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ABSTRACT: This study aims to investigate the propagation of harmonic waves in nonlocal magneto-electro-elastic
(MEE) laminated composites with interface stress imperfections using an analytical approach. The pseudo-Stroh
formulation and nonlocal theory proposed by Eringen were adopted to derive the propagator matrix for each layer. Both
the propagator and interface matrices were formulated to determine the recursive fields. Subsequently, the dispersion
equation was obtained by imposing traction-free and magneto-electric circuit open boundary conditions on the top
and bottom surfaces of the plate. Dispersion curves, mode shapes, and natural frequencies were calculated for sandwich
plates composed of BaTiO3 and CoFe2O4. Numerical simulations revealed that both interface stress and the nonlocal
effect influenced the tuning of the dispersion curve and mode shape for the given layup. The nonlocal effect caused
a significant decrease in the dispersion curves, particularly in the high-frequency regions. Additionally, compared to
the nonlocal effect, the interface stress exerted a greater influence on the mode shapes. The generalized analytical
framework developed in this study provides an effective tool for both the theoretical analysis and practical design of
MEE composite laminates.
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1 Introduction
The ongoing trends of device miniaturization has driven significant interest in the magneto-electro-

elastic (MEE) nanostructures comprising piezoelectric and piezomagnetic phases. The MEE heterostructures
exhibit novel electrical, magnetic, and mechanical properties, offering promising applications in intelligent
adaptive systems, including memory devices and energy harvesting [1,2]. Since MEE nanostructures exist
at the nanoscale, their behavior and overall properties differ significantly from those of bulk composites.
Long-range interatomic and intermolecular cohesive forces play a more significant role in determining
the properties of MEE nanostructures [3]. Consequently, size effects must be accounted for in both
theoretical and experimental studies [4,5]. While classical continuum mechanics remains a valuable tool, its
scale-independent nature may lead to inaccurate results when analyzing nanostructures.

The nonlocal elasticity theory proposed by Eringen [6,7], which accounts for scale effects, offers a
computationally efficient alternative to direct atomistic or molecular dynamics simulations [8]. For example,
Wu and Li [9] effectively implemented this theory in free vibration analyses of embedded single-layered
nanoplates and graphene sheets. Wu and Yu [10] investigated its application to nanobeams and carbon
nanotubes (CNT), incorporating nonlocal effects. The application of the theory has been further extended
to MEE plates [11–14], and MEE fibrous composites [15–17].
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Dynamic responses of MEE composites, such as wave propagation and free vibration, have attracted
significant research attention in recent years. Fundamental to the design process is determining natural
frequencies and corresponding vibration modes-an analysis that has become a focal point in several studies.
For example, Liu et al. [18] developed a dynamic analysis method for three-phase MEE structures using
overlapping triangular finite elements. Jiang et al. [19] created a coupled MEE edge-based smoothed finite
element method to evaluate the dynamic behavior of MEE solids. Kuo et al. [20] systematically compared
wave propagation characteristics in MEE laminated composites with varying layering directions. Ly et al. [21]
introduced a numerical approach for nonlinear analysis and smart damping control in functionally graded
CNT reinforced MEE plate.

Most studies assume perfectly bonded interfaces between different phases-an idealized condition that
may not reflect real-world scenarios. However, interfaces often exhibit imperfections due to cracking,
dislocations, aging, or manufacturing defects. Additionally, these interfacial imperfections significantly
affect magneto-electric coupling effects. Several studies have addressed interfacial imperfections in MEE
composites, including [22–24] for static cases and [25,26] for dynamic cases.

Therefore, this study aims to investigate MEE laminates using the nonlocal theory proposed by Eringen,
with a particular focus on extended interface stress-type contact condition. The paper is organized as
follows. Section 2 presents the formulation of the multifield boundary-value problem, including consid-
erations of extended interface stress imperfections. Section 3 presents the derivation of the field solutions
for each homogeneous layer using the pseudo-Stroh formulation. A recursive framework that incorporates
both propagation and interface matrices is developed to account for imperfect interface characteristics and
determine exact solutions throughout the laminate. Section 4 discusses particular numerical cases analyzing
the effect of the interface stress and nonlocal length parameters. Section 5 provides conclusions remarks.

2 Basic Formulations

2.1 Nonlocal Theory for MEE Materials
We consider a three-dimensional N−bonded orthotropic and rectangular MEE plate with nonlocal

effect as shown in Fig. 1. A global Cartesian coordinate system (x , y, z) is attached to the laminate such
that the bottom surfaces of the plate is set as the horizontal coordinate plane x − z. The plate is horizontally
infinite but vertically finite in the y−direction with the total thickness H. The lower and upper interfaces of
the jth layer are defined as y+j−1 and y−j , respectively, with the thickness h j = y−j − y+j−1. The internal interfaces
between the adjacent plates are imperfectly connected, which will be discussed later on. The fabrication of
the type of MEE laminated composites can be referred to the work by Dong et al. [27], Wang et al. [28], and
Zhai et al. [29].

Following Pan and Waksmanski [13], the constitutive relations of a nonlocal linear anisotropic MEE
within the context of nonlocal model proposed by Eringen can be expressed as

σ g
i j − l 2∇2σ g

i j = σ c
i j = ci jk l εk l − eki jEk − qki jHk ,

Dg
i − l 2∇2Dg

i = Dc
i = ei jk ε jk + κi jE j + λ ji H j ,

Bg
i − l 2∇2Bg

i = Bc
i = qi jk ε jk + λi jE j + μi jH j , (1)

where ∇2 is the 3D Laplace operator; l is the nonlocal length parameter. σi j , εi j , Di , Ei , Bi and Hi are the
stress, strain, electric displacement, electric field, magnetic flux density, and magnetic field. ci jk l , ei jk , qi jk ,
κi j, μi j , and λi j are elastic stiffness constant, piezoelectric coefficient, piezomagnetic coefficient, dielectric
permittivity, magnetic permeability, and magnetoelectric coupling coefficient. The upper index g denotes
the nonlocal field quantities, while the upper index c denotes the classical field quantities.
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Figure 1: Geometry and coordinate system of an N-bonded orthotropic, nonlocal rectangular linearly MEE plate. The
laminated plate is horizontally infinite but vertically finite in the y-direction with total thickness H. The jth layer is
bonded by its lower interface y j−1+ and upper interface y j− . The interfaces between the plates are imperfectly connected

The infinitesimal strain εi j, electric field Ei , and magnetic field Hi can be derived from the gradient of
the elastic displacement ui , electric potential ϕ, and magnetic potential ψ as follows:

εi j =
1
2
(ui , j + u j , i) , Ei = −ϕ, i , Hi = −ψ, i , (2)

for which comma followed by lowercase subscript i denotes partial derivative.
For each individual plate, the equilibrium equations for the stress, electric displacement, and magnetic

flux in the absence of body forces and electric sources are defined by

σ g
i j , j = ρ ∂2ui

∂t2 , Dg
i , i = 0, Bg

i , i = 0. (3)

Here ρ is the mass density and t is time.

3 Free Vibration Analysis of the MEE Laminate

3.1 Field Solutions for Each Nonlocal Plate
We consider the material is orthotropic symmetry. The polarization and magnetization directions are

along the z−axis. The involved material coefficients with the three orthogonal planes of symmetry along the
x−, y−, z−directions can be expressed in the matrix form as

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

symm C55 0
C66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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eT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 e31
0 0 e32
0 0 e33
0 e24 0

e15 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, qT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 q31
0 0 q32
0 0 q33
0 q24 0

q15 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

κ =
⎡⎢⎢⎢⎢⎢⎣

κ11 0 0
0 κ22 0
0 0 κ33

⎤⎥⎥⎥⎥⎥⎦
, μ =

⎡⎢⎢⎢⎢⎢⎣

μ11 0 0
0 μ22 0
0 0 μ33

⎤⎥⎥⎥⎥⎥⎦
, λ =

⎡⎢⎢⎢⎢⎢⎣

λ11 0 0
0 λ22 0
0 0 λ33

⎤⎥⎥⎥⎥⎥⎦
. (4)

Here CIJ , ei J , and qi J (i = 1 − 3, I, J = 1 − 6) are elastic stiffness constant, piezoelectric coefficient and
piezomagnetic coefficient in the Voigt notation.

Assuming time-harmonic vibration motion, the field solutions are sought in the form of

Φ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

u1
u2
u3
ϕ
ψ

⎞
⎟⎟⎟⎟⎟⎟
⎠

= ∑
m , n

e i(k1 x+k2 y+k3 z−ωt)a, a=

⎛
⎜⎜⎜⎜⎜⎜
⎝

a1
a2
a3
a4
a5

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

Σg
n =

⎛
⎜⎜⎜⎜⎜⎜
⎝

σ g
21

σ g
22

σ g
23

Dg
2

Bg
2

⎞
⎟⎟⎟⎟⎟⎟
⎠

= ∑
m , n

e i(k1 x+k2 y+k3 z−ωt)b, b=

⎛
⎜⎜⎜⎜⎜⎜
⎝

b1
b2
b3
b4
b5

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

Σc
n =

⎛
⎜⎜⎜⎜⎜⎜
⎝

σ c
21

σ c
22

σ c
23

Dc
2

Bc
2

⎞
⎟⎟⎟⎟⎟⎟
⎠

= ∑
m , n

e i(k1 x+k2 y+k3 z−ωt)d, d=

⎛
⎜⎜⎜⎜⎜⎜
⎝

d1
d2
d3
d4
d5

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (5)

where ω is the angular vibration frequency of the excitation, and i =
√
−1. k1 , k3 are the components of the

wave vector depending on the angle of the wavenumber along the propagating direction in the x − z plane.
k2 is an unknown to be determined. a, b, d are unknown amplitudes to be determined.

Substituting Eqs. (4) and (5) into Eqs. (1) and (2), the nonlocal constitutive relation yields

[1 + l 2 (k2
1 + k2

2 + k2
3)]b = i (RT + k2T) a, (6)

where matrices R and T are given by

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 C12k1 0 0 0
C66k1 0 C44k3 e24k3 q24k3

0 C23k3 0 0 0
0 e32k3 0 0 0
0 q32k3 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C66 0 0 0 0
C22 0 0 0

C44 e24 q24
symm −κ22 −λ22

−μ22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)
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Furthermore, inserting Eq. (5) into the governing Eq. (3) leads to a quadratic eigenequation, as follows:

[Qn+k2 (R + RT) + k2
2Tn] a = 0. (8)

Finally, the above equation with the help of Eq. (6) can further be converted into the linear eigensystem
of equations

[ −T−1
n RT −iT−1

n
−i (Qn − RT−1

n RT) −RT−1
n

] [ a
d ] = k2 [

a
d ] . (9)

Here

Qn ≡ Q − [1 + l 2 (k2
1 + k2

3)] ρω2I3, Tn ≡ T − ρω2 l 2I3,

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11k2
1 + C55k2

3 0 k1k3 (C13 + C55) k1k3 (e15 + e31) k1k3 (q15 + q31)
C66k2

1 + C44k2
3 0 0 0

C55k2
1 + C33k2

3 e15k2
1 + e33k2

3 q15k2
1 + q33k2

3
symm −(κ11k2

1 + κ33k2
3) −(d11k2

1 + d33k2
3)

−(μ11k2
1 + μ33k2

3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

I3 is a 3 × 3 unit matrix, and the 5 × 1 constant column matrix d is related to a by

d = i (RT + k2T) a, (10)

from the constitutive law (1).
Without the proportional position term ee i(k1 x+k3 z)

and the time-dependent factor e iωt in (5) for clarity,
the general y− dependent solution for the extended displacement and traction expansion coefficient vectors
can be expressed as

[ Φ̃ (y)
Σ̃

g
n (y)

] = [ A∣ A∥
B∣ B∥

] ⟨e iky⟩ [ K∣
K∥

] , (11)

with

Φ̃ (y) = e i k2 ya, Σ̃n (y) = e i k2 yb, (12)

⟨e iky⟩ = diag (e i k(1)
2 y , e i k(2)

2 y , e i k(3)
2 y , e i k(4)

2 y , e i k(5)
2 y , e i k(6)

2 y , e i k(7)
2 y , e i k(8)

2 y , e i k(9)
2 y , e i k(10)

2 y) ,

and A∣, A∥, B∣, B∥ being the eigenvector matrices defined by

A∣ = ( a1 , a2, a3, a4, a5 ) , A∥ = ( a6, a7, a8, a9, a10 ) ,
B∣ = ( b1 , b2, b3, b4, b5 ) , B∥ = ( b6, b7, b8, b9, b10 ) ,

here K∣ and K∥ are two 5 × 1 constant column matrices to be determined from the internal and external
boundary conditions of the plate; k2 and {ai , di} are the eigenvalue and corresponding eigenvectors
of Eq. (9), and bi can be calculated from (6).
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By eliminating the involved undetermined coefficients constants K1 and K2 in Eq. (11), the extended
displacement and traction on the top and bottom of the jth layer can be related as

⎡⎢⎢⎢⎢⎣

Φ̃ (y−j )
Σ̃

g
n (y−j )

⎤⎥⎥⎥⎥⎦
= P j (h j)

⎡⎢⎢⎢⎢⎣

Φ̃ (y+j−1)
Σ̃

g
n (y+j−1)

⎤⎥⎥⎥⎥⎦
, (13)

where

P j (y) = [ A1 A2
B1 B2

] ⟨e ik(y−y j)⟩ [ A1 A2
B1 B2

]
−1

, (14)

is the propagation matrix of the jth layer.
In order to complete the total field solutions, the remaining in-plane stress, electric displacement, and

magnetic flux density are organized as follows:

Σg
t =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11
σ33
σ13
D1
D3
B1
B3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ∑
m , n

e i(k1 x+k2 y+k3 z−ωt)c, c=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c1
c2
c3
c4
c5
c6
c7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (15)

Substituting the extended displacement expansion in Eq. (5) and Eq. (15) into the constitutive rela-
tion (1), additional relations between the associated expansion coefficients are derived as

[1 + l 2 (k2
1 + k2

2 + k2
3)] c = i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11k1 C12k2 C13k3 e31k3 q31k3
C13k1 C23k2 C33k3 e33k3 q33k3
C55k3 0 C55k1 e15k1 q15k1
e15k3 0 e15k1 −κ11k1 −λ11k1
e31k1 e32k2 e33k3 −κ33k3 −λ33k3
q15k3 0 q15k1 −λ11k1 −μ11k1
q31k1 q32k2 q33k3 −λ33k3 −μ33k3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a. (16)

3.2 Interface Stress-Type Imperfect Interface
To find the exact solutions, we need the interfacial conditions. We consider the extended interface stress

interfacial conditions [30]:

[[Φ]]y j
= 0, [[σ c

2α]] = − fαβγ μuγ ,μβ ,
[[σ c

22]] = 0, [[Dc
2]] = κ f

αβ ϕ,αβ , [[Bc
2]] = μ f

αβψ,αβ ,
α, β, γ, μ = 1, 3, (17)

where [[⋅]] denotes that the corresponding physical quantity has a jump across the interface. fαβγ μ , κ f
αβ ,

μ f
αβ denote the interface elastic modulus, interface electric permittivity, and interface magnetic permeability,

respectively. Next, we rearrange the above extended interface stress-type interfacial condition as

[ Φ̃ (y j+)
Σ̃

c
n (y j+)

] = M j [
Φ̃ (y j−)
Σ̃

c
n (y j−)

] , (18)
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where the interface matrix M j at the interface y = y j is defined as

M j = [
I5 0
L j I5

] . (19)

Here I5 is a 5 × 5 unit matrix and

L j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k2
1 f1111 + k2

3 f1313 0 k1k3 ( f1133 + f1313) 0 0
0 0 0 0

k2
1 f1313 + k2

3 f3333 0 0
symm −k2

1 κ f
11 − k2

3κ f
33 0

−k2
1 μ f

11 − k2
3 μ f

33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

3.3 Recursive Field Solutions in the Laminate
Transferring the general field solution from the jth layer to the next j + 1th layer with an imperfect

interface y j in between, we need to combine Eqs. (13) and (18). However, the former is related to the nonlocal
extended traction while the latter is related to the classical extended traction. To connect the nonlocal and
classical extended traction fields, we notice that

[ Φ̃ (y)
Σ̃

c
n (y)

] = [ A∣ A∥
D∣ D∥

] ⟨e iky⟩ [ K∣
K∥

] , (21)

where

D∣ = ( d1 , d2, d3, d4, d5 ) , D∥ = ( d6, d7, d8, d9, d10 ) .

Combining (11) and (21) and then substituting the result into (18) yields

[ Φ̃ (y j+)
Σ̃

g
n (y j+)

] = Mg
j [

Φ̃ (y j−)
Σ̃

g
n (y j−)

] , (22)

where

Mg
j = [

A∣ A∥
B∣ B∥

] [ A∣ A∥
D∣ D∥

]
−1

M j [
A∣ A∥
D∣ D∥

] [ A∣ A∥
B∣ B∥

]
−1

.

Therefore, when transferring the solution from the jth layer to the next j + 1th layer with an imperfect
interface y j in between, we only need to multiply the interface matrix between the two layer matrices P j(h j)
and P j+1(h j+1) to obtain

[ Φ̃ (y j+1−)
Σ̃

g
n (y j+1−)

] = P j+1 (h j+1)Mg
j P j (h j) [

Φ̃ (y j−1+)
Σ̃

g
n (y j−1+)

] . (23)

Here the propagator matrix P j (y) is defined in Eq. (14). A similar recursive relation for the field quantities
as Eq. (23) from the bottom surface to any field point y in the kth layer ( yk−1 ≤ y ≤ yk) can be expressed as
follows:

[ Φ̃ (y)
Σ̃

g
n (y)

] = Pk (y − yk−1)Mk−1Pk−1 (hk−1) ⋅ ⋅ ⋅P2 (h2)M1P1 (h1) [
Φ̃ (0)
Σ̃

g
n (0)

] . (24)
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The prescribed boundary conditions on both bottom y = 0 and top y = H surfaces are traction free and
magneto-electric circuit open. That is

Σ̃
g
n (0) = Σ̃

g
n (H) = 0. (25)

By means of the above boundary conditions, the recursive field

[ Φ̃ (H)
Σ̃

g
n (H)

] = [ S11 S12
S21 S22

] [ Φ̃ (0)
Σ̃

g
n (0)

] (26)

[ S11 S12
S21 S22

] = PN (hN)Mg
N−1 ⋅ ⋅ ⋅M

g
2P2 (h2)Mg

1 P1 (h1) ,

yields the dispersion equation

det S21 = 0. (27)

4 Numerical Results and Discussion
To investigate the behavior of nonlocal effects and interface stresses, the proposed solution was

applied to a sandwich plate composed of piezoelectric barium titanate (BaTiO3, BTO) and piezomag-
netic cobalt ferrite (CoFe2O4, CFO). Two laminate configurations were examined: (1) a BTO/CFO/BTO
layered structure and (2) a CFO/BTO/CFO layered structure. All three layers were assumed to have
equal thickness, while the materials were transversely isotropic. The material properties used in the
numerical analysis were as follows: C11 = 166GPa, C12 = 77GPa, C13 = 78GPa, C33 = 162GPa, C44 = 43GPa,
e15 = 11.6C/m2, e31 = −4.4C/m2, e33 = 18.6C/m2, κ11 = 11.2nC2/Nm2, κ33 = 12.6nC2/Nm2, μ11 = 5μNs2/C2,
μ33 = 10μNs2/C2, ρ = 5800kg/m3 for BTO, and C11 = 286GPa, C12 = 173GPa, C13 = 170.5GPa, C33 =
269.5GPa, C44 = 45.3GPa, q15 = 550N/Am, q31 = 580.3N/Am, q33 = 699.7N/Am, κ11 = 0.08nC2/Nm2,
κ33 = 0.093nC2/Nm2, μ11 = 590μNs2/C2, μ33 = 157μNs2/C2, ρ = 5300kg/m3 for CFO [31].

The imperfect interface was modeled as a thin interphase layer c with thickness δ and distinct material
properties. The interphase properties were characterized by [30]

f1111 = f3333 = λ f + 2G f , f1133 = λ f , f1313 = G f , κ f
αβ = κ f , μ f

αβ = μ f . (28)

where

λ f =
2Gc λc δ
λc + 2Gc

, G f = δGc , κ f = δκc , μ f = δμc ,

here λc represents the Lamé constant, Gc indicates the shear modulus, κc is the dielectric permittivity, and
μc represents the magnetic permeability. For the analysis, the following assumptions were made

Cc = ΓmCmax/δ, Gc = ΓmGmax/δ, κc = Γmκmax/δ, μc = Γm μmax/δ, (29)

where Γm represents the relative scaling parameter, and Cmax, Gmax, κmax, and μmax denote the maxi-
mum values of the elastic constant, dielectric permittivity, and magnetic permeability from the BTO and
CFO constituents, respectively. Different interface conditions were investigated: perfect contact, Γm = 10−1

and Γm = 100. The perfect contact condition maintained continuity in both extended displacement and
traction vectors across the interface. The relative scaling parameter Γm directly correlated with interfacial
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stiffness and electromagnetic properties-higher values indicated stiffer interfaces with stronger dielectric
constant and magnetic permeability. We analyzed three different nonlocal length-to-thickeness ratios (l/H =
0,0.06, 0.12). For modeling simplicity, identical nonlocal lengths were maintained across all material layers
in each analysis case.

For numerical analysis, the wave was assumed to propagate exclusively along the x−axis (k = k1 , k3 =
0). The wave was decoupled into a Lamb wave (u3 = 0) and a Love wave (u1 = 0 and u2 = 0). Dimensionless
frequency Ω = ωH

√
ρmax/Cmax and dimensionless wavenumber kH were used, where Cmax and ρmax rep-

resent the maximum elastic modulus and density of the constituents, respectively. An efficient root-finding
algorithm developed by Zhu et al. [32] was employed to obtain the accurate solutions.

4.1 Lamb Wave
Figs. 2 and 3 illustrate the dispersion curves for the first three Lamb wave modes of nonlocal

BTO/CFO/BTO and CFO/BTO/CFO sandwich plates. The results showed that the dispersion curves for the
classical case (i.e., l/H = 0) of the BTO/CFO/BTO configuration are consistent with those of a previous study
[26]. Furthermore, significant influence of the nonlocal effect was observed. The dispersion curves associated
with the same branches differed significantly between the classical and nonlocal modes. Specifically, the
inclusion of the nonlocal length reduced the dispersion curve values, particularly in the high-frequency
regimes (i.e., at high wavenumbers and short wavelengths). Additionally, the nonlocal effect altered the
overall trends of the dispersion behavior; as the nonlocal length increased, the curves exhibited faster
convergence. The slope of the dispersion curves in the nonlocal plate decreased as the wavenumber increased.
The nonlocal length indicated the spatial range over which a material point could exert an instantaneous
effect. As the nonlocal length increased-indicating a broader interaction domain [6,7]-the slope of the
dispersion curves decreased further in high-frequency regions. These findings demonstrate that nonlocal
effects become critically significant for high-frequency device operation.

Figure 2: (Continued)
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Figure 2: Dispersion curves for Lamb waves in a BTO/CFO/BTO sandwich plate with different interface contacts:
perfect contact, imperfect contact with the relative scaling parameter Γm = 10−1, Γm = 100. Dimensionless nonlocal
length parameter (a) l/H = 0, (c) l/H = 0.06, (c) l/H = 0.12

Figure 3: (Continued)
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Figure 3: Dispersion curves for Lamb waves in a CFO/BTO/CFO sandwich plate with different interface contacts:
perfect contact, imperfect contact with the relative scaling parameter Γm = 10−1, Γm = 100. Dimensionless nonlocal
length parameter (a) l/H = 0, (b) l/H = 0.06, (c) l/H = 0.12

Furthermore, the dispersion curves exhibited distinct discontinuities at specific wavenumber values
kH ≈ 6, 6.5, and 6.8 (Fig. 2c) and kH ≈ 6.8, 7.5, and 8.1 (Fig. 3c). Analysis revealed that these discontinuities
represented fundamentally different phenomena-the discontinuities at kH ≈ 6, 6.5 (Fig. 2c) and 7.5, 8.1
(Fig. 3c) corresponded to abrupt phase velocity jumps. In contrast, the discontinuity at kH ≈ 6.8 manifested
as a rapid phase velocity variation. These discontinuities appeared in both perfect and imperfect interface
conditions when the normalized nonlocal length reached l/H = 0.12. This indicates their origin is nonlocal
effects rather than the interface imperfections.

We further investigated the modal natural frequencies associated with different nonlocal lengths
and interface imperfections at a given wavenumber. Tables 1 and 2 present the first three modal natural
frequencies at wavenumber kH = 2 for nonlocal BTO/CFO/BTO and CFO/BTO/CFO sandwich plate con-
figurations. The results demonstrated significant interface effects-imperfect contact consistently produced
higher frequencies at the examined wavenumber. This frequency elevation correlated directly with increasing
interphase stiffness and strength, confirming that dimensionless natural frequencies increase with enhanced
interfacial properties.
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Table 1: Normalized natural frequencies of Lamb wave at kH = 2 in a BTO/CFO/BTO sandwich plate with various
nonlocal lengths and interface conditions

Nonlocal length Mode Perfect Γm = 0.1 Γm = 1
1st 0.5420 0.5561 0.5945

l/H = 0 2nd 1.3810 1.5893 2.1330
3rd 1.9235 1.9876 2.1923
1st 0.5375 0.5513 0.5893

l/H = 0.06 2nd 1.3645 1.5657 2.0621
3rd 1.8718 1.9311 2.1104
1st 0.5248 0.5376 0.5739

l/H = 0.12 2nd 1.3182 1.4992 1.8760
3rd 1.7362 1.7828 1.9040

Table 2: Normalized natural frequencies of Lamb wave at kH = 2 in a CFO/BTO/CFO sandwich plate with various
nonlocal lengths and interface conditions

Nonlocal length Mode Perfect Γm = 0.1 Γm = 1
1st 0.5942 0.5988 0.6108

l/H = 0 2nd 1.4324 1.6563 2.3864
3rd 2.0996 2.2071 2.5539
1st 0.5896 0.5941 0.6058

l/H = 0.06 2nd 1.4127 1.6284 2.3116
3rd 2.0353 2.1402 2.4757
1st 0.5765 0.5806 0.5915

l/H = 0.12 2nd 1.3571 1.5487 2.0914
3rd 1.8686 1.9668 2.2107

Figs. 4 and 5 show the first-order (Ω = Ω1) and second-order mode (Ω = Ω2) shapes along the thickness
direction (y-axis) of the BTO/CFO/BTO plate at the given wavenumber kH = 2, evaluated at the fixed
horizontal coordinate (x , z) = (π/4, 0). Panels (a, b) show the elastic displacements u1 and u2; panels (c–f)
illustrate the tractions σ21 ,σ22 and the stresses σ11 ,σ33; and panels (g–h) show the electric displacement D3
and magnetic flux density B3. Figs. 6 and 7 illustrate the first-order and second-order mode shapes for the
CFO/BTO/CFO plate configuration. The classical case results for the BTO/CFO/BTO plate configurations
are consistent with those reported in a previous study [26]. The analysis confirmed two key interfacial
behaviors: (1) continuous displacements u1 and u2 across all interfaces and (2) discontinuous traction σ21
due to the extended interface stress imperfections. Further observations from the first-order mode shapes
(Figs. 4 and 6) revealed the following features. First, the displacement u1 , traction σ22, stresses σ11 and σ33,
electric displacement D3, and magnetic flux density B3 exhibited anti-symmetric distributions about the
midplane, while the displacement u2 and traction σ21 showed symmetric distributions. These patterns reflect
both the symmetry of the sandwich plate and the extended traction free boundary conditions. Second, the
displacement u1 and stresses σ11 ,σ33 reached maximum magnitudes at the top and bottom surfaces, while
the traction σ21 peaked at the midplane. The electric displacement D3 (magnetic flux density B3) reached
maximum conditions at both the top and bottom surfaces (Figs. 4 and 6, respectively), while the magnetic
flux density B3 (electric displacement D3) peaked at the material interfaces (Figs. 4 and 6, respectively).
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Third, an increase in the relative scaling parameter Γm resulted in an increase in the displacement u2, an
increase in the discontinuities traction σ21 across the interfaces, and a decrease in the discontinuities in
electric displacement D3 and magnetic flux density B3. As the nonlocal length l increased, the values of u2, σ21
increased, and the discontinuity of σ21 across the interface became more pronounced. Fourth, the nonlocal
length l exhibited a negligible effect on u1 , σ11 , σ22, σ33, D3 and B3, as indicated by their clustered mode
shapes and parameter insensitivity. Fifth, comparative analysis revealed that imperfect contacts exhibited
significantly greater influence on mode shapes than nonlocal effects.

Figure 4: (Continued)
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Figure 4: Variations for the first-order mode shapes of the Lamb wave in a BTO/CFO/BTO plate along the thickness
direction (dimensionless wavenumber kH = 2): (a, b) displacements u1 and u2, (c, d) tractions σ21 and σ22, (e–h) stresses
σ11 and σ33, electric displacement D3, and magnetic flux density B3. The plate is with nonlocal effect and extended
interface stress imperfect interfaces

Figure 5: (Continued)
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Figure 5: Variations for the second-order mode shapes of the Lamb wave in a BTO/CFO/BTO plate along the thickness
direction (dimensionless wavenumber kH = 2): (a, b) displacements u1 and u2, (c, d) tractions σ21 and σ22, (e–h) stresses
σ11 and σ33, electric displacement D3, and magnetic flux density B3. The plate is with nonlocal effect and extended
interface stress imperfect interfaces

Figure 6: (Continued)
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Figure 6: Variations for the first-order mode shapes of the Lamb wave in a CFO/BTO/CFO plate along the thickness
direction (dimensionless wavenumber kH = 2): (a, b) displacements u1 and u2, (c, d) tractions σ21 and σ22, (e–h) stresses
σ11 and σ33, electric displacement D3, and magnetic flux density B3. The plate is with nonlocal effect and extended
interface stress imperfect interfaces
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Figure 7: (Continued)
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Figure 7: Variations for the second-order mode shapes of the Lamb wave in a CFO/BTO/CFO plate along the thickness
direction (dimensionless wavenumber kH = 2): (a, b) displacements u1 and u2, (c, d) tractions σ21 and σ22, (e–h) stresses
σ11 and σ33, electric displacement D3, and magnetic flux density B3. The plate is with nonlocal effect and extended
interface stress imperfect interfaces

Analysis of the corresponding second-order mode shapes (Figs. 5 and 7), revealed consistent pattern for
both configurations: (1) The displacement u1 , stresses σ11 , σ22, σ33, electric displacement D3, and magnetic
flux density B3 exhibited symmetric distributions about the midplane, while the displacement u2 and traction
σ21 showed anti-symmetric behavior. (2) The displacement u2 reached maximum magnitudes at both the top
and bottom surfaces of the plate, while the traction σ21 ,stress σ33, and magnetic flux density B3 peaked at
material interfaces. For the BTO/CFO/BTO plate configuration, we observed the following: (1) The relative
scaling parameter Γm inversely affected interfacial discontinuities: increasing Γm decreased jumps in σ11 , σ33,
D3 and B3, while increasing the σ21 discontinuity. (2) Increasing the nonlocal lengths l decreased σ21 ,σ11 ,
σ33, along with the interface discontinuities in D3 and B3. (3) The displacement u2 and traction σ22 showed
minimal sensitivity to nonlocal effects, as indicated by clustered mode shapes in the parameter space. (4)
Imperfect contacts dominated over the nonlocal effects in modifying mode shapes. (5) The extended interface
stress conditions induced polarity reversal in traction σ21 and σ22 fields. In contrast, the nonlocal length
showed no polarity-reversal effects. For the CFO/BTO/CFO plate configuration, except the stress σ11 , all the
remaining field components underwent directional reversal when both conditions were met: relative scaling
parameter Γm = 100 and nonlocal length l = 0.12.

4.2 Love Wave
Figs. 8 and 9 show the variation of the first three dispersion curves for the Love wave in the

BTO/CFO/BTO and CFO/BTO/CFO sandwich plate configurations under different nonlocal lengths and
interfacial contact conditions. The analysis revealed that nonlocal effects significantly reduced dispersion
values, particularly in high-frequency regimes (characterized by large wavenumbers and short wavelengths).
Additionally, the nonlocal length modifications significantly altered the overall trend of the dispersion
curves. The dispersion curves converged more rapidly as the nonlocal length increased. An increase in
the nonlocal length resulted in a decrease in the slope of the curves. Furthermore, the effect of the
interfacial imperfection was significant (Tables 3 and 4) for selected points at a wavenumber of kH = 2
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in the BTO/CFO/BTO and CFO/BTO/CFO sandwich plates, respectively. The identical response patterns
observed for both Love and Lamb waves indicated that the nonlocal constitutive law (1), rather than wave
vibration type, primarily regulated dispersion characteristics.

Figure 8: Dispersion curves for Love waves in a BTO/CFO/BTO sandwich plate with different interface contacts:
perfect contact, imperfect contact with the relative scaling parameter Γm = 10−1, Γm = 100. Dimensionless nonlocal
length parameter (a) l/H = 0, (b) l/H = 0.06, (c) l/H = 0.12
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Figure 9: Dispersion curves for Love waves in a CFO/BTO/CFO sandwich plate with different interface contacts:
perfect contact, imperfect contact with the relative scaling parameter Γm = 10−1, Γm = 100. Dimensionless nonlocal
length parameter (a) l/H= 0, (b) l/H = 0.06, (c) l/H = 0.12
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Table 3: Normalized natural frequencies of Love wave at kH = 2 in a BTO/CFO/BTO sandwich plate with various
nonlocal lengths and interface conditions

Nonlocal length Mode Perfect Γm = 0.1 Γm = 1
1st 0.8646 0.9927 1.6087

l/H = 0 2nd 1.5695 1.6113 1.8557
3rd 2.8924 2.9124 3.1062
1st 0.8584 0.9856 1.5877

l/H = 0.06 2nd 1.5329 1.5738 1.8076
3rd 2.6850 2.7032 2.8776
1st 0.8407 0.9650 1.5258

l/H = 0.12 2nd 1.4369 1.4754 1.6814
3rd 2.2570 2.2713 2.4003

Table 4: Normalized natural frequencies of Lamb wave at kH = 2 in a CFO/BTO/CFO sandwich plate with various
nonlocal lengths and interface conditions

Nonlocal length Mode Perfect Γm = 0.1 Γm = 1
1st 0.8512 0.9858 1.5978

l/H = 0 2nd 1.6188 1.6499 1.8327
3rd 2.7557 2.7806 3.0295
1st 0.8451 0.9787 1.5748

l/H = 0.06 2nd 1.5784 1.6085 1.7812
3rd 2.5661 2.5896 2.8256
1st 0.8276 0.9581 1.5066

l/H = 0.12 2nd 1.4733 1.5008 1.6472
3rd 2.1695 2.1903 2.3971

Figs. 10 and 11 illustrate thickness-wise distributions of the first-order and second-order mode shapes of
the BTO/CFO/BTO plate at a wavenumber kH = 2, respectively. Panels (a–c) show the elastic displacement
u3, electric potential ϕ, and magnetic potential ψ. Panels (d–f) show the shear stresses σ13 , σ23, electric
displacements D1 , D2 and magnetic flux densities B1 , B2, respectively. Figs. 12 and 13 illustrate the corre-
sponding mode shapes for the CFO/BTO/CFO plate. Analysis of first-order mode shapes (Figs. 10 and 12)
revealed seven key characteristics: (1) The displacement u3, electric potential ϕ, and magnetic potential ψ
remained continuous across the imperfect interfaces, while the traction σ23, normal electric displacement
D2, and magnetic flux density B2 exhibited discontinuities. (2) The distributions of u3,ϕ, ψ, σ13 , D1 , and B1
were symmetric about the midplane, while σ23, D2, and B2 showed anti-symmetric behavior. (3) The traction
σ23, electric displacement D1, D2, magnetic flux density B1 and B2 reached their maximum values at the
interfaces. (4) An increase in the relative scaling parameter Γm resulted in an increase of σ23, D2 and B2.
This occurred due to the increasing the interface stiffness (or equivalently, the relative scaling parameter Γm)
enhanced the discontinuity in σ23, D2 and B2 across the interface under the interface stress model. (5) An
increase in the nonlocal length l resulted in a decrease in u3, σ13 , σ23, D1 , D2, B1 , and B2. (6) The nonlocal
length l exhibited a minimal effect on the distribution of ϕ and ψ. The corresponding mode shapes were
clustered, indicating insensitivity to the nonlocal length. (7) Compared to the effect of imperfect conditions,
the influence of the nonlocal length on the mode shape distributions was less significant.
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Figure 10: (Continued)
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Figure 10: Variations for the first-order mode shapes of the Love wave in a BTO/CFO/BTO plate along the thickness
direction (dimensionless wavenumber kH = 2): (a–c) displacement u3, electric potential ϕ, and magnetic potential ψ,
(d,e) stresses σ13 and σ23, (f,g) electric displacements D1 and D2, (h,i) magnetic flux density B1 and B2. The plate is with
nonlocal effect and extended interface stress imperfect interfaces

For the second-order mode shapes (Figs. 11 and 13), the following features were observed for both plate
configurations: (1) The distributions of u3,ϕ, ψ, σ13 , D1 and B1 were anti-symmetric about the midplane, while
the extended tractions σ23, D2, and B2 were symmetric about the midplane. (2) The fields of u3, σ13 reached
their maximum values at both the top and bottom surfaces, while the fields of D1 , D2, B1 and B2 peaked at
the interfaces. (3) An increase in the relative scaling parameter Γm resulted in a decrease of u3, ϕ, ψ, and σ13
and an increase of the discontinuities of σ23, D1 , D2, B1 and B2 across the interfaces. (4) An increase in the
nonlocal length l resulted in a decrease in σ13 and σ23. (5) The nonlocal length l had negligible effects on u3,
ϕ, and ψ. The mode shapes of these field quantities were clustered, suggesting insensitivity to the nonlocal
length parameter. (6) Compared to the extended interface stress conditions, the effects of the nonlocal length
on the mode shape distributions were less significant.
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Figure 11: (Continued)
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Figure 11: Variations for the second-order mode shapes of the Love wave in a BTO/CFO/BTO plate along the thickness
direction (dimensionless wavenumber kH = 2): (a–c) displacement u3, electric potential ϕ, and magnetic potential ψ,
(d,e) stresses σ13 and σ23, (f,g) electric displacements D1 and D2, (h,i) magnetic flux density B1 and B2. The plate is with
nonlocal effect and extended interface stress imperfect interfaces
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Figure 12: (Continued)
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Figure 12: Variations for the first-order mode shapes of the Love wave in a CFO/BTO/CFO plate along the thickness
direction (dimensionless wavenumber kH = 2): (a–c) displacement u3, electric potential ϕ, and magnetic potential ψ,
(d,e) stresses σ13 and σ23, (f,g) electric displacements D1 and D2, (h,i) magnetic flux density B1 and B2. The plate is with
nonlocal effect and extended interface stress imperfect interfaces
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Figure 13: (Continued)
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Figure 13: Variations for the second-order mode shapes of the Love wave in a CFO/BTO/CFO plate along the thickness
direction (dimensionless wavenumber kH = 2): (a–c) displacement u3, electric potential ϕ, and magnetic potential ψ,
(d,e) stresses σ13 and σ23, (f,g) electric displacements D1 and D2, (h,i) magnetic flux density B1 and B2. The plate is with
nonlocal effect and extended interface stress imperfect interfaces

5 Conclusions
In this study, a comprehensive analytical framework was developed for predicting three-dimensional

field distributions in nonlocal MEE laminates with interface stress imperfections. The methodology was used
to generalize four key components: the pseudo-Stroh formulation, transfer matrix method, interface matrix
method, and the nonlocal constitutive equation proposed by Eringen, which were collectively facilitate
recursive field solutions. The key theoretical advancement involved the constructive relationship between
the nonlocal and classical extended tractions fields. The analytical framework was illustrated through its
application to BTO/CFO/BTO and CFO/BTO/CFO sandwich plates. The study revealed the following key
findings: (1) both the nonlocal effect and interface stress-type imperfections significantly influenced the
dispersion curves; (2) increasing the nonlocal length reduced the natural frequency, particularly in high-
frequency regions; (3) increasing the severity of interface stress-type imperfections increases the natural
frequency; (4) compared to the interface imperfections, the nonlocal effect has a less significant influence on
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the mode shapes of most field quantities; (5) the mode shapes of some field quantities exhibit similar behavior
and appear insensitive to variations in the nonlocal length parameter; (6) interface stress-type imperfections
reverses the direction and enhances the magnitude of the mode shapes, with the nonlocal effect further
amplifying these changes.

While the current model effectively captures the local behavior of the investigated plate, its applicability
to more complex laminated nanostructures may be limited. Specifically, the formulation may require an
extension to address piezomagnetic facesheet configurations or a CNT composite layer with piezoelectric
surface layers (common in energy harvesting applications). Future studies should focus on extending this
framework to investigate these advanced MEE plate configurations, incorporate higher-fidelity plate theories
(e.g., layer-wise or zigzag models), and improve local field distribution predictions in composite architecture
[33].
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