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ABSTRACT: Monitoring the condition of road infrastructure is crucial for maintaining its structural integrity and
ensuring safe transportation. This study proposes a deep learning framework based on Temporal Convolutional
Networks (TCN) integrated with Adaptive Parametric Rectified Linear Unit (APReLU) to predict future road subbase
strain trends. Our model leverages time-series strain data collected from embedded triaxial sensors within a national
highway, spanning August 2021 to June 2022, to forecast strain dynamics critical for proactive maintenance planning.
The TCN-APReLU architecture combines dilated causal convolutions to capture long-term dependencies and APReLU
activation functions to adaptively model nonlinear strain patterns, addressing limitations of traditional ReLU in
handling bidirectional strain signals (compressive and tensile). Comparative experiments demonstrate TCN-APReLU’s
superior performance. These improvements highlight its enhanced accuracy in predicting strain accumulation
under cyclic traffic loads, enabling maintenance teams to prioritize interventions 5–7 days before critical thresholds
(e.g., >100 με) are exceeded. This work provides a robust data-driven solution for urban road health monitoring,
emphasizing scalability through parallelizable convolutions and adaptability to sensor noise. Future extensions will
integrate multi-modal data to further generalize predictions across diverse infrastructure scenarios.
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1 Introduction
With the accelerated pace of global urbanization, the issue of urban road infrastructure health has

become increasingly prominent. As a crucial component of transportation systems, the structural integrity
of road subbases directly impacts the safety and longevity of roads [1]. Monitoring and maintaining urban
roads has thus become a vital task in modern traffic management and urban infrastructure development.
Accurately forecasting future strain trends can significantly mitigate the risk of severe structural damage
in roads [2], facilitating early detection of potential issues and providing reliable technical support for
subsequent road maintenance management. This allows for precise timing in maintenance plans and timely
repair of structural damage, thereby enhancing road safety and durability.

In recent years, with the rapid advancements in sensor technology, the Internet of Things (IoT), and
data science, data-driven road health monitoring technologies have garnered widespread attention [3,4].
Traditional road monitoring methods, which typically rely on manual inspections and periodic maintenance,
offer some degree of reliability but are costly and struggle to meet real-time monitoring needs. To address
these limitations, researchers have turned to advanced data analysis techniques, particularly deep learning
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models, to improve monitoring accuracy and efficiency [5]. Data-driven monitoring approaches, utilizing
various sensor systems deployed on roads, continuously collect vast amounts of real-time data. This data
provides a rich information source for applying deep learning techniques. Recent progress in time series
data analysis within the field of deep learning, especially in handling complex temporal data and extracting
deep features, has been remarkable [6]. Advanced temporal models, such as Convolutional Neural Networks
(CNNs) [7], Long Short-Term Memory (LSTM) networks [8], and autoencoders [9], effectively capture
long-term dependencies and intricate dynamic patterns through their unique structures and mechanisms.
Existing architectures often require separate denoising pipelines, increasing computational overhead. Hybrid
models like CNN-BiLSTM (Convolutional Neural Networks—Bidirectional Long Short-Term Memory) lack
integrated mechanisms to handle missing or noisy sensor data, limiting real-world applicability.

Temporal Convolutional Networks (TCNs) have shown significant advantages in processing time
series data [10]. By utilizing dilated convolutions, TCNs effectively capture dependencies across long time
sequences and exhibit strong sequence modeling capabilities. These characteristics make TCNs excel in time
series analysis, suitable for various practical applications including prediction, classification, and anomaly
detection [11]. Due to their prowess in modeling long time sequences and capturing temporal dependencies,
this paper proposes a deep learning model based on TCN and Adaptive Parametric Rectified Linear Unit
(APReLU). TCNs exhibit superior performance in handling time series data, while APReLU enhances the
model’s expressiveness through flexible nonlinear transformations [12]. By integrating these technologies,
this study aims to develop an efficient and precise prediction model for future road subbase strain, offering
an innovative technical solution for the health monitoring of urban road infrastructure and providing
theoretical support and practical guidance for future road maintenance and management.

2 Method Introduction

2.1 Sequential Convolutional Network
Temporal Convolutional Networks (TCNs) elegantly amalgamate the strengths of Convolutional Neural

Networks (CNNs) and Recurrent Neural Networks (RNNs), addressing the challenges traditionally faced
by RNNs when handling extended temporal sequences [13]. By incorporating causal convolutions, dilated
convolutions, and residual connections, TCNs overcome these limitations. Causal convolutions ensure that
the model’s predictions rely solely on current and past data, preserving temporal causality. Dilated convolu-
tions expand the receptive field, enabling the model to capture longer-term dependencies while maintaining
computational efficiency. Residual connections effectively mitigate the issues of vanishing and exploding
gradients, thereby enhancing training stability. In summary, TCNs adeptly extract high-dimensional features
and temporal relationships from data under lower memory constraints.

Causal convolution is a specialized form of convolution that guarantees that in time series forecasting,
the output depends only on current and past inputs, never utilizing future information. For inputs at a given
time step, the conditional probability calculation for causal convolution is as follows:

p (x) =
T
∏
t=1

p (xt ∣x1 , . . . , xt−1) (1)

Dilated convolution is a convolutional operation that expands the receptive field by inserting gaps
(dilations) between the elements of the convolution kernel, without increasing computational complexity.
The fundamental structure of the dilated convolution module is illustrated in Fig. 1. Its primary function is to
capture long-term dependencies while maintaining computational efficiency. The dilation factor controls the
spacing between the elements of the convolution kernel. For a one-dimensional sequence input x and a filter
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f, the dilated convolution operation F(s) and the formula for the receptive field at each layer are expressed as
follows:

F (s) = (x ∗ fd) (s) =
k−1
∑
i=0

f (i) ⋅ xs−d ⋅i (2)

L f i e l d = (k − 1) ∗ d (3)

where k represents the length of the convolution kernel; xs−d ⋅i represents the element at the s − d ⋅ i position
in the input sequence. Here, s is the current position of the output, and s − d ⋅ i indicates the void effect
caused by the inflation factor d in the past direction.

Figure 1: Expansive causal convolution structure

Integrating residual networks into dilated convolutional networks effectively extends the receptive field
of the network, thereby alleviating issues of gradient vanishing and explosion. Residual networks introduce
residual connections, allowing information to bypass certain layers and be transmitted directly, which
enhances the propagation of gradients during training. This architecture not only augments the network’s
capability to model long-range dependencies but also ensures stable gradient flow at deeper layers, thereby
mitigating the problems of gradient vanishing and explosion. The structure of the residual module is depicted
in Fig. 2. For input x i , the output x i+1 is computed via the activation function, as represented below.

x i+1 = Activation (x i + F (x i)) (4)

2.2 Adaptive Parametric ReLU
APReLU (Adaptive Parametric ReLU) is an improved activation function designed to enhance the

expressive power of the ReLU (Rectified Linear Unit) activation function by introducing learnable parame-
ters [14]. In the network, after processing by the APReLU activation function, the slope of the negative part
is controlled by a parameter, which helps to avoid the “dead neuron” problem and improve the richness of
feature representation. The feature maps activated by APReLU are then sent to the Global Average Pooling
(GAP) layer. The GAP operation performs spatial averaging on the feature maps of each channel, generating
a one-dimensional vector that represents the global feature information. This one-dimensional vector can
be used for subsequent classification or regression tasks, summarizing the global context information of
the feature maps and providing a more comprehensive feature representation. APReLU network structure
diagram is shown in Fig. 3.



348 Comput Model Eng Sci. 2025;144(1)

Figure 2: Basic structure of TCN

Figure 3: APReLU network structure diagram

The formula for the PReLU activation function is as follows:

y =max (x , 0) + α ⋅min (x , 0) (5)

where x and y are the features of the input and output, and α is the multiplication factor of the training.

2.3 TCN-APReLU
In this study, the APReLU (Adaptive Parametric Rectified Linear Unit) activation function was intro-

duced in the last residual module of the TCN (Temporal Convolutional Network) model to replace the
original activation mechanism while retaining the fixed structure of the rest of the model. The improved
model is referred to as TCN-APReLU, and its network structure is shown in Fig. 4. This enhancement
significantly increases the model’s ability to process features nonlinearly by integrating APReLU into the last
residual module of the TCN.



Comput Model Eng Sci. 2025;144(1) 349

Figure 4: TCN-APReLU network structure

The introduction of APReLU brings several key advantages. Firstly, APReLU can better handle negative
feature values, allowing the model to perform better when facing data with complex nonlinear characteristics.
Unlike traditional activation functions, APReLU improves the network’s expressiveness by introducing
adaptive parameters in the negative region while maintaining the same output shape as the input, providing
great flexibility and consistency for information flow between the layers of the network, facilitating further
embedding and integration of the model. Additionally, the TCN-APReLU structure significantly expands
the model’s receptive field by stacking multiple one-dimensional convolutional layers and combining causal
convolution with dilated convolution. This structure not only enhances the model’s ability to capture long-
term dependencies in sequential data but also improves its processing capability for complex time series
data. Causal convolution ensures the causality of time series predictions, while dilated convolution further
broadens the feature extraction scope by extending the view of the convolution kernel, allowing for more
precise and efficient capture of complex patterns.

In summary, TCN-APReLU combines advanced activation functions with innovative convolutional
structures to overcome some limitations of traditional TCN models, demonstrating higher accuracy and
efficiency in handling complex time series tasks. This improvement not only enhances the model’s predictive
performance but also provides more accurate and reliable solutions for time series analysis in related fields,
showing broad application prospects.

The network structure parameter settings for TCN-APReLU are shown in Table 1.

Table 1: Parameter setting of network structure

Parameter Value
Expansion coefficient 32

Convolution kernel size 2
Size number of convolution kernels 64

Number of residual modules 6

2.4 Sequence Completion and Filtering
In road monitoring systems, data loss often occurs during data collection due to issues with sensors,

transmission equipment, and networks. This loss can lead to increased errors in deep learning models’
prediction tasks, thereby affecting prediction accuracy. While the TC-DAE module effectively reconstructs
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missing data in continuous road wear monitoring scenarios, it is not optimized for sudden structural failures
(e.g., localized cracks or potholes), which require dedicated anomaly detection pipelines.

Autoencoder is an unsupervised learning model [15] used for feature learning and dimensionality
reduction of data. It consists of two parts: encoder f and decoder g. x represents the input data of a d vector.
The encoder maps it to a low-dimensional latent space y, and the decoder maps y back into the input space
and reconstructs it to z.

y = f (x) = σ (Wx + b) (6)
z = g (y) = σ (W ′y + b′) (7)

Denoising Autoencoder (DAE) is a special type of autoencoder with the primary goal of recovering
clean, original data from noisy input [16]. Noisy data x̂ is encoded by the encoder, compressing it into a low-
dimensional latent space representation y. The purpose of the encoder is to extract useful features from the
noisy data.

y = f (x̂) = σ (Wx̂ + b) (8)

Temporal Convolutional Denoising Auto-Encoder (TC-DAE) is a type of denoising auto-encoder
model designed for temporal data, such as time series or voice signals. This model combines the advantages
of Convolutional Neural Networks (CNNs) and denoising auto-encoders, specialized for the restoration and
denoising of sequential data. The unique aspect of TC-DAE’s structure lies in its use of one-dimensional
convolution layers for encoding and decoding, which are able to effectively capture the local features and
important information of temporal data. TC-DAE excels at identifying the local patterns and structures in
time series data processing. In the denoising process, TC-DAE encodes the input noise-corrupted data, trans-
forming it into a low-dimensional latent space representation and then reconstructing it through decoding
to clean data. This is used to train the model, enabling it to restore clear temporal data from noise. TC-DAE
is particularly suitable for handling noise-polluted data in signal processing, voice recognition, financial
forecasting, and other related fields, enhancing the data quality and usability through feature extraction and
data repair. By optimizing the reconstruction error, TC-DAE demonstrates strong performance in recovering
original signals from noisy data. Its structural framework is shown in Fig. 5.

Figure 5: Network structure diagram of TC-DAE

The SG filter (Savitzky-Golay filter) is a digital filter used for smoothing data and reducing noise in
digital signals [17]. It is particularly suited for handling discrete sequential data, such as time series or
experimental data. The core idea of the SG filter is to smooth and remove noise in data through local
polynomial fitting.
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Construct a window array centered around the original data xi with a window size of 2M + 1. This
sequence xi = {xi−m , . . . , xi , . . . , xi+m} can be fitted using the following low-order polynomial.

p (n) =
N
∑
k=0

ak nk , n ∈ [−m, m] (9)

The polynomial is fitted to the signal by minimizing the sum of squared errors, as shown in the following
formula. The fitting effect is best when this formula reaches its minimum value.

ε =
m
∑

n=−m
(p (n) − xi+n)2 =

m
∑

n=−m
(

N
∑
k=0

ak nk − xi+n)
2

(10)

The filter achieves data smoothing through local polynomial fitting. The filtering result at the center
point of each window is a weighted linear combination of all sample points within the window. The system
of linear equations can be represented in matrix form as follows:

Y(2m+1)×1 = X(2m+1)×k ⋅ Ak×1 (11)

The least squares solution Â of A and the algorithmic filtering value Ŷ of Y are represented as follows.
The matrix C in the equations is called the convolution coefficient.

Â = (XT ⋅ X)−1 ⋅ XT ⋅ Y (12)

Ŷ = X ⋅ (XT ⋅ X)−1 ⋅ XT ⋅ Y = C ⋅ Y (13)

2.5 Feature Selection
The road automation monitoring system can conduct online automatic monitoring of parameters such

as asphalt strain, soil pressure, moisture, and temperature in the base, surface, and subgrade soil layers,
thus enabling the overall monitoring of the road structure. In this study, the base strain is selected as a
representative sensor monitoring data for analysis and prediction. Other variables related to the pavement
base, such as soil layer strain, asphalt strain, matric potential, soil pressure, soil moisture content, and
temperature, will also be input into the prediction model to test whether they can improve the accuracy
of the proposed prediction model. Due to the larger dimension of the original monitoring data, to clearly
and conveniently see the correlation between various variables, the Pearson correlation coefficient between
two variables was calculated [18]. A correlation coefficient ranging from 0 to 1 indicates positive correlation
between two variables, while a range of −1 to 0 indicates negative correlation. Through the correlation
analysis of multi-dimensional road monitoring data for dimensionality reduction, only sequences with
strong correlation are retained.

3 Experiment and Analysis

3.1 Data Set and Evaluation Index
The study used pavement monitoring sensor data from a national highway collected between August

2021 and June 2022 for deep learning model training and testing. The on-site monitoring project employs
sensors to conduct real-time assessments of the stress state, moisture content, and temperature of various
layers within the road structure, capturing the physical parameter changes of the pavement. This monitoring
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data, processed and analyzed through established predictive models, aids in understanding the dynamic
variations of the road structure. The data were sourced from embedded triaxial strain gauges, soil pressure
sensors, and temperature/humidity sensors strategically installed across the asphalt, base, and subgrade
layers of the road infrastructure. Strain values were recorded using resistive strain gauges calibrated to ISO
9001 standards, ensuring high precision in data acquisition. These gauges provided a resolution of ±1 με,
enabling fine-grained monitoring of strain dynamics within the road structure. The integration of multi-
layer sensor deployments ensured comprehensive coverage of critical physical parameters, forming a robust
foundation for model training and validation. The collected sensor data was chronologically divided into
three segments: 70% for training, 15% for validation, and 15% for testing.

The pavement monitoring data includes time series of various influencing factors. This research uses
historical pavement base strain data as input for the prediction model to forecast future pavement base strain.
First, the time series data is preprocessed. Then, dimensionality reduction is performed through correlation
analysis. Missing data is completed and data smoothing is applied to remove noise. The deep learning
model proposed in this paper is used to perform feature modeling of the pavement monitoring data and
predict future pavement base strain data. In the practical implementation of the monitoring system, sensors
embedded within the road infrastructure wirelessly transmit collected data to a centralized cloud server at
15-min intervals. The TCN-APReLU model was trained on an NVIDIA A100 GPU, leveraging its parallel
processing capabilities to accelerate deep learning workflows. The kernel size was set to 2 to capture local
temporal patterns effectively, while dilation rates followed a geometric progression (powers of 2) to expand
the receptive field exponentially without compromising computational efficiency. The network depth was
fixed at 6 residual layers, balancing model complexity and training stability. For optimization, the learning
rate was fine-tuned to 0.001 using the AdamW algorithm.

Additionally, to evaluate the effectiveness of different deep learning prediction models, three evaluation
metrics are used to assess the accuracy of the predictions: Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and Mean Absolute Percentage Error (MAPE).

RMSE =

�


� 1

N

N
∑
i=1
(yi − ŷi)2 (14)

MAE = 1
N

N
∑
i=1
∣yi − ŷi ∣ (15)

MAPE = 100
N

N
∑
i=1
∣ yi − ŷi

yi
∣ (16)

18 ρX ,Y =
cov (X , Y)

σX σY
=

n
∑
i=1
(Xi − X) (Yi − Y)

√
n
∑
i=1
(Xi − X)2 n

∑
i=1
(Yi − Y)2

(17)

In the formula, the σX and σY are the standard deviation of X and Y ; cov (X , Y) is the covariance of X
and Y ; X and Y is the variable sample mean.
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3.2 Prediction Results
Fig. 6 shows the Pearson correlation coefficient heatmap for various influencing factors. From the figure,

it can be observed that the triaxial strain in the base layer has a high correlation with the strain in the asphalt
layer and the soil pressure, while the correlation between the triaxial strain in the base layer and the strain
in the subgrade soil is relatively low. Based on this, the study selects strain in the asphalt layer, triaxial base
layer strain, osmotic pressure, soil pressure, temperature, and soil moisture content sensor monitoring data
as inputs for the deep learning model.

Figure 6: Pearson correlation coefficient heatmap

To achieve accurate predictions of future road base layer strain, we propose an improvement to the
TCN model, introducing the TCN-APReLU-based deep learning model. We evaluated and compared
the performance of the model before and after the improvement in predicting road base layer strain.
The comparison of the TCN model’s prediction performance before and after the improvement is shown
in Table 2.

Table 2: Comparison of TCN model results before and after improvement

Models MAE RMSE MAPE
TCN 23.23 34.18 6.09

TCN-APReLU 14.04 20.79 4.21

According to the data in Table 2, compared to the traditional TCN model, the TCN-APReLU model
has achieved a significant improvement in prediction performance. Specifically, the average absolute error
(MAE) of the TCN-APReLU model decreased from 23.23 to 14.04, the root mean square error (RMSE)
dropped from 34.18 to 20.79, and the mean absolute percentage error (MAPE) reduced from 6.09 to 4.21. By
incorporating the APReLU mechanism, the TCN-APReLU model has significantly enhanced the accuracy
and reliability of road base strain predictions. Compared to the traditional TCN model, TCN-APReLU shows
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clear advantages in key metrics such as MAE, RMSE, and MAPE. This not only means a reduction in the
discrepancy between predicted and actual values but also indicates that the model has made significant
progress in handling larger errors and reducing proportional errors. This improvement provides a powerful
predictive tool for actual road base strain monitoring.

Fig. 7 shows the effectiveness of the TCN-APReLU deep learning model in predicting road base strain
values, comparing predicted values with actual values. The comparison in the figure clearly demonstrates
the high accuracy of the TCN-APReLU model in strain prediction, with a smaller gap between predicted
and true values, further validating the model’s advantage in capturing complex strain patterns and long-term
dependencies. This high-precision prediction result suggests that the TCN-APReLU model can provide more
reliable strain monitoring data in practical applications, helping to optimize road maintenance strategies.

Figure 7: Comparison of predicted values with actual values

While the TCN-APReLU model achieved strong overall performance, its predictions exhibited certain
limitations: (1) For transient overload events, the model’s response lagged 1–2 h behind actual strain spikes,
likely due to over-smoothing by the SG filter; (2) Prediction accuracy degraded by 18%–22% under extreme
temperatures because such conditions were underrepresented in training data; and (3) The model showed
15% higher errors when applied to road sections with subgrade materials substantially different from training
data. These failure modes suggest the need for enhanced transient event detection, expanded training data
coverage of edge conditions, improved missing-data robustness, and domain adaptation techniques for
varying soil properties.

3.3 Comparative Experiments
The experimental results of four deep learning prediction algorithms were compared and analyzed

through performance evaluation metrics, ultimately selecting the most suitable deep learning model for
road base strain prediction. As shown in Fig. 8, the TCN-APReLU model performs the best in road base
strain prediction. Compared to the LSTM model, its MAE decreased from 38.23 to 14.04, RMSE from 40.59
to 20.79, and MAPE from 13.03 to 4.21, demonstrating a significant improvement in prediction accuracy.
This enhancement is primarily due to the TCN-APReLU model’s incorporation of the APReLU activation
function, which strengthens its ability to model nonlinearities in complex time series data, enabling the
model to capture strain patterns more accurately and reduce prediction errors.
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Figure 8: Comparison of prediction results of different deep learning models

In contrast, although LSTM and CNN-BiLSTM models showed some improvement in accuracy, they
still have certain limitations in handling complex strain data. The LSTM model has shortcomings in capturing
long-term dependencies and nonlinear features, while CNN-BiLSTM, despite combining convolutional
and bidirectional LSTM advantages, still does not achieve the accuracy level of TCN-APReLU. The TCN
model improves on traditional LSTM and CNN-BiLSTM by modeling sequence data through temporal
convolution operations, but the further optimization with TCN-APReLU demonstrates even stronger
predictive capabilities, highlighting the importance of introducing advanced activation mechanisms for
improving prediction accuracy. The comparative analysis highlights our model’s unique value proposition:
combining the temporal modeling strengths of TCNs with APReLU’s adaptive nonlinearity, while avoiding
Transformers’ high resource demands—a critical advantage for embedded deployment in road IoT networks.

The TCN-APReLU model exhibits significant advantages in road base strain prediction. The introduc-
tion of the APReLU activation function enhances the model’s ability to model complex nonlinear features,
thus capturing complex patterns in strain data more accurately. Additionally, TCN-APReLU performs
exceptionally well in handling long time series data, effectively capturing long-term dependencies, reducing
prediction errors, and improving model reliability. Overall, TCN-APReLU provides a more precise and stable
solution for road base strain monitoring, with promising application prospects.

4 Conclusion
The TCN-APReLU deep learning model proposed in this study demonstrates significant superiority

in predicting road subgrade strain. By effectively preprocessing historical status data collected from pave-
ment monitoring systems, including deep data sequence repair, filtering algorithms, and correlation-based
feature selection, the model is able to accurately predict future strain trends. Comparative analysis with
other deep learning algorithms shows that the TCN-APReLU model has clear advantages in prediction
accuracy and stability, providing robust technical support for the health monitoring and maintenance
of urban road infrastructure. However, the model still faces application limitations: predictions rely on
dense sensor deployment (≥5 sensors/km); sensor data errors require strict calibration controls; and the
model has only been validated on paved roads, with generalization to unpaved roads (e.g., gravel roads)
remaining untested. Future research will integrate multimodal data (e.g., satellite imagery) to reduce sensor
dependency, develop adaptive calibration algorithms, and extend the framework to diverse road scenarios
through domain adaptation techniques, advancing its transition from theoretical innovation to practical
engineering applications.
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