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ABSTRACT: Fiber-reinforced polymer (FRP) composites are renowned for their high mechanical strength, durability,
and lightweight properties, making them integral to civil engineering, aerospace, and automotive manufacturing.
Traditionally, the simulation and optimization of FRP materials have relied on finite element (FE) methods, which,
while effective, often fall short in capturing the intricate behaviors of these composites under diverse conditions.
Concrete examples in this regard involve modeling interfacial cracks, delaminations, or environmental effects that
involve nonlinear phenomena. These degradation mechanisms exceed the capacity of classical FE models, as they
are not detailed to the required level of detail. This aspect increases the time and computational resources required,
leading to a need for optimization regarding fiber reinforcement configurations or multiple scenario load analysis.
Thus, FE methods are inefficient compared to AI-based approaches that generalize material behavior based on extensive
datasets. The advent of artificial intelligence (AI) has introduced advanced tools capable of enhancing the analysis and
design of FRP materials. This review examines the current landscape of AI applications in FRP composite simulations,
highlighting existing research gaps. Through a comprehensive bibliometric analysis, the study underscores the limited
number of investigations focused on leveraging AI for FRP optimization. Furthermore, it synthesizes findings related
to AI-driven simulation techniques, the mechanical properties of FRP composites, and strategies for predicting and
improving their durability. This review comprehensively explores the potential of AI to overcome these limitations by
synthesizing over 170 scientific works published between 2015 and 2025. Key findings highlight that supervised learning
methods—especially neural networks, support vector machines, and gradient boosting models—achieve prediction
accuracies above 90% for mechanical properties and defect classification. However, bibliometric analysis reveals that
there are limited studies that address AI-driven optimization or standardized datasets for FRP applications. This review
identifies eight core classification domains and eight regression domains where AI excels, including defect detection,
bond strength prediction, and fiber orientation optimization.

KEYWORDS: Artificial intelligence; fiber-reinforced polymers; material simulation; machine learning; deep learning;
optimization; mechanical properties; durability

1 Introduction
Fiber-reinforced polymer (FRP) composites have gained recognition due to their properties, including

lightweight, corrosion resistance, and long-term durability. These advantages have led to the exploration
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of FRP materials concerning their use in various applications. In the current technological context, efforts
are being made to replace traditional analysis methods based on physical models and classical numerical
simulations with modern artificial intelligence (AI) models. To identify the possibility of such predictions,
the specialized literature offers several studies examining these approaches. This paper analyzes the volume of
contributions from the specialized literature to determine the AI sector where detailed inspections regarding
the simulation and optimization process of FRP materials are lacking.

This paper’s main objective is to conduct a systematic and analytical review of the use of AI models in the
simulation, prediction, and optimization of FRP materials. The paper identifies suitable AI tools for analyzing
and designing these materials. Subsequently, the gaps in specialized research are highlighted, allowing for the
outline of future research directions that could improve the field. To achieve this objective, the paper analyzes
both biometric and thematic aspects of scientific studies published between 2015 and 2025. It proposes a
critical synthesis of the main applications of AI in three areas:

1. Prediction of the mechanical properties of FRP materials.
2. Structural monitoring and defect detection.
3. Modeling the degradation and durability of materials in aggressive environmental conditions.

The study highlights the need to develop standardized datasets, inspect additional machine learning
(ML) models, and integrate them into engineering workflows. By incorporating innovative technologies
that have not been sufficiently examined in the literature, the paper contributes to accelerating research in
FRP materials.

To achieve the general objective, the research utilizes a methodology based on three main components,
summarized in Fig. 1, which include:

1. Identification in the Web of Science (WOS) database using the set of key terms defined by the
authors of this research: “FRP,” “composites,” “machine learning,” “mechanical properties,” “durability,” and
“simulation.” The studies from this search address various ML methods in predicting and optimizing the
behavior of FRP materials. After this search, inclusion and exclusion criteria are applied to eliminate works
that do not meet the time requirements, specifically the analysis period of 2015–2025.

2. The bibliometric and thematic analysis was conducted using the VOSViewer 1.6.20 software. This
software aimed to identify research trends, institutional and geographical distribution, and the co-occurrence
of key terms. In this way, the studies were thematically classified based on the types of applications of the
FRP-AI combination.

3. The critical evaluation of the works identified in the specialized literature was based on the specific
performances of the models, the interpretability achieved by the authors of this paper, and the integration
with traditional simulation methods.

This method identified gaps in current research that should be addressed in future studies. Based on
these observations, the authors have outlined future research directions to enable specialists in AI and
mechanical fields to generate a substantial volume of contributions in the specialized literature, thereby
aiding technological advancement in the field.
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Figure 1: Flowchart for synthesizing the research development methodology

2 FRP Properties and Applications
FRP composites are increasingly utilized in civil engineering and construction as sustainable alternatives

to conventional materials, such as steel. These advanced materials are favored for their exceptional strength-
to-weight ratio, significantly reducing structural loads while maintaining performance [1]. Their application
is particularly advantageous in environments exposed to aggressive chemical or physical agents (e.g., marine
or industrial settings). FRP composites consist of polymer matrices reinforced with fibers (e.g., carbon, glass,
or aramid), enabling the tailoring of mechanical properties to meet specific functional or environmental
demands [2].

The widespread adoption of FRP composites in structural systems stems from their superior corrosion
resistance, which eliminates the need for frequent maintenance and extends the infrastructure’s service life.
The high corrosion resistance of FRPs is the main factor for their integration into structural systems. Other
factors make them versatile, such as low weight, high specific stiffness, and the ability to be customized by
varying the orientation of the fibers or the polymer matrix. FRP materials can be vulnerable to environmental
effects such as water absorption and moisture expansion. These factors affect the durability and long-term
mechanical behavior. For example, the paper [3] states that Glass Fiber Reinforced Polymer (GFRP) materials
absorb up to 2% of their weight in water after prolonged immersion. This behavior represents a drawback
for these materials, so applications with severe exposure to moisture or aggressive chemical agents require
additional protection strategies. A directive in this regard would be to cover with waterproof layers or
use epoxy resins with increased resistance to aggressive environments. A prime example is concrete-filled
FRP tubular columns, which demonstrate enhanced resistance to chemical degradation and mechanical
wear [4]. Their durability makes them ideal for critical infrastructure projects, such as bridge decks [5],
seismic retrofits, and building strengthening systems [6]. The synergistic effect of combining glass and carbon
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fibers in FRP composites yields improved ductility and flexural strength, outperforming traditional single-
material solutions [7]. Superior ductility in structural applications allows the material to absorb energy and
deform without sudden failure. In this way, safety measures are ensured in the event of extreme loads, such
as earthquakes, floods, or high winds. Increased resistance to bending allows FRP elements to withstand
variable and unevenly distributed loads. Such situations occur every day in the case of bridges and slabs,
especially in infrastructure components. Combining these properties allows for using FRP materials in
applications where brittle failure or premature cracking can have serious consequences. Further optimization
of mechanical properties can be achieved through strategic fiber orientation, enabling designers to address
complex loading scenarios [8].

Beyond conventional applications, FRP composites are now integral to innovative engineering solu-
tions, including seismic retrofitting, structural rehabilitation, and energy dissipation systems under dynamic
loads (e.g., earthquakes or wind) [2] FRP composites’ versatility, durability, and low lifecycle costs position
them as transformative materials for addressing 21st-century infrastructure challenges [6].

The market share of FRP applications is shown in Fig. 2.

Figure 2: The market share distribution of FRP across various applications [9]

Figs. 3–6 present the main technologies used for composite manufacturing.

Figure 3: (Continued)



Comput Model Eng Sci. 2025;144(1) 151

Figure 3: Main conventional manufacturing technologies of FRP based on matched die molding: (a) Hand lay-up;
(b) Spray lay-up; (c) Pultrusion [9]

Figure 4: Main conventional manufacturing technologies of FRP based on contact molding: (a) Injection molding;
(b) Compression molding; (c) Resin transfer molding; (d) Vacuum-assisted resin transfer molding [9]
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Figure 5: Main automated manufacturing technologies of FRP: (a) Filament winding; (b) Automated fiber
placement [9]

Figure 6: Main advanced manufacturing technologies of FRP: (a) Electrospinning; (b) Additive manufacturing [9]

Conventional FRP manufacturing methods, such as lay-up and filament winding, offer design flexibility
but rely heavily on manual labor, resulting in variability and limited scalability. Automated techniques
such as automated fiber placement and tape lay-up enhance efficiency and consistency, making them
ideal for precision applications. Advanced methods, such as electrospinning and additive manufacturing,
further enable high customization and control. Electrospinning produces ultrafine fibers, while additive
manufacturing allows for complex, material-diverse FRP structures, representing significant advancements
in composite fabrication [9].

FRP is used in structural engineering due to the unique properties mentioned earlier. These materials
are used in construction engineering, aeronautics, civil infrastructure, and naval engineering [10] due to
their durability against environmental degradation [11]. The lightweight characteristics of FRP make them
suitable for bridge construction [12] and as reinforcement for concrete [13]. This approach is an alternative
to traditional steel reinforcement in reinforced concrete [14], which is prone to corrosion in aggressive
environments [15]. Corrosion resistance is a key characteristic of FRP composites, including GFRP. The
consequence of utilizing these properties is reduced maintenance throughout the entire lifespan of the
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structure [16]. The use of hybrid systems that integrate steel and FRP enables engineers to enhance the
performance of traditional materials by leveraging the complementary properties [17].

A key application of FRP is in retrofitting existing structures using FRP laminates [18] to strengthen
degraded elements without altering the structural configuration [19]. In this way, the lifespan and load-
bearing capacity of existing infrastructures are improved. For example, the inherent properties of FRP
applied to pedestrian walkways allow for implementation through flexible architectural solutions in design
[20]. Advances in additive manufacturing technologies for FRP composites have enabled the fabrication of
complex structural configurations that were previously challenging to achieve [11].

Scientific works confirm the durability of FRP materials, mentioning the long-term performance of
GFRP under outdoor exposure conditions [21]. Future practices in construction engineering will include
design standards that integrate FRP technologies [15].

3 AI Tools for FRP Applications
Integrating AI in the development and simulation of FRP materials involves techniques that process

large volumes of data. AI methodologies have enabled an evolution in material quality through the
application of classification and regression techniques [22]. Researchers have developed new materials using
machine learning (ML) algorithms, which have enabled them to identify complex relationships within
datasets characterizing the composition and properties of these materials [23]. Predictive modeling of the
performance of materials subjected to different conditions is carried out using ML algorithms to improve
various engineering processes [24].

The study [25] uses Principal Component Analysis (PCA) to generate assemblies of sand particles with
varied shapes. It demonstrates the possibility of preserving the particles’ morphological characteristics. The
paper [26] employs the same technique for simulations related to the discrete element method, specifically
regarding packing density and the angle of repose. Both studies analyze the influence of particle shape on
mechanical behavior, a phenomenon also observed in the case of FRPs.

AI-driven simulations facilitate the analysis of interactions between the matrix and fibers in FRP
composites. The paper [27] demonstrates that simulating thermal and hydrothermal aging processes
anticipates material defects. This finding allows for the optimization of design. Advanced computational
techniques applied in molecular dynamics simulations have allowed researchers to identify FRP behaviors
under aggressive environmental conditions [28]. This way, characteristics that could not have been easily
extracted from real-world applications were identified. Integrating AI systems into these simulations predicts
new characteristics of these materials that would require very long timescales in the absence of these systems
[29]. From these aspects, it can be deduced that these AI systems minimize the time materials could develop
unforeseen behaviors.

Integrating AI applications alongside modern technologies, such as Digital Twins, virtualizes physical
systems for real-time data analysis, enabling the generation of predictions that can replicate real-world
performance [28]. This concept applies in environments such as warehouses or factories that use FRP
[30]. Additionally, robotic systems incorporating AI components improve the handling processes of these
materials [31]. The role of AI in modeling and assessing degradation processes in FRP materials contributes to
the durability of composite structures under various loading conditions, including static, dynamic, and cyclic
loads [32]. A concrete example is the analysis of interfacial stress in FRP systems, which requires ensuring
longevity. A concrete example of integrating AI technologies in interfacial stress analysis can be found in
the study [30]. This paper uses an artificial neural network (ANN) to evaluate the mechanical behavior of
damaged reinforced concrete beams consolidated with FRP plates. The research uses an AI model trained on



154 Comput Model Eng Sci. 2025;144(1)

experimental data regarding the stress distribution at the interface between FRP and concrete under different
loading conditions. The classical differential equations of the interface were combined with the AI model to
achieve superior predictions compared to the classical variant. The predictions target the stress state without
requiring complex FEM simulations from a computational standpoint. This approach demonstrates that the
integration of AI supports the analysis of critical mechanical phenomena specific to delamination or loss of
adhesion, having a direct long-term contribution to monitoring structural durability. Moreover, the method
proposed in the paper [30] reduces reliance on destructive testing, contributing to identifying vulnerable
areas. It is observed from this approach that materials science is closely linked to AI technologies in terms of
guaranteeing material quality. The discovery of materials depends on the completeness of the datasets used in
the model training stage [29]. Validation methodologies, error reduction, and the elimination of redundant
data, along with testing, ensure the optimal design of FRP materials [33]. These steps are part of the workflow
for designing FRP materials using AI technologies. The integration of these steps enables the identification
of optimal fiber reinforcement configurations, thereby reducing experimental testing costs and facilitating
the acceleration of new material development. Aspects related to workflow and costs are addressed in detail
in a dedicated section of this article. Theoretical modeling and experimental validation, facilitated by AI
techniques, ensure the continuous development of FRP and other composite materials [34].

Modern AI techniques also facilitate the predictive modeling of FRP materials. Traditional models
use Finite Element Analysis (FEA) to estimate the axial capacity of reinforced concrete structures. They
encounter difficulties in modeling the nonlinear behavior of elements degraded by corrosion due to the
complexity of the calculations. A much easier modeling of nonlinear behavior justifies the transition to
AI techniques. The ease of this approach comes especially when working with data from destructive tests
or complex numerical simulations. These statements are supported by studies such as [35,36], which have
demonstrated that ML algorithms support the estimation of the axial capacity of FRP-reinforced columns.
Therefore, although classical methods can analyze FRP properties, integrating AI methods into the existing
workflow achieves a faster analysis, marking a step towards predictive and customized structural engineering.
An example is assessing the axial capacity of structures rehabilitated with FRP. The paper [37] emphasizes
that the lack of empirical models to predict the axial capacity of columns affected by corrosion necessitates
the development of predictive systems in this field. The orientation of the fibers determines the mechanical
anisotropy of the composite. Therefore, the way the material behaves can be analyzed by the longitudinal
alignment of the fibers, which ensures tensile strength. Chaotic or transverse orientation reduces the rigidity
and durability of the structure. On the other hand, environmental conditions affect both the polymer matrix
and the interface between the fibers and the matrix, causing phenomena such as thermal degradation of
the resin, water absorption, hygroscopic expansion, reduced interfacial adhesion, and localized corrosion
in defect areas. For this reason, predictions regarding the strength and durability of FRP materials in
applications can be made using ML models. For this reason, the authors of this review study recommend ML
algorithms for modeling these problems. In practice, it is suggested that fiber orientation and environmental
conditions be analyzed to predict the strength of FRP materials. The suggestion to analyze factors using this
method does not exclude the use of AI techniques; on the contrary, it supports them, demonstrating that
AI is a superior alternative in terms of efficiency, provided that variables reflecting the physical reality of the
material are integrated. Thus, our idea is consistent with using ML as a tool that generates superior results
compared to classical techniques, provided that parameters from the process are included that contribute
to establishing results aimed at the material and the environment in which the process is modeled. The
influence of fiber orientation on structural properties can be analyzed using AI techniques when tests related
to turbulent currents are combined with AI tools. The fiber alignment is visualized in this way, influencing
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the material’s performance [38]. Integrating advanced state methods with AI models allows engineers to
simulate FRP composites faithfully in design workflows.

Optimization procedures in this field can be integrated under AI-assisted conditions. The paper [39]
employs objective functions to minimize weight and maximize structural integrity, subject to specific
constraints, in aerospace and automotive applications. This type of application demonstrates that using
hybrid optimization algorithms constrains frequency constraints with the help of ML models [40]. FEA,
used to simulate FRP composites’ behavior, is enhanced with AI tools. The paper [41] improves FEA in
analyzing loading conditions for FRP repairs of submarine pipelines. Through simulations, AI replaces
physical tests that are costly financially and in terms of actual effort. Nonlinear analysis with physical elements
for debonding processes of reinforced concrete beams with FRP systems is also conducted using AI tools
[32]. Combining FEA technologies with AI improves the analysis process by conducting simulations at the
structural integrity level.

The lifespan of these composites reflects the durability of FRP materials. AI-based simulations improve
this process. The paper [42] highlights the importance of incorporating environmental factors, such as
humidity and temperature, into modeling FRP materials. This holistic approach enables the evaluation of
long-term performance behavior under variable environmental conditions.

4 ML Analysis in the Context of the FRP Applications
AI encompasses multiple components that can be used in different fields. In a field, various AI

components can be used simultaneously. The most well-known AI components are those for natural language
processing (NLP) due to modern tools that allow interaction between computers and humans, computer
vision (CV), which enables computing systems to interpret content from images and videos, expert systems
that allow the imitation of human decision-making processes, as well as ML, which targets the problem-
solving sector through classification or approximation. It is important to note that the most widely used
components, such as NLP and CV, employ machine learning (ML) algorithms. The modeling and prediction
of the mechanical properties of FRP are carried out with the help of the ML component. The reasons why
this is the most suitable component are justified by the following arguments:

• The mechanical behavior of FRP materials is influenced by several factors (type of fibers, matrix, fiber
orientation, material density, mechanical loading conditions, temperature, etc.). These many factors
translate mathematical formalism into complex non-linear relationships between variables. Solving
such a mathematical system by humans is impossible, which is why AI components are necessary. The
components that can handle such situations are those of ML;

• ML models approximate complex mathematical formulas with predictive models that can anticipate
material behavior based on a series of variables represented by the material parameters. For example,
ML models can associate material parameters (such as fiber type, thickness, fiber orientation angle, etc.)
with mechanical response (for example, tensile strength, compressive strength, torsional resistance, etc.);

• ML components use analyses on large volumes of data to identify certain common behaviors called
patterns. This statement leads to the idea that as more process data is collected about the behavior of
FRP materials under different operating conditions, ML models can continuously improve the accuracy
of the simulations performed;

• Some ML algorithms can optimize the manufacturing process of FRP materials. This can be achieved by
using models that predict the impact of various methods (such as manufacturing temperature) on the
mechanical properties of the composites.
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ML is a tool currently used for analyzing data associated with FRP due to its ability to work with large
volumes of data. This ability facilitates the design of materials and optimizes the performance characteristics
of composites. According to the paper [43], ML models have been successfully used to predict the perfor-
mance of polymer membranes in pervaporation separation processes. The predictive component accelerates
the screening of potential materials, which reduces the development time for new FRP applications. The
paper [44] investigates the structure-property relationships of high-energy-density polymer composites.
This highlights the role of ML in data analysis, which accelerates the discovery and characterization of new
materials. The integration of ML in characterizing the microstructural properties of FRP was studied in the
paper [45], serving as an example of quantitative analysis of microstructures in solid oxide fuel cells. This
integration of ML not only enhances the understanding of composite behavior but also optimizes predictions
regarding their performance based on microstructural factors. The anisotropic behavior analysis of FRP
explores the unique mechanical behavior of FRP influenced by fiber orientation, also through ML methods
[46].

ML dimensionality reduction techniques have proven useful in analyzing complex datasets associated
with FRP. The paper [47] illustrates the usefulness of methods such as PCA in enhancing the interpretability
of multidimensional data resulting from experiments with composite materials. Such techniques allow for
the refinement of models that predict performance metrics related to FRP’s processing and mechanical
properties, as discussed in the paper [48], which analyzes advancements in the unconventional processing
of FRP.

The importance of unsupervised ML methods is increasingly recognized in evaluating the reliability
of composite systems. For example, the paper [49] applies unsupervised learning techniques to evaluate
the reliability and performance of power systems incorporating composite materials. Classification and
clustering capabilities provide valuable insights into latent patterns, improving the’ accuracy of predictions
regarding FRP components’ lifespan and durability.

Fig. 7 presents the hierarchical structure of the ML concept. The authors categorize this concept into
four main categories based on FRP-related results from the WOS. Thus, ML is classified into Supervised
Learning (SL), Unsupervised Learning (UL), Semi-Supervised Learning (SSL), and Reinforcement Learning
(RL). Fig. 7 also presents the evaluation metrics of ML models for each category. These metrics assess
algorithm performance and serve as tools for model comparison. Most scientific papers address the issue of
selecting the best-performing model for different scenarios. These metrics facilitate the identification of the
optimal model for a given problem type.

The diagram in Fig. 7 also includes the number of articles identified on the WOS platform. Through this
approach, the authors aim to identify the most extensively studied ML direction in the literature between
2015 and 2025. Supervised Learning includes 554 articles in WOS and is subdivided into classification and
regression. Classification (441 articles) is the most commonly employed technique, followed by regression
(165). This suggests that most ML applications focus on predicting discrete categories or continuous values.
The large number of existing articles on classification is explained by the ability of this ML component to
identify the category in which a composite material fits based on its characteristics. Regression (165 articles) is
explored for its predictive capability regarding numerical values associated with the mechanical properties of
FRP materials. The most common applications involve predicting tensile or compressive strength, estimating
the lifespan of FRP materials based on usage conditions, or simulating mechanical behavior to assess how
an FRP material will respond to different types of loads (static or dynamic loading, extreme temperatures,
etc.).
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Figure 7: Distribution of ML techniques based on the number of published articles and performance metrics

UL is identified in 121 articles in WOS. This relatively low number suggests that problems based on
unlabeled data are either less common or more challenging to address successfully within the FRP domain.
The results identified for SSL (no article) and RL (14 articles) indicate that these ML components are more
difficult to apply in the FRP field.

Both classification and regression algorithms in ML use different methods to model the problems they
must solve.

4.1 Classification Algorithms for FRP Applications
Regarding classification algorithms, they are studied in the literature in both traditional variants and

through deep learning (DL) algorithms. In Fig. 8, the classification algorithms identified in WOS for FRP
modeling are presented:

• Neural Networks (NNs) are identified in 269 articles. Neural networks are the most used in modeling
and simulating FRP properties. These allow for the non-linear analysis of the material composition and
its mechanical behavior. Additionally, NNs are used to simulate numerical experiments without the need
for costly tests;

• Extreme Gradient Boosting (XGBoost) has been used in 89 articles and is one of the most widely used
algorithms in ML. The large number of articles (89) indicates that it is compatible with the issue of
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predicting the behavior of FRP materials. This is used to estimate residual stresses in FRP structures. It
is also used in optimizing their design;

• Support Vector Machines (SVMs) are employed in 57 articles. They are frequently used to classify
structural defects of FRP and predict the optimal type of matrix and fiber based on the application.
The large number of articles confirms the repeated research that mentions this algorithm in solving
classification problems (e.g., identifying the level of damage in an FRP laminate);

• Convolutional Neural Networks (CNNs) are applied in 23 articles for the analysis of microscopy images
of FRP materials. Thus, they are helpful in the detection of microcracks and porosities;

• K-Nearest Neighbors (K-NNs) algorithm is cited in 20 articles in WOS. This is used in FRP analysis for
defect classification based on the similarity between structures;

• Logistic Regression, identified in 17 articles, determines the probabilities of defects occurring in FRP
materials. However, as a linear model, it provides poor results because it cannot model the nonlinear
relationships between processing parameters and the mechanical properties of FRP;

• Random Forests (RFs) (13 articles) are used for the classification of FRP microstructures and in
predicting mechanical behavior based on material composition;

• LightGBM (9 articles) and CatBoost (15 articles) are rarely used. In the literature, these algorithms have
applications in predicting the degradation time of FRP composites;

• Decision Trees (DTs) (7 articles) demonstrate the limitation in the FRP issue, being poorly applicable to
the complex mechanical properties of FRP;

• Recurrent Neural Networks (RNNs or Long Short-Term Memory (LSTM)—3 articles) and Transformers
(13 articles) are rarely used in the analysis of experimental data series and the prediction of internal
stresses in composite materials;

• Naive Bayes (2 articles), Linear Discriminant Analysis (LDA) with 6 articles, and Graph Neural Networks
(GNNs) with no article are rarely used in FRP because they are more suitable for statistical data and
cannot model the structural complexity of composite materials.

NN are employed in fiber-reinforced composites (FRC) because they can predict mechanical properties,
optimize manufacturing processes, and improve material analysis. Numerous studies have applied NN to
model and predict the static strength properties of carbon fiber reinforced composites, highlighting the utility
of AI in composite material research. For example, the paper [50] presents an ANN model to accurately
predict the static strength properties of carbon fiber reinforced composites, demonstrating the potential of
ML in materials science.

The utility of NN extends to other aspects of FRP as well. The prediction of properties and structural
analysis are frequently studied applications using NN. The paper [51] presents the role of ANN in discovering
unknown constitutive laws, accelerating multiscale modeling, and detecting defects in composite materials.
These characteristics reinforce the position of NNs as tools for optimizing the properties of composite
materials, as they can model complex relationships that traditional methods cannot identify. In addition,
advancements in specific types of NN, such as CNNs and GNNs, have extended their applicability in
predicting the mechanical properties of composites. The paper [50] discussed using ANN to predict
elastic properties, such as Young’s modulus and Poisson’s ratio, based on computational data generation.
Additionally, the papers [52,53] have explored how GNNs can represent the structures of crystalline materials
to predict target behaviors, providing valuable insights for the improved modeling of composite structures.



Comput Model Eng Sci. 2025;144(1) 159

Figure 8: Distribution of research articles on ML classification algorithms for FRP analysis

AI applications also include the improvement of composite manufacturing processes that employ NN.
For example, studies [54,55] on carbon fiber reinforced polymer (CFRP) milling have shown that ANN
models can predict surface roughness and delamination factors, optimizing operational parameters during
processing. These applications demonstrate how NNs bridge the gap between theoretical predictions of
properties and the practical requirements of manufacturing. The role of NN in understanding the behavior
of composites also extends to real-time monitoring and predictive maintenance. Techniques such as using
backpropagation algorithms combined with particle swarm optimization have been applied to identify
defects in composite structures through material health monitoring [56]. The integration of NN in the study
and application of fiber-reinforced composites has allowed the evolution towards an intelligent materials
science. Their ability to model complex interactions and predict mechanical properties optimizes material
processing and quality control [57].

Recent studies have demonstrated the applicability of SVM in predicting the mechanical properties
and functional characteristics of various composite materials. For example, the paper [58] illustrates the
capability of SVM, in combination with supervised learning techniques such as linear discriminant analysis
and RFs, to generate predictive models for the petrochemical sector. This versatility indicates the possibility
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of using SVM to analyze FRP’s mechanical and thermal responses. MLL techniques, including SVM, have
been used to examine the integrity of FRP bonds under hygrothermal conditions. The paper [59] emphasizes
the importance of understanding these interactions for the durability of FRP-concrete bonds, highlighting
the role of computational modeling, where SVM can analyze the factors influencing bond performance.
Additionally, the paper [44] details the application of ML approaches, including SVM, in designing polymer
composites with high energy density and optimizing their properties based on experimental data. In
addition, the integration of ML with experimental data demonstrates that SVM can improve the accuracy
of predictions in identifying material compositions and behaviors under various conditions. Innovations
in high-efficiency stochastic simulations for material degradation reveal how ML frameworks, including
SVM, are designed to predict energy storage performance in polymer composites [60]. These capabilities
enable the optimization of material properties in civil engineering applications, where FRP is frequently used
for structural reinforcement and durability enhancement [61]. In the context of FRP applications in civil
engineering, SVM has demonstrated potential in optimizing predictive modeling for hybrid composites,
which use multiple types of fibers in a matrix. The study [62] illustrates how ML techniques, including SVM,
can facilitate understanding of the mechanical properties of these complex materials. As research continues
to explore the capabilities of SVM in the field of FRP, combining these methodologies with rigorous material
testing leads to advancements in the design and implementation of composite structures.

XGBoost has been recognized for its superior predictive capabilities compared to traditional methods
[63]. Researchers have employed interpretation techniques, such as SHapley Additive exPlanations (SHAP),
to elucidate how various input features impact output predictions, thereby enhancing the understanding
of the model’s decision-making process [35]. This aspect allows engineering applications to understand the
factors contributing to a prediction and make informed design and material selection choices for reinforced
structures [64].

4.2 Classification Process for FRP Applied on a Proposed Example
Fig. 9 illustrates the schematic flow for classification in FRP composite simulation and optimization. The

flow is exemplified for defect detection using common defects such as delamination, cracks, voids, and poor
bonding. These are critical issues that can compromise the structural integrity of FRP components. Fig. 9
outlines a structured ML classification process from data collection to implementation and monitoring. The
presented example emphasizes the role of classification algorithms in identifying and categorizing defects
within FRP materials.

Figure 9: Schematic flow for classification in FRP composite simulation and optimization
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The Data Collection builds a database that contains correlations between elements with different types
of defects and values associated with environmental conditions, as well as values for elements without defects
and environmental parameters. Building the dataset with feature-label correspondences enables the training
of a correct classification model. Fig. 9 highlights exposure to humidity, extreme temperatures, and thermal
cycles as key factors influencing material behavior. Elements that contribute to training the model are called
features, and the categories associated with these elements are called labels. Table 1 presents an example of
correlations between features and labels. The dataset must contain tens of thousands of such configurations
so that the model can predict correctly. The authors want to emphasize that the dataset’s volume must be
substantial, which presents a primary challenge for AI models. Building the dataset is complicated because
it requires acquiring real data that is known with certainty to correlate with the output correctly. Otherwise,
the model will learn to recognize incorrectly.

Table 1: Example section from dataset for feature-label correlations: “No Defect” and “Delamination”

Delamination
depth (mm)

Crack length
(mm)

Void size
(mm2)

Bond strength
(%)

Humidity (%) Defect type

0 0 0 95 70 No defect
0 0 0 92 50 No defect
0 0 0 98 60 No defect
0 0 0 90 40 No defect
0 0 0 93 55 No defect

0.3 0 0 88 75 Delamination
0.6 0 0 85 80 Delamination
0.8 0 0 80 85 Delamination
1.0 0 0 75 90 Delamination
1.2 0 0 70 95 Delamination

In the data preprocessing stage, the data is standardized. At this stage, engineers clean and normalize
the collected data to ensure its quality and compatibility with ML algorithms. Eliminate data points that are
significantly different from other observations, as they may skew the results. Since the data can come from
various sources, it must be standardized to a uniform format. In the first five records from Table 1, all features,
such as delamination depth, crack length, void size, bond strength, and humidity, are within normal ranges,
indicating healthy FRP components with no defects. In the last five examples, the delamination depth varies
from 0.3 to 1.2 mm, indicating different levels of layer separation. Other features like crack length and void
size remain at zero, suggesting that delamination is the primary defect. The bond strength and humidity
levels also show some variation but are generally lower than the “No Defect” cases, reflecting the impact of
delamination on the material’s integrity.

The training and testing stages are based on the quality of the data in the dataset. The preprocessed
data are split into training and testing sets to develop and validate the classification models. Fig. 9 indicates
an 80/20 split, where 80% of the data is used for training the model, and 20% is reserved for testing its
performance. These values can vary; they are chosen for illustration purposes. There are situations when the
ratio is 70/30 or 75/25, depending on the metrics obtained from testing. Assuming the dataset contains 1000
data points, 800 would be used for training and 200 for testing.

In the training phase, multiple classification algorithms are evaluated. Based on the evaluation metrics
of the ML type, the algorithm that best models the problem is chosen.
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FEA Simulation and Experimental Validation integrate the classification results with FEA simulations
and experimental data to validate the model’s predictions. FEA simulates the effects of classified defects on the
structural performance of FRP components. For instance, simulating how a 0.5 mm delamination affects the
tensile strength of a FRP beam is an example of this stage. Experimental validation compares the simulation
results with real-world test data to ensure the accuracy of the simulation. In this step, the engineer conducts
tensile tests on FRP samples with known defects and compares the results with FEA predictions.

Finally, the algorithm is implemented into the optimized design and continuously monitors the
structure’s performance to detect new defects. In this stage, the model is fed parameters such as delamination
depth, crack length, void size, bond strength, and humidity, and it automatically generates the label for the
defect type. This is possible because the model identifies similar situations within the large volume of data
and assigns the label based on previous experiences from the dataset.

4.3 Regression Algorithms for FRP Applications
In FRP analysis, regression algorithms predict mechanical behavior, optimize material properties, and

simulate the material’s response to different loading conditions. The results obtained for the regression
algorithms demonstrate the research trends of each method regarding the FRP issue.

Fig. 10 presents the WOS results for each algorithm specific to regression models, whose values are
analyzed as follows:

• Linear regression methods (89 articles) and polynomial regression methods (19 articles) are used
to establish correlations between manufacturing parameters (e.g., fiber percentage, resin type) and
mechanical properties (e.g., tensile strength, modulus of elasticity). These algorithms are also used to
simulate the complex behavior of FRP based on the nonlinear relationships between variables.

• The Lasso and Ridge Regression methods (11 and 10 articles, respectively) select specific features for FRP
analysis, identifying those parameters that contribute little to FRP behavior. This reduction allows for
the simplification of the analyzed model;

• Gradient Boosting Regression (GBR) is used in 10 articles, and Random Forest Regression (RFR) is also
employed in 10 articles are used for the nonlinear prediction of the mechanical performance of FRP;

• Decision Tree Regression (DTR) (3 articles), Feedforward Neural Networks (FNNs) (1 article), and
Transformers (Time Series—no article) are not explored in the literature for the FRP issue because they
are not suitable for modeling such a problem as they tend to overfit the data, or require a much larger
volume of data, or due to the lack of sequential datasets;

• Physics-informed neural Networks (PINNs) are used in one article, combining the laws of physics with
machine learning. This relatively new technology has not yet been explored for the FRP issue.

Linear regression identifies FRP behavior in civil engineering and materials science. Decent studies have
demonstrated linear regression’s ability to evaluate the performance associated with FRP-reinforced concrete
systems. The paper [65] examines linear regression analysis of the bond strength of FRP bars in various
types of concrete. This paper uses a dataset of 1010 samples. Similarly, the paper [66] studies the distortion of
FRP reinforcements. Also, from the civil engineering category, the paper [67] studies the prediction of the
resistance to bending of reinforced concrete beams with FRP. The paper emphasizes that the methodologies
are applicable when the scenarios differ. ML models are used to improve the properties of FRP composites
through applications that simulate different associated scenarios. The paper [68] achieved an R2 value of
85% in estimating the bond strength between the FRP laminate and concrete. The paper [69] highlights
the advantage of using linear regression as a study element for predictions associated with FRP. This tool is
simple, provides interpretable results, and can be used in various applications.
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Figure 10: Distribution of research articles on ML regression algorithms for FRP analysis

Support vector regression (SVR) predicts the mechanical behavior of FRP concrete components. This
method is superior to the limitations of traditional empirical equations. SVR allows nonlinear relationships
between input parameters and the resulting resistance measurements. The paper [70] proposed a hybrid
approach that integrates SVR with a Bayesian optimization algorithm (BOA) to improve the predictive
capability of shear strength in FRP-reinforced concrete beams without stirrups. Similarly, the paper [71]
illustrated the effectiveness of SVR in predicting the joint strength of reinforced concrete elements. The
versatility of SVR is also demonstrated in studies that predict bond and joint strength in these materials.
Other evidence regarding SVR performance comes from studies focused on predicting shear capacity. For
example, the SVR method was used to determine the bond strength at the concrete-FRP interface [72]. The
paper [37] investigated the load-bearing capacity of glass-FRP columns by applying the SVR method to
a wide range of structural assessments and conditions. In the paper [73], it was observed that SVR-based
models exhibited shorter prediction times and reduced errors when applied to estimates of bond strength at
the FRP-concrete interface.
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4.4 Regression Process for FRP Applied on a Proposed Example
For regression, the flow is similar to that for classification. The fundamental difference between the

two stems from the dataset, where the label is a numerical value. Fig. 11 shows that initially, experimental
and numerical data regarding the mechanical properties and structural behavior of FRP materials are
collected. The dataset may include mechanical properties such as tensile strength (MPa), elastic modulus
(GPa), delamination resistance (N/mm2), environmental conditions such as temperature (○C), humidity (%),
exposure to marine salts (ppm), or structural performance metrics like axial load capacity (kN) or shear
behavior (MPa).

Figure 11: Schematic flow for regression in FRP composite simulation and optimization

The data is cleaned and normalized in the next stage to eliminate errors and redundancies. For example,
data points with extreme values are removed (e.g., a tensile strength of 500 MPa if the normal range is
100–300 MPa).

The dataset must be constructed to contain correspondences between inputs and outputs. Table 2
presents an example of such correspondences between Temperature (○C), Humidity (%), Fiber Orientation
(degrees), Bond Strength (MPa), and Tensile Strength (MPa). Essentially, the model aims to predict Tensile
Strength (MPa) values when temperature, humidity, fiber orientation, and bond strength are known.

Table 2: Example section from the dataset for regression correlations

Temperature (○C) Humidity (%) Fiber orientation (○) Bond strength (%) Tensile strength (MPa)
25 60 0 90 200
30 70 45 85 180
35 80 90 80 160
40 90 0 75 140
45 95 45 70 120
50 85 90 65 100
55 75 0 60 80
60 65 45 55 60

The preprocessed data is split into training and testing sets at a ratio determined by the engineer, and
subsequently, the model is trained using regression algorithms. The algorithm with the best performance is
evaluated using specific metrics.
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In the FEA Simulation and Experimental Validation stage, the effect of fiber orientation on tensile
strength is simulated. The simulated results are then compared with experimental tests. The purpose of these
tests is to evaluate the accuracy of the model’s predictions. The regression results are used to optimize FRP
design. For example, fiber orientation can be optimized to maximize tensile strength.

Table 2 presents an example of correlations for training a model that determines the tensile strength of
FRP material. The input variables used to train the regression model are:

• Temperature (○C) is the temperature to which the material is exposed;
• Humidity (%) represents the humidity level;
• Fiber orientation (○) is the material’s fiber orientation (in degrees);
• Bond strength (%) is the fiber-matrix adhesion strength.

Each row shows how certain combinations of features influence tensile strength. For example, at 25○C,
60% humidity, 0○ fiber orientation, and 90% bond strength, the tensile strength is 200 MPa. At 50○C, 85%
humidity, 90○ fiber orientation, and 65% bond strength, the tensile strength decreases to 100 MPa.

4.5 Performance Algorithms for FRP Applications
The application of ML in the simulation and analysis of FRP has progressed to accurately model

and predict the performance characteristics of FRP in various structural applications. An example in this
regard is structural applications at the concrete level. The paper [74] demonstrates the use of multilayer
perceptron networks and radial basis function networks to estimate the compressive strength of FRP-
confined columns. The results presented in the paper indicate that these NN models outperform traditional
regression models. The paper [75] estimates the punching shear capacity of FRP-reinforced concrete slabs.
Another paper [76] examines the bond strength between the FRP interface and concrete under various
environmental conditions. Their results showed that NN based on improved meta-learning offers superior
predictive performance compared to standard models. In the paper [77], an ANN-based framework was
developed to predict the bond strength between FRP and concrete. The paper [73] evaluates the bond strength
in surface-mounted FRP-concrete systems. Together, these studies signal a paradigm shift in identifying and
quantifying material properties through AI technologies. These results underscore the importance of ML in
composite materials engineering. The literature identifies two FRP applications in the ML field: structural
health monitoring (SHM), and damage assessment. Fig. 12 summarizes the accuracy of the ML models
analyzed in the literature. The accuracy values presented in Fig. 12 indicate the outstanding performance
of the ML models in the context of SHM when applied to FRP materials. These results underscore the
importance of ML algorithms in SHM.
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Figure 12: Comparative analysis of ML model accuracy for SHM in FRP applications [78–84]

The results in Fig. 13 show accuracy values of 92% and 97.75% for the ML models in predicting the
structural behavior of FRP-reinforced elements. These values confirm that ML models are well-suited for
these applications.

Figure 13: Accuracy of ML models in predicting FRP-damage assessment [85–92]

Works in the specialized literature demonstrate the superiority of ML models in predicting the
mechanical behavior of FRP composite materials. The paper [93] presents a Markov chain autoencoder,
which achieved an R2 of 94.77% and a mean squared error (MSE) of 0.0017. The paper [94] tests the XGBoost
and AdaBoost algorithms and concludes that the XGBoost model achieved the best predictions regarding
adhesion strength, with an R2 of 95% and a root mean square error (RMSE) of 2.21. The research [73]
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compares the SVM, RF, and XGBoost algorithms, yielding outstanding results for the RF model, which
achieved R2 values of 81.9% and 96.2%, respectively. RMSE had a value of 4.47. The paper [95] employs
a hybrid approach that integrates an RF component for estimating bond strength. In this case, the model
achieved an R2 of 94.1%, whereas the research [96] obtained an R2 of 92.85%. The papers [97,98] use Boosted
Enable models, achieving R2 between 93% and 97%, while the paper [67] uses the Gradient Boosted Trees
(GBTs) model with an R2 of 94% and mean absolute error (MAE) of 10.32. The comparative results are
summarized in Table 3.

Table 3: Comparison of AI models, hyperparameters, and metrics used by analyzed papers

ML/AI Models Hyperparameters Evaluation metrics Scope Reference
Autoencoder +Markov

Chain
L2 Reg: 4.0959 × 10−0.5;

Sparsity: 0.26843; Dim: 76;
Epochs: 293; Neurons: 76

MSE: 0.0017; R2:
0.9477; Silhouette:

0.37

Prediction [93]

AdaBoost, CatBoost,
XGBoost, HistGB, GB

XGB: Est = 150, MaxDepth = 10,
LR = 0.1; AdaBoost: Est = 100,

LR = 0.5

R2: up to 0.95; RMSE:
down to 2.21

Prediction [94]

DT, SVM (RBF), RF,
XGBoost

SVM: C = 1000, Gamma =
0.00009; RF: Est = 15,

MaxDepth = 20; XGB: Est = 75,
LR = 0.3

R2: 0.819–0.962;
RMSE: 4.47–8.77;

MAE, MAPE

Prediction [73]

ALO-RF, MFO-RF,
SSA-RF

ALO Pop = 100 (others not
listed)

R2: 0.941 Prediction [95]

LR, RR, DT, RF, BP NN Not listed MAE (as low as 5.42),
R2 up to 0.97

Prediction [99]

GEP Chromosomes = 30, HeadSize
= 9, Genes = 5

R2: 0.9285; RMSE: 1.11;
MAE: 0.802

Prediction [96]

Wide Neural Network,
GPR, Ensemble Trees

Not listed (15-fold CV) R2: 0.93; RMSE:
1.6634; MAE: 0.98591

Prediction [97]

BES-ANN,
dFDB-MRFO-ANN,

RUN-ANN

Not listed R2: 0.92; MAE: 0.078;
CoV: 18.6%

Prediction [100]

Boosted Ensemble,
Others

15-fold CV, Grid Search R2: 0.97; RMSE: 71.963
kN; MAE: 43.452 kN

Prediction [98]

DT, GBT GBT: Trees = 90, Depth = 2,
LR = 0.1

GBT R2: 0.94; MAE:
10.32; RMSE: 16.36

Prediction [67]

Note: ALO—Ant Lion Optimizer; BES—Bald eagle search; BP—Back propagation; dFDB—Dynamic fitness dis-
tance balance; GEP—Gene Expression Programming; GB—Gradient Boosting; GRP—Gaussian Process Regression;
HistGB—Histogram-based Gradient Boosting; LR—Linear regression; MFO—Moth-flame optimization; MRFO—
Manta ray foraging optimization; RR—Recurrent regression; RUN—RUNge Kutta optimizer; SSA—Sparrow
Search Algorithm.

Table 3 shows that the evaluation metrics of the models have exceptional results, demonstrating their
practical usability; however, the number of these articles is limited, as will be shown in the bibliometric
analysis section.
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The comparison in terms of hyperparameterization or dataset among the specialized works is winding,
as each model is characterized differently. Table 4 summarizes the hyperparameterizations from the papers
[73,93,94].

Table 4: Hyperparameterization comparison among analyzed papers

ML Model Hyperparameterizations Reference
Autoencoder

NN
L2 Weight Regularization: 4.0959 × 10−0.5; Sparsity

Regularization: 0.26843; Sparsity Proportion: 0.27307; Encoding
Dimension: 76; Maximum Epochs: 293; Number of hidden

layers: 1; Number of neurons: 76; Encoder Activation Function:
Log-sigmoid; Decoder Activation Function: Linear; Metric:

Performance; Global MSE: 0.0017259; Global R2: 0.94774

[93]

AdaBoost N_Estimators: 100; Learning_Rate: 0.5; Loss: Exponential

[94]CatBoost Iterations: 200; Learning Rate: 0.1; Depth: 8; L2 Leaf Reg: 9;
Bagging Temperature: -

GB N_Estimators: 200; Learning Rate: 0.1; Max_Depth: 4;
Max_Features: sqrt

XGBoost N_Estimators: 150; Learning Rate: 0.1; Max_Depth: 10;
Max_Features: -

DT random_state: 65; max_depth: 43

[73]SVM Kernel: RBF; Regularization parameter (C): 1000; Gamma:
0.00009

RF N estimators: 15; Max depth: 20
XGBoost N estimators: 75; Learning rate: 0.3

Table 4 outlines that the hyperparameters differ depending on the model. Thus, in the paper [93], the
autoencoder uses L2 and sparsity regularization to prevent overfitting. In the research [94], the AdaBoost
model is hyperparameterized with 100 estimators, a learning rate of 0.5, and an exponential loss function.
The other models, CatBoost, Gradient Boosting, and XGBoost, were configured with different estimators
and learning rates, with Gradient Boosting limiting the depth to 4 to reduce the risk of overfitting. In the
case of the paper [73], DT, SVM, RF, and XGBoost are adjusted to achieve the highest possible accuracy,
obtaining a kernel with a regularization parameter value set to 100 for SVM.

5 Classification and Regression in FRP Composite Simulation and Optimization
Integrating ML techniques into the optimization process of obtaining FRP composites enables enhance-

ment of their structural capacities [101]. Classification models improve the prediction of material behavior
in damage detection. The analysis of current ML applications highlights the use of classification algorithms
to predict the behavior of FRP composites. For example, the paper [102] uses ML in optimizing processes for
various composite materials. These methods estimate the mechanical properties of composites. The research
[103] proposes a multiscale approach that employs ML techniques in finite element modeling to predict the
nonlinear behaviors of short fiber composites.

Identifying damage in FRP composites ensures the structural integrity of the materials. This is an
essential requirement in the aerospace and automotive industries. The implementation of non-destructive
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evaluation methods alongside ML algorithms assists in the process of monitoring damage detection capa-
bilities. The paper [104] demonstrates the claims above by evaluating the degradation state of composites
based on their microstructure, similar to the paper [105], which classifies damages using Lamb wave
signals processed with ML-based defect classification algorithms. These approaches support the idea that
classification algorithms are widely used in the quality monitoring of FRP composites.

The optimization process also employs ML classification techniques, as supported by the papers
[106,107]. Structural parameters are systematically varied to identify an ideal combination, facilitating the
optimization of design parameters for composite structures [106]. The study presented in the research [107]
utilizes FE methods and classification algorithms to enhance the understanding of material degradation
through a cooperative approach. These technological advancements accelerate the process by optimizing the
mechanical properties of composites. ML analyzes complex microstructures to anticipate material behavior.
To achieve this objective, historical data is utilized to improve the accuracy of predictions [108]. The origin
of this approach stems from the use of ANN for modeling composite materials. For this purpose, dedicated
tools such as MPpredictor are employed. It predicts material properties based on their composition. This
objective aligns with the Materials Genome Initiative to accelerate material discovery [109]. These initiatives
allow researchers to expedite developments in materials science by reducing the time and costs associated
with traditional experimental methods. The correlation between processing conditions and the resulting
mechanical properties is modeled using ML algorithms for complex optimization strategies [110]. The paper
[111] illustrates the improvement of composite synthesis using material preparation methods enhanced by
AI approaches.

The use of SVM is employed to evaluate the structural health of polymer composites in hybrid
systems. Thus, the degree of damage in carbon FRP is identified through acoustic emission techniques
[112]. This applicability demonstrates the predictive modeling of real-time maintenance monitoring for
complex composite structures. The optimization process compares traditional methods with ML approaches
to facilitate the understanding of the influence of compositional adjustments on mechanical properties
[113]. ML-specific regression algorithms predict mechanical behaviors based on factors influencing the
process. The paper [114] mentions that regression models are successfully applied to predict the mechanical
properties of magnesium matrix composites. These models accelerate research processes regarding property
optimization in the discovery and design of materials. The paper [115] discusses the variability of mechanical
properties in composites. The study uses regression algorithms to analyze tensile and compressive data for
design decisions.

Hybrid composites are studied using ANN alongside regression techniques to predict the mechanical
properties of Al2219/B4C-Gr composites. The paper [116] analyzes wettability in aluminum matrix compos-
ites. This applicability exemplifies the multifunctional nature of regression in various types of composites.
The optimization of the mechanical properties of composites through regression methods is studied in
conjunction with other statistical methods to identify new insights into the mechanical characteristics of
reinforced composites. Regarding the optimization of composites using natural fibers, regression models
highlight the synergistic relationship between mechanical properties [117].

The regression algorithm is correlated with application requirements, and the paper [118] proposes a
material design that is correlated with mechanical properties. The study defines the sequences of layering
and fiber orientation to improve performance under mechanical loads. The integration of classification and
regression algorithms represents a transformative factor for the mechanical properties of FRP composites.
The diversity of studies highlights the importance of these interdisciplinary approaches in the optimization
process of FRP composites. In this way, the importance of AI tools in materials science is emphasized.
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5.1 Classification Domains in FRP Composite
Synthesizing the presented information, eight FRP domains that utilize ML classification are identified,

as shown in Fig. 14. The purpose of defect detection in FRP materials is to determine the possibility of specific
defects using environmental characteristics or material properties. Evaluating the quality of fiber-matrix
adhesion aims to identify areas with weak bonds between the fiber and matrix, thereby preventing structural
defects such as delamination. Analyzing environmental conditions and degradation aims to identify the long-
term effects of external factors (such as humidity, extreme temperatures, and thermal cycles) on the integrity
of FRP materials and anticipate potential defects.

Figure 14: Key Areas of ML classification in FRP analysis and optimization

Segmentation and characterization of microstructures aim to classify the distribution of fibers, voids, or
other structural anomalies within the FRP material, thereby evaluating its performance. Real-time structural
integrity monitoring aims to identify changes in the material’s condition through periodic visual data analysis
and generate alerts in the event of critical defects.

Optimizing the design and manufacturing of FRP involves classifying the performance of different fiber
and matrix configurations to maximize mechanical strength and material durability. Inspecting and assessing
the structural integrity of infrastructure consists of classifying the condition of FRP-reinforced elements
(e.g., bridges, buildings) to plan maintenance and repair activities. Simulating and predicting the behavior of
FRP aims to classify the effects of various loading scenarios and environmental conditions on the structural
performance of FRP materials, thereby supporting engineering decisions.

These domains summarize the previous discussions regarding the applications of ML classification in
the context of FRP.

5.2 Regression Domains in FRP Composite
Synthesizing the presented information, eight key domains of FRP applications utilizing ML regression

are identified, as illustrated in Fig. 15. Predicting mechanical properties aims to estimate characteristics
such as tensile strength, elastic modulus, and delamination resistance based on material composition and
environmental conditions.
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Figure 15: Key Areas of ML regression in FRP analysis and optimization

Estimating durability under environmental conditions involves forecasting how factors such as humid-
ity, temperature, and exposure to marine salts affect the long-term performance and lifespan of FRP
materials. The optimization of fiber orientation for tensile strength involves predicting the ideal alignment of
fibers within the matrix to maximize mechanical performance and ensure structural efficiency under various
loading scenarios. Predicting structural performance under load evaluates how FRP components behave
under axial, shear, or combined stresses, enabling engineers to design safer and more reliable structures.
The evaluation of long-term degradation rates aims to assess how FRP materials deteriorate over time
due to continuous exposure to environmental stressors, providing insights into maintenance schedules and
lifecycle management. The thermal and hygrothermal effects simulation on FRP predicts how temperature
fluctuations and moisture absorption impact the material’s integrity and performance, ensuring robustness
in diverse operating environments. The prediction of bond strength between fiber and matrix focuses on
estimating the adhesion quality between the reinforcing fibers and the polymer matrix, which is crucial for
preventing defects such as delamination. Finally, assessing axial and shear load capacities aims to determine
the maximum loads that FRP structures can withstand, ensuring compliance with safety standards and
optimizing material usage.

These sections collectively underscore the role of ML in advancing FRP composite applications.
Classification and regression domains provide a comprehensive framework for addressing discrete and
continuous challenges in material performance and structural optimization.

6 AI in Predicting and Improving FRP Durability
FRP materials are essential in civil engineering due to their high strength-to-weight ratio [119]. These

materials are preferred for their corrosion resistance and durability, justified by the extended lifespan of
concrete structures in harsh environmental conditions [120]. The prediction of FRP durability is based on ML
classification algorithms. Studies have shown that predicting the resistance related to the structural behavior
of reinforced concrete systems can be achieved through ANN methods. In the paper [76], such a network
evaluates the bond strength affected by hygrothermal and salt attack conditions. In this way, the implications
of AI tools in addressing the durability issues of FRP composites are demonstrated. The shear behavior of
concrete beams is studied using the ANN model in the paper [121]. This approach presents a method for
integrating AI tools to predict the performance of FRP composites under environmental stressors [77]. ML
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techniques model the inherent nonlinear relationships in the bond strength between concrete and FRP [36].
Hybrid approaches that combine ANN with genetic algorithms (GAs) improve the accuracy of predictions
regarding the overall structural capacities of FRP-reinforced concrete (FRP-RC) elements [122].

Although these advancements in AI tools are remarkable, numerous studies are attempting to integrate
them for the analysis of moisture absorption and environmental degradation. The paper [123] examines
non-destructive testing (NDT) methods for evaluating damage in FRP-reinforced concrete. Exposure to
seawater can compromise the integrity of the material, necessitating an in-depth investigation of NDT
techniques [124]. Prolonged exposure to environmental conditions that lead to material degradation (e.g.,
delamination) generates structural problems if the material is not properly monitored [125]. To capture this
durability information, alkaline-activated materials and other composites were exposed to diverse marine
conditions [126]. In this way, predictive models aim to enhance the durability of FRP [127]. The durability of
fiber-reinforced polymer materials used in concrete structures is investigated using ML tools.

The prediction of bond strength and other durability-related characteristics is examined in the paper
[76] using NN. An improvement of the RF model is reported in the paper [77] by enhancing the potential of
hybrid methodologies that combine traditional models with AI techniques. Regression algorithms combined
with GAs predict the bond strength of FRP-concrete interfaces [36]. These approaches leverage material
performance through predictions; for example, the paper [121] studies the shear behavior of FRP-reinforced
concrete beams. This approach enables durability improvements through structural evaluation predictions.

The paper examines the longevity of FRP materials under different environmental conditions [128].
Research has demonstrated the superiority of ANN over traditional regression methods in addressing
the degradation of mechanical performance in FRP-reinforced concrete. In this context, AI tools enable
the understanding of how environmental factors (e.g., humidity and temperature) impact durability [129].
Investigations into moisture-induced degradation correlate the prediction of the longevity of FRP-concrete
interfaces with AI under various conditioning methods [130].

In structural engineering, the detection of defects and damage classification in FRP materials is studied
using AI techniques. Traditional NDT methods are used for defect detection. At the same time, advanced
techniques such as infrared tomography, ultrasonic testing, and ground-penetrating radar are employed
to identify bond defects, voids, and delamination issues in FRP-reinforced concrete elements [131,132].
For example, infrared (IR) tomography is used to detect defects in carbon fiber polymer composites. IR
thermography with heating pulses assesses the integrity of FRP systems by visually depicting temperature
variations resulting from defects [133]. These techniques assess the quality of the bond and defects using
AI tools. The research [132] analyzes the ultrasonic transmission coefficient for defect detection in FRP
structures. Laser ultrasonic scanning automatically detects delamination, highlighting the capabilities of
NDT methodologies in structural health monitoring [134]. Deep Modular Networks algorithms improve
prediction accuracy by analyzing segments of historical data from FRP-reinforced structures [135,136]. These
algorithms address structural behavior through the impact of installation defects in FRP applications [137].
Examples of such defects include improper bonding or air bubbles.

ML models predict shear strength and axial capacities with superior accuracy compared to traditional
methods [36]. These methodologies correlate identified defects with stress concentrations and failure risks
[121]. The ability of ML algorithms to continuously learn from new data enables the refinement of predictions,
thereby stimulating the continuous evolution of FRP applications [135].

The failure mechanisms vary depending on the nature of the FRP material, the type of load, and
the environmental conditions to which it is subjected. The rupture of concrete beams due to exposure to
high temperatures causes the rupture of FRP bars. The study of these characteristics is summarized in the
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thermal degradation examined in the paper [138]. The Mode I cracking toughness of adhesives used in
FRP applications is studied in the paper [139]. This addresses the interaction between the adhesive and the
substrate (concrete) in determining the failure mode in composite structures. The fragility of FRP under
thermal stress or adhesive failure falls under the purview of ML tools.

Fiber delamination is a problem specific to different types of composites. In most cases, this arises
from energy dissipation characteristics. Delamination occurs due to the mismatch between material phases,
resulting in cracks that propagate in the direction of least resistance [140]. The works [141,142] have identified
matrix cracking and fiber fractures by studying FRP design modalities. The acoustic emission technique is
a non-destructive method for monitoring these situations, enabling timely maintenance interventions and
rehabilitation [143].

Sudden shear cracks appear in bending zones [144]. This issue highlights the complexity of load
distribution in FRP composites. Their interaction with concrete elements complicates ML predictions [145].
Identifying weak bonds at the interface improves the durability of FRP systems [3].

Researchers have identified that failure in FRP composites manifests as a combination of fiber fracture,
resin cracking, and interfacial delamination under environmental factors [146]. This discovery necessitates
predictive analyses for evaluating structural integrity.

The following will illustrate the use of ML algorithms in the durability of FRP elements. Monitoring the
structural health of FRP elements using ML algorithms requires a dataset that contains data collected from
sensors embedded within the FRP structure. For exemplification, the scenario of a bridge reinforced with
FRP materials is considered. It is equipped with real-time sensors that monitor environmental conditions and
structural integrity. The objective is to integrate AI tools to detect structural conditions (such as delamination,
cracks, or voids) and generate alerts when anomalies are identified. Table 5 proposes an example of a dataset
constructed with synthetic data, where the features are presented in Fig. 16 and explained as follows:

• Temperature (○C) is the ambient temperature measured in the structure’s area;
• Humidity (%) represents the humidity level in the surrounding environment;
• Vibration frequency (Hz) is the frequency of structural vibrations, which may indicate mechanical stress

or deterioration;
• Surface temp variation (○C) is the variation of surface temperature (measured through IR thermogra-

phy), which can highlight areas with defects (e.g., delamination);
• Stress level (MPa) represents the mechanical stress level applied to the structure.

The output labels represent the state of the structure:

• Normal: The structure is in good condition, with no signs of deterioration;
• Warning: There are indications of deterioration (e.g., increased vibrations or significant surface temper-

ature variations);
• Critical defect: A critical defect is detected, requiring immediate intervention.

Table 5: Example section from the dataset for the proposed scenario

Temperature
(○C)

Humidity (%) Vibration
frequency (Hz)

Surface temp
variation (○C)

Stress level
(MPa)

Structural
health

25 60 50 2 30 Normal
30 70 55 3 35 Normal
35 80 60 5 40 Warning

(Continued)
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Table 5 (continued)

Temperature
(○C)

Humidity (%) Vibration
frequency (Hz)

Surface temp
variation (○C)

Stress level
(MPa)

Structural
health

40 90 70 8 50 Critical defect
45 95 80 10 60 Critical defect
50 85 65 6 45 Warning
55 75 50 4 30 Normal

Figure 16: AI model input features for structural health assessment in FRP elements

The data is used to train a classification ML model (e.g., RF, ANN, or SVM) to classify the structural
state based on input features. Subsequently, the values can be integrated into FEA simulations to validate
the effect of environmental conditions and other factors on the structure. Additionally, the model can be
integrated into an IoT system to analyze real-time data and generate alerts.

In the following, a concrete monitoring scenario will be presented. The sensors installed on the FRP-
reinforced bridge collect the following data:

• Temperature = 40○C
• Humidity = 90%
• Vibration Frequency = 70 Hz
• Surface Temperature Variation = 8○C
• Stress Level = 50 MPa

The AI model analyzes this data and classifies the structural state as a Critical Defect, triggering an alert
for inspection and intervention. Fig. 17 illustrates the schematic flow of the proposed AI-driven structural
health monitoring system designed for FRP elements. It outlines a step-by-step process that integrates real-
time data collection, ML analysis, and alert generation to ensure the safety of FRP structures.
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Figure 17: Schematic flow of AI-driven structural health monitoring for FRP elements

The process begins with the initiation of the monitoring system. The system reads real-time data from
embedded sensors, collecting values such as temperature, humidity, vibration frequency, surface temperature
variation, and stress level. The collected sensor data is fed into a pre-trained ML model. The model processes
this data and assigns a label indicating the current state of the structure. If the label is “Normal”, the process
changes to the active monitoring check. The system generates alerts if the label is not “Normal” (indicating
a warning or critical defect). When anomalies or defects are detected, the system generates alerts to notify
maintenance personnel of inspection and intervention.

7 AI in Predicting and Improving FRP Mechanical Properties
The integration of AI and ML in the field of composite materials has gained significant attention

in recent years. These advanced computational techniques have been applied to predict, optimize, and
analyze the mechanical properties of composites, reducing the need for extensive experimental testing. AI
models, including NNs, regression algorithms, and DL approaches, have been used to evaluate parameters
such as tensile strength, fatigue life, fracture toughness, and stress-strain behavior. Furthermore, AI-driven
methodologies enable the rapid assessment of new composite formulations, facilitating the design of
high-performance materials with tailored mechanical properties.

Table 6 provides an overview of key studies that investigate the mechanical properties of various
composite materials using AI and ML techniques.
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Table 6: Overview of main works related to the use of AI/ML in predicting the mechanical properties of composite
materials

Investigated
mechanical
properties

AI/ML method
used

Composite type Results Source

Bending strength,
hardening behavior

NN Al–Si–Mg matrix
composites

Predicts the mechanical response of metal matrix
composites

[147]

Mechanical
properties of
multilayered

laminates

NN Laminate
composites

AI-based property estimation for layered composites [148]

Fracture toughness ML Bio-nano
composites

Focuses on multi-scale materials with AI modeling
Despite the limited data, ML accurately predicted the

optimal design using DT and adaptive boosting
regressors, unlike the K-NN method previously

employed by the authors.

[149]

Post-fatigue
residual strength

MLR CFRP and GFRP
composites

The study evaluated various regression models,
including linear, non-linear, DT, ensemble, support

vector, and ANN approaches, using R2, MAE, MedAE,
and RMSE as performance metrics. The MLP with two

hidden layers (30 and 20 neurons) achieved the best
results, with R2 values of 0.88 (validation) and 0.95
(test) and the lowest RMSE of 72.42. The DT and

AdaBoost regressors recorded a MedAE of zero on
validation data, while the boosted DT model had the
lowest MedAE (2.13) on the test set, indicating strong

predictive accuracy.

[150]

Young Modulus,
Poisson ratio

DNN and FE
methods

General composites ResNet and AlexNet were trained and optimized on
these datasets, with performance evaluated using MAE,

MSE, and R-value metrics. Both networks
demonstrated strong predictive capabilities,

particularly for circular and irregular BG distributions,
with AlexNet performing slightly better using the

ReLU activation function.

[151]

Stress–strain curve
beyond the elastic

limit

Combination of
PCA and CNNs

Binary composites The study highlighted the effectiveness of ML in
accelerating composite design optimization.

[152]

Longitudinal elastic
modulus,

transverse elastic
modulus, and shear

modulus

RT Single-layer and
multi-layer CFRP

A model correlating carbon fiber properties with CFRP
and matrix properties was established.

[153]

Young’s modulus,
maximum stress,
maximum strain

and Shore D
hardness

DT Polymer
Composites with

Alumina Modifiers

Five model architectures were tested using five-fold
validation, evaluating MSE and R2 for mechanical

properties. The forecasts were highly accurate in 63% of
cases, accurate in 15%, acceptable in 20%, and only 2%

were classified as unacceptable.

[154]

(Continued)
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Table 6 (continued)

Investigated
mechanical
properties

AI/ML method
used

Composite type Results Source

Failure factor for
longitudinal tensile

failure mode,
longitudinal

compression failure
mode, transverse

tensile failure
mode, transverse

compression failure
mode, and

buckling modes of
open-hole laminate

ANN and RF Composite
laminate,

The predicted results align well with FEA values,
confirming the effectiveness of the FEA-ML approach.
While ANN achieves lower errors than RF, RF trains

faster.

[155]

Young’s modulus
and ultimate tensile

strength

ANN, SVM, and
AdaBoost
regression

Graphene-
reinforced
aluminum

nanocomposites.

The study integrates MD simulations and ML to
predict the mechanical properties of Gr/Al

nanocomposites, considering graphene’s volume
fraction, alignment, chirality, and temperature. ML

models trained on MD data accurately estimate Young’s
modulus and tensile strength.

[156]

Fracture toughness ANN, RF, and GB Pultruded
composites

The study uses a dataset from tensile, compression,
flexure, shear, and Charpy tests to predict fracture

toughness and analyze correlations between
mechanical properties. ML analysis reveals strong
correlations with longitudinal bending, transverse

tension, compression modulus, and tensile strength.
GBDT achieves the best predictions, with an MSE

below 10% of the average value, aligning with
experimental error. The results highlight the potential
of ML in linking macro-level mechanical properties to

micro-level material behavior.

[157]

Macroscopic
stiffness and yield

strength

Gradient-boosted
tree regression

Unidirectional
composite loaded
in the transverse

plane

Predictions are derived from image analysis of the
material’s microstructure and constitutive models,

without relying on physically based calculations. FE
simulations are conducted on 1800 SVEs representing

cylindrical fibers in a continuous matrix under
transverse loading. The model enables accurate

prediction of homogenized properties for arbitrary
microstructures.

[158]

Compressive
Strength, Tensile
Strength, Tensile
Strain Capacity

ANN, SVR, CART,
and XGBoostT

HPFRCC The ML models effectively predict mechanical
properties and enable parametric studies on mixed

design variables, thereby supporting the development
of HPFRCC.

[159]

Stress-strain
relationship under
different cooling

rates

ANN Unidirectional
glass fiber–

polypropylene
composite
materials

The modulus of elasticity was predicted with at least
97% accuracy, while the ultimate strain achieved a

minimum accuracy of 90% in most cases.

[160]

(Continued)
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Table 6 (continued)

Investigated
mechanical
properties

AI/ML method
used

Composite type Results Source

Fracture prediction Standard ANN CFRP laminates The model achieved an 86% accuracy, outperforming
K-NNs and random forest models. Given the

randomness in CFRP laminate failure, the ANN
model’s fracture probability predictions are more
practical than theoretical fracture times. Results
confirm the feasibility of using ANN to predict

composite failure in complex thermal environments.

[161]

Mechanical
strength

ANN CFRP The dataset comprises 74 samples with eight input
parameters, including fiber strength, matrix strength,

number of plies, and temperature.

[50]

Transverse
mechanical

properties (elastic
modulus, tensile

strength,
compressive

strength

GA optimized BP
NN

Unidirectional
composites with

microvoids

The data-driven techniques replicate FE simulation
results with an R-value of at least 0.89.

[162]

Tensile strength,
flexural strength,
tensile modulus,

and flexural
modulus

FNN Giant reed-fiber-
reinforced

polyethylene
terephthalate
composites.

The study examines the effect of giant reed fiber
concentration in PET on its physical, mechanical, and

thermal properties, identifying the optimal fiber
loading.

[163]

Ultimate failure
strength

RBFNN and
GRNN

Glass/epoxy
composite
laminates

The RBFNN model predicted ultimate failure strength
with a percentage error of 0.5–7.2%, while the GRNN

model achieved a lower error range of 0.5–4.4%,
demonstrating superior prediction accuracy.

[164]

Bending strength
and hardness

ANN Al–Si–Mg metal
matrix composites

The bending strength and hardness of aluminum
matrix composites were predicted using a

back-propagation neural network with four training
algorithms. The test showed that smaller SiC

particulates increased strength and hardness. The
Levenberg–Marquardt algorithm provided the best

predictions for these properties.

[165]

Fatigue life
prediction

ANN Carbon-fiber
composites and
glass-reinforced
plastic laminate.

From small experimental datasets, ANNs can
effectively model constant-stress fatigue behavior,

providing accurate and conservative
stress/R-ratio/median-life predictions for carbon-fiber

composites.

[166]

Elastic modulus,
tensile strength

Ridge Regression,
Bayesian Ridge

Regression, Lasso
Regression, K-NN

Regression,
CatBoost

Regression, DTR,
RFR, and SVR

Additively
manufactured

composites with a
nylon-based matrix

and continuous
fiber (carbon,

Kevlar, or
fiberglass)

ML analysis confirmed fiber content as the key factor
influencing elasticity and strength. K-Nearest

Neighbors and CatBoost provided the most accurate
predictions, while the tree-based model had the

narrowest error distribution.

[167]

Compressive
strength

Multimodal Fusion
Learning

Composite
materials

Integrating microstructure and material composition
data, the multi-modal model outperforms unimodal
models, achieving MAPE of 0.007, R2 of 0.981, and
MSE of 0.056 in predicting compressive strength.

[168]

(Continued)
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Table 6 (continued)

Investigated
mechanical
properties

AI/ML method
used

Composite type Results Source

Longitudinal
tensile modulus for

different
environmental

conditions

Data-driven
approach

Unidirectional
CFRP composites

Recurrent neural network models accurately predict
the modulus of these materials, with R2 values reaching

0.98.

[169]

Compressive
strength, flexural
tensile strength,
and axial tensile

strength

DNN and RTs FRP-reinforced
concrete

The DNN method achieved MAE of 0.15–0.73, RMSE
of 0.17–0.89, and MAPE of 0.98%–6.62%, while the

ensemble of RTs performed better with MAE of
0.11–0.62, RMSE of 0.15–0.80, and MAPE of

1.30%–3.4%.

[170]

Quasi-static and
dynamic elastic

modulus

AI PCNCs The AI model used matrix type, nanofiller type,
processing method, nanofiller content, and analysis
method as inputs. Despite nanometer sensitivity, the

results demonstrate the strong potential of AI for
accurately predicting the elastic modulus of PCNCs.

[171]

Fatigue damage
characterization

DL FRP laminates The DL model effectively characterizes fatigue damage
using latent wave features.

[172]

Note: CART—Classification and regression tree; DNN—Deep Neural Network; GBDT—Gradient boosting deci-
sion tree; HPFRCC—High-performance fiber-reinforced cementitious composites; GRNN—Generalized regression
neural network; MD—Molecular dynamics; MedAE—Median absolute error; MLR—Machine Learning Regres-
sion; MLP—Multi-Layer Perceptron; PCNC—Polymer-carbon nanotube composite; RBFNN—Radial basis function
neural network; RT—Regression tree; SVE—Statistical volume elements; XGBoostT—Extreme gradient boosting tree.

To provide a clearer understanding of the factors influencing the behavior and performance of fiber-
reinforced polymer (FRP) composites, Table 7 presents the most frequently studied material parameters in
recent literature. These include fiber type, matrix composition, fiber orientation, environmental conditions,
and interfacial bond strength. Each parameter plays a significant role in shaping the mechanical properties,
durability, and overall structural performance of FRP composites.

Table 7: Material parameters affecting FRP composites based on reviewed studies

Parameter Effect on FRP Composites Reference
Fiber type Determines tensile strength, stiffness, and ductility [50,62,67,150,153]

Matrix type Influences bonding, thermal stability, and
environmental resistance

[102,114,116,147,153,165,171]

Fiber volume
fraction

Affects the strength-to-weight ratio and mechanical
performance

[50,154,156,159,170]

Fiber
orientation

Controls anisotropic behavior; affects tensile,
compressive, and flexural strength

[38,118,148,157,162]

Manufacturing
method

Impacts void content, surface quality, and uniformity
of fiber distribution

[54,55,150,163,165,169,171]

Environmental
conditions (e.g.,

humidity,
temperature)

Degrades matrix/fiber interface; impacts durability
and mechanical performance

[117–120,161,164]

(Continued)
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Table 7 (continued)

Parameter Effect on FRP Composites Reference
Interfacial bond

strength
Determines delamination resistance and crack

propagation under load
[36,68,77,96]

Void content Reduces mechanical strength, initiates failure
mechanisms

[50,162,163]

Layer
sequence/ply

stacking

Influences bending stiffness, energy absorption, and
crack resistance

[117,118,148,159,165]

8 Bibliometric Analysis Regarding the Implementation of AI Tools to Predict Durability and
Mechanical Properties of FRP

To analyze the research landscape on AI-driven predictions for the durability and mechanical prop-
erties of FRP composites, bibliometric analysis methods were employed using the WOS database and
VOSviewer software.

The WOS database was selected as the primary data source due to its extensive collection of high-
impact scientific publications across multiple disciplines. Relevant studies were identified using specific
AI-related keywords, such as FRP composites, durability assessment, and mechanical property predic-
tion. The extracted data included publication trends, citation records, author contributions, and research
collaboration networks.

VOSviewer, a powerful bibliometric visualization tool, was used to analyze and map the relationships
between key terms, research clusters, and influential authors.

To extract relevant studies, the following Boolean search query was applied: (“FRP” OR “composite
materials”) AND (“durability” OR “mechanical properties”) AND “machine learning”.

This query was designed to ensure a comprehensive dataset, capturing studies focused on AI, partic-
ularly machine learning, in predicting FRP durability and mechanical performance. The search included
research on both FRP and broader composite materials, specifically filtering for publications discussing
mechanical properties, durability, and machine learning-based modeling techniques.

Applying this query within the WOS database yielded 974 relevant studies, all published in English (from
2015 to 2024). These results reflect the growing research interest in using AI methodologies, particularly
machine learning, to evaluate and predict the durability and mechanical behavior of FRP composites.

The bibliometric analysis revealed that 85.41% (837) of the retrieved publications were research articles,
indicating that the field is primarily driven by original studies focusing on AI applications in FRP durability
and the prediction of mechanical properties. Review articles (11.02%, 108) highlight the growing effort to
consolidate knowledge and identify research gaps. Early access papers (5.71%, 56) reflect the emerging and
rapidly evolving nature of AI in this domain, while proceedings papers (3.78%, 37) showcase novel research
presented at conferences. A single letter (0.10%) was also found, suggesting that brief communications are
rare in this field.
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The bibliometric analysis also identified the leading journals publishing research on AI-driven pre-
dictions for FRP durability and mechanical properties. Construction and Building Materials (3.57%),
Materials (3.16%), and Composite Structures (3.06%) emerged as the top sources, reflecting the strong
focus on composite materials in structural applications. Other key journals, including Materials Today
Communications (2.76%), Polymers (2.55%), and Journal of Materials Research and Technology (2.14%),
highlight the interdisciplinary nature of this research. Additionally, specialized journals such as Composites
Science and Technology, Polymer Composites, and Case Studies in Construction Materials make significant
contributions, emphasizing both experimental and computational advancements in FRP materials.

Fig. 18 illustrates the annual evolution of publications related to the investigated topic, indexed in Web
of Science Core Collection from 2015 to 2024. Analyzing this figure, it can be observed that the research
interest in applying machine learning to the study of FRP mechanical properties and durability has grown
steadily over the years. Initially, there were only a few studies exploring this intersection; however, as the
potential of machine learning in materials science became more evident, researchers began to investigate
its applications more actively. This shift was gradual at first, but in recent years, there has been a significant
surge in publications, indicating a strong momentum in the field.

Figure 18: The number of publications over time

The distribution of research publications on ML applications in FRP mechanical properties and
durability varies significantly across different countries (Fig. 19). China leads the field with the highest
number of publications, reflecting its strong focus on materials science and the integration of AI. The
United States and India also contribute significantly, demonstrating their active engagement in applying
computational techniques to material engineering challenges.
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Figure 19: The distribution of research publications over countries

Following these leading contributors, countries such as Saudi Arabia, Australia, and the United
Kingdom have made notable contributions, albeit on a smaller scale. Their research efforts indicate a growing
interest in combining machine learning with FRP studies, potentially driven by the need for advanced
infrastructure solutions and concerns about sustainability.

Another WOS search was made using the Boolean search query: (TS = (composite optimization)) OR
TS = (FRP optimization) TS = (machine learning), resulting in 1581 papers in English. Table 8 presents the
journals with a high number of publications on FRP composite AI-driven simulation.

Table 8: Number of publications by publisher/database on FRP composite AI-driven simulation

Journal Number of papers
Composite Structures 32

Materials 27
Materials Today Communications 21

Scientific Reports 21
Polymers 19

IEEE Access 17
Materials Design 14

Measurement 14
Polymer Composites 14

Proceedings of Machine Learning Research 14
Applied Sciences Basel 13

Composites Part B Engineering 13
Composites Science and Technology 13
Construction and Building Materials 13

Engineering Applications of Artificial Intelligence 13

(Continued)
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Table 8 (continued)

Journal Number of papers
Engineering Structures 13

International Journal of Advanced Manufacturing
Technology

13

International Journal of Mechanical Sciences 13
Structures 13
Buildings 12

Mechanics of Advanced Materials and Structures 12
Siam Journal on Optimization 12

Case Studies in Construction Materials 11
Expert Systems with Applications 11

Journal of Materials Engineering and
Performance

11

To analyze the number of publications in the past years (2000–2025) by the publisher in advanced
computational tools with AI to optimize manufacturing technologies/processes, it was performed a new
WOS search using the Boolean search query: TS= (composites manufacturing) OR TS= (frp manufacturing)
AND TS = (machine learning), and it resulted in 597 results in English. The top publications on this topic
are shown in Table 9.

Table 9: Number of publications by publisher in advanced computational tools with AI to optimize manufacturing
technologies/processes

Journal Number of
papers

Polymers 19
Composite Structures 17
Polymer Composites 16

Materials Design 15
International Journal of Advanced Manufacturing Technology 13

Composites Part B Engineering 12
Composites Part A Applied Science and Manufacturing 11

Journal of Intelligent Manufacturing 9
Materials 9

Scientific Reports 9
Sensors 9

Journal of Composites Science 8
Materials Today Proceedings 7

Composites Science and Technology 6
Engineering Applications of Artificial Intelligence 6

International Journal of Interactive Design and Manufacturing 6
Journal of Manufacturing and Materials Processing 6
Journal of Materials Engineering and Performance 6

(Continued)
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Table 9 (continued)

Journal Number of
papers

Journal of Materials Research and Technology 6
Manufacturing Letters 6

Materials Today Communications 6
Progress in Additive Manufacturing 6

Advanced Intelligent Systems 5
Expert Systems with Applications 5

Journal of Manufacturing Processes 5

The co-occurrence analysis was performed in VOSViewer using the full-counting method, with author
keywords as the unit of analysis. The minimum number of occurrences of a keyword was set to 10, and of
2796 keywords, 33 met the threshold.

The diagram from Fig. 20a illustrates the interconnections between machine learning and various fields
related to material science, mechanical properties, and predictive modeling. ML is the core concept at the
center, branching into different domains and highlighting its diverse applications.

Figure 20: (Continued)
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Figure 20: Co-occurrence analysis: (a) Clusters visualization; (b) Density visualization; (c) Overlay visualization (the
color coding represents the average publication year of each keyword, ranging from blue (2021) to red (2024), indicating
the temporal evolution of research focus)

One prominent area of focus is artificial intelligence and predictive modeling. Techniques such as neural
networks, deep learning, and artificial neural networks play a significant role in understanding material
behavior. Alongside these methods, specific machine learning algorithms, such as XGBoost, decision trees,
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and random forests, are widely used to analyze and predict material properties. The inclusion of terms such as
compressive strength and concrete suggests that these techniques are particularly relevant in civil engineering
and construction material applications, where durability and structural performance are critical.

Another significant connection lies in the study of mechanical properties. Concepts such as FEA,
response surface methodology, and optimization indicate the use of computational approaches to evaluate
and enhance material performance. The integration of nanomaterials, including graphene, nanocomposites,
and molecular dynamics, indicates advancements in material design and innovation, where machine
learning facilitates the discovery of new composite materials with enhanced properties.

Additive manufacturing and polymer composites are key areas that demonstrate how machine learning
is applied in advanced manufacturing techniques, such as 3D printing. The relationship between machine
learning and wear resistance, carbon nanotubes, and tensile strength further highlights its role in predicting
and optimizing material durability.

The heatmap shown in Fig. 20b highlights the central role of machine learning in various domains,
particularly in predicting and optimizing the mechanical properties of materials. In the context of FRP, ML
is increasingly used to assess durability and mechanical performance. The strong association of “machine
learning” with terms like “mechanical properties,” “compressive strength,” and “artificial neural network”
suggests that researchers are leveraging advanced computational techniques to model and predict the
behavior of FRPs under different conditions.

In the overlay visualization (Fig. 20c), the colors represent the temporal evolution of research trends
from 2021 (blue) to 2024 (red). The central theme remains machine learning, with strong links to various
subfields, particularly in materials science and the assessment of mechanical properties.

The gradient color coding indicates how the research focus has shifted over time. The terms in blue
(e.g., “wear”) suggest earlier research interest, while yellow and green terms (e.g., “mechanical properties,”
“artificial neural network,” “composites”) show sustained relevance in recent years. The red terms (e.g.,
“XGBoost”) indicate emerging topics in 2024, highlighting a growing emphasis on advanced machine
learning models for predictive analytics.

The recent rise of “XGBoost” and “decision tree” indicates an increasing reliance on ensemble learning
methods to improve predictive accuracy for FRP performance metrics. The links to “additive manufacturing”
and “3D printing” indicate a growing focus on using machine learning to optimize the fabrication of FRP
components, ensuring enhanced mechanical durability.

In Fig. 20a, each node represents a keyword, and its size reflects the frequency of occurrence. Colors
indicate different clusters grouped by co-occurrence relationships using VOSviewer’s clustering algorithm.
Links between nodes represent the strength of co-occurrence, with closer nodes having stronger relation-
ships. This map highlights the main research themes related to machine learning and materials science.

In Fig. 20b, the color intensity represents keyword frequency: yellow areas indicate high-frequency
keywords, green areas show moderate frequency, and blue areas reflect low-frequency terms.

9 Challenges Regarding the Technological Transfer of ML in Industrial Applications with FRP
Materials

The analysis of specialized literature reveals a limited volume of research on integrating AI tools in
FRP engineering, a finding supported by the fact that only 14 articles have utilized open data sources. These
studies have demonstrated the possibility of optimizing the design of FRP composite materials through
the obtained metrics; however, their integration into practice entails a different paradigm, within which
the technological transfer between research and industrial applications requires the completion of standard
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stages, which are summarized in Fig. 21. Implementing these stages related to the optimization process itself
translates into costs.

Figure 21: Workflow diagram associated with the integration of ML technologies in FRP optimization

Awareness of these cost-related limitations associated with data collection, standardization of data
processing, modifications to hardware equipment, difficulties related to generalizing AI models, and other
operational conditions makes this paradigm entail a series of efforts in transitioning from traditional to AI. A
mechanical specialist deals with measurements and data labeling in the first stage. The data acquisition stage
precedes the entire optimization process. Regarding the costs of integrating AI technologies into specific
FRP processes, these refer to impediments such as the need for a large volume of experimental data and data
processing after it has been acquired from the process, ensuring that, in addition to quantity, the data also
exhibits quality. Additionally, the analysis required for post-processing the data for testing makes the data-
related process convoluted, resulting in high costs, and justifies the need for a data engineer. The data engineer
is exclusively responsible for the quantity and quality of the data prepared for the next stage, specifically its
training and validation.

In Fig. 21, the stage associated with the development of equipment that integrates AI tools includes not
only the specialist who takes measurements and associates labels with the process data, but also the data
engineer who handles the volume and quality of the data. Subsequently, there is the AI engineer who is
exclusively responsible for developing the AI model, followed by the programmer who integrates the model
into the application. This is followed by engineers who make hardware-level modifications to the equipment
when the process requires such modifications.

10 Conclusions
Integrating AI into the simulation and optimization of FRP composites marks a significant advancement

in materials science and engineering. Traditional methods, such as FE analysis, have long been the primary
tools for studying FRP behavior; however, they often struggle to fully capture the complex, nonlinear
responses of these materials under diverse environmental and loading conditions. AI-driven approaches,
particularly those leveraging machine ML and deep learning DL, offer an opportunity to overcome these
limitations by providing more accurate, efficient, and adaptable predictive models.

This review has highlighted the current state of AI applications in FRP composite research, emphasizing
the growing need for advanced computational tools to optimize manufacturing processes and enhance
material performance. This work presents a systematic and analytical review of the integration of AI in
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the simulation, prediction, and optimization of FRP materials. The analysis of specialized literature was
conducted from 2015 to 2025 using the WOS database, resulting in the identification of 974 articles. Of the
total studies analyzed, 85.41% represented original research contributions, while 11.02% constituted synthesis
studies or reviews. These values indicate the need to intensify research on original contributions, as the
ratio shows a large number of syntheses without original contributions. Such a directive will contribute to
accelerating technological advancement in the field of FRPs through an AI approach. Analyzing the works
in the specialized literature, the following research directions have been identified:

1. Prediction of the mechanical properties of FRP materials. In the specialized literature, 165 studies have
been identified that utilize RF, SVR, and GB regression methods to predict tensile strength, modulus of
elasticity, flexural strength, and other aspects of FRP mechanical properties.

2. SHM and defect detection through CNN and feed-forward networks aimed at identifying delamination,
cracks, corrosion, and other specific types of defects in FRP.

3. The long-term behavior modeling of FRP materials exposed to aggressive conditions has been addressed
in 12 specialized studies, recommending the development of AI-FEA hybrid models.

4. Optimization of manufacturing processes and structural design is applied, especially in the aerospace
and automotive industries, where GA and NN are examined to introduce technological advancements
in these sectors. Beyond these analyses, limitations were identified, including the lack of standardized
and publicly accessible databases, as only 14 articles employed open data sources.

5. The limitation of XAI models was that they were inspected in only three studies.

Future research should focus on expanding AI-driven frameworks to address key challenges in FRP
simulation and optimization. This involves integrating AI with multi-scale modeling techniques to bridge
the gap between microscale material behavior and macroscale structural performance. Hybrid approaches
combining physics-based models with AI predictions could also provide more reliable and interpretable
results. Developing generative AI models for material design could also accelerate innovation by identifying
novel FRP formulations with enhanced mechanical properties and environmental resistance. To support the
integration process of ML technologies in the production of FRP materials, the authors propose the following
research directions:

1. Development of intelligent real-time monitoring systems for FRP material manufacturing processes. To
achieve this objective, ML techniques are necessary to automatically detect defects, optimize production
parameters, identify exceptional situations, predict the occurrence of undesirable events, or adjust
working conditions;

2. Predicting the life cycle of a piece of equipment can serve as a directive for the development,
optimization, improvement, and restructuring of the FRP process. Collecting data from sensors
mounted on various structures helps anticipate degradation scenarios. This approach is helpful in civil
infrastructures, the aerospace or wind industry, or other scenarios where safety is a key element.

Beyond simulation, AI has the potential to revolutionize FRP manufacturing by enabling real-time
monitoring and optimization of production processes. Smart manufacturing systems powered by AI can
improve quality control, reduce material waste, and enhance process efficiency. Implementing AI-driven
predictive maintenance strategies for FRP-based structures can extend their service life and reduce long-term
maintenance costs.
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ANN Artificial neural network
BES Bald eagle search
BOA Bayesian optimization algorithm
BP Back propagation
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CNN Convolutional Neural Network
CV Computer vision
dFDB Dynamic fitness distance balance
DL Deep learning
DNN Deep Neural Network
DT Decision Tree
DTR Decision Tree Regression
FE Finite element
FEA Finite Element Analysis
FNN Feedforward Neural Networks
FRC Fiber-reinforced composites
FRP Fiber-reinforced polymers
FRP-RC FRP-reinforced concrete
GA Genetic algorithms
GB Gradient boosting
GBDT Gradient boosting decision tree
GBR Gradient boosting regression
GBT Gradient Boosted Tree
GEP Gene Expression Programming
GFRP Glass fiber-reinforced polymers
GNN Graph neural network
GRNN Generalised regression neural network
GRP Gaussian Process Regression
HistGB Histogram-based Gradient Boosting
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HPFRCC High-performance fiber-reinforced cementitious composites
IR Infrared
K-NN K-Nearest Neighbor
LDA Linear Discriminant Analysis
LR Linear regression
LSTM Long Short-Term Memory
MAE Mean absolute error
MD Molecular dynamics
MedAE Median absolute error
MFO Moth-flame optimization
ML Machine learning
MLP Multi-Layer Perceptron
MLR Machine Learning Regression
MRFO Manta ray foraging optimization
MSE Mean squared error
NDT Non-destructive testing
NN Neural Network
NPL Natural language processing
PCA Principal Component Analysis
PCNC Polymer-carbon nanotube composite
PNN Physics-informed neural Network
RBFNN Radial basis function neural network
RF Random Forest
RFR Random Forest Regression
RL Reinforcement Learning
RMSE Root mean square error
RNN Recurrent Neural Network
RR Recurrent regression
RT Regression tree
RUN RUNge Kutta optimizer
SHAP SHapley Additive exPlanations
SHM Structural health monitoring
SL Supervised Learning
SSA Sparrow Search Algorithm
SSL Semi-Supervised Learning
SVE Statistical volume elements
SVM Support Vector Machine
SVR Support vector regression
UL Unsupervised Learning
WOS Web of Science
XGBoost Extreme Gradient Boosting
XGBoostT Extreme gradient boosting tree

References
1. Hadi MNS, Khan QS, Sheikh MN. Axial and flexural behavior of unreinforced and FRP bar reinforced circular

concrete filled FRP tube columns. Constr Build Mater. 2016;122(3):43–53. doi:10.1016/j.conbuildmat.2016.06.044.
2. Wang X, Qi Y, Sun Y, Xie Z, Liu W. Compressive behavior of composite concrete columns with encased FRP

confined concrete cores. Sensors. 2019;19(8):1792. doi:10.3390/s19081792.

https://doi.org/10.1016/j.conbuildmat.2016.06.044
https://doi.org/10.3390/s19081792


Comput Model Eng Sci. 2025;144(1) 191

3. Benzeguir ZEA, Chaallal O. Size effect in FRP shear-strengthened RC beams: design models versus experimental
data. CivilEng. 2021;2(4):874–94. doi:10.3390/civileng2040047.

4. Yuan F, Chen L, Chen M, Xu K. Behaviour of hybrid steel and FRP-reinforced concrete—ECC composite columns
under reversed cyclic loading. Sensors. 2018;18(12):4231. doi:10.3390/s18124231.

5. Jiang X, Luo C, Qiang X, Kolstein H, Bijlaard F. Effects of adhesive connection on composite action between frp
bridge deck and steel girder. J Eng. 2017;2017:1–7. doi:10.1155/2017/6218949.

6. Zhu C, Zhao Y, Sun L. Seismic performance of FRP-reinforced concrete-filled thin-walled steel tube considering
local buckling. J Reinforced Plast Compos. 2018;37(9):592–608. doi:10.1177/0731684418756514.

7. Ghani AFA, Mahmud J. Shear deformation behavior of hybrid composite (GFRP/CFRP). Materwiss Werksttech.
2017;48(3–4):273–82. doi:10.1002/mawe.201600771.

8. Chihai R, Ungureanu C, Bria V. Effect of the fiber orientation of glass fiber reinforced polymer composites on
mechanical properties. The annals of dunarea de jos university of galati fascicle IX. Metall Mat Sci. 2022;45(2):16–21.
doi:10.35219/mms.2022.2.03.
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