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ABSTRACT: This study presents an interpretable surrogate framework for predicting pedestrian-leg injury severity
that integrates high-fidelity finite-element (FE) simulations with a TabNet-based deep-learning model. We generated
a parametric dataset of 3000 impact scenarios—covering ten vehicle types and various legform impactors—using
automated FE runs configured via Latin hypercube sampling. After preprocessing and one-hot encoding of categorical
features, we trained TabNet alongside Support-Vector Regression, Random Forest, and Decision-Tree ensembles. All
models underwent hyperparameter tuning via Optuna’s Bayesian optimization coupled with repeated four-fold cross-
validation (20 trials per model). TabNet achieved the best balance of explanatory power and predictive accuracy, with
an average R2 = 0.94 ± 0.01 and RMSE = 0.14 ± 0.02. On an independent test set, 85%, 88%, and 90% of predictions
for tibial acceleration, knee-flexion angle, and shear displacement, respectively, fell within ±20% of true peaks. SHAP-
based analyses confirm that collision-point location and bumper geometry dominate injury outcomes. These results
demonstrate TabNet’s capacity to deliver rapid, robust, and explainable injury predictions, offering actionable design
insights for vehicle front-end optimization and regulatory assessment in early development stages.
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1 Introduction
The global surge in motor-vehicle ownership has been accompanied by a corresponding rise in road-

traffic accidents. The World Health Organization reports that traffic crashes claim roughly 1.35 million
lives each year and injure or disable many millions more [1]. Pedestrians, who lack any intrinsic physical
protection, constitute a disproportionate share of these casualties. A typical crash sequence begins with the
pedestrian’s lower limbs striking the bumper, followed by secondary contacts of the torso and head with
the hood and windshield—often producing severe, sometimes fatal, injuries. In response, many countries
have enacted pedestrian-protection regulations [2–4]. Improving leg protection therefore hinges on accurate
digital modelling and on front-end structures explicitly tuned for pedestrian friendliness. Conventional
development cycles rely heavily on finite-element (FE) simulations, iterating a limited set of geometric
variables during the early concept phase. Although such methods can capture complex physics, they are
computationally expensive and ill-suited for large-scale, multi-variable optimisation.

Traditional approaches largely rely on Finite Element Method (FEM) simulations to seek structural
improvements or evaluate performance. For example, Zhang et al. [5] tuned hood inner-panel parameters
to balance indentation resistance and head-impact performance, while Fredriksson et al. [6] mined 1030
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real-world cases to map injury severity to impact speed. Follow-up studies added specific countermeasures:
Shi et al. [7] analysed how hood airbags and braking profiles lower head-injury scores; Mo et al. [8] and
Asgari et al. [9] built validated lower-limb FE models to study fracture and ligament injury; and Fredriksson
et al. [10] compared active braking, deployable hoods, and integrated systems in a common FE framework.
Konosu et al. [11] highlighted the need for flexible, rather than rigid, legform impactors, and Lu et al. [12]
used TRIZ to guide air-bag layout and simulation.

Despite the widespread use of traditional approaches such as topology optimization and finite element
method (FEM) analysis in vehicle safety performance design, these methods face inherent limitations.
Topology optimization relies heavily on designer expertise and predefined rules, hindering the automated
discovery of optimal solutions. FEM, while capable of accurately modeling complex physical phenomena,
remains computationally intensive and inefficient for multi-variable optimization. Furthermore, these
traditional approaches lack the predictive power of data-driven models, limiting their ability to provide
real-time feedback or adapt to rapid design changes. To bypass exhaustive FE sweeps, Das et al. [13] used
machine-learning text classifiers for crash reports, Tang et al. [14] built a MATLAB/Simulink virtual vehicle-
to-vehicle–pedestrian emergency-braking model, and Zhao et al. [15] applied tree-based algorithms to
link highway design to pedestrian crash risk. Integrated solutions are emerging: Choi et al. [16] reported
that an active-passive pedestrian-protection suite could cut fatality risk by about 90%. Complementary
studies relate front-end geometry to fatal injuries [17], deliver real-time vision warnings [18] and exploit
smartphone–vehicle communication for proactive protection [19].

Finite-element (FE) optimisation in high-dimensional design spaces is computationally prohibitive,
whereas machine-learning surrogates can deliver rapid, accurate predictions. To leverage the strengths of
both approaches, this study integrates high-fidelity FE simulation data with a machine-learning surrogate to
identify the front-end design parameters that most strongly influence pedestrian lower-limb injury and to
enable accelerated design iteration. We pursue four interrelated objectives:

1. Develop and validate a surrogate predictive framework: Construct a regression model that precisely maps
vehicle front-end design variables to three continuous injury metrics—tibial acceleration, knee flexion
angle, and shear displacement—and demonstrate that its performance meets or exceeds established
regulatory benchmarks.

2. Identify and quantify principal injury drivers: Employ SHAP (Shapley Additive Explanations) to interpret
the surrogate, thereby pinpointing and ranking structural features—such as geometric proportions,
material stiffness, and energy-absorbing components—according to their quantitative contributions to
each injury metric.

3. Translate biomechanical insights into design guidelines: Synthesize the surrogate’s interpretive find-
ings into concrete, performance-driven recommendations for pedestrian-friendly bumper and hood
geometries, balancing injury mitigation with manufacturing feasibility and aesthetic considerations.

4. Demonstrate efficiency gains in early-stage design: Compare the computational cost and turnaround
time of the surrogate approach against iterative FE analyses, quantifying resource savings and establishing
the surrogate’s viability as a real-time decision-support tool during the conceptual design phase.

By achieving these objectives, this work delivers a robust, interpretable, and efficient predictive tool for
pedestrian lower-limb injury assessment, supports evidence-based traffic-safety policymaking, and guides
the engineering of vehicle front ends that effectively reduce injury severity in real-world crashes.
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2 Finite-Element Model Construction for Pedestrian-Collision Safety
The objective of this study is to predict the severity of pedestrian leg injuries resulting from collisions

using the TRL leg model. The metrics for evaluating leg injuries include impact acceleration, knee shear
displacement, and knee bending angle [20], which are chosen as the target variables for this research. The
dataset employed in this study is entirely derived from Finite Element Method (FEM) simulations. FEM
is a computational technique that creates a mathematical representation of physical systems to simulate
real-world collision events, thereby generating high-precision data. Initially, a finite element (FE) model
of the vehicle’s geometric structure is developed. The vehicle’s body is segmented based on the collision
zones defined by C-NCAP regulations, as shown in Fig. 1, retaining critical front-end components likely to
influence the severity of leg injuries [21], such as the bumper, crash beam, and hood.

Figure 1: Simplified body

To ensure that the constructed machine learning model generalizes well across a wide range of passenger
vehicles, data from ten different vehicle types, including sedans, MPVs, SUVs, and others, were collected.
The specific vehicle information is shown in Table 1.

Table 1: Vehicle information

Vehicle type Bonnet edge height (mm) Bumper height (mm) Front cross member

Sedan

1 716 373 Rigid steel
2 805 476 Rigid steel
3 767 534 Rigid steel
4 802 490 Low stiffness steel
5 624 375 Rigid aluminum

SUV
6 995 370 Rigid steel
7 985 419 Low stiffness steel
8 757 496 Rigid steel

PICKUP 9 1165 316 Rigid steel
10 1066 466 Rigid steel

MPV 11 1085 375 Rigid steel
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For the assessment of lower-extremity injuries in pedestrian impacts, the European Enhanced Vehicle-
safety Committee (EEVC) specifies dedicated evaluation procedures and associated injury thresholds. The
relevant regulatory limits are summarised in Table 2.

Table 2: EEVC regulatory impairment threshold

Body region Injury metric Threshold

Femur Bending moment 300 Nm
Axial force 5000 N

Tibia/Knee
Tibial acceleration 150 g

Knee shear displacement 6 mm
Knee bending angle 15○

Following the structural adjustments as per regulatory requirements, the leg model for the collision
simulation must be selected. This study employs the TRL leg model [22]. The TRL leg model (Tibia,
Rectangular, and Leg model) is a highly detailed finite element model designed specifically for simulating
the dynamics of a pedestrian’s leg during a collision. The structure of the TRL leg model is shown in Fig. 2.
This model provides a comprehensive depiction of leg anatomy, including bones, muscles, and soft tissues,
enabling accurate injury prediction during collisions. The leg structure is broadly divided into several key
components: tibia, femur, knee joint, muscle, and skin. By incorporating detailed bone and soft tissue
modeling, the TRL leg model delivers high-precision collision simulation data. Injury metrics are recorded
using accelerometers and a deformable knee joint.

Figure 2: TRL architecture

Under the previously defined test conditions, a representative impact location was selected, and a finite-
element simulation was carried out to analyse the collision between a pedestrian’s lower leg and the vehicle’s
front bumper. The resulting time-history response of the lower-leg impact model is depicted in Fig. 3.
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Figure 3: Finite element simulation time course

3 Identification of Design Features
To develop a machine learning model, it is essential to extract design parameters from the FE model.

These key design parameters are categorized into six types, as shown in Fig. 4.

3.1 Design Feature Selection
3.1.1 Type of Leg Impactor Model

For the finite element analysis, this research uses the TRL (Transport Research Laboratory) leg model.
The injury metrics primarily focus on three key indicators related to the knee area: the upper tibial
acceleration, knee flexion angle, and knee shear displacement. Knee shear displacement, which refers to the
relative displacement between the calf and thigh in the horizontal lateral direction of the knee, is used to
assess the risk of cruciate ligament injuries. Knee flexion angle, representing the angular displacement of the
knee, is measured to evaluate the potential for lateral collateral ligament injuries. Calf acceleration is recorded
to gauge the risk of tibial fractures. Detailed parameters for the TRL leg model are provided in Table 3.
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Figure 4: Types of design variable

Table 3: Impactor parameters

Feature Parameter
Mass (kg) 13.4 ± 0.2

Velocity (km/h) 40 ± 2
Tibial diameter (mm) 70

Indicators A, ANG, DSTR

3.1.2 Bumper Structure
Front crash beams are one of the components that have a significant impact on crash damage perfor-

mance and were therefore placed in this category and four types of characteristics were identified, as shown
in Table 4.

Table 4: Bumper architecture

Feature Parameter
Length of bumper Distance between Connection Point LCP and RCP along Y-direction
Crash beam length Crash beam length as a percentage of assembly length
Restricted position Position of the crash beam to the body
Front End Angle Front-end structure highlights angles
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1. Feature 1 Length of bumper

In this case lateral distance between Connection Point LCP and RCP are measured (Refer to Fig. 5).

2. Feature 2 Crash beam length

Figure 5: Length of bumper

In Fig. 6, the longitudinal length of the crash beam is likewise chosen as one of the features. This feature
is denoted as f 1 and is shown in Eq. (1).

f 1 = D
W
× 100 (1)

3. Feature 3 Restricted position

The location of the connection between the crash beam and the body is one of the most important
means of absorbing energy in a collision, so the location of the connection is also chosen as a characterization
variable, using f 2, f 3, calculated as in Eqs. (2) and (3), and the specific values are shown in Fig. 7.

f 2 = A
W
× 100 (2)

f 3 = 1 − A
W
× 100 (3)

4. Feature 4 Front end angle

The longitudinal angle of the front-end structure of a vehicle can largely affect the level of injury after
a pedestrian collision. The longitudinal angle was chosen as one of the characteristic variables and was
measured as shown in the Fig. 8.
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Figure 6: Crash beam length

Figure 7: Restricted position

Figure 8: Front end angle
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3.1.3 Impact Point Distance
Table 5 presents the measured and normalized impact point distances. For feature 3, the shortest

distance from the impact point to the connection point is considered. The normalized distances, relative to
the connection point, are used as features, as illustrated in Fig. 9.

Table 5: Impact point distance

Feature Parameter
Lateral impact point distance Distance relative to the Connection Point along the X

direction
Longitudinal impact point distance Distance relative to the Connection Point along the Y

direction
Distance from the impact point to the

hard points
Distance between the hard point and impact point

along the X direction
Distance of impact point from bonnet

edge
Shortest distance of impact point from bumper edge

Figure 9: Front-end structural parameters

3.1.4 Impact Point Clearance
The selected features include the presence of a hard point below the collision point, which influences

the degree of leg injury, as well as the distance from the hard point to the collision plane. Another important
feature is clearance, specifically the clearance below the impact point. Two types of clearance features are
identified:
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1. Clearance between bumper exterior and impact beams
2. Clearance between impact beams and aggregates below bumper assembly

3.1.5 Material Properties
The selected material properties are given in Table 6 and include the modulus of elasticity, yield limit

and thickness properties of the skin material and crash barrier material, as well as the material properties of
the energy-absorbing structure at the front of the crash barrier.

Table 6: Material properties

Feature Parameter
1. Bumper material young’s modulus

Bumper material characteristics 2. Bumper material yield stress
3. Bumper material thicknesses

Anti-collision beam material characteristics
1. Anti-collision beam young’s modulus

2. Anti-collision beam yield stress
3. Anti-collision beam thicknesses

Energy-absorbing structures material
characteristics

Energy-absorbing structures young’s modulus,
yield stress

3.1.6 Type of Vehicle
Different car models also have some influence on the crash results, so the statistical model type feature

C_T is designed with the values shown in Table 7.

Table 7: Vehicle type

Feature Parameter
Sedan 1
SUV 2
MPV 3

Pickup 4

3.1.7 Other Parameters
In order to characterize the front-end structure of a vehicle more accurately and comprehensively, more

parameters need to be selected as features [23–25]. Some structures such as the radiator, its support, and
mounting parts, also have a partial influence on the degree of leg impact damage, and the characteristics
RAD_LOC, RAD_MAT are used to describe the radiator position, material, and other properties. The bonnet
and fender, although they do not come into direct contact with the leg impactor, are directly connected to
the front bumper, so BON_T, BON_MAT, and FEN_MAT is taken as features.
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3.2 Data Generation and Pre-Processing
For vulnerable road users, the configuration of a vehicle’s frontal structure is pivotal in reducing both

the likelihood and severity of pedestrian injuries. Within leg-injury assessment protocols, tibial acceleration,
knee-joint bending angle, and knee shear displacement provide direct and quantitative indications of trauma
severity. Accordingly, the present work adopts these three metrics as the output responses for evaluating the
pedestrian-protection performance of alternative front-end structural designs.

On the input side, eight design-variable categories—comprising a total of 45 distinct parameters—are
defined. Owing to space constraints, Table 8 reports only the 10 most influential variables together with their
admissible ranges. Once the output responses yi and design variables xi were established, a series of (xi , yi)
pairs was generated via finite-element simulations, thereby furnishing the training corpus for the surrogate
machine-learning models.

Table 8: Definitions and bounds of the 20 most influential design variables

Design variable Symbol Range Type
Impactor speed V (km/h) [38, 42] Continuous
Impactor speed T_L (mm) [1500, 2000] Continuous

Crush-box longitudinal position BD [10, 25] Continuous
Hood-to-bumper vertical separation (-y) H_B_G (mm) [420, 600] Continuous

Impact-to-joint distance (-x) D (mm) [15, 85] Continuous
Impact-to-joint distance (-y) H (mm) [−50, 50] Continuous

Outer-skin thickness Tbf (mm) [2, 4] Continuous
Bumper-beam wall thickness Tbr (mm) [1, 3] Continuous

Young’s modulus of outer skin material Mbf (MPa) [1000, 1400, 2800, 5000] Discrete
Young’s modulus of bumper-beam material Mbr (GPa) [69, 200, 210] Discrete

Young’s modulus of foam absorber M_PL (MPa) [0, 210, 1000] Discrete
Vehicle category C_T [1, 2, 3, 4] Discrete

Because data-driven algorithms benefit from large sample sizes whereas each finite-element run is
computationally intensive, a multidimensional, space-filling Latin hypercube sampling (LHS) strategy was
adopted to explore the design space efficiently. The definitions and upper–lower bounds of the sampled
variables are summarised in the same (Table 8). All simulations were executed automatically on an integrated
numerical co-simulation platform, which returned the corresponding output responses for every sampled
design point. The dataset information is shown in Table 9.

Table 9: Dataset partitions adopted for surrogate-model development

Subset Number of samples
Training set 2100

Validation set 700
Test set 200

Total 3000
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Data preprocessing is a critical step in constructing machine learning models [26], directly impacting
the model’s performance, convergence speed, and final predictive accuracy. This process involves extracting
useful features from raw data and transforming them into a format suitable for machine learning algorithms
[27]. The feature variables selected from this study’s dataset encompass continuous, discrete, and textual
types, with considerable differences in their magnitudes. Employing preprocessing techniques enables the
model to better adapt to the features and accelerates convergence.

For evident outliers, such as excessive acceleration, knee shear displacement, or knee bending angles
that exceed normal ranges, or situations where finite element calculations do not converge or yield negative
volumes, these data points are either removed or necessitate a reconstruction of the finite element model and
recalculation. Efforts are made to ensure that the dataset remains within a reasonable range. In cases with
minimal missing values, the missing data are filled using the column mean.

Continuous features, which constitute the most prevalent type of data collected—such as speed, collision
location, and material properties—are processed through methods like normalization and standardization.
In this study, due to the differing units used for various continuous features leading to substantial discrepan-
cies in data magnitudes, normalization is employed. The continuous features in the dataset are normalized
column-wise to yield values distributed within the range of [0, 1]. For discrete features, such as vehicle types
and the connection relationships between the impact beam and the bumper, one-hot encoding is utilized.
After performing feature selection, the matrix of correlation coefficients for some of the variables is shown
in Fig. 10. To validate the reliability of our collected dataset, the predicted peak values were compared against
the EEVC regulatory thresholds. The comparison results are presented in the Table 10 below.

Figure 10: Characteristic correlation matrix
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Table 10: Target variable distribution information

Metric Compliance rate Maximum exceedance
Tibial acceleration (A) 82% +22 g

Knee flexion angle (ANG) 89% +5○
Knee shear displacement (DSTR) 91% +1.3 mm

4 Pedestrian Safety Performance Prediction Methodology

4.1 Preliminary Model Selection Using Default HyperParameter Settings
Machine learning—an essential methodology within contemporary data analytics—aims to automate

the construction of predictive and descriptive models [28]. As a sub-discipline of artificial intelligence,
it is premised on the capacity of computational systems to glean knowledge autonomously from data,
uncover latent patterns, and make informed decisions with minimal human supervision. Depending on
the availability of labelled outcomes or feedback, machine-learning techniques are typically grouped into
supervised, unsupervised, and reinforcement learning.

This study constructs surrogate regression models to predict three continuous indicators of pedestrian
leg injury severity—tibial acceleration (A), knee flexion angle (ANG), and knee shear displacement (DSTR).
Because exhaustive hyperparameter tuning for all candidate algorithms incurs prohibitive computational and
time costs, each method is initially trained using the default settings listed in Table 11 to establish a baseline
performance profile. Rigorous model selection at this stage is essential to ensure a high-fidelity surrogate. The
preliminary evaluation encompasses a broad spectrum of regression approaches: linear models (i.e., Linear
Regression), kernel methods (Support Vector Regression), tree-based ensembles (Random Forest, CatBoost,
LightGBM, AdaBoost), and deep-learning architectures (CNN–LSTM and TabNet). Baseline models are
ranked by their coefficient of determination (R2), with the top performers subsequently advanced to targeted
hyperparameter optimization.

Table 11: Machine learning models used and default parameters

Model Parameter Default value

LR fit_intercept True
copy_X True

SVM
kernel ‘rbf ’

C 1.0
epsilon 0.1

RandomForest
n_estimators 100
max_depth −1

min_sample_split 2

GBDT
learning_rate 0.1
n_estimators 100

subsample 1.0

CatBoost
Iterations 1000

learning_rate 0.03

(Continued)
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Table 11 (continued)

Model Parameter Default value
depth 6

Boosting_type ‘gbdt’
LightGBM num_leaves 31

max_depth −1

Conv1D_filters 64

CNN-LSTM LSTM_units 50
Optimizer Adam

TabNet
n_d = n_a 8

n_steps 3
gamma 1.3

The training corpus is drawn from a finite-element crash-simulation dataset containing roughly 3000
impact scenarios across ten vehicle types. Of these, 200 cases are reserved as an external test set, while the
remainder are split into training and validation subsets in a 5:1 ratio. Each record provides 46 explanatory
variables describing vehicle and impact conditions, together with the three response variables noted above.
As all responses are continuous, the analysis considers only regression algorithms. Candidate models
are ranked on the basis of the coefficient of determination, R2, and root-mean-square error (RMSE),
computed according to Eqs. (4) and (5). Whereas R2 quantifies the proportion of variance explained by
the model, RMSE gauges the average deviation between predicted and observed values, thereby providing
complementary assessments of explanatory power and predictive accuracy.

R2 = 1 − ∑
n
i=1(yi − ŷi)2

∑n
i=1(yi − yi)2 (4)

RMSE =
�
��� 1

n

n
∑
i=1
(yi − ŷi)2 (5)

The overall methodological workflow is depicted in Fig. 11. The average score and average error of the
machine learning model on the three target variables (all of which have been normalized) were chosen
as the final metrics for evaluating the model’s performance. The machine learning models chosen are
common machine learning models for processing tabular data and deep learning combinatorial model.
Below provided Fig. 12 provides insights into the performance of different machine learning algorithms
(using default parameters). An R2 value closer to 1 indicates a stronger model fit to the data, while a lower
RMSE reflects smaller prediction errors across the dataset.
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Figure 11: Machine Learning Model Development Process

Figure 12: Model comparison (use default parameters)

Inspection of Fig. 12 shows that TabNet attains the highest coefficient of determination (R2) while
sharing the lowest root-mean-square error (RMSE = 0.14) with CatBoost, and thus delivers the best overall
accuracy. CatBoost matches Random Forest in R2 (0.83) but exhibits a lower RMSE, ranking second only to
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TabNet. By contrast, conventional linear regression performs poorly, displaying both the largest RMSE (0.36)
and the smallest R2 (0.57), and therefore fails to satisfy the required precision. The remaining algorithms—
Random Forest, LightGBM, SVM, CNN-LSTM, and AdaBoost—form a middle tier, with R2 values between
0.78 and 0.83 and RMSE values between 0.15 and 0.21. On the basis of these baseline results obtained under
default hyper-parameters, TabNet, CatBoost, Random Forest, and LightGBM were selected for subsequent
hyper-parameter optimisation.

4.2 Machine Learning Model Deployment
Four high-performing models—TabNet, CatBoost, Random Forest, and LightGBM—were identified

in our preliminary screening and advanced to automated hyper-parameter tuning. Given the substantial
computational cost of this task, we employed Optuna’s Bayesian-optimization framework, configuring up
to 50 parallel trials and a maximum of 200 total evaluations. For each injury metric (tibial acceleration,
knee-flexion angle, shear displacement), all four algorithms were fit in turn under identical conditions, and
the configuration yielding the highest cross-validated accuracy was selected as that metric’s surrogate. To
guard against overfitting from a static train_test split, the Bayesian optimizer was integrated with a K-fold
cross-validation scheme (train:test = 3:1). In this arrangement, the dataset is partitioned into K subsets; each
trial evaluates a given hyper-parameter vector by averaging the model’s performance—measured via R2 and
RMSE—across the K validation folds. Fig. 13 illustrates this procedure: each horizontal segment corresponds
to one sampled hyper-parameter set, colored by the resulting validation score (deeper red indicates higher
accuracy). By embedding K-fold cross-validation directly within the Bayesian-optimization loop, we ensure
that every candidate configuration is assessed on multiple splits, yielding robust, low-bias hyper-parameter
estimates and ultimately enhancing the surrogate models’ generalizability.

Figure 13: K-fold cross-validation

The optimal model parameter settings are shown in the table below. This section describes the hyperpa-
rameter optimization process for the TabNet model using Bayesian optimization, while the hyperparameter
optimization of other models is not further discussed in this section. The key parameters of each model and
the search range are shown in the Table 12.
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Table 12: Hyperparameter search range

ML algorithms Hyperparameters Search range Best parameter

TabNet

n_d = n_a [8, 64] 23
n_steps [3, 10] 15
gamma [0, 2.0] 0.8

n_independent [1, 5] 2
momentum [0.01, 0.4] 0.16

CatBoost

Iterations [100, 2000] 1500
Learning_rate [0.01, 0.3] 0.17

depth [4, 10] 5
l2_leaf_reg [1, 10] 1

bagging_temperature [0, 1] 1.0

Random Forest
n_estimators [100, 1000] 800
max_depth [5, 20] 15

min_sample_split [2, 10] 4

LightGBM

num_leaves [20, 150] 35
learning_rate [0.01, 0.2] 0.15
n_ estimators [100, 1000] 700
max_depth [3, 15] 12

Bayesian optimization significantly accelerates convergence to optimal hyperparameter configurations
compared with exhaustive and grid-search methods. As shown in Table 13, all candidate models exhibit
substantial gains in both R2 and RMSE following tuning. Among them, TabNet achieves the best trade-
off between explanatory power and predictive accuracy, recording the highest R2 and the lowest RMSE.
CatBoost also attains strong accuracy but slightly underperforms TabNet in variance explanation. Although
Random Forest reports a high overall R2 of 0.93, its RMSE remains relatively large, indicating uneven
performance across targets. A more granular analysis reveals that Random Forest predicts knee-flexion angle
and shear displacement with excellent precision—achieving R2 values of approximately 0.94 and 0.95 and
RMSEs of roughly 0.10 and 0.08—yet struggles with tibial acceleration, where its RMSE jumps to about 0.27.
Consequently, its aggregate RMSE of 0.15 exceeds LightGBM’s 0.11, despite LightGBM’s lower R2 of 0.90. This
discrepancy underscores that a higher R2 does not inherently guarantee lower error: models may explain
variance well while still producing large absolute deviations for certain outcomes. Therefore, R2 and RMSE
should be considered jointly when evaluating regression performance, as relying on either metric in isolation
can be misleading—particularly for challenging targets such as tibial acceleration.

Table 13: Model scores and errors on the training dataset (after tuning)

Model R2_SCORE (After average) RMSE (After normalization)
Tabnet regression 0.94 0.07

Catboost regression 0.92 0.09
Random forest regression 0.93 0.15

LightGBM regression 0.90 0.11
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For this application, the TabNet regressor [29] was selected as the final surrogate model, having
delivered the highest R2 and the lowest root-mean-square error (RMSE) among all candidates. Fig. 14
presents its learning curves for the three injury targets—(a) tibial acceleration (pred_A), (b) knee-flexion
angle (pred_ANG), and (c) shear displacement (pred_DSTR)—with validation RMSE shown in blue and test
RMSE in red. In each case, RMSE decreases sharply within the first 10–15 epochs, indicating rapid capture
of the underlying data patterns, and begins to plateau by around epoch 20, signifying convergence. The
near-perfect overlap of validation and test RMSE throughout training confirms that the model generalizes
well, with no evidence of over- or underfitting. Minor, synchronized fluctuations (e.g., around epoch 25
in pred_ANG) reflect stochastic variations in the optimization process and do not materially affect overall
performance. Collectively, these learning curves demonstrate that the TabNet surrogate converges efficiently
and exhibits strong generalization across all three injury metrics, achieving low and stable error within
relatively few training epochs. Fig. 15 below shows the prediction results of the complex machine learning
model on the test set. It is evident that most of the scatter points are concentrated around the line, with the
errors falling within the ±10% error margin. This indicates that the model’s predictions are nearly identical
to the true values in the test set, further validating the feasibility and effectiveness of using machine learning
methods to construct high-precision surrogate models. Therefore, complex models not only provide more
accurate fitting for pedestrian safety performance prediction, but also offer more precise references for
subsequent vehicle front-end structure optimization.

Figure 14: RMSE of the TabNET model

Figure 15: Comparison of true and predicted values
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In this work, TabNet was adopted as the principal machine-learning framework. TabNet (Tabular Neural
Network) is a specialized deep-learning architecture for tabular data that combines the interpretability of
decision-tree models with the representational capacity of neural networks [29]. Its sequential attention
mechanism highlights the most relevant features at each decision step, thereby alleviating the curse of dimen-
sionality. Moreover, TabNet natively accommodates both continuous and categorical variables, obviating
complex preprocessing pipelines. The model’s use of unbiased, distributed representations and its decision-
step structure enable efficient learning of sparse, high-dimensional patterns, which improves generalization
while preserving computational efficiency and robustness. The overall architecture of TabNet is illustrated
in Fig. 16. To ensure the stability of TabNet’s predictions, we evaluated its performance under the finalized
hyperparameter configuration using five repeats of four-fold cross-validation (for a total of 20 independent
trials). The aggregated results—mean ± standard deviation for both R2 and RMSE—are reported in Table 14.

Figure 16: Schematic diagram of tabnet structure

Table 14: Results of multiple independent runs

Metric Mean ± Std
R2 0.94 ± 0.05

RMSE 0.07 ± 0.02

5 Results and Discussion

5.1 Model Interpretability Analysis
TabNet utilizes a built-in attention mechanism and dynamic feature masking, which enables it to

perform feature importance analysis in a manner like tree-based models. At each decision step, TabNet
selectively prioritizes different features, assigning importance based on attention weights. By aggregating
these weights across all decision steps, TabNet calculates the final importance score for each feature.
Additionally, the multi-step decision structure of TabNet ensures the reevaluation of previously unused
features, leading to a more comprehensive and unbiased assessment of feature importance. As illustrated
in Fig. 17, the importance of selected feature categories in predicting target variables is clearly shown. Notably,
the feature with the highest total share across the three target variables was the bumper architecture, followed
by impact point distance and material properties.
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Figure 17: Importance of features

The horizontal stacked-bar chart illustrates the relative importance of six feature groups—bumper
architecture, impact-point distance, material properties, vehicle category, under-ride clearance, and legform
impactor type—across three injury metrics: tibial acceleration (A), knee flexion angle (ANG), and shear
displacement (DSTR). The x-axis quantifies each group’s percentage contribution to the surrogate model’s
predictions. As shown, front-end geometric parameters (bumper architecture and impact-point distance)
exert an overwhelmingly dominant influence on injury outcomes, particularly for knee flexion and shear
displacement. Material properties significantly affect shear displacement but have only a minor effect on
knee flexion. Vehicle category and under-ride clearance exhibit moderate influence, indicating that overall
vehicle size and chassis height should also inform design decisions. Although legform impactor type remains
a standard testing parameter, its importance in this multivariate surrogate model is comparatively low, under-
scoring the primacy of structural features in real-world crash risk. In summary, pedestrian-protection design
should prioritize optimization of bumper-architecture parameters, followed by adjustments to impact-point
positioning and material stiffness, with secondary refinements based on vehicle class and ground clearance.

In addition to the feature importance integrated within the model, it is crucial to conduct model
interpretability analyses using external methods. Among the various model interpretation techniques, SHAP
(Shapley Additive Explanations) [30] has gained considerable attention due to its solid theoretical foundation
and broad applicability. SHAP is rooted in Shapley value theory from game theory, and it quantitatively
assesses the marginal impact of adding or removing a specific feature on the model’s predicted value.
By calculating this marginal effect, SHAP evaluates each feature’s contribution to the model’s prediction.
Specifically, the SHAP method approximates the complex black-box model f (x) using a set of simple binary
linear functions, leveraging the Shapley value and the additivity principle, as shown in Eq. (6).

f (x) ≈ g (z′) = ϕ0 +
M
∑
i=1

ϕi z′i (6)
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ϕ0 denotes the baseline prediction value, z′i ∈ {0, 1}M represents whether the ith feature can be observed
or not, M denotes the number of input features, and∑ϕi denotes the SHAP contribution of each feature, and
the sum of the contribution values is equal to the final prediction value, whose value is calculated in Eq. (7):

ϕi = ∑
S⊆X{xi}

∣S∣! (∣X∣ − ∣S∣ − 1)!
∣X∣! [ f (S ∪ {xi}) − f (S)] (7)

where S denotes the subset of features (without feature xi), f (S) denotes the predicted value obtained using
only the subset S, and f (S ∪ {xi}) denotes the predicted value after adding xi . The method not only provides
a global interpretation, but also a detailed analysis of individual predictions, thus allowing a fairer and more
consistent interpretation of the internal mechanisms of complex models.

In the local interpretation method of SHAP, the influence of each sample on the output response—along
with its positive and negative contributions—can be visualized using a force plot. This section presents the
effect of each design variable on the output response, exemplified by a randomly selected data sample from
the test set of the pedestrian crash safety performance dataset.

In Fig. 18, we analyze three individual samples from the prediction process. Blue arrows on the right
side of the output indicate feature contributions that push the predicted value downward, while red arrows
on the left indicate contributions that push it upward. The length of each arrow reflects the magnitude of the
feature’s effect.

Figure 18: Sample force-plot

Sample 1 (baseline normalized acceleration = 0.23): features D (collision location) and A_I (vent
position) have the largest impact. Specifically, an increase in D substantially lowers the predicted tibial
acceleration, whereas a higher A_I raises it.

Sample 2 (baseline normalized knee-flexion angle = 0.68): features M_bf (skin Young’s modulus), M_br
(bumper-beam modulus), and F_B (bumper fascia presence) all contribute positively to the predicted flexion
angle, while BD_R (crush-box position ratio) and D reduce it.

Sample 3 (baseline normalized shear displacement = 0.84): both D (collision location) and H (impact
height) strongly increase the predicted shear displacement.
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The range and distribution of the top 10 design variables influencing safety performance are shown in the
figure below. The y-axis represents the top 10 design variables, sorted by their overall contribution∑∣ϕi

( j)∣,
while the x-axis indicates their corresponding SHAP values ϕi

( j). Each point on the Fig. 19 represents a
sample, with color gradation from red to blue indicating the SHAP value of the design variable, from high
to low. A higher SHAP value reflects a greater impact of the design variable on the target performance.

Figure 19: Summary plot

From the summary plot above, the horizontal width represents the range of SHAP values for each feature
across all samples, indicating the magnitude of its impact on the model’s predictions. For the acceleration
target in particular, feature D (longitudinal collision location) exhibits the widest distribution, making it
the most influential factor with the largest positive and negative “push” on the predicted outcome. The next
most important features are A_I (vent position), A_I_L (vent length), Tbr (bumper-beam thickness), and
V (impact speed). Points are colored from blue (low feature value) to red (high feature value) to reflect
each feature’s magnitude. For D, red points (high values) cluster on the right side of the plot, indicating
that a larger D increases the predicted injury severity, whereas blue points (low values) tend to produce
negative contributions that lower the prediction. Similarly, for A_I, lower vent positions (blue) reduce the
predicted severity, while higher positions (red) increase it. Features near the bottom—such as Tbf (outer-skin
thickness)—show much narrower distributions, signifying a comparatively minor overall effect. To illustrate
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the cumulative effect of feature interactions and the combined impact of multiple features on prediction
results, this paper employs a decision diagram to display the changes in model predictions based on a set of
design variables, as shown in Fig. 20. In the diagram, the prediction trajectory of each sample is represented
by a colored curve. Each curve intersects the horizontal axis at the corresponding prediction point, with
its color reflecting the observed prediction value at that point. As the curve progresses from bottom to top,
the SHAP value of each feature accumulates towards the model’s baseline value, visually demonstrating the
contribution of each feature to the overall prediction.

Figure 20: Decision plot

From the decision plot above, each trajectory traces the cumulative effect of features—ordered by their
importance—from the model’s baseline output to the final prediction. Line color encodes the predicted
severity: blue lines indicate lower injury predictions, and red lines indicate higher ones. For the knee-flexion
angle outcome, the earliest features (e.g., H, impact height; BD_R, crush-box position ratio) introduce the
largest initial shifts: high impact heights (red lines) rapidly elevate the baseline. Subsequent mid-sequence
features (such as F_B, bumper fascia presence; D, collision location) further separate the trajectories, creating
a clear divergence between high- and low-severity predictions. Although later, lower-importance features
(such as V, impact speed; C_T, vehicle category) continue to adjust the output, the prediction paths have by
that point already been largely determined.
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5.2 Machine Learning Model Validity Validation
The error is calculated according to Eq. (8). A positive error sign indicates overprediction, i.e., the

predicted target value is higher than the actual target value. On the other hand, a negative sign of error
indicates under prediction i.e., the predicted target value is lower than the actual target value.

error =
Ypred − Ytrue

Ytrue
× 100% (8)

Fig. 21 illustrates the distribution of prediction errors for three lower-limb injury metrics—tibial
acceleration (ERROR_A, yellow), knee-flexion angle (ERROR_ANG, light blue), and shear displacement
(ERROR_DSTR, dark blue)—expressed as a percentage of the true response. The two horizontal red
lines denote ±20% error bounds. Over 80% of validation samples for all three metrics fall within this
±20% range, and the dense clustering of points around 0% indicates no systematic bias in the surrogate
model’s predictions.

Figure 21: Error distribution chart

Among the metrics, acceleration errors exhibit the greatest variability, with a small number of outliers
exceeding ±30%. Flexion-angle errors are the most tightly distributed—most lie within ±15%—and shear-
displacement errors mirror this pattern, although slightly more points approach the +20% threshold. The
overall symmetry of the error distributions confirms an absence of consistent over- or under-prediction. The
presence of outliers in ERROR_A suggests that extreme impact scenarios remain challenging for the model.
To enhance predictive robustness, particularly for acceleration, we recommend targeted hyper-parameter
tuning and the inclusion of additional high-severity collision cases in the training set. A detailed breakdown
of these errors is provided in Table 15.

Table 15: Error details

Total no. of data points Error under 10% Error between 10% and 20% Error over 20%
A 200 122 47 31

ANG 200 152 23 25
DSTR 200 148 32 20
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As can be seen in Table 15, most of the absolute values of the errors are below 20 per cent, with 84.5
percent, 87.5 percent and 90 percent of the collision points having absolute error values of less than 20
percent for the three target variables. Taking the simplified vehicle front-end model described in Section 3
as an example, conducting finite-element simulations for 100 pedestrian-leg impact locations on a 12-core,
20-thread CPU requires approximately 84 h for a single set of parameter configurations. By contrast, a
machine-learning surrogate can generate predictions for the same scenario in a fraction of that time while
maintaining low error levels. Leveraging such a surrogate enables rapid evaluation of numerous front-end
design variants, with predictive deviations kept within acceptable engineering tolerances. The prediction
time of the finite element method and machine learning surrogate model is shown in Table 16.

Table 16: Computational time comparison

Method Time for one parameter set (s) Time for n parameter set (s)
Finite-element simulation 1500 n × 1500

Machine-learning surrogate prediction 3 ≤n × 3

6 Conclusions
This study has demonstrated that a machine-learning surrogate—specifically TabNet—can leverage

high-fidelity finite-element simulation data to predict pedestrian lower-limb injury severity with both
exceptional accuracy and interpretability, outperforming traditional methods such as SVM, Random Forest,
Decision Trees, LightGBM, and CatBoost. TabNet achieved an R2 of approximately 0.94 and an RMSE
of 0.14 on both validation and independent test sets, with 84.5%, 87.5%, and 90% of tibial acceleration,
knee-flexion angle, and shear-displacement predictions, respectively, falling within a ±20% error margin.
SHAP-based analysis revealed that front-end geometric features—most notably collision-point location
and bumper architecture—are the primary determinants of injury outcomes, while material stiffness,
impact speed, vehicle category, and under-ride clearance also exert meaningful influence. These insights
were translated into actionable design recommendations—prioritizing bumper and crush-box geometry
adjustments, refining vent placement and material properties, and fine-tuning vehicle classification and
ground clearance—to systematically reduce lower-limb injury metrics. Moreover, by replacing iterative
finite-element runs with the TabNet surrogate, computation time was reduced by an order of magnitude,
confirming its viability as a real-time decision-support tool in early design phases.

Building on this foundation, future work will focus on embedding the TabNet surrogate within a
multi-objective optimization framework—such as genetic algorithms—to simultaneously minimize injury
risks across multiple body regions (leg, head, chest). Additionally, we plan to explore hybrid deep-learning
architectures and enrich the training corpus with extreme-value collision scenarios to enhance model
robustness and generalizability. These efforts aim to drive the development of truly pedestrian-friendly
front-end vehicle structures through data-driven, performance-based design optimization.
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