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ABSTRACT: Predictive maintenance often involves imbalanced multivariate time series datasets with scarce failure
events, posing challenges for model training due to the high dimensionality of the data and the need for domain-specific
preprocessing, which frequently leads to the development of large and complex models. Inspired by the success of Large
Language Models (LLMs), transformer-based foundation models have been developed for time series (TSFM). These
models have been proven to reconstruct time series in a zero-shot manner, being able to capture different patterns that
effectively characterize time series. This paper proposes the use of TSEM to generate embeddings of the input data
space, making them more interpretable for machine learning models. To evaluate the effectiveness of our approach, we
trained three classical machine learning algorithms and one neural network using the embeddings generated by the
TSFM called Moment for predicting the remaining useful life of aircraft engines. We test the models trained with both
the full training dataset and only 10% of the training samples. Our results show that training simple models, such as
support vector regressors or neural networks, with embeddings generated by Moment not only accelerates the training
process but also enhances performance in few-shot learning scenarios, where data is scarce. This suggests a promising
alternative to complex deep learning architectures, particularly in industrial contexts with limited labeled data.
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1 Introduction

In the context of Industry 4.0, predictive maintenance (PdM) emerges as a key component to optimize
manufacturing processes by improving productivity and reducing costs. PAM harnesses the convergence of
advanced technologies, such as the Internet of Things (IoT), real-time data analytics, and machine learning
(ML) algorithms, to anticipate equipment failures before they occur. This enables industries to optimize
maintenance plans, improve operational efficiency, and ensure the reliability of critical assets [1].

PdM mainly addresses three types of problems [2]: (1) anomaly detection, (2) failure diagnosis, and (3)
prediction of the remaining useful life (RUL). Anomaly detection focuses on identifying potential failures
that have recently occurred or are about to happen. Failure diagnosis seeks to determine the root cause of
a problem, typically using root cause analysis (RCA) techniques. And RUL aims at estimating the time or
number of operation cycles remaining before a system or component reaches the end of its operational life,
making this one of the most challenging problems to be solved.

To address the problem of RUL prediction, two approaches are generally used: model-based methods
and data-driven methods. The former relies on mathematical and physical principles and prior system
knowledge to create predictive models. However, these methods can be complex, costly, and time-consuming
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due to the need for in-depth knowledge of the system. In contrast, data-driven methods explore the
relationships between sensor data monitored and RUL values using historical data. But these, despite the
numerous success cases mentioned in this survey [3], are also affected by certain inconveniences that hinder
the building of accurate and reliable models while keeping the use of resources low. First, industrial assets
operate under dynamically changing conditions, making it difficult to generalize prediction models [4].
Furthermore, the scarcity of labeled data poses a significant obstacle, as failures are rare events, and it is
not always feasible to run the equipment until it fails to collect representative data [5]. In addition, when
possible, the labeling work is labor-intensive, daunting, and time-consuming [3,6]. Finally, data sets are often
unbalanced, with a high proportion of normal operating data and a low representation of failures, which can
bias models [7].

In response to these limitations, recent advances in ML have introduced a range of innovative frame-
works specifically designed to mitigate these challenges. One particularly effective strategy is the use of
simulated or synthetic data, which enables the artificial replication of failure scenarios and the generation
of full-lifecycle datasets in controlled environments. This approach not only reduces the reliance on costly
and time-consuming real-world failure data but also facilitates model evaluation under diverse operational
conditions without physically stressing the equipment [8]. Complementing this, semi-supervised learning
methods—such as likelihood-based pseudo-labelling—have been developed to leverage large volumes of
unlabelled sensor data while minimizing the need for manual annotation [9]. Hybrid approaches that
integrate self-supervised and supervised learning techniques applied to incomplete lifecycle data have
also demonstrated considerable effectiveness in extracting relevant degradation features from industrial
environments [10]. Further strategies address the combined challenges of data scarcity and class imbalance
through the integration of enhanced clustering techniques and synthetic oversampling [11]. To ensure
model robustness across varying operational conditions, domain adaptation and transfer learning have
been extensively explored to align data representations across multiple working environments, thereby
improving generalizability [12]. Additionally, recent advances in uncertainty quantification have introduced
probabilistic frameworks capable of estimating confidence in predictions, which is essential in safety-critical
applications such as predictive maintenance [13]. Finally, an emerging direction combines several of these
techniques within reinforcement learning-based frameworks. Recent studies have integrated synthetic data
generation through data diffusion, Bayesian deep learning for uncertainty estimation, and active learning
for sample selection, achieving significant improvements in prediction accuracy and reducing uncertainty
by 15%-42% [14].

Building upon these trends, the necessity to enhance generalization capabilities and reduce labeling
costs has catalyzed interest in n-shot learning paradigms, including few-shot, one-shot, and zero-shot
learning. Few-shot learning typically leverages transfer learning (use a pretrained model [I5]) or meta-
learning techniques to train models that can recognize new classes using only a handful of labeled examples,
whereas one-shot learning requires just a single labeled instance, and zero-shot learning, none.

Foundation models (FMs) are a class of deep learning (DL) models that are pretrained on vast amounts
of data, thus equipped with a wide range of general knowledge and patterns. To this end, these models
serve as a versatile starting point for various tasks across different domains. These models have proven to be
useful in predicting future values in time series, classifying, detecting anomalies, filling in missing data, or
generating synthetic time series that mimic real data for simulation tasks [15]. Additionally, they are valuable
for interpreting model outcomes and identifying root causes [16].

In this paper, we explore the use of TSFM as a means to reduce the reliance on large labeled datasets and
to enable the development of accurate predictive models with lower computational and energy demands [17].
TSEMs offer a robust, pretrained basis for extracting relevant features from time series data, allowing for the
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construction of simple, competitive predictors with minimal training data. By leveraging the representational
power of TSFMs, we aim to promote model reuse, minimize dataset-specific preprocessing—often time-
consuming and detrimental to generalizability—and enhance robustness in real-world industrial scenarios,
where failure events are scarce.

More specifically, in this work, we experimentally assess the potential of a hybrid architecture that
leverages the feature extraction strengths of TSFMs in conjunction with lightweight, resource-efficient ML
algorithms. To this end, we design and conduct four experiments using the CMAPSS dataset to determine
whether such a combination can:

«  Match or surpass the predictive accuracy typically associated with DL models in time series regression
problems, and significantly reduce training times compared to deep architectures based on recurrent or
attention-based mechanisms.

« Minimize the preprocessing tasks by restricting data preparation to the essential steps required by the
learning algorithm, relying on the ability of FM to manage dynamic behaviors and noisy data present in
real-world scenarios.

o Utilize a reduced amount of labeled training data for building effective predictors, thereby mitigat-
ing the impact of the limited availability of annotated failure cases typically found in real-world
industrial environments.

The performance of the proposed architecture is compared against 22 existing ML and DL models for
RUL prediction on the CMAPSS dataset, selected from the recent literature.

This paper is organized as follows: Section 2 provides a background about artificial intelligence (AI)
strategies followed to estimate the RUL, motivating the need and opportunity of using FM for this
goal. Section 3 describes the methodology followed in this research. Section 4 details the experimentation
conducted on the CMAPSS dataset, specifying the preprocessing tasks performed, the setting of models built,
and their evaluation under the following metrics: RMSE, score, training time, and inference time. Section 5
discusses the findings of this study highlighting scenarios in which TSFM could be a promising alternative.
Finally, Section 6 draws the conclusions of the paper and the next steps in our research.

2 Related Works

Over the past decade, sensorisation and the adoption of AI techniques have revolutionized predictive
maintenance, transforming the industrial sector significantly. The number of research surveys, both general
and topic-specific, on PdM is vast, highlighting the importance of this field [2,18,19].

In the literature, we find PAM applications that employ all kind of AI approaches-supervised, unsu-
pervised, and reinforcement learning-to analyze the large volume of data captured by real-time condition
monitoring systems [20]. Within each paradigm, different algorithms from the ML and DL arena have been
successfully applied. For instance, Li et al. [21] focused on the importance of accurately predicting the RUL
of lithium-ion batteries using different algorithms. Their experimentation yielded that RNN (Recurrent
Neural Network) and CNN (Convolutional Neural Network) present a good performance and ability for
information extraction; SVR (Support Vector Regression) and ELM (Extreme Learning Machine) exhibit a
good online updating ability and fast prediction; and AR (Auto-Regression) was the simplest algorithm with
acceptable accuracy. Others, such as Tasci et al. [22] proposed a hybrid model for the RUL prediction before
production lines stop. They used real-world high-dimensional data from IoT sensors, and among all the
proposed methods, RF (Random Forests), an ensemble bagging method, turned out to perform best. Later,
Dintén et al. [23] used transformers to assess their effectiveness in anomaly detection and failure prediction,
finding that the hybrid transformer-GRU (Gated Recurrent Unit) configuration delivers the highest accuracy,
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albeit at the cost of requiring the longest computational time for training. Also, Kim et al. [24] successfully
implemented a transformer-based model to predict the RUL of lubricant used in operational rolling bearings.
As Yu et al. [25] pointed out, when using transformers directly for failure prediction, the results often fail
to meet expectations due to the sparsity of failure events within the datasets, leading to a model that learns
temporally sparse features that do not adequately represent the complexity of failure prediction scenarios.

Despite the successes achieved so far, the intrinsic characteristics of industrial time series—being
inherently temporal and capturing the dynamics of complex systems and processes—pose two major
challenges in building robust and accurate predictive models. First, the scarcity of labeled datasets, which
are also highly imbalanced due to the low frequency of failure events [5,15], often makes it difficult to
construct a reliable and robust predictor, as pointed out by [25]. Second, the specificity of the behavior of
each industrial asset limits the ability of the models to generalize. As previously mentioned, this has led the
scientific community to propose innovative solutions to tackle these challenges, being one of these to develop
adaptive approaches capable of transferring knowledge across different systems and operating conditions.
Here is where TSFMs come into play-large Al models inspired by LLMs such as BERT [26] and GPT-3 [27],
but specifically adapted for time series analysis [28]. One of their key advantages is that these models can be
fine-tuned or adapted to specific tasks with relatively small amounts of task-specific data (few-shot learning)
[29].

Recently, LLMs combining time series with textual prompts have achieved promising performance in
TSEM. One approach represents time series as patches and leverages pretrained models for prediction [15].
Another research direction focuses on aligning embeddings between time series and textual data. This is
the case of TimeCMA [30] that proposes a framework that uses dual-modality coding, combining time
series embeddings generated with a transformer with embeddings obtained from textual cues in a pretrained
LLM, improving accuracy and reducing computational costs. The transformer time-series attention is local
and variable-specific, whereas LLM textual attention is universal and captures global dependencies between
variables. Another proposal is TGForecaster [31], a robust baseline model that fuses textual cues, such as
channel descriptions and dynamic news, and time series data using cross-attention mechanisms. Another
approach is taken by TimeLLM [29] that adapts LLMs for time series forecasting by transforming time
series into text prototypes and using the prompt-as-prefix technique to guide the transformation with
natural language instructions. Other strategies convert the numerical input and output into prompts, and the
forecasting task is framed in a sentence-to-sentence manner, making it possible to directly apply language
models for forecasting purposes, such as PromptCast [32]. Finally, other models entirely rely on textual
information for forecasting [33].

Subsequently, LLMs designed exclusively for time series data emerged, with Moment [34] being an
outstanding example. Moment is a family of high-capacity transformer models pretrained on extensive
time series datasets from diverse domains using a masked time series prediction task. In contrast to
TimeCMA and TimeLLM, which may struggle with modelling long-term dependencies and capturing
multi-scale temporal variations, Moment takes advantage of advanced pretraining techniques on large time
series corpora, resulting in more robust and generalisable representations. Furthermore, its masked time
series prediction task enhances the model’s ability to handle missing and noisy data, challenges frequently
encountered in industrial applications. These capabilities enable Moment to surpass previous models in
accuracy and adaptability across various time series analysis tasks, including forecasting, classification, and
anomaly detection. Moreover, while the majority of the TSFM focuses on time series forecasting, Moment
also offers representational learning, which allows users to obtain the values of the latent space where the
most important characteristics of the time series are captured, making it a good feature extraction method
that requires no training. This was the main reason for selecting this TSFM for our benchmark.



Comput Model Eng Sci. 2025;144(1) 243

Another multipurpose model that covers forecasting, classification, regression or embedding generation
is TOTEM [35]. TOTEM explores time series unification through discrete tokens instead of patches as used in
allM4TS [36] and LLMA4TS [37]. Its VQVAE (Vector Quantized Variational Autoencoders) backbone learns a
fixed codebook of tokens over a multi-domain corpus of time series data independently from the training of
any downstream model. This disentangles the choice of data representation from the choice of task-specific
architecture and permits the learning of representations from a large, diverse set of data, which aids in zero-
shot generalization. However, as far as we know, the authors have not yet published a pretrained version of
the model.

3 Methodology

Modern DL architectures such as transformers are revolutionizing the world of Al and time series
predictions thanks to the multi-head self-attention mechanism introduced in [38], which can capture really
complex non-linear relationships in the data and retain long-term relationships in sequences. However, the
training of this kind of architecture requires a vast amount of data and extremely powerful specific hardware
(such as GPUs, NPUs, or TPUs), making it very costly and time-consuming when compared to traditional
ML models. This makes these models more difficult, when not impossible, to implement in fields like PdM,
where the failure events are scarce in the datasets and cost reduction is of utmost importance.

Recently, TSFM have emerged, offering zero-shot forecasting and embedding generation for time series
data. These models can help overcome the need to train these complex architectures from scratch. In this
paper, we aim to experimentally validate whether a hybrid architecture that combines the feature extraction
capabilities of TSFM with lightweight and less resource-intensive ML models can achieve the following goals:

o Improve or, at least, maintain the prediction performance achieved by DL models in time series
regression tasks.

« Minimize the preprocessing tasks by restricting data preparation to the essential steps required by the
learning algorithm.

«  Minimize the amount of data needed to train the predictors (few-shot).

«  Reduce training times compared to DL architectures based on recurrence and attention mechanisms.

To test our proposal, we designed the following benchmark. First, we chose a well-known RUL dataset,
CMAPSS. Then, we selected four ML models from different paradigms: Random Forest, Light Gradient
Boosting Machine, Support Vector Regressor, and a simple 1-hidden-layer Perceptron Neural Network. Next,
we defined three scenarios to build a predictor with each model:

1. Using the full original data set.
2. Using the embeddings generated by Moment on the full dataset.

3. Using the embedding generated by Moment but only using a 10% of the original number of events
(few-shot).

The 10% subset was selected based on a heuristic, experience-driven approximation, considering that
the smallest dataset contains data of about 100 engines. Training with labeled data of 10 engines was deemed
sufficient to simulate a realistic few-shot learning scenario while ensuring enough variability for model
evaluation (see Experiment 3 in Section 4.5.3).

The predictive performance of the models is evaluated according to the RMSE and the score achieved
with the test dataset. Furthermore, eighteen DL and ML models found in the literature for RUL prediction
on this dataset were selected to do an honest comparison. Additionally, we measure the training time and
inference time to know the computational cost and power consumption of each model.
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Section 4 describes step-by-step the process followed and shows the measured metrics. Next, Section 5
discusses the results and draws the main insights extracted from the benchmark.

4 Experimentation

First, we graphically illustrate the process used to evaluate our approach with the CMAPSS dataset,
from the data preparation phase to the result analysis (see Fig. 1). Based on this figure, we then describe the
experimentation step by step.

Embedding | ML model
generation training
Run-to-failure Exploratory Data Model Model
experiment Data Analysis preparation training evaluation

a Q { © v

Null Sequence
management creation

Normalization

Figure 1: Workflow followed to carry out this benchmark

CMAPSS is a well-known synthetic benchmark dataset for the RUL prediction of a type of jet engine
released by NASA for the PHMO8 data challenge. It contains 4 sub-datasets composed by 26 numerical
columns and a target variable representing the RUL. These variables are measured once every operational
cycle, and the RUL column represents the number of operational cycles before the failure of the engine. The 4
sub-datasets contain some differences, such as varying working conditions or fault modes. These differences
between the sub-datasets are summarized in Table 1.

Table 1: CMAPSS sub-datasets characteristics

FD001 FDO002 FD003 FDO004

Train engines 100 260 100 249

Test engines 100 259 100 248
Operating conditions 1 6 1 6
Fault modes 1 1 2 2

4.1 Run-to-Failure Experiment Extraction

Each sub-dataset contains multiple trajectories (a.k.a. experiments), each one corresponding to a
different engine. To ensure proper data inspection and analysis, it is essential to separate the experiments so
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that data from different engines do not overlap or mix during normalisation or sequence creation. In this
case, the dataset provides a trajectory identifier, which we use to split the data accordingly.

4.2 Exploratory Data Analysis

Once each run-to-failure experiment was isolated, we analysed how the different variables evolve. Each
plot, presented in Figs. Al-A4 in the Appendix, has 100 lines, each one representing the evolution of the
feature for one turbofan engine in the FD001 sub-dataset during its useful life. These figures display the values
of each variable, aligning the experiments at the end of the RUL (RUL = 0). The variables are categorized
into four groups according to their behavior when the engine is near failure: variables with increasing trend,
variables with decreasing trend, and the rest with random or stationary trend. These two last groups may not
offer valuable information; in fact, they may add noise to the model, which negatively affects the predictions.
However, as the aim is to reduce the preprocessing tasks to a minimum for both reducing costs and validating
the capacity of FM to discard them, we will keep all the variables of the set.

4.3 Data Preparation

Next, we carried out a minimal set of preprocessing techniques during the data preparation phase to
ensure the data was suitable for model input. For this task, we adopted a straightforward three-step approach:
(1) missing value imputation, (2) data normalisation, and (3) sequence creation.

First, we addressed missing value imputation, as ML models cannot process them directly. Since this
dataset contains no null values, we bypassed this step without applying any modifications to the training data.

Next, we normalized the data so that the input features were in the same range of values. We applied
Z-score normalization according to Eq. (1).
X—U . . .
z-score = ——  where y is the mean and o is the standard deviation. 6))

Finally, as we are working with time series data, the temporal evolution of the variables must be taken
into account and not just the last event reported. Therefore, we had to provide the model with all the events
that comprise each observation window. To achieve this, a sliding window transformation (see Fig. 2) was
applied to the dataset. We chose two different values for the window size, 30 and 60. In [39], the authors
found out that 30 was the optimal window size for this problem, however, since Moment is such a large and
complex model, we tried 60 to check if the model could take advantage of the extra information added to
the sequence.

Time series
Wt t-3 t-2 -1 t t+1 t+2 t+3
Wt+1| t3 t-2 t-1 t t+1 t+2 t+3
Wt+2| t-3 t-2 t-1 t t+1 t+2 t+3
Wt+3| t-3 t-2 t-1 t t+1 t+2 t+3

Figure 2: Example of application of the sliding window algorithm with window size = 4 and stride = 1
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4.4 Model Design and Training

As mentioned earlier, recent trends have focused on developing increasingly complex deep learning
models to enhance prediction accuracy. However, this comes at the cost of higher computational demands
for both training and inference, as well as the need for larger datasets. While the gain in accuracy may be
desirable, these DL models are not always the best alternative for PAM problems, where the scarcity of failure
data limits the generalisation capability of these models.

The arrival of TSFM, that have been proven to perform forecast, imputation, or representational learning
in zero-shot scenarios successfully [34], can be a way to exploit the potential of the new complex transformer-
based architectures without having to deal with costly training. Our proposal, see Fig. 3, uses a TSFM to
create embeddings of the input data previously preprocessed that are used to train a simpler ML model.
This strategy helps us reduce the training time and partially overcome the scarcity of failure data since these
simpler models tend to require fewer samples to train (fewer parameters must be tuned).

4 )
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induy
|
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Figure 3: Architecture of the proposed hybrid model. Preprocessed sequences are first encoded into embeddings using
the TSFM, which are subsequently used to train a machine learning model. The model outputs are then post-processed
using a moving average filter to smooth the predictions

Specifically, we compare four fundamental ML models trained on embeddings generated by the Moment
model against the same models and several more advanced DL ones trained on the preprocessed dataset.
We chose Moment TSFM because, as mentioned in Section 2, it beats almost any available competitor in
forecasting accuracy, and it is the only open-source model, as far as we know, that offers a representational
learning version that can be directly used for embedding creation. Moreover, this does not require the time
or sampling frequency to be specified, which is particularly useful for the CMAPSS dataset, whose events do
not include the time, but the operating cycle number.

The training and inference of each model was performed in a two-step process where the TSFM first
converts two-dimensional sequences into a one-dimensional embedding vector that can be used as input for
the ML models; and then, the training dataset converted to embeddings, along with the original RUL values,
is used to train each ML model.

We chose the following four ML models: RF, SVR, NN and LGBM. Each model was tuned using
an exhaustive grid search over the hyperparameter ranges specified in Tables Al-A4, respectively, in
combination with 5-fold cross-validation. This strategy was adopted to ensure a robust hyperparameter
optimization process and to minimize the variability introduced by random parameter initialization. Grid
search systematically explores a wide set of values for each hyperparameter, and has been proven effective
in identifying optimal configurations [40,41]. Meanwhile, 5-fold cross-validation partitions the training set
into five equal subsets, iteratively training the model on four folds and validating it on the remaining one.
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The average of the evaluation metrics over the five folds provides a more stable and reliable estimate of model
performance, reducing the sensitivity to randomness in both the train-test data split and model initialization.

For the inference, the TSFM and the trained regressor were pipelined in a model wrapper that
implements the Es t ima tor interface of the sci-kit learn package so, the new data could be passed directly
as a sequence to the wrapper. In addition, as a consequence of the fact that the predictions of the first models
were unstable and noisy (see Fig. 4), we implemented a moving average to control the oscillations of the
predictions and to reduce the error.

Test #179 RMSE: 11.592 Test #180 RMSE: 46.127 Test #181 RMSE: 29.706
al LY

1001

80 804

RUL

60 -
404 404

204 204

0 50 100 150 200 0 50 100 150 200 250 300 350 0 25 50 75 100 125 150 175
Cycles Cycles Cycles
Test #196 RMSE: 12.036 Test #197 RMSE: 14.749

120 4 1201

100 100 100
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o o o
=} =) =}
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40 404 40
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0 20 40 60 80 100 120 140 160 0 5 10 15 20 25 30 35 40 0 25 50 75 100 125 150
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0 25 50 75 100 125 150 175 0 50 100 150 200 0 50 100 150 200 250
Cycles Cycles Cycles

Figure 4: Predictions of the models for 9 experiments from FD004 dataset. Blue line represents the predicted values,
orange line the smoothed predictions and green line the ground truth

4.5 Models Evaluation

This experimentation shows and compares the 32 models built using two common metrics, the Root
Mean Squared Error (see Eq. (2)) and the score provided in the PHMO08 data challenge, where the dataset was
first published. The RMSE is the standard metric for regression tasks, and the score is an asymmetric metric
specific to this problem that punishes overestimations more than underestimation which is formulated
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according to Eq. (3).

N
RMSE = Z(yl - )A/i)z (2)
i=1

e_(ﬂ%) -1, ford<0

™M=

Il
—

Score = where d = RUL - RUL, al=13and a2 =10 (3)

e(%) -1, ford>0

™M=

1l
—_

The results are analyzed through four distinct experiments, each designed to address the following
research questions:

»  Experiment 1: To what extent does the embedding strategy enhance the RMSE and score achieved by
the ML models?

o  Experiment 2: How well do the embedding-based models perform compared to the ML and DL models
found in the literature? Is it possible to reduce the preprocessing tasks to the essential steps required by
the learning algorithm?

o Experiment 3: How robust are the models trained under the few-shot learning paradigm?

o  Experiment 4: How much time and power are saved by using ML techniques instead of DL models?

4.5.1 Experiment 1: Model Performance with and without Embeddings

First, we compare the results obtained by training the models using the data directly after normalization
and sequence generation with those obtained using the Moment-generated embeddings. As can be observed
in Table 2 our approach of using embeddings fails to improve the performance of tree-based models, i.e.,
Gradient Boosting Machine and Random Forest. However, it improves the RMSE of SVR models in the two
more complex datasets, FD002 and FD004. It is also worth noting, see Table 3, that in other works such as
[42] the authors get much worse RMSE using SVR and NN (rows 2 and 3). We think the authors used only
the last event or an aggregation of the observation window as input for the models, whereas we used the
whole observation window flattened. However, the authors describe this issue neither in their article nor in
the reference to the code, thus it could not be verified.

Table 2: Performance comparison of ML models using embeddings vs. original time series data. These models were
trained with window size 30 and 60. The lowest RMSE and score for each technique is highlighted in bold

FD001 FD002 FD003 FD004
Model

RMSE Score RMSE Score RMSE Score RMSE Score

LGBM (W60) 1297 248 18.47 1158 11.87 776 15.75 1935
LGBM (W30) 1450 336 19.08 1297 13.05 836 16.44 2009
LGBM (W60 embeddings) 1769 804 31.07 7951 1543 1551 2710 19,642
LGBM (W30 embeddings) 1798 1848 26.77 5474 16.08 4625 23.32 12,204

Random Forest (W60) 1523 362 2142 1536 13.8 895 1834 5086

Random forest (W30) 14.05 948 1756 1624 12.03 1093 14.70 2627

Random forest (W60 embeddings) 18.67 1604 34.05 14,167 16.64 2306 30.00 34,970
Random forest (W30 embeddings) 16.29 3576 26.83 10,895 14.60 7061 23.21 24,255
SVR (W60) 1279 663 2777 6,603 11 594 2484 27234

(Continued)
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Table 2 (continued)

FD001 FD002 FD003 FD004
Model

RMSE Score RMSE Score RMSE Score RMSE Score

SVR (W30) 11.00 420 23.70 9621 10.52 701 21.89 16,774

SVR (W60 embeddings) 16.63 8295 24.64 6025 14.00 1497 2193 11,791
SVR (W30 embeddings) 1517 1655 19.79 2641 1318 2061 16.37 6032
NN (W60) 1257 650 21.38 5400 10.82 307 19.24 11,913

NN (W30) 10.29 418 1771 3210 9.13 537  16.51 15,596

NN (W60 embeddings) 1742 752 2159 3199 14.81 3385 21.25 97578
NN (W30 embeddings) 15.04 1912 20.99 4480 12.66 6834 16.36 28,089

Regarding the score, the use of embeddings worsens its value. This is a twofold problem. First, the
formula is computed as the sum of the scores for the last reading of each engine, which means that a bad
prediction can greatly affect the final score. As seen in Fig. 4, the prediction suffers from many oscillations,
which results in really high scores on certain engines. Second, we applied a moving average to the output
of the models to control the oscillations. This helped us to reduce the RMSE. However, the score formula
penalizes the overestimation of the RUL and, being RUL a monotonically decreasing function, the moving
average produces a slight overestimation.

When analyzing the impact of the observation window size, the models trained using a sequence of
length 30 provide better accuracy in most scenarios, which is in line with the study carried out in [39]. This
proves that a longer observation window is not always beneficial and highlights the importance of carefully
selecting the window size, even when using TSFM.

As a result of this first experiment, we can confidently say that the embedding strategy can help ML
models to extract meaningful information in complex data scenarios. However, it is not appropriate for every
kind of model, SVR being the model that takes greater advantage of the embedding generation, whereas the
performance of the tree-based alternatives is negatively affected. Finally, the size of the sequence and the
scoring metric can impact the usefulness of this approach.

4.5.2 Experiment 2: Embedding-Based ML Models vs. DL Models

To carry out the performance comparison of models trained with ML techniques concerning more
sophisticated proposals based on DL, we rely on 22 recent models found in the literature. All these predictors
are presented in chronological order in Table 3-adapted from [43], and extended with additional references
and our best proposed models, i.e., SRV and NN trained with embeddings and an observation window of
30 events. The table includes the type of model, preprocessing steps applied before training, and the RMSE
and score obtained for each dataset. To maintain clarity, we have omitted the piecewise RUL function and
the basic Z-score normalization, as these preprocessing steps are common to all works listed. In addition, to
make the interpretation of the results easier, we include 4, which contains the difference in RMSE between
our SVR and NN models as a percentage.

Models in Tables 3 and 4 can be grouped in 4 categories according to the kind of technique used for their
training: machine learning, simple deep learning, hybrid deep learning, and hybrid attention learning. Our
proposal outperforms all the ML models (see rows 2, 3, and 8) except for the Random Forest presented in
[44], which achieved a better performance in the FD001 and FD003 datasets by using a specific preprocessing.
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Table 3: Comparison of models based on RMSE and score across the four full CMAPSS datasets. Best model in each
category is bold

. FD001 FD002 FD003 FD004
Model Year Preprocessing steps
RMSE Score RMSE Score RMSE Score RMSE Score
1 CNN [45] 2016 - 18.44 129 30.29 1360 19.81 160 29.15 7890
2 SVR [42] 2017 - 20.96 1380 42.00 590,000 21.05 1600 45.35 371,000
3 MLP [42] 2017 - 3756 18,000  80.03 7,800,00037.39 17,400  77.37 5,620,000
4 LSTM [42] 2017 - 16.14 338 24.49 4450 16.18 852 28.17 5550
5 BiLSTM [46] 2018 - 13.65 238 23.18 4130 13.74 314 24.86 5.43
6 DAG [47] 2019 Feature selection 11.96 229 20.34 2735 12.46 535 22.43 3370
7 CNN+LSTM 2019 Feature selection, 16.16 303 20.44 344 1712 142 23.25 463
[48] Health indicator
8 Random forest 2020 Data smoothing 12.01 180 22.17 2020 11.19 175 25.23 3,700
[44] using polynomial
fitting, feature
selection, feature
extraction,
non-overlapping
rolling window
9 Multi-head CNN 2020 Feature selection 12.19 259 19.93 4350 12.85 343 22.89 4340
+ LSTM [49]
10 CNN + LSTM + 2020 Feature selection 10.41 - - - - - - -
BiLSTM [50]
11 AGCNN [51] 2020 Feature selection 12.42 225 19.43 1494 13.39 227 21.5 3390
12 LSTM + 2021 Feature selection 1117 204 - - 9.99 243 - -
FCLCNN [52]
13 Hybrid model 2021 Feature selection 15.68 - 22.26 - 16.89 - 22.32 -
[53]
14 BLS + TCN [54] 2022 Feature selection 12.08 243 16.87 1280 11.43 244 18.12 2090
15 Bi-LSTM 2022 Feature selection 13.78 255 15.94 1280 14.36 438 16.96 1650
attention [55]
16 Multi- 2022 Operational settings 11.43 209 13.32 1060 11.47 187 14.38 1620
dimensional cluster based
attention + normalization
LSTM [39]
17 LSTM [43] 2022 Feature selection, 13.5 238 23.37 2600 13.54 411 23.36 3970
Median filter
18 LSTM with 2023 Feature selection, 7.78 102 17.64 1440 8.03 104 17.63 2390
automatic Median filter
piecewise RUL smoothing, auto
function [43] piecewise RUL
function
19 ConvGat [56] 2024 - 11.34 197 14.12 771 10.97 235 15.51 1231
20 3D Attention 2024 - 13.1 231 13.92 759 12.15 195 20.23 1718
enhanced
CNN-BiLSTM
(57]
21 MSA-FCN [58] 2024 - - - 1717 1395 - - 19.40 2184
22 DFAGCN [59] 2024 - 11.21 175 13.05 683 11.23 188 14.01 855
Proposed
23 SVR (W30 2025 - 15.17 1655 19.79 2641 13.18 2061 16.37 6032
embeddings)
24 NN (W30 2025 - 15.04 1912 20.99 4480 12.66 6834 16.36 28,089

embeddings)
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Table 4: Error improvement rate of SVR and NN models (W30 embeddings with full dataset) compared to models
found in the literature. Positive numbers indicate where our models achieve lower error. Best model in each category is

bold
Model Year Preprocessing steps FDoot FD002 FD003 FDo04
SVR NN SVR NN SVR NN SVR NN
1 CNN [45] 2016 - 17.73% 18.44%  34.66% 30.70% 33.47% 36.09% 43.84% 43.88%
2 SVR [42] 2017 - 27.62% 28.24%  52.88%  50.02% 37.39%  39.86% 63.90% 63.93%
3 MLP [42] 2017 - 59.61% 59.96%  75.27% 73.77%  64.75% 66.14%  78.84%  78.85%
4 LSTM [42] 2017 - 6.01% 6.82% 19.19% 14.29% 18.54%  21.76%  41.89%  41.92%
5 BiLSTM [46] 2018 - -11.14% -10.18% 14.62% 9.45% 4.08% 7.86% 34.15%  34.19%
6 DAG [47] 2019 Feature selection -26.84% -25.75%  2.70% -320% -578% -1.61% 27.02%  27.06%
7 CNN + LSTM 2019 Feature selection. 6.13% 6.93% 3.18% -2.69% 23.01% 26.05% 29.59%  29.63%
[48] Health indicator
8 Random forest 2020 Data smoothing -26.31% —25.23% 10.74% 5.32% -17.78% -13.14% 35.12%  35.16%
[44] using polynomial
fitting, feature
selection, feature
extraction, non
overlapping rolling
window
9 Multi-head CNN 2020 Feature selection —24.45% -23.38% 0.70% -532% -257% -1.48% 28.48%  28.53%
+ LSTM [49]
10 CNN + LSTM + 2020 Feature selection —35.81% —34.65% - - - - - -
BiLSTM [50]
1 AGCNN [51] 2020  Feature selection—  —22.14% -21.10% -1.85% —8.03%  1.57% 5.45%  23.86%  23.91%
12 LSTM + 2021 Feature selection -35.81% —34.65% - - -31.93% -26.73% - -
FCLCNN [52]
13 Hybrid model 2021 Feature selection 3.25% 4.08%  11.10% 571%  21.97%  25.04% 26.66% 26.70%
[53]
14 BLS+TCN [54] 2022 Feature selection —-2558% -24.50% -17.31% —-24.42% -15.31% -10.76% 9.66% 9.71%
15 Bi—-LSTM 2022 Feature selection -10.09% —-9.14% -24.15% -31.68% 8.22%  11.84%  3.48%  3.54%
attention [55]
16 Multi—dimensional2022  Operational settings  —32.72% —31.58% —48.57% —5758% —14.91% -10.37% -13.84% -13.77%
attention + cluster based
LSTM [39] normalization
17 LSTM [43] 2022 Feature selection. -12.37% -11.41% 15.32% 10.18% 2.66% 6.50% 29.92%  29.97%
Median filter
18 LSTM with 2022 Feature selection. -94.99% -93.32% -12.19% -18.99% -64.13% -57.66%  715% 7.20%
automatic Median filter
piecewise RUL smoothing. auto
function [43] piecewise RUL
function
19  ConvGat [56] 2023 - -33.77% —32.63% —40.16% —48.65% -20.15% -15.41% —5.54% —5.48%
20 3D Attention 2024 - -15.71% -14.72% -42.17% -50.79% -8.48% —-4.20% 19.08% 19.13%
enhanced
CNN-BiLSTM
[57]
21 MSA-FCN [58] 2024 - - - -15.26% —22.25% - - 15.62%  15.67%
22 DFAGCN [59] 2024 Time-seriesdatato -35.33% —34.17% -51.65% —60.84% -1736% —12.73% —16.85% —16.77%

graph
transformation

Regarding simple DL models (see rows 1, 4, 17, 18), our approach beats almost every model, especially in
FD002 and FD004 datasets, except the LSTM used in [43] (see row 18). This is because it uses an automatic
piecewise RUL function to choose the upper limit of the RUL (MaxRULValue), which reduces the maximum
RUL value from 130 (the standard value for this problem) to around 80. This change artificially reduces the
RMSE regardless of the model architecture employed. However, this error reduction occurs only in absolute
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terms. If we compute RMSE/MaxRULValue, for both models presented in the article where one uses the
standard 130 threshold for the piecewise RUL function and the other one uses the automatic calculation
(see rows 17 and 18, respectively), we can check that the relative error keeps practically the same (e.g., 0.1 vs.
0.0972 for FDO0O1). That means that the improvement is made thanks to the preprocessing step, which may
not apply to datasets other than CMAPSS.

The hybrid DL models (see rows 6, 7, 10, 11, 13, 14, 19) outperform our approach on FD001, FD002, and
FDO003 and achieve a comparable performance to our proposal on FD004, except for ConvGAT (row 19),
which also surpasses our model on FD004. All hybrid attention-based models (see rows 9, 15, 16, 20, 21,
22) outperform our proposal on FD001. Additionally, Multi-head CNN + LSTM (row 9) performs better on
FDO003; BiLSTM Attention (row 15) on FD002 and FD004; 3D Attention-enhanced CNN-BiLSTM (row 20)
on FD002, FD003, and FD004; and MSA-FCN (row 21) on FD002. Notably, both Multidimensional Attention
and DFAGCN (rows 16 and 22) achieve lower errors across all four subsets. These two models outperform
our approach on every subset and have two things in common. They combine attention mechanisms with
other DL techniques and use specific preprocessing. On the one hand, the multi-dimensional attention
LSTM combines the attention mechanism with a special normalization based on clusters of the operational
settings of the engine. On the other hand, the DFAGCNN combines attention with graph representations,
convolution, and recurrence in a complex architecture where the graph attention is used to dynamically
select features, the convolution to encode the input, and the recurrence to extract the temporal patterns.
Both models showcase an outstanding performance with RMSE values between 10% and 57% lower than our
models in the case of the multi-dimensional attention LSTM and between 12% and 60% for the DFAGCNN
(see Table 4). However, this comes at the cost of having high complexity models, which imply significantly
longer training times and larger datasets to achieve that performance level, as we show in the Section 4.5.4.

By analyzing the model predictions, it can be observed (in Fig. 4) that the predicted values heavily
oscillate around the actual value, which may be caused by the noise introduced during the zero-shot
embedding creation. This indicates that when the algorithm can learn from the original data, embeddings
can degrade its predictive performance. Conversely, if the algorithm cannot handle datasets with high
dimensionality and variability to extract meaningful patterns from the original data, the use of embeddings
has a positive impact despite the oscillations of the model predictions.

In summary, this second experiment demonstrates that the simplest ML models trained on the
embeddings generated by the TSFM can achieve the same level of performance as the most modern and
complex hybrid DL models in some scenarios, especially on datasets with higher complexity, such as FD002
and FD004 subsets.

Moreover, it is worth noting that our hybrid models using embeddings achieve comparable results to
those obtained by state-of-the-art models that rely on dataset-specific preprocessing strategies, despite not
requiring any tailored preprocessing beyond basic normalization and sequencing (see for instance rows 7, 8,
9,15,17).

4.5.3 Experiment 3: Few-Shot Learning

As mentioned earlier, the scarcity of failure data is a common challenge in predictive maintenance
problems. To assess the ability to learn from fewer samples, we compared the perfomance of the models
trained on embeddings vs. the ones trained on original time series values, using a 10% of the original training
set. Table 5 shows that, once again, tree-based models struggle to learn effectively from embeddings, whereas
SVR and NN perform better when the sample size is small if they are trained using embeddings. Notably, the
RMSE of the SVR model worsens less than 4% when comparing the models trained using the embeddings of
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the full training set (see SVR 30W embeddings on Table 2) and continues to outperform simple DL models
such as CNNs and LSTMs (see rows 1 and 4 in Table 3). On the other hand, the NN model experiences a
more substantial performance drop of 15% in FD001, 6.71% in FD003, and 5.86% in FD004, but shows a 15%
of improvement in the FD002 dataset.

Table 5: Performance comparison across models and datasets using a 10% of the training data

FDO001 FD002 FD003 FD004
Model

RMSE Score RMSE Score RMSE Score RMSE Score

LGBM 22.07 730 2612 2566  16.50 3782 18.25 2994
LGBM (embeddings) 18.22 10,954  27.65 8417 16.26 5535 23.77 13,224
Random forest 19.35 645 24.84 1959 14.82 4492 17.47 4796
Random forest (embeddings) 16.30 18,409 28.85 18,032 15.15 8183 2493 29,906
SVR 14.86 492 30.57 8055 23.36 9528 24.58 25,565

SVR (embeddings) 15.76 2382 19.78 3488 13.84 5709 16.99 9130
NN 17.14 677 24.72 4348 18.83 70,610 19.80 45,617

NN (embeddings) 17.18 2897 17.73 7037 13.51 3797 17.32 7947

After identifying SVR as the most effective ML technique in few-shot scenarios, we further investigate
the impact of training set size on model performance using embeddings. Therefore, we carried out the
training of models with the 5%, 10%, 15%, and 20% of the full dataset. The results, presented in Table 6, show
that, with only 5% of the training data, the RMSE of the SVR model trained with embeddings increases by
11%, 1%, 9%, and 7% on FD001, FD002, FD003, and FD004, respectively.

It is worth noting that the model attains near-maximum performance using only 10% to 15% of the
training data. Beyond this point, further increases in training size yield only marginal improvements, likely
due to initialisation variability rather than meaningful gains in learning.

Finally, it must be pointed out that the model trained without embeddings on a 20% of the training
dataset obtains a better score than the one trained with embeddings on dataset FD001 and FD003. However,
when compared to the model trained on the full dataset (see Table 2), its RMSE increases by 13%, 8%, 24%,
and 4% for FD0O01, FD002, FD003, and FD004, respectively.

In short, this third experiment shows that the Moment-generated embeddings effectively improve the
few-shot learning capabilities of the models, particularly with smaller datasets, e.g., 5% experiment. As the
volume of training data increases, the performance gap between models using embeddings and those without
gradually narrows.

4.5.4 Experiment 4: Use of Resources

Next, we explain the study of time and power consumption performed. To measure the training time,
each model was trained using the best configuration of each algorithm, excluding the preprocessing and the
full grid search for hyperparameter tuning to restrict the measurement exclusively to model training. This
process was carried out on the full FD001 dataset and the 10% of this set.

Table 7 shows the training times and speedup for the 4 ML models built and 2 DL models taken
from Table 3: (1) the multidimensional attention + LSTM model (MDA-LSTM) from [39], which obtains the
best results and whose code is shared on GitHub and, (2) a simple LSTM model with a similar architecture
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Table 6: Comparison of SVM model performance (with and without embeddings) across different training data sizes
(5%, 10%, 15%, 20%) for the four datasets (FD001-FD004). The best result for each dataset size is highlighted in bold
font.

%ofdata Embeddings FDO001 FD002 FDO003 FD004

RMSE Score RMSE Score RMSE Score RMSE Score

Yes 16.92 8,857 20.00 3,400 14.45 4,291 1754 9,134

5 No 2712 1,471 2977 16,113 20.64 21,616 25.45 100,617
Yes 1576 2,382 19.78 3,488 13.84 5,709 16.99 9,130

10 No 14.83 492 30.57 8,055 2336 9,528 24.58 25,565

15 Yes 1559 1,159 19.55 3,295 13.49 2,534 16.66 7,918
No 12.83 564 26,52 5,726 15.83 3,159  23.10 37,719

Yes 1528 1,128 19.52 3,224 13.40 2,476 16.54 7,367

20 No 12.42 336 25.00 5356 13.11 1,428 22.63 44,191

to the one used in [42], which achieves a level of performance close to our SVR and NN models trained with
a reduced dataset.

Table 7: Training times (s) of the models, without considering preprocessing and tunning tasks, on the full and 10%
F001 dataset. Speedup is calculated by taking LSTM time as a reference base.

Model Full dataset Few shot
Time (s) Speedup (%) Time (s) Speedup (%)
LSTM [42] 1,372 0% - -
MDA-LSTM [39] 3,029 -54.7% - -
Random forest 1,920 -28.5% 116.56 1,077%
LGBM 2.82 48,552% 1.34 102,288%
NN 268.92 410% 51.39 2,569%
SVR 92.67 1,380% 0.88 155,809.09%

We used the training time of the LSTM model trained on the full dataset as a baseline to compute
the percentage of increment or decrement in speedup. As can be observed, our proposal—SVR with
embeddings—is strongly recommended not only for its accuracy (as seen in previous sections) but also for
its low training times and therefore low power consumption.

Although the training times may seem low—requiring 50 min for the largest models—these figures only
reflect the training of a single model configuration, noting the substantial differences that exist when using
one or the other algorithm. In a real-world scenario, the training of a model typically involves cross-validation
and hyperparameter tuning, which requires fitting many model configurations to find the best-performing
one. As an example, the MDA-LSTM model has 10 configurable parameters. If only 2 possible values were
considered for each parameter (the bare minimum to be considered configurable) and a 5-fold cross-
validation was performed, this would result in training and evaluating 5120 models, which would take
approximately 177 days using our setup, according to the measured times. In contrast, the same process
using our SVR model in the few-shot scenario would only take around 1.25 h. Although more optimal
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tuning algorithms exist to prune unpromising parameter combinations, and more powerful hardware could
accelerate the process, the difference in the training times remains remarkable. This difference not only affects
the training time, but also the power consumption and, therefore, the energy costs and emissions.

We must also note that the time required for embedding creation is not included in the training times
shown in Table 7. We consider this step part of the preprocessing, as it only needs to be performed once
before the hyperparameter search. Moreover, generating embeddings for the entire training dataset takes
540 s, which means less than half the training time of the LSTM model. Therefore, even if we were to include
this step as part of the training process, the SVR and NN models would still be the fastest.

Another important aspect in PAM problems is being able to react fast to the anomalies. That is why
we measured the inference time of each model. To do it, we selected 1,000 observation windows and fed
them to the models one at a time, computing the mean inference time and the standard deviation for each
model. Table 8 presents both metrics in milliseconds (ms) for all models trained using the full training set
and the reduced training set. As can be seen, all models, including DL models, have adequate times varying
from a few ms to below one ms, which is fast enough for this dataset, where new data is recorded once every
engine operating cycle.

Table 8: Inference time (ms) of ML models compared to two DL models found in the literature

Model Full dataset Few shot
Mean time (ms) Std Mean time (ms) Std

LSTM [42] 0.507 0.515 - -

MDA-LSTM [39] 11.699 0.592 - -
Random forest 2.519 0.523 2.433 0.501
LGBM 0.084 0.281 0.070 0.255
NN 0.236 2.271 0.167 0.335
SVR 3.781 0.509 0.317 0.467

All the experiments described in this paper were carried out using a PC equipped with an Intel Core
i7-13700 K CPU, 32 GB of RAM, and an NVIDIA RTX A5000 GPU. All ML models were trained on the
CPU, which has a maximum power consumption of 125 watts, whereas the DL ones were trained on the
GPU, which has a maximum power consumption of 230 watts, 84% higher than the CPU. Thus, in addition
to being much slower, DL models require more power-consuming hardware.

Regarding the estimation of the carbon impact, assuming a carbon efficiency of 0.432 kgCO,eq/kWh of
our computer (value taken from the OECD’s 2014 yearly average), the full grid search training of the MDA-
LSTM would emit a total of 422.08 kgCO,eq over a total of 4248 h of computation on the RTX A5000 GPU
(TDP of 230W). In contrast, the training of the SVR model would emit 0.075 kgCO,eq over a total of 1.25
h of computation on the Intel Core i7-13700 K CPU (TDP of 125W). Estimations were conducted using the
Machine Learning Emissions calculator' presented in [60].

To recapitulate, this fourth experiment has demonstrated that using an ML model combined with the
embedding generation strategy can significantly accelerate the training process. This advantage becomes even
more evident when considering that tuning complex models typically requires extensive cross-validation and
hyperparameter optimization. Simultaneously, the energy consumption and CO, emissions associated with
model training are lowered due to reduced computational demands and shorter training times.

lhllps:""mlcol.gilhuhinr’impacl:u)mpme (accessed on 25 June 2025).
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5 Discussion

The aim of this study has been to evaluate the use of TSFM for the RUL prediction on the CMAPSS
dataset. We compare the performance of four ML models trained with embeddings generated by the Moment
against both the same models trained with the original data and DL models chosen from recent literature.
Next, we will answer the questions posed in Section 4.5 based on the results obtained in our benchmark.

The first question asked about the performance improvement achieved by ML techniques using
embeddings. The experimentation shows that regarding RSME, this improvement is only achieved with
models such as SVR on the most complex datasets, FD002 and FD004. However, it is not a beneficial
strategy and may even degrade the performance of tree-based models, Random Forest and Gradient Boosting
Machine, that are inherently capable of capturing non-linear relationships directly from the data. Regarding
the score, models trained using the embeddings almost always obtain higher (worse) values, mainly due to
the sensitivity of the formula to individual poor predictions.

Regarding the behavior of our proposal with respect to other models found in the literature, Table 4
shows that the ML models trained with embeddings offer competitive performance compared to sim-
pler DL models and some hybrid models, especially in more complex data scenarios. However, hybrid
attention-based DL models surpass the proposed models across all subsets, especially if a previous specific
preprocessing is carried on (see row 16 and 22), albeit at the cost of longer training times and the need for
larger datasets.

Another question asked whether models trained using the few-shot learning paradigm would achieve
sufficient accuracy. This is where our proposal achieves the best results. Using embeddings improves the
predictive performance of SVR and NN when training on a reduced training set, in our case using a
10% of the original training data. Notably, SVR achieves practically the same RMSE (less than a 4% of
difference compared to using the full dataset) and outperforms simple DL models such as CNN and LSTM.
Additionally, as demonstrated by the comparison using different dataset sizes, this effect becomes more
noticeable as the size decreases.

Beyond performance benefits, the use of TSFM can be particularly valuable for organizations aiming
to rapidly build and deploy ML models, as it eliminates the need for extensive manual feature engineering
or dataset-specific preprocessing. By providing meaningful embeddings, TSFM simplifies the development
pipeline, reduces dependency on domain expertise, and enables more scalable and generalizable solutions—
aligning with the objectives of AutoML frameworks. This not only accelerates time-to-deployment but also
facilitates experimentation across diverse applications with minimal adjustment [28], albeit at the cost of not
always achieving the same level of predictive accuracy as highly specialized models.

Concerned with sustainability, we measure time and power consumption to train and use these models.
ML models with TSFM embeddings significantly reduce training time compared to DL models while
requiring less powerful hardware, and therefore, the pollutant emissions derived from the training are much
lower. This is due to the lower complexity of the models and their ability to achieve competitive performance
with fewer data samples.

In short, the combination of the Moment TSFM with classical models such as SVR creates a synergistic
effect: Moment acts as a universal feature extractor, transforming multidimensional time series into latent
representations that effectively preserve underlying degradation patterns. This enables simple models to
focus on modelling the relationship between these embeddings and the RUL, eliminating the need for com-
plex architectures or large volumes of labelled data. As a result, computational cost is significantly reduced
without compromising predictive accuracy in low-labelled data scenarios. This approach circumvents the
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need to train DL models from scratch (e.g., LSTMs or transformers), which are often data- and resource-
intensive. Instead, the embeddings generated by Moment leverage pre-trained knowledge in a zero-shot
fashion and facilitate rapid adaptation to new contexts in few-shot learning setups, offering a practical and
efficient solution for industrial scenarios with scarce labeled failure data.

Finally, a practitioner might reasonably consider that integrating the TSFM and the ML model into
a unified training process could improve predictive accuracy. However, even though this could potentially
yield better results, the limited amount of data in few-shot scenarios may not be enough to improve the
performance of the TSFM. Moreover, given the complexity of TSFMs—with millions of parameters—the
training process would require significantly more time and computational resources, making it more costly
than most state-of-the-art models. This, indeed, would undermine the core motivation of our approach:
to build lightweight, fast, and cost-effective predictive models by leveraging the representational power of
TSFM without the burden of retraining them.

Limitations of the Study

The study presents certain limitations that should be noted. First, it focuses on the CMAPSS dataset,
a synthetic benchmark for RUL prediction. While this synthetic dataset is widely used for comparing the
performance of different algorithms in a controlled manner, this does not fully reflect the characteristics
of a real environment where external factors influence the data, for example, generating random noise that
can interfere in the model’s decision. Therefore, the results of this study may not be fully replicable in real
scenarios, and experimentation with real-world datasets that present different common problems, such as
strong noise, stationary features, or high proportions of missing data, should be performed.

One way to address this issue, while maintaining the FM-based approach, would be to fine-tune a
large model using datasets that accurately capture the relevant characteristics of the problem (domain-aware
adaptation), which, if not available, could be generated by means of data augmentation techniques. However,
as this solution leads to more computational costs, as an initial step, we propose to experiment with other
TSFMs for embedding generation when they are available.

It is also worth noting that the models were built using basic preprocessing techniques to maintain a
general approach useful for any context, and to test the ability of FMs to absorb this task. However, the lack
of this optimisation may reduce the accuracy of the proposed models.

6 Conclusions

Estimating the RUL remains an open challenge in predictive maintenance. Although several studies and
surveys have been published in recent years addressing this issue from different approaches, the results are
not definitive. It has been proven that the best predictors are achieved with hybrid DL models based on a
combination of multidimensional attention layers and LSTMs. However, these models require long training
times, large volumes of data, and expert knowledge for fine-tuning.

Both the versatility and effectiveness that FM have demonstrated in predictive and representational
learning tasks [28] and the recent emergence of TSEM have led us to explore their applicability to RUL
prediction. Our goal was to evaluate whether embeddings generated by TSFM are meaningful enough to
enable the construction of competitive and simpler predictors with a reduced amount of training data and
reduced preprocessing, thus lowering computational costs and processing time.

Our benchmark shows that training simple ML models, such as SVR or NN, with embeddings generated
by Moment FM offers a viable alternative to complex DL models, particularly in few-shot scenarios where
labeled data is scarce and computational resources are limited.
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As future work, we plan to extend this experimentation to other artificial and real-world datasets and
to explore the use of other FMs specifically designed for time series under a different architecture, such as
TOTEM [35].
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Appendix B

Table Al: Parameter grid for Random Forest hyperparameter tuning

Parameter Values

n_estimators {100, 200, 500, 1000}
max_depth  {None, 10, 20, 30,50}
max_features {auto,sqrt,log2}

Table A2: Parameter grid for SVR hyperparameter tuning

Parameter Values

C {0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000}
Epsilon {0.01,0.1,0.2,0.3}
Kernel {linear, rbf,poly}
Gamma {scale,auto,0.01,0.1,1}
Degree {2, 3,4} (used only if kernel = poly)

Table A3: Parameter grid for nn hyperparameter tuning

Parameter Values
hidden layer size {32, 64, 128, 256, 512}
activation {relu, tanh, logistic}
learning rate {0.0001, 0.001, 0.01, 0.1}
max_iter {200, 500, 1000}

Table A4: Parameter grid for Light GBM hyperparameter tuning

Parameter Values

num leaves {31, 63,127}
max_depth {16, 32, 64, 128}
learning rate {0.01}
n_estimators {100, 500, 1000}
boosting type {gbdt,dart}
subsample {0.6,0.7,0.8,1.0}
colsample_bytree {0.6,0.8,1.0}
reg_alpha {0.0,0.1, .0}
reg_lambda {0.0,0.1, 1.0}
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