feature extraction. A view of this process is presented in Fig. 2.



Comput Model Eng Sci. 2025;144(1) 439

Figure 2: A view of the transfer learning procedure

3.2 Refined Inception-ResNet-V2
The proposed ARNet model includes a refined Inception-ResNet-V2 CNN framework by replacing the

ReLU activation approach with PReLU in the convolution layers of the base models. The main reason for
selecting the Inception-ResNet-V2 as the spatial-level information-capturing module of the ARNet is its
impressive results in extracting hierarchical features from visuals, which is demanding for complicated tasks
such as HAR. The InceptionResNet-V2 framework joins the strengths of Inception and residual connections
and presents a powerful combination that boosts feature extraction and network training efficiency. The
employed CNN architecture is well-suited to the problem (HAR) as it outperforms in capturing both fine-
grained facts and sophisticated semantic features of long video sequences. The InceptionResNet-V2 approach
is composed of 3 major blocks called the Inception-ResNet-A, Inception-ResNet-B, and Inception-ResNet-C
units, respectively (Fig. 3). These blocks perform an important role in capturing the relevant information
for HAR, such as the Inception-ResNet-A block, which mainly focuses on capturing local patterns within
the input frames. This unit comprises several parallel convolutional layers with variable window sizes, which
enables it to simultaneously compute different pixel frequencies. The network effectively learns a dense set
of low-to-mid-level keypoints by combining these features through concatenation. The ability of A-block
to capture the frame information at diverse scales empowers it to recall complex visual movements and
local changes, which are critical for reliable HAR applications. Next, the B-block takes the characteristics
extracted by the first block and focuses on learning more abstract, mid-level features. The B-block of the
InceptionResNet-V2 model incorporates residual links, which assist the model in mitigating the vanishing
gradient problem and facilitate the training of deeper networks. The residual links permit the model to
acquire identity mappings and capture complex patterns and relationships between features. Such behavior
of the B-block of the model helps the network to understand the temporal context and relationships
between consecutive frames, which ultimately boosts the ARNet’s power to recognize dynamic actions.
Last, the C-block of the model captures high-level semantic information by using broader convolutional
layers and residual links to extract complex representations of the input frames. This unit learns high-
level patterns and interactions between different objects and classes within the input samples. Further, the
refined Inception-ResNetv2 architecture allows the ARNet to take advantage of a comprehensive feature
computation process that spans multiple levels of abstraction. The combined strengths of inception modules
and residual connections enable ARNet to efficiently and effectively capture the spatial nuances of each frame.
Further, the employment of the PReLU activation boosts the ability of the CNN module to extract a more
powerful set of sample features, which is described in detail in the later section. A representation of the
refined Inception-ResNet-V2 is given in Fig. 4.
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Figure 3: Refined Inception-ResNet-V2 approach

3.2.1 Convolution Layer
The convolution layers of the refined Inception-ResNet-V2 approach are focused on extracting the dense

spatial information from a given visual sample, which is numerically explained in Eq. (1):

V T
u = f

⎛
⎝ ∑v∈Mi

(ST
vu∗V T−1

v + βT
u
⎞
⎠

(1)

where T is the total layers of the model, and V and * are the keypoints vector with window S, and the
convolution operation. Further, β is the biased component, and Mi is the keypoint maps. As per network
requirements, the size of all frames is set to 229 × 229.

Figure 4: (Continued)
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Figure 4: A thorough representation of the refined Inception-ResNet-V2 model: (a) stem block, (b) A block,
(c) reduction unit, (d) B block, (e) reduction B, and (f) C block

3.2.2 Activation
The implementation of ARNet is selected to enhance the feature extraction capabilities of the Inception-

ResNetv2 architecture by replacing the ReLU activation function with the PReLU in the convolutional layers.
This decision was motivated by PReLU’s ability to learn adaptive parameters for each neuron during training,
which can help mitigate the issue of dying neurons commonly associated with ReLU. In comparison to
ReLU, which sets negative scores to zero, the PReLU method employs learnable parameters that adaptively
regulate the slope of the negative part of the activation function. The capability of the PReLU method to
hold minute negative scores permits it to hold a richer gradient flow in the phase of backpropagation. Such
behavior of this activation method causes more effective and stable training of DNNs. Further, it boosts the
model’s empowerment in computing a diverse and complex set of sample information. Such behavior of the
activation method is beneficial for HAR, where taking refined disparities and patterns in video frames is
vital. Therefore, the PReLU function assists the ARNet approach in better discriminating between different
actions and enhancing the overall discriminative power of the model by holding and seeking information
from the negative scores. In addition, PReLU can improve model generalization by reducing overfitting and
allowing the network to learn more robust features from the data. Such characteristics are important for HAR
applications where the designed automated systems must accurately classify diverse and potentially complex
actions across different environments and conditions. So, the introduction of the PReLU into the activation
layers of the ARNet model boosts its ability to extract meaningful visual patterns and leads to more accurate
and reliable action recognition performance.

PReLU(i) =max(0, i) + a ×min(0, i) (2)
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where i is the input to the activation function, and a denotes the learnable parameter that controls the slope of
the negative part of the function. The design guarantees that PReLU holds the positive activations unchanged
by permitting negative activations to be scaled by the parameter a, by introducing flexibility and compliance
in the activation behavior. A comparative analysis of the graphs of ReLU and PReLU activation functions is
shown in Fig. 5.

Figure 5: Comparison of ReLU vs. PReLU [43]

3.2.3 Pooling Layer
In the next phase, right after the convolution layers, an average pooling layer is introduced in the ARNet,

which aggregates spatial information along every feature map and assists in reducing the dimensionality by
keeping key features. For a 2D input feature map X, the average pooled output Y at position (i, j) with a
window size k × k is computed as:

Y (i , j) = 1
k2

k−1
∑
m=0

k−1
∑
n=0

X(i +m, j + n) (3)

where (i, j) is the top-left coordinate of the pooling window in the input feature map. The final output of this
part is a feature vector with dimensions of 1536 per frame, holding important pixel-level information that is
later fed into the Bi-LSTM unit for temporal examination.

3.3 Bi-LSTM
After the pooling layers, the next layer is the Bi-LSTM module in the ARNet architecture [44]. The

Bi-LSTM module inherits the competencies of RNNs and focuses on processing sequential information
by preserving a hidden state that changes over time. The conventional RNNs are open to the vanishing
gradient problem, where gradients diminish exponentially over long sequences. Therefore, RNNs are not
proficient in handling long-term dependencies, such as in the case of HAR. Therefore, this study utilized
the bi-directional LSTM approach in the ARNet, which is an extended form of the LSTM and was originally
designed to overcome the problems. Initially, the LSTM approach tackles the RNN’s issues by including
gating mechanisms, i.e., input, forget, and output gates that control the information flow in the system. Such
an architectural description of the LSTM allows it to remember or forget nominated past information and
makes it appropriate for jobs demanding the modeling of time-based dynamics over prolonged sequences.
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The final keypoints vector computed by the CNN unit is described as kt , and the hidden state and the
memory cell are denoted by Ct−1 and bt−1. The numeric implementation of LSTM is provided in Eqs. (4)–(8).

pt = σ( k pkt + c pCt−1 + b pbt−1 + -Bp) (4)
gt = σ( k g kt + c gCt−1 + b gbt−1 + -Bg) (5)
bt = gtbt−1 + pt tanh( kb kt + cbCt−1 + βb) (6)
ot = σ( ko kt + coCt−1 + bobt + -Bo) (7)
Ct = ot . tanh(bt) (8)

where σ is the sigmoid activation function, t to time, and p, g, o, and c are the input, forget, output gates, and
memory cell states, respectively. Further, the corresponds to weights and -B to biases.

However, LSTMs have limitations in capturing complex temporal relationships in action recognition
tasks. They struggle with modeling very long-term dependencies and are prone to forgetting earlier context
when processing lengthy video sequences. In addition, LSTMs function consecutively and lack parallel
processing abilities, which causes slower model tuning and inference times for comprehensive video datasets.
The Bi-LSTM module of the ARNet model overcomes these challenges by processing video samples
bidirectionally and simultaneously including visual information from both past and future settings. Such
a model architectural description allows it to compute complex progressive attributes inherent in action
sequences and boost the robustness of HAR. A view of the Bi-LSTM module is provided in Fig. 6.

Figure 6: A pictorial view of the structure of the Bi-LSTM model
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This part contains two categories of hidden units called the forward (Cr
t ) and backward (Cw

t ) states. The
Cr

t analyzes video dynamics in a forward manner of time, i.e., t = 1, 2, 3, . . . , T, and the Cw
t in a backward

manner as t = T, T − 1, . . ., 1. Finally, the outcome ot is calculated by joining the values computed from Cr
t ,

and Cr
t . The mathematical elaboration of Bi-LSTM is provided in Eqs. (9)–(11).

Cr
t = tanh( r

kc kt + r
cc Cr

t−1 + -Br
c) (9)

Cw
t = tanh( w

kc kt + w
cc Cw

t+1 + -Bw
c ) (10)

ot = r
cc Cr

t + w
cc Cw

t + -Bo (11)

3.4 Dense Layers
After the Bi-LSTM unit, the ARNet architecture includes three dense layers, along with the ReLU acti-

vation method and a dropout layer. The primary purpose of these added layers is to boost the empowerment
of the approach and highlight visual characteristics relevant to HAR by eliminating noise and unwanted
background data. This modification in the ARNet model enables it to accurately detect and classify actions,
particularly with diverse transformation settings such as fluctuations in lighting, color, and pixel locations of
key action points. So, by including these layers, the proposed model can effectively integrate and refine earlier
computed visual information and improve its capacity to differentiate between diverse groups of human
actions. Let o ∈ Rn represent the output feature vector from the Bi-LSTM module. The dense layers operate
as follows:

Z1 =W1o + b1 , h1 = ReLU(Z1) (12)
Z2 =W2h1 + b2, h2 = ReLU(Z2) (13)
Z3 =W3h2 + b3, h3 = ReLU(Z3) (14)

where W and b are the weight matrices and bias vectors for each dense layer. At last, a small dropout of
0.25 is added to alleviate overfitting issues by haphazardly disabling neurons in the phase of model tuning,
which further assists the model in enhancing its robustness and generalization. After this, the computed
information is passed to the last layer, which is described in the subsequent section.

3.5 Fully Connected (FC) Layer
The last part of the ARNet architecture is an FC layer containing a softmax activation designated to

execute the action categorization task. The main task of this layer is to calculate the likelihood spread along
predetermined action groups based on the information captured by the previous layers. The activation
method, which is softmax in this case, ensures that the final probabilities summarize to 1, simplifying
interpretation and decision-making in HAR. The numeric form of the softmax is given in Eq. (15).

δ(Ox) =
exp(Ox)

∑n−1
q=0 exp(Om)

(15)

where (Ox ) and (Oq) are the final and input vectors, and q shows the corresponding number of classes.

3.6 Loss Method
ARNet’s softmax layer employs the cross-entropy loss method [45] to measure the disparity between

predicted action probabilities and the actual labels during training. Cross-entropy loss is particularly suited
for multi-class classification tasks such as action recognition, where it penalizes incorrect classifications more
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severely, encouraging the model to output confident probabilities for the correct action classes. Further, it is
proficient in handling the class imbalance problem. Mathematically, the cross-entropy loss F is defined as:

F = 1
N

q

∑
j=1

log( esq

∑k es j
) (16)

where q is neurons in the final layer, and sq is the input vector.

4 Results
The datasets are utilized to test the model performance, the parameters employed for measuring results,

and a detailed discussion of the obtained scores.

4.1 Dataset
For the tuning and testing of ARNet, this study utilized three widely recognized action recognition

datasets: HMDB51 [46,47], UCF Sports [48,49], and KTH [50,51]. The HMDB51 dataset consists of 6766
video clips spanning 51 distinct action categories, including various everyday activities such as running,
eating, and dancing. The samples for this dataset are collected from movies, online available clips, and
various other sources, providing a diverse and complex set of human actions captured in a wide range of
environmental conditions such as varying camera angles, lighting conditions, and backgrounds. The UCF
Sports data sample contains a total of 150 visual sequences of sportspersons carrying out various sport-related
actions such as diving, golf swinging, and pole vaulting. This dataset is considered due to the varying nature
of sports actions present in this dataset, with cluttered backgrounds, which make it a challenging dataset
in this domain. Finally, the KTH action repository contains 600 videos from 6 daily actions performed by
humans in real-world scenarios such as walking, jogging, running, boxing, hand-waving, and handclapping.
The visuals of this sample were taken under controlled settings with the same backgrounds and a fixed
camera. This study performed a thorough evaluation of the ARNet approach to show its robustness against a
wide spectrum of HAR by taking datasets of diverse nature, guaranteeing vigorous results and generalization
competencies in real-world trends.

4.2 Performance Measurement Parameters
Several standard measures, such as accuracy and true positive rate (TPR), are computed to review the

behavior of the model for HAR. For the problem under analysis, TPR indicates the ratio of the number
of appropriately recognized actions to the total actions that belong to the group (both true positives and
false negatives). TPR computed the capability of the approach to classify actions from a specific group. The
mathematical formula for computing TPR is given in Eq. (17).

TPR = TP/(TP + FN) (17)

where

• TP (True Positives) is the number of actions correctly identified as the true class.
• FN (False Negatives) is the number of actions that belong to a particular class but were incorrectly

identified as a different class.

Accuracy in HAR is the ratio of the number of correctly identified actions (both true positives and true
negatives) to the total number of actions. Accuracy is described in Eq. (18).

Accurac y = (TP + TN)/Total Actions (18)
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where

• TP (True Positives) is the number of actions correctly identified as the true class.
• TN (True Negatives) is the number of actions correctly identified as not belonging to a particular class.

Total Actions is the sum of all actions, including true positives, true negatives, false positives, and false
negatives. This can be expanded to:

Total Actions = TP + TN + FP + FN (19)

FP (False Positives) are the actions incorrectly identified as a particular class. FN (False Negatives) are
actions that belong to a particular class but are incorrectly identified as being from a different class.

4.3 Model Evaluation
This section describes the recognition results attained by the ARNet approach for all employed datasets

named HMDB5, KTH, and UCF Sport. Initially, the classification accuracy of the approach over all three
datasets is discussed by plotting the results in Fig. 7. The results indicate that the proposed approach performs
effectively for all three datasets. The high performance of ARNet across these diverse datasets highlights
its robustness and adaptability. In the case of the HMDB51 data sample, which comprises a diverse set of
human actions from 51 classes, the proposed approach, ARNet, achieves an average accuracy of 93.82% by
successfully learning both the pixel and time-based information of samples. Further, for the KTH action
repository, the proposed approach attains a classification score of 99%, showing its improved recognition
ability to recall the action classes present in this dataset. Lastly, in the UCF Sports data sample, which contains
diverse activities related to numerous sports, the model obtains a categorization score of 99.16%, which
indicates the generalization power of the proposed approach in learning quite different types of HAR and
demonstrates its applicability to real-world applications.

Figure 7: ARNet classification accuracy over all employed data samples

A detailed analysis of the evaluation metrics comprising Precision, Recall, and F1-Score is conducted
across three benchmark datasets named KTH, UCF Sports, and HMDB51 to further validate the effectiveness
and robustness of the proposed ARNet model. The results are shown in Table 3, which demonstrates the
strong discriminative ability of ARNet in recognizing diverse human actions. On the KTH dataset, the
model achieved a Precision of 99.54%, a Recall of 98.6%, and an F1-score of 99.07%, indicating its high
accuracy and minimal false positives in a relatively controlled environment. For the UCF Sports dataset,
ARNet maintained consistent performance with 99.01% Precision, 99.08% Recall, and a balanced F1-Score
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of 99.04%, reflecting its capability to generalize well to real-world sports scenarios involving complex poses
and backgrounds. On the more challenging HMDB51 dataset, which contains a wide range of actions and
diverse video conditions, ARNet achieved 97.41% Precision, 98.87% Recall, and an impressive F1-Score of
98.13%, showing the effectiveness and robustness of the proposed approach in handling noisy and varied
inputs. These strong performance metrics across datasets confirm ARNet’s ability to precisely and reliably
detect and classify human actions with both high confidence and comprehensive coverage.

Table 3: Performance comparison of the proposed work in terms of precision, recall, and F1-Score

Dataset Precision (%) Recall (%) F1-Score (%)
KTH 99.54 98.6 99.07

UCF Sports 99.01 99.08 99.04
HMDB51 97.41 98.87 98.13

Now, the study details the results for all employed datasets, i.e., HMDB51, KTH, and UCF Sports,
by discussing the confusion matrix (CM), which is a vital tool in the computer vision domain to explain
the classification scores. The CM can provide a thorough analysis of results by showing the right and
misclassified predictions, permitting group-wise accuracy evaluation. Such analysis enables the researchers
to locate the classes that are often misclassified, allowing analysis of the approach’s weak areas and indicating
improvements. Fig. 8 depicts the CM obtained for the KTH action sample, which exhibits that the ARNet
approach performs well for all six groups of this sample. The ARNet approach obtains an average TPR of
98.60%, which shows the robustness of the proposed approach.

Figure 8: ARNet attained CM over the KTH dataset

Fig. 9 shows the CM obtained by ARNet for the UCF Sports dataset. It indicates that ARNet achieves
remarkably good scores for all 11 categories of this dataset. Further, the scores given in Fig. 9 show that
the ARNet approach attains the lowest TPR value of 98.09% for the kicking group, with the highest
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misclassification rate of 0.7% in the kicking and Golf Swing groups. This is because the approach develops a
minor confusion among these groups because of the resemblance in the dynamic lower-body arrangements
of these actions. The ARNet reports the largest TPR for the skateboarding class, with a value of 99.45%.
This highlights the robustness of the approach in recognizing dissimilar and complex actions related to
skateboarding. Collectively, the proposed model achieves a TPR of 99.08%, underlining its effectiveness in
precisely remembering all classes. The high recall value against diverse action classes confirms the ARNet
model’s ability to diminish false negatives and guarantee reliable HAR, making it an influential tool for
practical areas in video analysis and surveillance.

Figure 9: ARNet attained CM over the UCF Sports dataset

Fig. 10 illustrates the CM attained by the ARNet over the HMDB51 samples. The scores provided
in Fig. 10 indicate the outstanding performance of the proposed approach in successfully remembering
all 51 groups present in this large and challenging human action data sample. An average TPR is 98.87%,
demonstrating its robustness for such a diverse set of human actions. The results provided in terms of
CM against all three employed datasets indicate that the proposed approach can lessen false negatives,
guaranteeing that most human actions are correctly identified. The results assure the generalization, high
recognition, and effectiveness of the ARNet for HAR, marking it a powerful solution for various related tasks
in real-world scenarios.
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Figure 10: Confusion matrix attained by the ARNet over the UCF Sports dataset

4.4 Ablation Study
This section compares the performance of the ARNet against several activation approaches utilized

among the convolution layers of the InceptionResNet-V2 approach. Hence, the performance of the proposed
approach is evaluated with the original ReLU method, LeakyReLU, exponential linear unit (ELU), and
scaled exponential linear unit (SELU) activation functions. The attained accuracy comparison for all three
employed data samples is listed in Table 4. The results show that the proposed approach attains the highest
result compared to the PreLU-based activation approach. The superior performance of PReLU over other
activation functions is attributed to its ability to adaptively learn the parameters of the activation function,
thus mitigating the issues of dying neurons common with ReLU. Unlike LeakyReLU, which uses a fixed
slope for negative values, PreLU allows for the slope to be learned, providing greater flexibility and improved
performance. ELU and SELU provide better performance than ReLU by addressing the vanishing gradient
problem and providing self-normalization properties, respectively. However, PreLU’s adaptive nature allows
it to outperform ELU and SELU by dynamically adjusting to the specific characteristics of the data, leading
to higher accuracy across all datasets.

Table 4: ARNet performance comparison to various activation methods

No. Activation
method

Accuracy (%)
HMDB51 dataset

Accuracy (%)
KTH dataset

Accuracy (%)
UCF Sports dataset

1. ReLU 89.94 92.10 93.23
2. LeakyReLU 91.82 93.87 93.68
3. ELU 90.24 94.07 94.09
4. SELU 91.93 95.61 95.66
5. Proposed

(PReLU)
93.82 99.00 99.16
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4.5 Comparison to DL Methods
The section compares ARNet with various well-known DL approaches for all three employed datasets.

First, results are discussed for the HMDB51 data sample. Several DL models such as GoogleNet, Inception,
as mentioned in [52], ResNet101 [53], 2stream-Inceptionv1 [54], and EfficientNetB3, Xception, as provided
in [55] are considered, and the obtained comparison is given in Table 5. The values in Table 5 show that
the proposed approach performs better than other DL methods and attains the highest recognition results.
The superiority of ARNet is evident through its ability to effectively integrate spatial and temporal features,
optimizing the feature extraction process. GoogleNet and Inception achieved accuracy scores of 64.53% and
67.09%, respectively, indicating their limitations in capturing comprehensive action details. EfficientNetB3
and Xception performed even lower, with scores of 50.70% and 52.46%, respectively, likely due to their ineffi-
ciency in handling complex video data. The 2-stream Inceptionv1 model showed moderate improvement with
66.40% but still fell short. ResNet101 demonstrated relatively high performance with 86.14% accuracy. Using
a combination of CNN and Bi-LSTM architectures, ARNet effectively captures complex motion patterns and
dependencies in video frames, leading to a significant boost in accuracy, achieving a score of 93.82%, the
highest among the compared methods. This comprehensive analysis highlights the robustness and efficiency
of ARNet in human action recognition tasks.

Table 5: ARNet performance comparison to DL approaches for the HMDB51 data sample

Model Accuracy (%)
GoogleNet 64.53
Inception 67.09

EfficientNetB3 50.70
Xception 52.46

2stream-Inceptionv1 66.40
ResNet101 86.14
Proposed 93.82

The results for the KTH dataset against several latest DL approaches, such as 3D-ResNet, 3D-Densenet
[56], VGG16 [39], and EfficientNet-B0 [57], and classification results are listed in Table 6. The values clearly
show that the proposed approach outperformed the other DL frameworks. The 3D-ResNet model, with
an accuracy of 91.20%, and the 3D-Densenet model, achieving 91.67%, struggle with efficiently capturing
effective temporal features due to their reliance on 3D convolutional layers. VGG16, although achieving a
high accuracy of 98%, primarily focuses on spatial feature extraction, missing out on nuanced temporal
dynamics. EfficientNet-B0, with an accuracy of 97.30%, provides a balanced approach but is not specifically
optimized for action recognition tasks. In contrast, the proposed ARNet, with an accuracy of 99%, uses
a robust architecture combining CNN for spatial feature extraction and Bi-LSTM for capturing temporal
dependencies. This dual approach allows ARNet to more effectively process complex motion patterns and
subtle temporal variations, leading to superior performance in action recognition.

Table 6: ARNet performance comparison to DL approaches for the KTH data sample

Model Accuracy (%)
3D-ResNet 91.20

3D-Densene 91.67

(Continued)
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Table 6 (continued)

Model Accuracy (%)
VGG16 98.00

EfficientNet-B0 97.30
Proposed 99.00

In the third experiment, the results for the UCF Sports dataset against numerous DL approaches were
discussed. Hence, models such as GoogleNet and VGG16, as given in [58], VGG19 [59], and Inception-
ResNetv2 [60], and the results are detailed in Table 7. The values show that the ARNet approach attains the
highest recognition results. GoogleNet and VGG16, with accuracies of 74.45% and 74.64%, respectively, are
limited by their less advanced temporal processing capabilities. VGG19 (97.13%) and Inception-ResNetv2
(92.90%) perform better but still struggle with the complexity of dynamic sports actions. ARNet, on the other
hand, excels by integrating CNNs for detailed spatial feature extraction with Bi-LSTM networks for effective
temporal analysis, leading to a superior accuracy of 99.16%. Based on all the comparative analyses performed
on 3 datasets, the proposed approach is more proficient for HAR from visual samples.

Table 7: ARNet performance comparison to DL approaches for the UCF Sports data sample

Model Accuracy (%)
GoogleNet 74.45

VGG16 74.64
VGG19 97.13

Inception-ResNetv2 92.90
Proposed 99.16

4.6 Comparison of the ARNet Approach with New Works
This section discusses the results of the proposed approach against the latest works over all three datasets

named HMDB51, UCF Sports, and KTH, and the obtained evaluation is presented in Table 8.

Table 8: ARNet comparison to new works

Reference Year Accuracy (%)
HMDB51 Dataset

[61] 2024 92.70
[62] 2024 77.29
[8] 2024 93.70

[63] 2023 73.12
[64] 2023 72.60

Proposed 2024 93.82
UCF Sports Dataset

[65] 2024 93.30
[8] 2024 98.00

(Continued)



452 Comput Model Eng Sci. 2025;144(1)

Table 8 (continued)

Reference Year Accuracy (%)
[66] 2023 97.84
[67] 2023 90.00
[58] 2023 99.00

Proposed 2024 99.16
KTH Dataset

[31] 2024 98.00
[68] 2024 90.00
[8] 2024 97.00

[67] 2023 94.00
[58] 2023 98.70

Proposed 2024 99.00

First, the results attained for the HMDB51 dataset were compared to several works [8,61–63], and the
obtained analysis in terms of accuracy score is provided in the first half of Table 8. The values clearly show
that our method performed better than the nominated approaches. Uddin et al. [61] proposed a DL approach
using CNN, ConvLSTM, and long-term recurrent convolutional network (LRCN) architectures to extract
spatial and temporal features from video data and reported the best results attained by the CNN model with
an accuracy value of 92.70% on the HMDB51 dataset. The approach in [62] suggested a DL model using CNNs
with channel attention mechanisms (CAMs) and autoencoders (AEs) for low-size and low-resolution videos.
The work enhanced the computation of keypoints and used random frame sampling to improve accuracy.
The work attained an accurate value of 77.29% on the discussed dataset. Khan et al. [8] employed VGG19 to
calculate dense keypoints and extract multiview keypoints from horizontal and vertical gradients. Combined
features were filtered using relative entropy, mutual information, and strong correlation coefficient (SCC).
The optimal features were then utilized to train the NB predictor for label estimation and attained an accurate
score of 93.70%. Further, the approach in [63] combined CNN and RNN methods for HAR in videos. It
preprocessed video frames and used a fusion of CNNs for feature extraction. Extracted features were fed
into a deep gated recurrent unit (GRU) network to capture temporal dependencies, followed by classification
using a SoftMax layer, and reported an accuracy value of 73.12% over the HMDB51 dataset.

Chen et al. [64] developed an action recognition method using improved residual CNNs with spatial
attention modules. A two-level attention mechanism was also introduced to highlight important frames
and spatial regions, enhancing feature extraction across temporal and spatial dimensions, and reported
an accuracy of 72.60%. In comparison, the proposed ARNet attained the highest accuracy value. ARNet
distinguishes itself from comparative approaches by addressing key limitations in action recognition
methodologies. Previous methods, such as those by Uddin et al. [61] and Dominic et al. [42], often struggle
with integrating spatial and temporal features effectively. ARNet overcomes this challenge using advanced
CNN architecture such as refined Inception-ResNet-V2 alongside optimized Bi-LSTM modules, ensuring
comprehensive feature extraction and integration across video frames. Unlike approaches relying on complex
architectures and attention mechanisms discussed in [62], which incurred high computational costs and
inefficiencies, ARNet prioritizes computational efficiency without compromising accuracy. Further, the
approaches utilizing either spatial or both spatiotemporal features, as given in [8,63], enhanced sequential
modeling, still face model overfitting issues. Comparatively, the proposed ARNet overcomes this aspect by
employing its refined Bi-LSTM setup, which is skillful in extracting complicated temporal information vital
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for precise HAR. The ARNet approach acquired a classification accuracy of 93.82% over the HMDB51 sample,
representing its effectiveness for HAR under complex scenarios.

Next, the comparative analysis of the ARNet is accomplished with the works [8,58,65–67] for the UCF
Sports dataset by comparing the works in terms of accuracy score, and the comparison is given in the
second half of Table 8. The discussed accuracy scores over the UCF Sports dataset prove the effectiveness
of the proposed approach. Hassan et al. [65] employed a spatiotemporal approach for HAR from the video
sequences. For this, the work employed MobileNetV2 CNNs for feature extraction and a BiLSTM network
for capturing dependencies and processing data. The work reported a classification accuracy of 93.30% over
the UCF Sport data sample. Khan et al. [8] discussed another approach that utilized a DL model for HAR
and reported an accuracy score of 98%. Xiao et al. [66] integrated hierarchical feature maps with a multi-
scale deformable attention module, effectively capturing spatial deformations and temporal fluctuations in
video frames to detect diverse sports behaviors, and reported an accuracy of 97.84%. Palaniapan et al. [67]
integrated an Encoder-Decoder Network for sample information computation, an Improved Scale-Invariant
Feature Transform (iSIFT) to reduce redundancy, Quadratic Discriminant Analysis for feature optimization,
and a Weighted Fusion strategy to merge essential keypoints information. The approach achieved an accuracy
of 90%. Sowmyayani et al. [58] proposed an approach, spatio-temporal human action recognition network
(STHARNet), an architecture for HAR integrated into a content-based video retrieval (CBVR) system. It
worked by nominating keyframes through the Adaptive Genetic Optimization Procedure (AGOP) approach
based on scene cuts, extracting spatial keypoints from these frames, generating Motion Energy Images (MEI)
for temporal features from each GOP, and fusing these for HAR in STHARNet. The work attained an accurate
score of 99% on the employed data sample. In comparison to all approaches [8,58,65–67], the proposed
ARNet attained the highest accuracy results. The selected approaches have limitations that the ARNet
method overcomes. Hassan et al. [65] and Xiao et al. [66] both rely heavily on CNNs and attention modules
but miss finer temporal dependencies in actions. Khan et al. [8] used VGG19 and multiview keypoints but
faced potential redundancy and inefficiency issues. Palaniapan et al. [67] incorporated multiple modules for
feature extraction and optimization but suffered from model overfitting problems. Sowmyayani et al. [58]
focused on keyframe extraction and MEI for temporal features did not fully capture all complicated patterns
in action sequences. The proposed ARNet method integrates a refined Inception-ResNetv2 for robust spatial
feature extraction with a Bi-LSTM for capturing temporal dependencies, optimizing performance, and
reducing redundancy, model overfitting issues, thus achieving superior accuracy by effectively balancing
spatial and temporal analysis.

Lastly, the study discussed the results attained for the KTH dataset with several works [31], and the
obtained analysis in terms of accuracy score is provided in the last half of Table 8. Parro et al. [31] developed a
DL approach for HAR that included a unit for people recognition and tracking, followed by a HAR algorithm
against each located person. This algorithm preprocessed input data using a DL architecture based on LSTMs
for sample information capture and classification of features with a DNN. The approach has reported an
accuracy rate of 98% over the KTH dataset. Further, Memon et al. [68] trained a VGG19-based CNN-RNN
DL network using transfer learning for HAR in the visual samples and reported a classification score of 90%.
Khan et al. [8] used VGG19 to calculate dense keypoints, extract multiview keypoints, and filter combined
features using relative entropy, mutual information, and SCC before training a Naïve Bayes predictor for label
estimation and attained an accuracy of 97%. The work in [67] utilized an Encoder-Decoder framework for
sample information computation, iSIFT to reduce redundancy, Quadratic Discriminant Analysis for feature
optimization, and a Weighted Fusion strategy to merge keypoint information, and attained an accuracy of
94%. Sowmyayani et al. [58] proposed STHARNet, a HAR architecture using keyframes selected via AGOP,
spatial keypoints, and Motion Energy Images for temporal features, integrated into a CBVR system, and
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reported an accuracy score of 98.70%. In comparison, the ARNet achieved the highest classification score
of 99%. The compared approaches exhibit several limitations: Parro et al. [31] employed a unit for people
recognition and tracking, followed by an LSTM-based architecture for feature extraction, which is training-
intensive and susceptible to overfitting, limiting its scalability. The VGG19-based CNN-RNN model in [68]
achieved only 90% accuracy, indicating potential inefficiencies in feature extraction and sequence learning.
Khan et al. [8] used dense keypoints and multiview gradients but faced challenges in optimizing feature
selection, achieving slightly lower accuracy. The Encoder-Decoder and iSIFT method in [67] effectively
reduced redundancy but still fell short in overall performance. Sowmyayani et al. [58] introduced a complex
keyframe selection and MEI generation process that, while accurate, adds to computational overhead.
ARNet overcomes these limitations by integrating an optimized CNN and Bi-LSTM architecture that
efficiently captures both spatial and temporal features, enhancing accuracy and robustness while maintaining
computational efficiency, resulting in the highest accuracy of 99%.

4.7 Cross-Dataset Evaluation
This section executes the cross-corpus evaluation, where the model is trained and tested on different

datasets. Such an evaluation assists the reader in understanding the generalization power of an approach.
Hence, this study accomplishes various experiments by considering the common classes of all three employed
datasets. There exists a total of 3 common classes between the HMDB51 and KTH datasets, which are
Walking, Running, and Jogging, while there are six common classes between the HMDB51 and UCF Sports
datasets, which are Diving, Golf Swing, Kicking, Riding Horse, Swinging, and Skateboarding. Whereas the
KTH and UCF Sports datasets contain no common classes, therefore, this study accomplishes four types of
cross-dataset evaluations, which are as follows: (i) The model is trained on the mentioned three common
classes from the HMDB51 and tested on the KTH sample, (ii) the approach takes the samples from the KTH
dataset for model training while the test visuals are taken from the HMDB51, (iii) the model is trained on
the mentioned six common classes from the HMDB51, and tested on the UCF Sports sample, and (iv) the
model is trained on the UCF Sports samples and evaluated on the HMDB51 dataset. The results of all four
experiments in terms of the accuracy metric are provided in Table 9, and they indicate that for the first
evaluation, the approach attains an accuracy value of 63.09%, which is 62.28% for the second evaluation. In
addition, the ARNet achieves accuracy scores of 68.26% and 65.11% for the third and fourth evaluations. The
results indicate that the approach undergoes performance degradation in terms of cross-dataset evaluation;
however, it still demonstrates robust and consistent performance across different evaluations. This resilience
highlights the adaptability and effectiveness of the proposed model in handling diverse data variations, which
is crucial for real-world applications where data can vary significantly. ARNet’s ability to maintain a high
level of accuracy and true positive rate across datasets highlights its potential as a reliable tool for action
recognition, even in challenging and heterogeneous scenarios.

Table 9: Cross-corpus evaluation of the ARNet

Training corpus Testing corpus Accuracy (%)
HMDB51 UCF Sport 68.26

UCF Sport HMDB51 65.11
HMDB51 KTH 63.09

KTH HMDB51 62.28
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5 Conclusion
This study introduces an approach, ARNet, which combines a refined Inception-ResNetv2-based CNN

with a Bi-LSTM network, using novel PReLU activations to effectively integrate spatial and temporal
information for action recognition in videos. Experimental validation on benchmark datasets HMDB51,
KTH, and UCF Sports indicates ARNet’s superior performance, achieving an accuracy of 93.82%, 99%,
and 99.16%, respectively. These results highlight ARNet’s robustness and potential across various domains,
including security surveillance, healthcare monitoring, and human-computer interaction. In addition, this
research conducts the cross-corpus evaluation to prove the generalization power of the indicated approach.
The practical implications of these findings are significant: ARNet can be applied in real-world scenarios such
as intelligent video surveillance, healthcare monitoring for the elderly or mobility-impaired individuals, and
human-computer interaction systems where accurate activity recognition is essential. Despite its strengths,
ARNet has some limitations, including the computational complexity associated with deep models and a
potential decrease in performance with extremely low-quality or occluded video input. Future work will
focus on addressing these challenges by exploring lightweight variants of ARNet, domain adaptation through
transfer learning, and the inclusion of multimodal inputs such as audio or depth data to further enhance
recognition accuracy in more complex environments.
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