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ABSTRACT: This study proposes a three-dimensional (3D) coupled magneto-electro-elastic problem for the static
analysis of multilayered plates embedding piezomagnetic and piezoelectric layers by considering both sensor and
actuator configurations. The 3D governing equations for the magneto-electro-elastic static behavior of plates are
explicitly show that are made by the three 3D equilibrium equations, the 3D divergence equation for magnetic induction,
and the 3D divergence equation for the electric displacement. The proposed solution involves the exponential matrix
in the thickness direction and primary variables’ harmonic forms in the in-plane ones. A closed-form solution is
performed considering simply-supported boundary conditions. Interlaminar continuity conditions are imposed for
displacements, magnetic potential, electric potential, transverse shear/normal stresses, transverse normal magnetic
induction and transverse normal electric displacement. Therefore, a layerwise approach is adopted. The results section
is composed of an assessment part, where the present model is compared to past 3D electro-elastic or magneto-elastic
formulations and a new benchmark part. Benchmarks consider sensor and actuator plate configurations for the fully
coupled magneto-electro-elastic cases for different thickness ratios. Tabular and graphical results are presented for
displacements, stresses, magnetic potential, electric potential, transverse normal magnetic induction and transverse
normal electric displacement. For each presented benchmark, magneto-electro-elastic coupling and thickness and
material layer effects are discussed in depth.

KEYWORDS: Multilayered and smart plates; static analyses; magneto-electro-elastic coupling; exponential matrix
method; 3D model; layer-wise approach

1 Introduction
Magneto-Electric (ME) coupling in magnetostrictive-piezoelectric multiferroic structures consent to

induce an electric field in the structure due to an applied magnetic field, and on the contrary, a magnetic
response consequent to an applied electric field. ME voltage coefficient (the ratio of an induced electric field
to an applied magnetic field) is the key parameter to measure ME coupling strength [1–3]. In the case of
smart structures (both sensor and actuator configurations), this coupling evaluation is fundamental and for
this reason 1D, 2D and 3D numerical/analytical magneto-electro-elastic models have great importance in
such investigations.

In the field of 1D models, generally applied to structures where one dimension is predominant with
respect to the other two dimensions in the cross-section, several approaches have been proposed in recent
years. Milazzo and Orlando [4] developed an elastic equivalent single layer finite element formulation
for shear deformable and straight magneto-electro-elastic (MEE) laminated beam. The generalized exp-
function method was employed in [5] to investigate the families of solitary wave solutions of one-dimensional
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nonlinear longitudinal wave equations in a MEE circular rod. In [6], an MEE functionally graded Tim-
oshenko microbeam model was developed thanks to both the use of the variational formulation and
the extended modified couple stress theory proposed to understand microstructure effects. Plane-strain
equations for static deformations of anisotropic layered MEE cylinders were solved in [7] by assuming layers
as perfectly bonded at the interfaces and by solving these equations thanks to the separation of variables
and eigenfunction expansion. Huang et al. [8] showed both analytical and semi-analytical solutions for
anisotropic functionally graded MEE beams under an arbitrary load. The generalized plane stress problem
took into account stress functions, electric displacement, and magnetic induction functions.

2D models can be applied in the numerical or analytical form to plates and shells, which are structures
where the two dimensions in the in-plane directions are predominant with respect to the dimension through
the thickness direction. Chen et al. [9] proposed the state-vector approach to analyze free vibrations of
MEE laminated plates, where extended displacements and stresses are split up into in-plane and out-of-
plane variables. Phoenix et al. [10] adopted Reissner’s mixed variational theorem for static and dynamic
analyses of coupled MEE problems in the case of composite/piezoelectric plates. A coupled finite element
method was proposed in [11] considering higher-order approximate interpolation displacement, electric
potential and magnetic potential shape functions. A fully geometrically nonlinear finite rotation shell
element based on Reissner–Mindlin first-order shear deformation theory was proposed by Rao et al. in
[12] for static analysis of layered MEE structures. Wang et al. [13] developed an hygrothermo-magneto-
electro-elastic coupled and improved enriched finite element formulation to analyze functionally graded
MEE structures; quadrilateral elements were used in this study. Carrera et al. [14,15] proposed refined 2D
finite elements for MEE plates based on the principle of virtual displacements and on the Reissner’s mixed
variational theorem, respectively. A closed form solution for MEE bending of rectangular thin plates was
developed in [16] using the Kirchhoff thin-plate theory. The large deflection of MEE laminated plates was
investigated by Milazzo [17], where the first-order shear deformation theory and the von Karman stress
function approach were employed. Alaimo et al. [18,19] developed an isoparametric four-node finite element
for multilayered MEE plates, the first order shear deformation theory was employed. Quasi-static behavior
investigations were proposed, and then large deflections in MEE multilayered plates were also analyzed.
Analytical solutions for general static deformations of spherically anisotropic and multilayered MEE hollow
spheres were proposed in [20]. A partial mixed layerwise finite element model for adaptive plate structures
was formulated in [21] using transverse stresses, displacement components, electric and magnetic potentials
as primary variables. Explicit solutions for Navier’s and Lévy’s solutions were derived in [22] for unsymmetric
MEE composite laminated thin plates. The scaled boundary finite element method was employed in [23] to
study the deformation of a MEE plate. The inhomogeneous MEE coupling element-free Galerkin method,
showed in [24] by Zhou et al. was used for solving static behaviors of structures where different temperature
fields were simulated. A multiphysics plate model for the analysis of MEE composite laminates was
shown in [25] by applying the variational asymptotic method, reducing the multiphysically coupled three-
dimensional model to a series of two-dimensional plate models. A higher-order thickness-stretched model
was proposed in [26] for the electro-elastic analysis of the composite graphene origami-reinforced square
plate sandwiched by piezoelectric/piezomagnetic layers subjected to multifield loads (thermal, electric,
magnetic and mechanical). Kiarasi et al. [27] investigated the hygrothermal effect on natural frequencies for
functionally graded annular plates integrated with piezo-magneto-electro-elastic layers resting on Pasternak
foundations. The effects of hygro-thermal environments on smart composite nanoplates were investigated
in [28,29] using coupled MEE constitutive and governing equations solved via a strain gradient nonlocal
theory and analytical methods. The magneto-electric effect on waves in functionally graded piezoelectric-
piezomagnetic fan-shaped cylindrical structures was explored in [30] using the double Legendre orthogonal
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polynomial method and the Heaviside function. The nonlocal static analysis using Reddy’s high-order shear
deformation theory of MEE sandwich micro/nano-plates with functionally graded carbon nanotube core in a
hygrothermal environment was studied in [31]. Zhang et al. [32] proposed the scaled boundary finite element
method incorporated with the precise integration technique for static and free vibration of multilayered MEE
plates. The multi-physics zonal Galerkin free element method was proposed in [33] for static and transient
responses of functionally graded MEE structures. The MEE-coupled isogeometric analysis was shown in [34]
to understand the behaviour of structures thanks to the use of Non-Uniform Rational B-Spine functions.
Tornabene et al. [35,36] proposed refined 2D generalized differential quadrature methods for the thermo-
hygro-electro-magneto-elastic analysis of double-curved shells using an equivalent layerwise approach. Ren
et al. [37] investigated static magneto-electro-hygro-elastic multi-field coupling problems using a stabilized
node-based smoothed radial point interpolation method. Under the assumption of quasi-static electric and
magnetic fields, the MEE analysis including the medium and its environment was proposed in [38].

3D analytical/numerical models for the electro-magneto-elastic analysis of multilayered structures are
less numerous than 2D models. They can be applied to thick and anisotropic multilayered structures to
obtain correct evaluations of elastic, magnetic and electric variables through the thickness direction. The
study of isotropic functionally graded MEE circular plate behavior under uniform load was considered
in [39]. The analytical solution for a three-dimensional transversely isotropic axisymmetric multilayered
MEE circular plate under simply supported boundary conditions was proposed in [40]. In [41], the coupled
governing equations for MEE plates were derived and solved via the COMSOL software considering a three-
dimensional finite element approach. Pan [42] derived an exact three-dimensional model for anisotropic
MEE simply supported multilayered plates under static loads. Derivation of the state vector equations for the
three dimensional MEE orthotropic media was presented by Wang et al. in [43] from governing equations
and then they were employed for the analysis of multilayered MEE plates. The static response of MEE plates
subjected to hygrothermal loads was investigated in [44] using the finite element method derived from the
principle of total potential energy. Pan and Heyliger [45] derived analytical solutions for free vibrations of
three-dimensional MEE anisotropic multilayered plates under simply supported boundary conditions. A
modified Pagano method was developed in [46] for the three-dimensional analysis of functionally graded
simply supported rectangular plates subjected to magneto-electro-mechanical loads. The static behavior of
doubly curved functionally graded MEE shells under mechanical loads, electric displacements and magnetic
fluxes was investigated in [47] via the asymptotic approach.

The 3D exact and coupled electro-magneto-elastic plate model in this study tries to fill the gap of a
few works on 3D models in the literature. The governing equations in 3D form are completely coupled
and they are solved in in-plane directions using Navier-type solutions and through the thickness utilizing
the exponential matrix method. The multilayered approach is layerwise, and equilibrium and compatibility
conditions are fully satisfied at each layer interface. The same authors proposed a similar 3D coupled electro-
elastic model in [48] and a similar 3D coupled magneto-elastic model in [49]; the first original work for the
pure elastic analysis was given in [50]. This study fully couples elastic, magnetic, and electric fields for the first
time using the exponential matrix method and the layerwise approach. It proposes several static analyses for
multilayered plates in sensor and actuator configurations. Governing, constitutive, and geometrical relations
are discussed in Section 2, the solution procedure is developed in Section 3, results (both preliminary
assessments and new benchmarks) are discussed in Section 4, and finally, the main conclusions are presented
in Section 5.
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2 Coupled Magneto-Electro-Elastic 3D Plate Model
This section presents equations for the 3D coupled magneto-electro-elastic plate problem. Each subsec-

tion is devoted to equations involved in the present formulation. In the first one, constitutive and geometrical
relations are given. In the second one, the 3D equilibrium equations, the 3D divergence equation for the
magnetic induction and the 3D divergence equation for the electric displacement are shown for the plate
case. The geometry of the plate considered in this study is shown in Fig. 1.

Figure 1: Geometry of the plate

2.1 Constitutive and Geometrical Relations
Constitutive and geometrical relations are utilized to couple magnetic, electric and elastic fields. For the

present 3D coupled magneto-electro-elastic problem, constitutive equations can be written in the orthogonal
structural reference system (x, y, z) for plates embedding k layers:

σ k = Ck εk − ekTEk − qkTH k , (1a)

Dk = ek εk+ εk Ek + d kH k , (1b)

Bk = qk εk + d kEk + μkH k . (1c)

σ k is the 6 × 1 stress vector, Ck is the 6 × 6 elastic coefficient matrix, εk is the 6 × 1 strain vector, ek is
the 3 × 6 piezoelectric coefficient matrix, Ek is the 3 × 1 electric field vector, qk is the 3 × 6 piezomagnetic
coefficient matrix, H k is the 3 × 1 magnetic field vector, Dk is the 3 × 1 electric displacement vector, εk is
the 3 × 3 electric permittivity matrix, dk is the 3 × 3 electro-magnetic coupling coefficient matrix, Bk is the
3 × 1 magnetic induction vector and μk is the 3 × 3 magnetic permittivity matrix. T means the transpose of
a vector or a matrix.

All vectors and matrices involved in Eq. (1) are here explicitly written:

σ k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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, (2a)
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, (2b)

H k =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

H k
x
H k

y
H k

z
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Bk =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Bk
x
Bk

y
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z
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. (2d)

Geometrical relations for plates can be written as:

εk= Δuk , (3a)

H k = −ΔH ψk , (3b)

Ek = −ΔE ϕk , (3c)

where Δ is the 6 × 3 derivative matrix for the elastic field, ΔH is the 3 × 1 derivative vector for the magnetic
field and ΔE is the 3 × 1 derivative vector for the electric field. These derivative matrices and vectors are
expressed as:

Δ =
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. (4)

∂
∂x , ∂

∂ y and ∂
∂z indicate partial derivatives in x, y and z directions, respectively.

2.2 3D Magneto-Electro-Elastic Governing Equations for Plates
Governing equations for plates include the three 3D equilibrium equations for the elastic field, the 3D

divergence equation of the magnetic induction for the magnetic field and the 3D divergence equation of the
electric displacement for the electric field. These five equations are coupled in a unique system.

The three 3D equilibrium equations for the plate case written in terms of stresses are:

σ k
x x ,x
+ σ k

x y , y
+ σ k

xz ,z
= 0, (5a)

σ k
x y ,x
+ σ k

y y , y
+ σ k

yz ,z
= 0, (5b)

σ k
xz ,x
+ σ k

yz , y
+ σ k

zz ,z
= 0, (5c)
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where stresses σ k
x x , σ k

x y , σ k
xz , σ k

x y , σ k
y y , σ k

βz , σ k
zz are dependent from x, y and z. For this reason, the present

formulation has a three-dimensional approach.
The 3D divergence equation of the magnetic induction for plates can be written as:

Bk
x ,x
+Bk

y , y
+Bk

z ,z = 0. (6)

Analogously, the 3D divergence equation of the electric displacement for plates is:

Dk
x ,x
+Dk

y , y
+Dk

z ,z = 0. (7)

Subscripts, x, y and, z indicate partial derivatives with respect to x, y and z directions, respectively.

3 Navier Harmonic Forms and Exponential Matrix Method
The set of equations for the 3D magneto-electro-elastic problem for plates is composed of Eqs. (5)–(7).

The resolution method is proposed and discussed in depth.
In order to write the five second-order differential equations in terms of primary variables, geometric

and constitutive relations (Eqs. (1) and (3)) have to be introduced into Eqs. (5)–(7). In this way, the 3D
governing equations are written in terms of primary variables uk , vk , wk , ψk and ϕk . In addition, the following
terms must be set at zero to have a closed from solution:

Ck
16 = Ck

26 = Ck
36 = Ck

45 = 0, ek
14 = ek

25 = ek
36 = 0, qk

14 = qk
25 = qk

36 = 0, εk
12= 0, μk

12 = 0, dk
12 = 0. (8)

In order to solve the 3D magneto-electro-elastic problem for plates, the first step is the imposition of
the Navier harmonic forms in the in-plane directions x and y. These harmonic forms, in the case of simply
supported sides, can be explicitly written as:

uk(x , y, z) = U k(z) cos(ᾱx) sin(β̄y), (9a)
vk(x , y, z) = V k(z) sin(ᾱx) cos(β̄y), (9b)
wk(x , y, z) =W k(z) sin(ᾱx) sin(β̄y), (9c)
ϕk(x , y, z) = Φk(z) sin(ᾱx) sin(β̄y), (9d)
ψk(x , y, z) = Ψk(z) sin(ᾱx) sin(β̄y), (9e)

where U k(z), V k(z), W k(z), Φk(z), Ψk(z) are the amplitudes for each primary variable. Terms ᾱ and β̄ are
written as:

ᾱ = mπ
a

, β̄ = nπ
b

, (10)

considering m, n the half-wave numbers and a, b the in-plane dimensions of the plate in x and y
directions, respectively.

Navier harmonic forms fulfill the boundary conditions for the simply-supported constraints:

ϕk = 0, ψk = 0, wk = 0, vk = 0, σ k
x x = 0, for x = 0, a,

ϕk = 0, ψk = 0, wk = 0, uk = 0, σ k
y y = 0, for y = 0, b.

(11)
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The imposition of harmonic forms of Eq. (9) permits to get the 3D magneto-electro-elastic set of
equations in terms of primary variable amplitudes:

(−ᾱ2Ck
11 − β̄2Ck

66)U k + (−ᾱβ̄Ck
12 − ᾱβ̄Ck

66)V k + (ᾱCk
13 + ᾱCk

55)W k
,z + Ck

55U k
,zz+

+ (ᾱek
31 + ᾱek

15)Φk
,z + (ᾱqk

31 + ᾱqk
15)Ψk

,z = 0,
(12a)

(−ᾱ2Ck
66 − β̄2Ck

22)V k + (−ᾱβ̄Ck
12 − ᾱβ̄Ck

66)U k + (β̄Ck
44 + β̄Ck

23)W k
z + Ck

44V k
,zz+

+ (β̄ek
32 + β̄ek

24)Φk
,z + (β̄qk

32 + β̄qk
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,z = 0,
(12b)

(−ᾱ2Ck
55 − β̄2Ck

44)W k + (−ᾱCk
55 − ᾱCk

13)U k
,z + (−β̄Ck

44 − β̄Ck
23)V k

,z + Ck
33W k

,zz+
+ (−ᾱ2ek

15 − β̄2ek
24)Φk + (−ᾱ2qk

15 − β̄2qk
24)Ψk + ek
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(12c)

(−ᾱ2ek
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31)U k
,z + (−β̄ek

24 − β̄ek
32)V k

,z + ek
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11 +β̄2 εk
22)Φk− εk

33 Φk
,zz + (ᾱ2dk

11 + β̄2dk
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33Ψk
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+ (−ᾱ2qk
15 − β̄2qk

24)W k + (−ᾱqk
15 − ᾱqk

31)U k
,z + (−β̄qk

24 − β̄qk
32)V k

,z + qk
33W k

zz+
+ (ᾱ2dk

11 + β̄2dk
22)Φk − dk

33Φk
,zz + (ᾱ2 μk

11 + β̄2 μk
22)Ψk − μk

33Ψk
,zz = 0.

(12e)

The exponential matrix method is the approach adopted to solve Eq. (12) along the thickness direction.
To get first order differential equations in z starting from the second order differential equations (Eq. (12)), a
redoubling procedure must be done. This procedure also duplicates the number of unknowns: U k(z), V k(z),
W k(z), Φk(z), Ψk(z), U k

,z(z), V k
,z(z), W k

,z(z), Φk
,z(z), Ψk

,z(z). The use of the exponential matrix resolution
method allows correct calculations of first derivatives in z because they are now the primary variables of
the problem. In this way, the computation of stresses, strains, electric displacement, and magnetic induction
along thickness direction is always correct and in three-dimensional form.

Eq. (12) can be written in a compact matrix form as follows:

Dk X k
,z = Ak X k ⇒ X k

,z = A∗k X k , (13)

where Dk and Ak are 10 × 10 matrices, X k
,z is the 10 × 1 vector of unknowns derived in z, X k is the 10 × 1 vector

of unknowns and A∗k = D−1k Ak is a 10 × 10 matrix. Vector of unknowns X k is defined as follows:

X k = {U k , V k , W k , Φk , Ψk , U k
,z , V k

,z , W k
,z , Φk

,z , Ψk
,z}T . (14)

A possible solution of Eq. (13) can be obtained with the exponential matrix method as follows:

X k(hk) = ex p(A∗k hk)X k(0) =[
N
∑
i=0

(A∗k)i

i!
hi

k]X k(0), (15)

where (A∗k)0 = I is the 10 × 10 identity matrix, and hk is the thickness of each k layer. The exponential matrix
in Eq. (15) is computed considering the Taylor expansion.

The imposition of the interlaminar continuity between two adjacent k layers permits the layerwise
approach. So, these conditions need to be imposed on primary variables, transverse shear stresses, transverse
normal stresses, transverse normal electric displacement and transverse normal magnetic induction:

uk
b = uk−1

t , vk
b = vk−1

t , wk
b = wk−1

t , ϕk
b = ϕk−1

t , ψk
b = ψk−1

t , (16a)
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σ k
xzb
= σ k−1

xzt
, σ k

yzb
= σ k−1

yzt
, σ k

zzb
= σ k−1

zzt
, Dk

zb
=Dk−1

zt
, Bk

zb
= Bk−1

zt
. (16b)

t is the top of the previous k − 1 layer, and b is the bottom of the adjacent k layer. k goes from 1 to NL
(total number of layers). Introducing Eq. (9) in Eq. (16), interlaminar continuity conditions are:

U k
b = U k−1

t , (17a)
V k

b = V k−1
t , (17b)

W k
b =W k−1

t , (17c)
Φk

b = Φk−1
t , (17d)

Ψk
b = Ψk−1

t , (17e)
Ck

55ᾱW k
b + Ck

55U k
,zb
+ ek

15 ᾱΦk
b + qk

15ᾱΨk
b = Ck−1

55 ᾱW k−1
t + Ck−1

55 U k−1
,zt
+ ek−1

15 ᾱΦk−1
t + qk−1

15 ᾱΨk−1
t , (17f)

Ck
44 β̄W k

b + Ck
44V k

,zb
+ ek

24 β̄Φk
b + qk

24 β̄Ψk
b = Ck−1

44 β̄W k−1
t + Ck−1

44 V k−1
,zt
+ ek−1

25 β̄Φk−1
t + qk−1

25 β̄Ψk−1
t , (17g)

Ck
13ᾱU k

b − Ck
23 β̄V k

b + Ck
33W k

,zb
+ ek

33Φk
,zb
+ qk

33Ψk
,zb
= −Ck−1

13 ᾱU k−1
t − Ck−1

23 β̄V k−1
t + Ck−1

33 W k−1
,zt
+

+ ek−1
33 Φk−1

,zt
+ qk−1

33 Ψk−1
,zt

, (17h)
− ek

31ᾱU k
b − ek

32 β̄V k
b + ek

33W k
,zb
− εk

33 Φk
,zb
− dk

33Ψk
,zb
= −ek−1

31 ᾱU k
t − ek−1

32 β̄V k
t + ek−1

33 W k−1
,zt
+

− εk−1
33 Φk−1

,zt
− dk−1

33 Ψk−1
,zt

, (17i)
− qk

31ᾱU k
b − qk

32 β̄V k
b + qk

33W k
,zb
− dk

33Φk
,zb
− μk

33Ψk
,zb
= −qk−1

31 ᾱU k
t − qk−1

32 β̄V k
t + qk−1

33 W k−1
,zt
+

− dk−1
33 Φk−1

,zt
− μk−1

33 Φk−1
,zt

. (17j)

All these equations can be compacted in a matrix form as follows:

X k
b = T k ,k−1 X k−1

t , (18)

where T k ,k−1 is the 10 × 10 transfer matrix between layer k and layer k − 1. Terms of matrix T k ,k−1 include
constant coefficients coming from a rearrangement of Eq. (17) in terms of primary variables.

Therefore, the solution along the z direction is possible by considering a recursive substitution as follows:

X NL(hNL) = A∗∗NL T NL ,NL−1 . . . T2,1A∗∗1 X 1(0) ⇒ X NL(hNL) = Hm X 1(0), (19)

where Hm is the 10 × 10 matrix; its terms consider plate dimensions, thickness and material layer configura-
tion of the multilayered plate. The matrix Hm is always a 10 × 10 matrix, despite the number of layers along
the thickness direction and the orderN of the exponential matrix.

Load boundary conditions can be imposed on the external surfaces of the plate in terms of mechanical
loads, electric potential, and/or magnetic potential. The transverse normal mechanical load has the following
harmonic form:

pk
z(x , y, z) = Pk

z (z) sin(ᾱx) sin(β̄y), (20)

harmonic forms of electric potential and magnetic potential are already described in Eqs. (9d) and (9e),
respectively. Pk

z (z), Φk(z) and Ψk(z) are the amplitudes of external mechanical, electric, and magnetic loads.
They can be imposed at the bottom (b) of the first layer (k = 1) or at the top (t) of the last layer (k = NL).
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Load boundary conditions can be written in matrix form as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1
1b

B1
2b

B1
3b

0 0 0 0 B1
4b

B1
5b

B1
6b

0 B1
7b

B1
8b

B1
9b

B1
10b

0 B1
11b

0 0 0
B1

12b
0 B1

13b
B1

14b
B1

15b
B1

16b
0 0 0 0

0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U 1
b

V 1
b

W 1
b

Φ1
b

Ψ1
b

U 1
,z b

V 1
,z b

W 1
,z b

Φ1
,z b

Ψ1
,z b

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1
zb

0
0

Φ1
b

Ψ1
b

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

for z = −h/2, (21)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

BNL
1t

BNL
2t

BNL
3t

0 0 0 0 BNL
4t

BNL
5t

BNL
6t

0 BNL
7t

BNL
8t

BNL
9t

BNL
10t

0 BNL
11t

0 0 0
BNL

12t
0 BNL

13t
BNL

14t
BNL

15t
BNL

16t
0 0 0 0

0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U NL
t

V NL
t

W NL
t

ΦNL
t

ΨNL
t

U NL
,zt

V NL
,zt

W NL
,zt

ΦNL
,zt

ΨNL
,zt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

PNL
zt

0
0

ΦNL
t

ΨNL
t

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

for z = +h/2, (22)

that can be further compacted in the following form:

B1
b X 1

b = P1
b
, (23a)

BNL
t X NL

t = PNL
t

, (23b)

where B1
b and BNL

t are the 5 × 10 load boundary condition matrix and P1
b

and PNL
t

are the 5 × 1 bottom and
top load vectors of the plate, respectively. Considering Eq. (19), it is possible to write Eq. (23) as:

[ B1
b

BNL
t Hm

] X 1
b = {

P1
b

PNL
t

} ⇒ EX 1
b = P, (24)

where E is the 10 × 10 matrix including the multilayered configuration characteristics.
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The present 3D magneto-electro-elastic formulation can analyze both sensor and actuator configura-
tions. The vector of external loads P assumes a slightly different form in the two cases:

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1
zb

0
0
0
0

PNL
zt

0
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

for the sensor case, (25)

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0

Φ1
b

Ψ1
b

0
0
0

ΦNL
t

ΨNL
t

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

for the actuator case. (26)

Due to the resolution of the linear system proposed in Eq. (24) and considering the recursive use
of Eqs. (15) and (18), trends of primary variables along the thickness direction can be evaluated. The presented
analytical formulation is simple and elegant, permitting the correct results for each thickness ratio of
the plate. Matlab code (done with Matlab R2022a version) runs analysis in a few seconds, as the heavier
computation cost regards iterative matrix multiplications of 10 × 10 matrices.

4 Results
The present section is divided into an assessment subsection and a new benchmark subsection. In

the assessment subsection, the present magneto-electro-elastic 3D-u-ϕ-ψ model is compared to the 3D
electro-elastic (3D-u-ϕ) model developed in [48], with the 3D magneto-elastic (3D-u-ψ) model developed
in [49] and with the 3D magneto-electro-elastic model developed by Pan [42]. The acronym 3D-u-ϕ-ψ
summarizes the main peculiarities of the model: three-dimensional formulation where primary variables are
displacements and their derivatives in z (stated as u), electric potential and its derivative in z (indicated with
ϕ) and magnetic potential and its derivative in z (indicated with ψ). In the benchmark subsection, a new
multilayered square plate in both sensor and actuator configurations is proposed considering different a/h
thickness ratios (from thick to thin plates). As far as the authors know, magnetic permittivity coefficients
μ1 and μ2 can be found in literature mainly with the negative sign (μ1 = μ2 = −590 103 nH/m), as assessed
and validated in [51], but also with a positive sign (μ1 = μ2 = 590 103 nH/m) [52]. For this time, the proposed
benchmark case is provided considering μ1 and μ2 with both signs to overcome this discrepancy. The new
benchmark subsection is useful for those scientists and researchers interested in the development of 3D/2D
numerical or analytical models for magneto-electro-elastic structures.
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4.1 Assessments
This section presents a simply supported multilayered square plate. Different thickness ratios are

considered, from thick (a/h = 4) to thin (a/h = 100) plates for both sensor and actuator configurations. The
present 3D magneto-electro-elastic model (3D-u-ϕ-ψ) is compared to the 3D electro-elastic model (3D-u-ϕ)
[48], with the 3D magneto-elastic model (3D-u-ψ) [49] and with the 3D magneto-electro-elastic plate model
(3D) by Pan [42]. In this way, the magneto-electro-elastic coupling is first validated separately and then fully
coupled. The opportune choice of the orderN for the exponential matrix was deeply discussed in [53] for
different thickness ratios, geometries and lamination schemes. In the case of multilayered plate structures
with an evident transverse anisotropy, an order N = 9 always gives correct results even if the plate is very
thick. This orderN can be reduced if opportune mathematical layersM are applied, but they are not necessary
for plate geometries and homogeneous materials.

The first assessment (A1) is devoted to a simply supported multilayered square plate in the sensor (A1-S)
and actuator (A1-A) configurations. The considered multilayered plate lamination is PZT-4/Al2024/Foam/
Al2024/PZT-4 where hPZT−4 = hAl 2024 = 0.1h and hFoam = 0.6h where h is the total thickness of the plate.
Geometrical data and load conditions are in Table 1 and material properties are collected in Table 2. Elastic
properties reported in Table 2 are computed with relations explicitly written for orthotropic materials in [54],
starting from the elastic coefficients of the material. The reference solution is the 3D electro-elastic model
(3D-u-ϕ model) proposed in [48]. Tables 3 and 4 show comparisons between the present 3D-u-ϕ-ψ model
and the 3D-u-ϕ model [48] for both sensor and actuator configurations in terms of displacements, stresses,
electric potential, and electric displacement. The accordance between the results is good for each thickness
ratio and for each variable proposed. The perfect accordance of results is visible for both primary variables
(u, w, ϕ) and secondary variables (σx x , σzz , Dz), certifying the correct computation of each kind of variable.
Therefore, this assessment permits validation of the electro-elastic coupling and the thickness and material
layer effects in multilayered piezoelectric plates.

Table 1: Geometrical data and load conditions for assessment (A) and benchmark (B) cases. “-S” indicates the “sensor”
configuration and “-A” indicates the “actuator” configuration. “/” means “not included in the model”

A1-S A1-A A2-S A2-A A3-S B-S B-A
a [m] 1 1 1 1 1 1 1
b [m] 1 1 1 1 1 1 1
h [m] variable variable variable variable 0.3 variable variable

m 1 1 1 1 1 1 1
n 1 1 1 1 1 1 1

Pzt [Pa] 10000 0 10000 0 1 10000 0
Pzb [Pa] 0 0 0 0 1 0 0
ϕt [V] 0 100 / / free 0 10
ϕb [V] 0 0 / / free 0 0
ψt [A] / / 0 10 free 0 15
ψb [A] / / 0 0 free 0 0
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Table 2: Elastic, electric and magnetic characteristics for materials involved in assessment and benchmark cases

Al2024 [48] PZT-4 [48] Foam [48] CoFe2O4 [49] BaTiO3 [42] Adaptive wood [51] Composite [49]
E1 [GPa] 73 81.3 0.180 154.32 116.33 154.32 172.37
E2 [GPa] 73 81.3 0.180 154.32 116.33 154.32 6.895
E3 [GPa] 73 64.5 0.180 142.83 111.93 142.83 6.895

ν12 0.3 0.329 0.37 0.36564 0.30709 0.36564 0.25
ν13 0.3 0.432 0.37 0.40133 0.33362 0.40133 0.25
ν23 0.3 0.432 0.37 0.40133 0.33362 0.40133 0.25

G12 [GPa] 28.077 30.6 0.65693 56.5 44.5 56.5 3.447
G13 [GPa] 28.077 25.6 0.65693 45.3 43 45.3 3.447
G23 [GPa] 28.077 25.6 0.65693 45.3 43 45.3 1.379
e15 [C/m2] 0 12.72 0 0 11.6 11.6 0
e24 [C/m2] 0 12.72 0 0 11.6 11.6 0
e31 [C/m2] 0 −5.20 0 0 −4.4 −4.4 0
e32 [C/m2] 0 −5.20 0 0 −4.4 −4.4 0
e33 [C/m2] 0 15.08 0 0 18.6 18.6 0
ε1 [nF/m] 0.008854 0.008854 13.06 0.08 11.2 0.08 0.008854
ε2 [nF/m] 0.008854 0.008854 13.06 0.08 11.2 0.08 0.008854
ε3 [nF/m] 0.008854 0.008854 11.51 0.093 12.6 0.093 0.008854

q15 [T] 0 0 0 550 0 560 0
q24 [T] 0 0 0 550 0 560 0
q31 [T] 0 0 0 580.3 0 580 0
q32 [T] 0 0 0 580.3 0 580 0
q33 [T] 0 0 0 699.7 0 700 0

μ1 [nH/m] 4π ⋅ 102 4π ⋅ 102 4π ⋅ 102
−590 ⋅ 103 5 ⋅ 103 variable 4π ⋅ 102

μ2 [nH/m] 4π ⋅ 102 4π ⋅ 102 4π ⋅ 102
−590 ⋅ 103 5 ⋅ 103 variable 4π ⋅ 102

μ3 [nH/m] 4π ⋅ 102 4π ⋅ 102 4π ⋅ 102 157 ⋅ 103 10 ⋅ 103 157 ⋅ 103 4π ⋅ 102

d1 [Ns/VC] 0 0 0 0 0 3 ⋅ 10−12 0
d2 [Ns/VC] 0 0 0 0 0 3 ⋅ 10−12 0
d3 [Ns/VC] 0 0 0 0 0 3 ⋅ 10−12 0

Table 3: Assessment A1-S, simply supported multilayered electro-elastic square plate in sensor configuration

a/h 4 10 20 50 100
u [10−7 m](z̃ = 0.75h)

3D-u-ϕ [48] 8.6313 12.619 6.2546 −59.111 −296.59
3D-u-ϕ-ψ 8.6313 12.619 6.2547 −59.111 −296.59

w [10−6 m](z̃ = 0.5h)
3D-u-ϕ [48] 8.9184 54.445 156.24 835.45 4703.4

3D-u-ϕ-ψ 8.9184 54.445 156.24 835.45 4703.4
σx x [103 Pa](z̃ = 0.75h)

3D-u-ϕ [48] 2.5461 3.1429 4.0125 9.9881 31.321
3D-u-ϕ-ψ 2.5460 3.1429 4.0124 9.9881 31.321

σzz [103 Pa](z̃ = 0.95h)
3D-u-ϕ [48] 9.3376 9.7171 9.8427 9.8884 9.8954

3D-u-ϕ-ψ 9.3376 9.7171 9.8427 9.8884 9.8954

(Continued)
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Table 3 (continued)

a/h 4 10 20 50 100

ϕ [V](z̃ = 0.15h)
3D-u-ϕ [48] 51.426 77.653 102.79 208.25 401.46

3D-u-ϕ-ψ 51.426 77.653 102.79 208.25 401.46
Dz [10−9 C/m2](z̃ = 0.85h)

3D-u-ϕ [48] −1.1991 −0.2870 −0.0552 0.0235 0.0354
3D-u-ϕ-ψ −1.1991 −0.2870 −0.0552 0.0235 0.0354

Table 4: Assessment A1-A, simply supported multilayered electro-elastic square plate in actuator configuration

a/h 4 10 20 50 100
u [10−11 m](z̃ = 0.75h)

3D-u-ϕ [48] 6.8261 16.335 8.4438 −0.70485 −8.0823
3D-u-ϕ-ψ 6.8259 16.335 8.4438 −0.70485 −8.0823

w [10−9 m](z̃ = 0.5h)
3D-u-ϕ [48] −5.4491 −2.7851 −1.6696 −1.2583 −1.1948

3D-u-ϕ-ψ −5.4491 −2.7851 −1.6696 −1.2583 −1.1948
σx x [103 Pa](z̃ = 0.75h)

3D-u-ϕ [48] −1.9234 −0.29305 −0.09300 0.00623 0.07299
3D-u-ϕ-ψ −1.9234 −0.29305 −0.09300 0.00623 0.07299

σzz [10−5 Pa](z̃ = 0.95h)
3D-u-ϕ [48] −92196 −7080.2 −887.69 −36.241 5.1601

3D-u-ϕ-ψ −92196 −7080.2 −887.69 −36.241 5.1601
ϕ [V](z̃ = 0.15h)

3D-u-ϕ [48] 5.4381 6.1172 6.2215 6.2509 6.2552
3D-u-ϕ-ψ 5.4381 6.1172 6.2215 6.2509 6.2552

Dz [10−9 C/m2](z̃ = 0.85h)
3D-u-ϕ [48] −5.2884 −11.431 −22.316 −55.403 −110.70

3D-u-ϕ-ψ −5.2884 −11.431 −22.316 −55.403 −110.70

In the second assessment (A2), a multilayered square plate is proposed in both sensor (A2-S) and
actuator (A2-A) configurations. In this case, the multilayered plate lamination is CoFe2O4/Al2024/Foam/
Al2024/CoFe2O4 where hCoFe2 O4 = hAl 2024 = 0.1h and hFoam = 0.6h where h is the total thickness of the
plate. Geometrical data and load conditions are listed in Table 1. Material properties in terms of magnetic,
electric, and mechanical coefficients are detailed in Table 2. The reference solution for both configurations
is the 3D-u-ψ magneto-elastic model in [49]. Tables 5 and 6 show results in terms of displacements v and
w, stresses σx x and σzz , magnetic potential ψ and magnetic inductionBz for different thickness locations. A
perfect agreement between the 3D-u-ψ-ϕ model and the reference solution is possible to observe for each
proposed variable and thickness ratio. Even in A2-S and A2-A cases, the perfect match involves primary
variables (v, w, ψ) and secondary variables (σx x , σzz , Bz). The present assessment is useful to validate the
magneto-elastic coupling and the thickness and material layer effects in multilayered piezomagnetic plates.
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Table 5: Assessment A2-S, simply supported multilayered magneto-elastic square plate in sensor configuration

a/h 4 10 20 50 100
v [10−6 m](z̃ = 0.75h)

3D-u-ψ [49] 0.4325 1.4974 3.0988 12.380 45.150
3D-u-ϕ-ψ 0.4325 1.4974 3.0988 12.380 45.150

w [10−4 m](z̃ = 0.5h)
3D-u-ψ [49] 0.0893 0.4930 1.3875 6.6144 34.151

3D-u-ϕ-ψ 0.0893 0.4930 1.3875 6.6144 34.151
σx x [103 Pa](z̃ = 0.75h)

3D-u-ψ [49] 2.4439 2.9747 3.5577 7.6673 22.366
3D-u-ϕ-ψ 2.4439 2.9747 3.5577 7.6673 22.366

σzz [103 Pa](z̃ = 0.95h)
3D-u-ψ [49] 4.6605 5.0316 5.0109 5.0019 5.0005

3D-u-ϕ-ψ 4.6605 5.0316 5.0109 5.0019 5.0005
ψ [A](z̃ = 0.15h)

3D-u-ψ [49] −0.0285 −0.0404 −0.0549 −0.1122 −0.2167
3D-u-ϕ-ψ −0.0285 −0.0404 −0.0549 −0.1122 −0.2167

Bz [10−8 T](z̃ = 0.85h)
3D-u-ψ [49] 5.7606 1.9062 1.2871 1.1143 1.0905

3D-u-ϕ-ψ 5.7606 1.9062 1.2871 1.1143 1.0905

Table 6: Assessment A2-A, simply supported multilayered magneto-elastic square plate in actuator configuration

a/h 4 10 20 50 100
v [10−10 m](z̃ = 0.75h)

3D-u-ψ [49] −11.020 −2.1426 0.6612 3.8437 8.1866
3D-u-ϕ-ψ −11.020 −2.1426 0.6612 3.8437 8.1866

w [10−9 m](z̃ = 0.5h)
3D-u-ψ [49] −22.134 −10.247 −6.1126 −4.5503 −4.3069

3D-u-ϕ-ψ −22.134 −10.247 −6.1126 −4.5503 −4.3069
σx x [Pa](z̃ = 0.75h)

3D-u-ψ [49] −7.9920 −1.3076 −0.6029 −0.5376 −0.8293
3D-u-ϕ-ψ −7.9920 −1.3076 −0.6029 −0.5376 −0.8293

σzz [Pa](z̃ = 0.95h)
3D-u-ψ [49] −11.809 −0.8745 −0.1406 −0.0233 −0.0093

3D-u-ϕ-ψ −11.809 −0.8745 −0.1406 −0.0233 −0.0093
ψ [A](z̃ = 0.15h)

3D-u-ψ [49] 7.9550 8.0902 8.1116 8.1177 8.1185
3D-u-ϕ-ψ 7.9550 8.0902 8.1116 8.1177 8.1185

Bz [10−4 T](z̃ = 0.85h)
3D-u-ψ [49] −0.6208 −1.5651 −3.1341 −7.8380 −15.677

3D-u-ϕ-ψ −0.6208 −1.5651 −3.1341 −7.8380 −15.677
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The third assessment (A3) is devoted to a multilayered square plate involving a piezoelectric
lamina BaTiO3 and a magnetostrictive lamina CoFe2O4. The first assessed stacking sequence is
BaTiO3/CoFe2O4/BaTiO3 and the second one is CoFe2O4/BaTiO3/CoFe2O4 in sensor configuration
(A3-S). For both cases, each lamina of the multilayered plate is 0.1m thick. Geometrical data and load
boundary conditions are explicitly written in Table 1, while the material properties of the two constituents
are listed in Table 2. The reference solution adopted is the 3D magneto-electro-elastic plate model by
Pan [42]. Tabular results with four significant digits listed in Tables 7 and 8 were derived from graphical
trends proposed in the work [42]. Comparisons for this assessment are presented for ϕ, ψ, Dx , Dz ,
Bx , Bz and σzz variables for both BaTiO3/CoFe2O4/BaTiO3 and CoFe2O4/BaTiO3/CoFe2O4 layered
configurations. Tables 7 and 8 exhibit a good match for both stacking sequences between 3D-u-ϕ-ψ model
results and the reference ones. Differences in the last digit probably arise from converting in tabular form the
results from a graphical trend. Both primary (ϕ, ψ) and secondary (Dx ,Dz ,Bx ,Bz and σzz) variables are in
accordance with the reference results. This assessment is useful to validate the present 3D-u-ϕ-ψ model with
a completely different 3D magneto-electro-elastic multilayered plate theory and to validate the fully coupled
magneto-electro-elastic effect.

Table 7: Assessment A3-S, simply supported multilayered (BaTiO3/CoFe2O4/BaTiO3) magneto-electro-elastic
square plate in sensor configuration

ϕ[10−3 V] (z̃ = 0.5h)
3D [42] 1.413

3D-u-ϕ-ψ 1.416
ψ [10−6 A] (z̃ = 5

6 h)
3D [42] −2.215

3D-u-ϕ-ψ −2.221
Dx [10−11 C/m2] (z̃ = 0)

3D [42] 3.500
3D-u-ϕ-ψ 3.526

Dz [10−12 C/m2] (z̃ = 1
6 h)

3D [42] −4.400
3D-u-ϕ-ψ −4.414

Bx [10−9 T] (z̃ = h)
3D [42] −0.038

3D-u-ϕ-ψ −0.035
Bz [10−10 T] (z̃ = 5

6 h)
3D [42] −0.100

3D-u-ϕ-ψ −0.109
σzz [Pa] (z̃ = 0.5h)

3D [42] 0.2499
3D-u-ϕ-ψ 0.2499
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Table 8: Assessment A3-S, simply supported multilayered (CoFe2O4/BaTiO3/CoFe2O4) magneto-electro-elastic
square plate in sensor configuration

ϕ[10−3 V] (z̃ = 0.5h)
3D [42] 2.243

3D-u-ϕ-ψ 2.246
ψ [10−6 A] (z̃ = 5

6 h)
3D [42] −1.490

3D-u-ϕ-ψ −1.496
Dx [10−11 C/m2] (z̃ = 0)

3D [42] 0.050
3D-u-ϕ-ψ 0.048

Dz [10−12 C/m2] (z̃ = 1
6 h)

3D [42] −0.150
3D-u-ϕ-ψ −0.152

Bx [10−9 T] (z̃ = h)
3D [42] 1.600

3D-u-ϕ-ψ 1.585
Bz [10−10 T] (z̃ = 5

6 h)
3D [42] 2.175

3D-u-ϕ-ψ 2.171
σzz [Pa] (z̃ = 0.5h)

3D [42] 0.246
3D-u-ϕ-ψ 0.247

4.2 Benchmarks
This section proposes a new multilayered square plate in both sensor and actuator configurations to

evaluate the magneto-electro-elastic coupling effects. The magneto-elastic effects and the electro-elastic
effects have already been investigated separately in the assessment part to validate the model. Eight different
values for specific z̃/h locations are presented for variables w, ϕ, ψ, σx x , σy y , σzz ,Dz , andBz in tabular forms.
z goes from −h/2 to +h/2 and z̃ goes from 0 to h. Each variable is proposed for different thickness ratios,
from thick (a/h = 4) to thin (a/h = 100) structures. The same eight variables are also presented in graphical
forms along the thickness direction for a moderately thick plate (a/h = 10).

This new benchmark considers two different load boundary conditions: sensor configuration
(B-S) and the actuator configuration (B-A). From bottom to top, the lamination scheme is Adaptive
Wood/0○/90○/0○/Adaptive Wood. Each layer is hAd a ptiv e Wood = 0.05h e hCom posi te = 0.3h. h is the total
thickness. Geometrical and load conditions are listed in Table 1, and material properties are collected
in Table 2. Since in the literature the sign of the magnetic permittivity coefficients μ1 and μ2 are stated as
both negative [51] and positive [52], this benchmark is duplicated by considering the two possibilities. So,
B-S and B-A are proposed with both μ1 = μ2 = −590 ⋅ 103 nH/m and μ1 = μ2 = 590 ⋅ 103 nH/m. In Tables 9–
12, variables w, ϕ, ψ, σx x , σy y , σzz , Dz and Bz are proposed at different z̃/h thickness positions and for
different a/h thickness ratios for both sensor and actuator cases. Tables 9 and 11 indicate the effect of the
sign on permittivity coefficients μ1 and μ2 for the sensor case: slight differences in results onto the electric
and magnetic variables (ϕ,Dz , ψ and Bz) are present. Tables 10 and 12 demonstrate that greater differences



Comput Model Eng Sci. 2025;144(1) 659

in all the proposed variables occur in both thick and thin plates for the actuator configuration due to the
different signs of the permittivity coefficients μ1 and μ2. Figs. 2 and 3 depict trends along the thickness
direction of the proposed tabular variables, considering negative μ1 and μ2 for the sensor and actuator
case, respectively. Figs. 4 and 5 indicate that the same trends are reported considering positive magnetic
permittivity coefficients. Both sensor and actuator configurations exhibit that the correct imposition of the
load boundary conditions (for the sensor case, σzz t = Pzt = 10000 Pa and σzz b = Pzb = 0 Pa, ϕt = ϕb = 0 V,
ψt = ψb = 0 A; for the actuator case, σzz t = σzz b = Pzt = Pzb = 0 Pa, ϕt = 10 V and ϕb = 0 V, ψt = 15 A and
ψb = 0 A). In addition, it is clear the perfect depiction of the magneto-electro-elastic coupling for both
sensor and actuator cases: in B-S case, the presence of a transverse normal load at the top surface creates
a ϕ electric potential and a ψ magnetic potential in the thickness of the plate, in the B-A case, the ϕ
electric potential trend and the ψ magnetic potential trend in the thickness of the plate generates a σzz
non-zero trend along the thickness direction. For each presented variable, the zigzag effect is shown as a
multilayered structure is analyzed. The zigzag effect is apparent for both configurations as the slope drastically
changes in correspondence with the physical interfaces of the plate. For variables w, ϕ, ψ, σzz , Dz , and
Bz trends are continuous along the thickness direction owning to the correct imposition of interlaminar
continuity conditions at each interface between two adjacent k layers. For variables σx x and σy y , trends are
discontinuous as no interlaminar continuity conditions are imposed. For the sensor configuration, the sign
of the magnetic permittivity coefficients μ1 and μ2 only affects theBz trend (Figs. 2 and 4). In the case of the
actuator configuration, different trends are due to the different signs of the magnetic permittivity regarding
the w displacement, the σx x and σy y stresses and the Bz transverse magnetic induction (Figs. 3 and 5). The
sign of μ1 and μ2 coefficients does not affect any of the previously described peculiarities related to the model
(load boundary conditions, magneto-electro-elastic coupling effect, zigzag effect and interlaminar continuity
conditions).

Table 9: B-S, simply supported multilayered electro-magneto-elastic square plate in sensor configuration.
μ1 = −590 ⋅ 103 nH/m, μ2 = −590 ⋅ 103 nH/m. Results obtained via the new 3D-u-ϕ-ψ model

a/h 4 10 20 50 100
w [10−6 m](z̃ = 0.5h)

1.1408 4.9505 23.567 295.98 2284.5
ϕ [101 V](z̃ = 0.75h)

5.0115 12.996 25.496 63.095 125.97
ψ [10−2A](z̃ = 0.25h)

−2.0197 −4.9894 −9.6587 −23.794 −47.475
σx x [105 Pa](z̃ = h)

1.8042 7.7687 28.840 176.03 701.62
σy y [105 Pa](z̃ = 0)

−1.5823 −7.9167 −29.160 −176.41 −702.02
σzz [103 Pa](z̃ = 0.5h)

4.9271 5.0065 5.0031 5.0006 5.0001
Dz [10−10 C/m2](z̃ = 0.5h)

1.6460 3.4245 3.9899 4.1837 4.2130
Bz [10−9 T](z̃ = 0.5h)

4.5506 −4.4506 −7.4005 −8.4166 −8.5691
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Table 10: B-A, simply supported multilayered electro-magneto-elastic square plate in actuator configuration. μ1 =
−590 ⋅ 103 nH/m, μ2 = −590 ⋅ 103 nH/m. Results obtained via the new 3D-u-ϕ-ψ model

a/h 4 10 20 50 100
w [10−10 m](z̃ = 0.5h)

−3.9516 −3.4755 −3.3060 −3.2417 −3.2317
ϕ [V](z̃ = 0.75h)

5.7736 7.5134 7.7774 7.8520 7.8627
ψ [A](z̃ = 0.25h)

2.8789 3.2568 3.3167 3.3338 3.3362
σx x [102 Pa](z̃ = h)

−16.743 −1.8880 7.6162 27.030 56.344
σy y [102 Pa](z̃ = 0)

1.5251 4.7650 10.328 26.558 53.345
σzz [10−1 Pa](z̃ = 0.5h)

−25.418 −12.087 −6.4263 −2.6252 −1.3168
Dz [10−10 C/m2](z̃ = 0.5h)

−3.0421 −9.7255 −20.088 −50.670 −101.47
Bz [10−5 T](z̃ = 0.5h)

−8.0769 −20.805 −41.791 −104.60 −209.24

Table 11: B-S, simply supported multilayered electro-magneto-elastic square plate in sensor configuration.
μ1 = 590 ⋅ 103 nH/m, μ2 = 590 ⋅ 103 nH/m. Results obtained via the new 3D-u-ϕ-ψ model

a/h 4 10 20 50 100
w [10−6 m](z̃ = 0.5h)

3D-u-ϕ-ψ 1.1408 4.9506 23.567 295.98 2284.5
ϕ [101 V](z̃ = 0.75h)

3D-u-ϕ-ψ 5.0113 12.996 25.496 63.095 125.97
ψ [10−2 A](z̃ = 0.25h)

3D-u-ϕ-ψ −2.0029 −4.9832 −9.6557 −23.793 −47.474
σx x [105 Pa](z̃ = h)

3D-u-ϕ-ψ 1.8041 7.7686 28.840 176.03 701.62
σy y [105 Pa](z̃ = 0)

3D-u-ϕ-ψ −1.5822 −7.9166 −29.160 −176.41 −702.02
σzz [103 Pa](z̃ = 0.5h)

3D-u-ϕ-ψ 4.9271 5.0065 5.0031 5.0006 5.0001
Dz [10−10 C/m2](z̃ = 0.5h)

3D-u-ϕ-ψ 1.6461 3.4245 3.9899 4.1837 4.2130
Bz [10−9 T](z̃ = 0.5h)

3D-u-ϕ-ψ 4.5063 −4.4453 −7.3982 −8.4161 −8.5689
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Table 12: B-A, simply supported multilayered electro-magneto-elastic square plate in sensor configuration.
μ1 = 590 ⋅ 103 nH/m, μ2 = 590 ⋅ 103 nH/m. Results obtained via the new 3D-u-ϕ-ψ model

a/h 4 10 20 50 100
w [10−9 m](z̃ = 0.5h)

3D-u-ϕ-ψ −5.8195 −4.9277 −4.6583 −4.5594 −4.5441
ϕ [V](z̃ = 0.75h)

3D-u-ϕ-ψ 7.8864 7.9198 7.8849 7.8696 7.8671
ψ [A](z̃ = 0.25h)

3D-u-ϕ-ψ 2.8461 3.2509 3.3152 3.3335 3.3361
σx x [103 Pa](z̃ = h)

3D-u-ϕ-ψ 11.493 5.4200 3.6225 3.8554 6.2112
σy y [102 Pa](z̃ = 0)

3D-u-ϕ-ψ 8.4150 9.1190 12.674 27.511 53.822
σzz [10−1 Pa](z̃ = 0.5h)

3D-u-ϕ-ψ −221.29 −35.942 −9.8989 −2.8584 −1.3461
Dz [10−10 C/m2](z̃ = 0.5h)

3D-u-ϕ-ψ −4.2523 −10.333 −20.411 −50.802 −101.54
Bz [10−5 T](z̃ = 0.5h)

3D-u-ϕ-ψ −7.9845 −20.767 −41.771 −104.60 −209.24
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Figure 2: B-S, simply-supported multilayered electro-magneto-elastic square plate in sensor configuration.
μ1 = −590 ⋅ 103 nH/m, μ2 = −590 ⋅ 103 nH/m. Results obtained via the new 3D-u-ϕ-ψ model for thickness ratio a/h = 10
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Figure 3: B-A, simply-supported multilayered electro-magneto-elastic square plate in actuator configuration. μ1 =
−590 ⋅ 103 nH/m, μ2 = −590 ⋅ 103 nH/m. Results obtained via the new 3D-u-ϕ-ψ model for thickness ratio a/h = 10
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Figure 4: B-S, simply-supported multilayered electro-magneto-elastic square plate in sensor configuration.
μ1 = 590 ⋅ 103 nH/m, μ2 = 590 ⋅ 103 nH/m. Results obtained via the new 3D-u-ϕ-ψ model for thickness ratio a/h = 10
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Figure 5: B-A, simply-supported multilayered electro-magneto-elastic square plate in actuator configuration.
μ1 = 590 ⋅ 103 nH/m, μ2 = 590 ⋅ 103 nH/m. Results obtained via the new 3D-u-ϕ-ψ model for thickness ratio a/h = 10

5 Conclusions
This study proposes an exact 3D, fully coupled magneto-electro-elastic model for multilayered plates

where the three 3D equilibrium equations, the 3D divergence equation for magnetic induction, and the
3D divergence equation for electric induction are the 3D governing equation of the magneto-electro-
elastic model. Solution methodology considers Navier harmonic forms in the in-plane directions and the
exponential matrix method in the thickness direction. A closed form solution is performed, and only simply
supported boundary conditions are possible. In addition, only orthotropic laminae involving piezoelectric
and/or piezomagnetic characteristics can be considered. Due to the imposition of the interlaminar continuity
conditions between two adjacent layers, the layerwise approach is adopted. In the assessment subsection, the
present model is validated with other 3D plate models involving magneto-elastic or electro-elastic effects in a
separate way. In the second part, new results are presented in sensor and actuator configurations for different
thickness ratios in the case of full coupling between electric, magnetic, and elastic fields. The benchmark
case is proposed firstly considering both coefficients with a positive sign and then with a negative sign, to
overcome the literature misunderstanding about the proper sign of the magnetic permittivity coefficients
μ1 and μ2. The present 3D magneto-electro-elastic model correctly depicts the magneto-electro-elastic
coupling, the thickness and material layer effects and the load conditions for all thickness ratios considered.
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Load boundary conditions are correctly implemented for both sensor and actuator configurations. The
present 3D magneto-electro-elastic model can be utilized to understand the behavior of smart multilayered
plates embedding piezoelectric and piezomagnetic materials.
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