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ABSTRACT: The exponential growth of over-the-top (OTT) entertainment has fueled a surge in content consumption
across diverse formats, especially in regional Indian languages. With the Indian film industry producing over 1500
films annually inmore than 20 languages, personalized recommendations are essential to highlight relevant content. To
overcome the limitations of traditional recommender systems—such as static latent vectors, poor handling of cold-start
scenarios, and the absence of uncertainty modeling—we propose a deep Collaborative Neural Generative Embedding
(C-NGE) model. C-NGE dynamically learns user and item representations by integrating rating information and
metadata features in a unified neural framework. It uses metadata as sampled noise and applies the reparameterization
trick to capture latent patterns better and support predictions for new users or items without retraining.We evaluate C-
NGE on the Indian Regional Movies (IRM) dataset, along with MovieLens 100 K and 1 M. Results show that our model
consistently outperforms several existing methods, and its extensibility allows for incorporating additional signals like
user reviews and multimodal data to enhance recommendation quality.

KEYWORDS: Cold start problem; recommender systems; metadata; deep learning; collaborative filtering; generative
model

1 Introduction
Movies are an unavoidable component of both enjoyment and daily life. Because of their brief duration

and widespread popularity, many people enjoy viewing them as a kind of entertainment. In the past,
individuals had to physically visit movie theaters or wait for the movie to be televised in order to watch it.
Streaming services like Netflix, Amazon Prime, and Hotstar have made it possible to watch movies on smart
devices anytime and anywhere, and according to a survey conducted by MICA and Communication Crafts,
the amount of time people spend on Video Streaming Apps in nations such as Australia, India, Indonesia,
South Korea, andThailand increased by 140% in 2018 compared to 2016. YouTube emerged as the dominant
platform in India in 2018, withAmazon Prime and the Indian portalsHotStar, JioCinema, andVoot following
closely. In India, the number of people that view content via over-the-top (OTT) platforms is rather high [1].

Additionally, it has been documented that 97 percent of YouTube material is viewed in languages
exclusive to specific regions, and 60 percent of YouTube viewing time takes place outside the six major
metropolitan areas. Hoichoi, an all-Bengali content streaming platform, experienced a significant 85 percent
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surge in traffic, with the number of unique visitors rising from 76,000 in March 2018 to 140,000 in March
2019.The survey conducted by consultancy firmKPMGIndia andOTTplatformErosNow reveals thatHindi
is the most preferred language for content consumption among users in India, followed by Tamil, English,
and other regional Indian languages. It demonstrates that the majority of Indian viewers choose to watch
OTT content in regional languages. However, because of the unavailability of Indian Regional Movies (IRM)
data, there has not been much research done on the IRM dataset for recommendations. The unique and
first-of-its-kind IRM dataset used in this research was created by the IIIT Delhi institute.

One of our primary goals is to focus on the Indian movies dataset to be able to predict the ratings
accurately by the users so that movies are recommended according to user personalization.There are several
benchmarking datasets like Netflix, MovieLens, IMDB that are used for testing the recommendation system.
The main drawback of these datasets is that they have very few Indian cinema movies listed as opposed
to the Hollywood and English serials. They lack regional movies, and India has a diversified user list that
spans about 20 regional movie languages and almost 1500–2000 movies released each year. India has a huge
box office gross revenue of 2.1 billion US dollars each year as of 2015, which is third-largest in the world.
Therefore, a dataset is must that is specific to Indian regional cinema to predict the ratings of the user for
a better recommendation system. The number of users watches movies in India is most substantial than
in other countries, which is easily verified that in 2011, 3.5 billion tickets were sold, which is 900 K more
than Hollywood movies. The popularity of Indian movies is due to the film city Mumbai. The major film
production cities include Mumbai, Chennai, Kolkata, Bangalore, Kochi, and Hyderabad. The Hindi movies
are coined as Bollywood cinema, which has 43 percent box office revenue. The second-highest box office
revenue comes from the South Indian Tamil and Telugu films. Another film culture is Bengali films, also
known as Tollywood. India has a population of around 1.37 billion, as evidenced by the fact that it has around
2100 multiplex screens. Indian movies are watched worldwide and are a global enterprise that is spread in
southernAsia and across North America, Asia, Europe, eastern Africa, themiddle east, china, and elsewhere,
with a reach in 90 countries. Therefore, as of now, we should have a recommender system specific for the
Indian movies dataset that can predict ratings for diversified IRM.

Recommender systems utilize users’ ratings for recommending items specific to the user’s interests.
Two approaches are used for recommender systems: collaborative filtering-based (CF) and content-based
(CB). CB approaches exploit user and item profiles to recommend user-specific items. CF approaches rely
on other users’ preferences/ratings collaboratively and try to recommend items to users who have similar
tastes to other users. CB approaches require users’ implicit data, which is hard to capture against CF-based
approaches, which mainly depend on other users’ explicit data like ratings, which is easier to capture. One
of the drawbacks of CF-based approaches is the well-known cold start problem [2,3], which can be resolved
in CB approaches and using metadata information of users and items. Our work focuses on both CF and CB
techniques to take advantage of both approaches.

Most popular websites like Netflix try to focus on Indian movie cinema, and the reason for that is
to showcase the great stories of Indian movies worldwide. It is a great endeavor to enable people to know
great regional and varied genres, and having different languages of Indian cinema. A robust approach is
needed to capture the diversified Indian movies according to each user’s preference. The recommendation
accuracy can also be improved by correctly predicting the ratings provided by the user in the future. It can
be realized that using old techniques like Matrix Factorization (MF) and other static methods, it can be
hard to capture each user’s taste. As deep learning techniques in various application domains are extensively
used with excellent results, so using deep learning techniques can achieve the desired goal. We believe
that applying a deep learning model to the IRM dataset and comparing it is the first of its kind. Also, as
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of now, no recommendation model exists that is built on diversified Indian movies regional cinema for
interested audiences.

The cold start problem is the primary issue with the recommender system, which is the inability to
predict ratings correctly for a new user or a new item.The use of metadata as a side information plays a vital
role in dealing with this problem effectively. Metadata information of the user or item gives additional infor-
mation to the model whenever new user/item comes and therefore improving recommendation accuracy.
While generating satisfactory recommendations using only a limited number of characteristics is possible,
incorporating user and itemmetadata into themodel can significantly enhance its effectiveness.With limited
features, the model attempts to learn by generating arbitrary patterns. However, when extra supplementary
features/information are provided, the acquired patterns become more logical. We conducted experiments
to examine the impact of incorporating user and item metadata as auxiliary features in recommendation
models on the accuracy of rating predictions.

Several deep generative models [4–6] have evolved which primarily differs in the way ratings were
generated. They have shown impressive results and model the user-item latent vectors effectively to some
extent. However, these generative model learns the latent vectors statically and compute the rating using a
fixed inner-wise dot product between these latent vectors. Also, some generative models ignore the use of
metadata features and the user-item abstraction process. The uncertainty in the ratings is also not captured
intuitively. Also, they assume fixed user and item prior information, which limits the model’s capability
in learning the user-item interaction function. To deal with the above limitations, we propose a neural
generative embedding (C-NGE) model that has the ability to generate both the latent vectors and the ratings
by incorporating ratings and metadata features. For effective model learning we introduce noise in the form
ofmetadata features, which helps in reducing overfitting of themodel for the ratings given by the user towards
the items. To make our model generative, we use a reparameterization trick wherein we move the process of
sampling to an input layer so that the randomness in the function learnt is now associated with the noise and
not inputs or the parameters of themodel. It helps in learning and then generating the user-item embeddings
dynamically. Deep neural networks are used to predict the final rating by learning the interaction function
between the user and the item. The use of metadata features for users and items helps to alleviate the cold
start problem.

The rest of this paper is laid out as follows. Section 2 describes the literature survey related to this work.
Problem formulation and motivation are described in Section 3. Section 4 describes the proposed model in
detail. Section 5 describes the experimental setup and results. Section 6 concludes the paper with possible
future perspectives of this work.

2 Related Work
This section compiles a list of papers that use machine learning and deep learning techniques to

solve recommendation problems. Here, papers are encouraged to include metadata and other auxiliary
information, which is particularly useful for the recommendation task.

Recent advances in recommender systems have addressed information overload by leveraging deep
learning techniques to enhance rating prediction and top-N ranking tasks [7]. Extant works further
explore pre- and post-modeling challenges, benchmark datasets, feature learning strategies, and evaluation
methodologies, collectively driving the development of next-generation recommendation models.

In the past, collaborative filtering (CF) techniques were extensively utilized for explicit user feedback,
such as ratings and reviews. Currently, identical methods are being employed to examine implicit feedback,
which includes a user’s buying history, click-through rate (CTR), and webpage visit frequency. Collecting
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and examining implicit input is a challenging endeavor. However, it is also highly valuable as it employs
content-based methods that are beneficial for user tailoring and addressing the cold start problem. In order
to mitigate the cold start problem, hybridmethods employ latent factor models in conjunction with content-
based approaches.

Shahab et al. [8] presented a hybridmovie recommendation system that tackles the cold start problemby
integrating Collaborative Filtering (CF), Singular Value Decomposition (SVD), and Generative Adversarial
Networks (GAN). Content-based (CB) filtering enhances personalization by incorporating movie metadata
like release year and genre. The approach, validated on the MovieLens dataset, demonstrates improved
recommendation accuracy, especially for users with sparse interaction histories.

Siet et al. [9] proposed a deep learning-based movie recommendation system that addresses scalability,
data sparsity, and the cold-start problem by leveraging user demographic information and sequential
behavior. It employs a transformer with positional encoding and a Multilayer Perceptron (MLP) to model
user preferences, while K-Means clustering enhances recommendation diversity. Evaluation of MovieLens
datasets shows significant performance improvements over traditionalmethods inTop-N recommendations.
Padmavathi et al. [10] proposed different movie recommendation models such as content-based, collabora-
tive filtering (KNN, SVD, Boost), and hybrid models. Second, it shows the resilience of Matrix Factorization
and benchmarks the results of the Netflix experiment. Numerical results indicate that the efficiency and
accuracy of the hybrid models were better and, thus, that these methods are appropriate for real applications
in practice.

Anwar et al. [11] presented Multi-Criteria Recommender Systems (MCRS) to enhance user satisfaction
by incorporating multiple rating aspects into collaborative filtering. A modified similarity measure and
user clustering technique are proposed to address sparsity and multidimensionality. Experimental results
on benchmark datasets demonstrate improved accuracy and efficiency in rating prediction. Mao et al.
[12] proposed a hybrid recommendation model that enhances matrix factorization by integrating weighted
similarity measures and log-likelihood text mining to address sparsity and cold-start issues. It improves
upon traditional Alternating Least Squares (ALS) by reducing information loss and error rates. Experimental
results show superior performance with lower RMSE and higher F1 scores compared to existing models.

Sinha et al. [13] evaluated traditional machine learning models, Convolutional Neural Networks
(CNNs), and Quantum Neural Networks (QNNs) for movie recommendations using the MovieLens-1M
dataset. Two QNN architectures, leveraging quantum principles like superposition and entanglement, are
introduced to improve accuracy. Results show that the simpler QNNmodel outperforms classical methods,
reducing MAE and RMSE by 6%.

Auxiliary information in the form of metadata is used to improve the CF methods even more.
Researchers [14] used metadata that considers item and user as vectors, which is an embedding of the
original data in a multidimensional space. Meta-Prod2vec [15] is proposed for representing items uniquely
by computing low-dimensional item embeddings using metadata and attributes to find item similarity
interactions. For regularizing item embeddings, metadata is used as side information, and it leads to
better recommendation tasks on the music dataset. For reducing the cold start problem, cross-domain
recommendations are a practical approach that uses source domain rich information and applies it to the
target domain, which has fewer user preferences. Previous work on cross-domain recommendations used the
CF paradigm and neglected the content information of the items. Recently, a cross-domain recommendation
[16] is proposed that uses the metadata of the movies like genres, directors, actors and themes, composers,
and music styles metadata for the songs, and embed these metadata in collaborative matrix factorization
to deal with the cold start problem. Using MovieLens and Netflix datasets to contain different metadata
information [17] improves the quality of the recommendations. The Word2Vec embedding model [18] is
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proposed to use metadata using deep learning for user personalisation in the movie rating prediction task.
Performance improvement based on recall@100 is observed compared to the baseline approaches.Thereafter,
research scholar coauthors and collaborators recommendation task as a link prediction task based on the
knowledge graph embeddings [19] is proposed. They used scholarly metadata like citation networks and
research publications. Different metadata views of the item from user reviews [20] are employed, which
tells us about the item statistics, user opinions, and item quality. Attained results provide good rankings in
contrast to their isolated versions. Many recommendation systems currently do not merely find patterns and
then make recommendations based on user and item ratings. Many advancements have been made in the
use of side information in conjunction with it to increase the quality of recommendation systems. To better
comprehend themovie, a movie recommendation framework was created that includedmatrix factorization
with extra visual features retrieved from pictorial data such as posters and still frames. Users may also wish
to see a film based on appealing posters or frames, which cannot be predicted from reviews or ratings. As
a result, features like colour histograms and predefined categories were employed to analyse user data and
provide better recommendations [21].

Deep learning based recommender systems is an ongoing field of research that has vast applications in e-
commerce and business scenarios. Table 1 summarizes that uses neural collaborative filtering techniques and
metadata as auxiliary input information.The ACMRecSys 2018 conference series emphasized deep learning
algorithms and techniques on recommender systems. Nowadays, generative models are gaining popularity
for recommendation tasks to generate user-item associations using feedback. The authors [22] increase
long-tail performances using adversarial training and Neural Collaborative Filtering (NCF). NCF learns the
implicit feedback data associations, and simultaneously, the adversarial training is used to reproduce these
associations to increase the long-tail performance. Users’ feedback behavior many times contaminated due
to imperfect preference selection [23]. This scenario can be handled by increasing the model’s performance
and robustness. They used adversarial training on collaborative autoencoder-based neural networks. The
researchers exploited adversarial network embedding [24] to capture latent representations in learning robust
and stable graph representations. RecGAN [25]model uses recurrent neural networks (RNN) andGenerative
adversarial networks (GAN) to model the short and long temporal behavior of the user and the item using
GRU cells and learning latent features, respectively. The implicit hierarchical structure [26] of user and
item preferences is exploited when they are not explicitly available. It is noticed that the hierarchy of user
and item preferences improves the performance of recommender systems. Deep matrix factorization [27]
models the implicit feedback information by embedding this feedback into a latent vector representation
of user-item preferences to reduce the model parameters and therefore increase training efficiency. An
attention-based latent factor model [28] is considered for an explainable personalized recommendation.
The model gives attention weights to different item features based on that particular user’s attention.
For personalization, they modeled the attention distribution of every user based on his attention weights
given to the item features. The existing problem of GAN-based CF is solved [29] by using vector-wise
adversarial training that occurs in CF, which increases recommendation accuracy. Online social network
information provides huge information beyond ratings [30]. So they proposed two methods. First, they
used three sources of information, namely item reviews, ratings, and social relations, for rating prediction
using latent factors and hidden topics. Secondly, using implicit feedback from ratings increases the capability
and flexibility of the model. A model [31] is proposed that uses both short-term as well as long-term or
session-based information for content-aware movie recommendation using adversarial learning. In this
adversarial framework, the generator acts as a reinforcement learning agent that generates the next movie
recommendation to the user sequentially, and the discriminator discriminates between themovies generated
and the real movies recorded. They also incorporated posters of movies when ratings are sparse to increase
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recommendation accuracy. The authors exploited multi-modal data [32] that has items with images and
user reviews towards items to model preferences of the user and different aspects of item features with
their importance. Then this aspect’s importance is combined with the latent factor model that learns users
and item latent factors. Reference [33] focused on aspect-aware ratings towards individual items. Finally,
the actual rating linearly combines aspect ratings weighted by their aspect importance. It results in good
interpretability of the model and alleviates the cold start problem. Embeddings were utilized to build two
models, Neural Collaborative Filtering [34] and Neural Matrix Factorization, which directly represent user-
item interaction matrices. In the context of movie recommendation, the suggested model was evaluated
against advanced matrix factorization techniques like ItemPop and ItemKNN. The findings demonstrated
a significant enhancement in performance. Autoencoders have also improved movie recommendations in
a variety of ways. In comparison to existing methods, an adversarial training framework based on the
Collaborative Denoising Autoencoder model improved both model robustness and overall performance.
In the inputs, a small amount of perturbation is added to simulate corrupted or noisy data, which is
subsequently reconstructed to the original noiseless input data as an output. Recommendation via dual
autoencoders [35] was also developed, which used a gradient descent to learn hidden representations of
users and movies using autoencoders. The model [36] proposed is a stacked denoising autoencoder-based
hybrid model that performs deep learning of users and items’ latent factors from side information, as well
as collaborative filtering from the rating matrix. By combining stacked denoising autoencoder (SDAE) with
matrix factorization, a hybrid recommendation model based on stacked denoising autoencoders used both
a rating matrix and side information. These two models are combined to take use of their advantages in
learning more expressive models [37]. More recently, the authors proposed the Meta Embedding Deep
Collaborative Filtering (MEDCF)model [38] to address the cold start problem for the rating prediction task.
However, the C-NGEmodel proposed in this work is different from theMEDCFmodel because theMEDCF
model is not generative. Therefore, it cannot generate the abstract latent representations and is computed
statically in contrast to the C-NGE model, where we used it in a probabilistic sense that can generate the
latent representations dynamically.

Table 1: Summary of literature on movie recommender systems

Authors Methods Merit Remarks
Shahab et al.

[8]
Hybrid CF, SVD, GAN
with CB filtering

Tackles cold-start with
metadata-driven
personalization

Improved accuracy for
sparse user interaction

history
Siet et al. [9] Transformer +MLP +

KMeans on user
sequences

Enhances diversity and
scalability

Outperforms traditional
methods on Top-N

metrics
Padmavathi
et al. [10]

CF (KNN, SVD, Boost),
CB and hybrid models

Hybrid and MF methods
show robust accuracy

Validated on Netflix
dataset with superior

results
Anwar et al.

[11]
MCRS with modified
similarity + clustering

Reduces
multidimensionality and

sparsity

Improved prediction
accuracy on benchmark

datasets
Mao et al.
[12]

ALS + weighted
similarity + text mining

Reduces RMSE and
cold-start effect

Hybrid model mitigates
information loss in MF

(Continued)
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Table 1 (continued)

Authors Methods Merit Remarks
Sinha et al.

[13]
QNNs vs. CNNs and
classical machine

learning (ML) models

QNNs outperform others
in accuracy and efficiency

Achieved 6% lower MAE
and RMSE on
MovieLens-1M

Kula [14],
Vasile [15]

Metadata embeddings,
Meta-Prod2Vec

Improves item similarity
and personalization

Enhanced vector
representations for RS
using metadata

Fernández-
Tobias et al.

[16]

Cross-domain CF using
metadata

Leverages source-domain
to resolve cold-start

Integrates metadata into
matrix factorization

Yoon and
Lee [18]

Word2Vec on metadata
with deep learning

Improves recall in movie
rating prediction

Achieved strong
performance in
recall@100

Henk et al.
[19]

Knowledge graph
embedding for link

prediction

Applied to scholarly RS
using metadata

Effective
recommendation via
academic citation

networks
D’Addio
et al. [20]

Multi-view metadata
from reviews

Integrates quality,
opinion, and stats

Outperforms isolated
views in item ranking

3 Problem Formulation and Motivation
In this section, problem formulation is presented as a preliminary task, and the naive Matrix Factoriza-

tion (MF) approach is briefly explained, with a highlight on the limitation of the inner dot product between
the user and item latent vectors. Table 2 describes the notations list used in this work for clarity.

Table 2:Notation list. A user and an item are denoted by the subscripts u and i, respectively.The user metadata features
are denoted by the subscript r, while the item metadata features are denoted by the subscript s. R-NGE and M-NE
modules are denoted by the superscripts R andM, respectively

M Number of users
N Number of items
yui Actual user u rating on item i
ŷui User u predicted rating on item i
yR

ui User u actual binarized score on item i for R-NGE
ŷR

ui User u predicted score on item i for R-NGE
yM

rs Actual binarized score of user metadata r on item
metadata s for M-NE

ŷM
rs Predicted score of user metadata r on item

metadata s for M-NE
I Matrix of user-item interactions
I′ Binary interaction matrix of user-item metadata
zu User u latent vector
zi Item i latent vector

(Continued)
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Table 2 (continued)
z′r User metadata r latent vector
z′s Item metadata s latent vector
oU

u User u binarized one-hot encoded feature vector
for R-NGE

oI
i Item i binarized one-hot encoded feature vector

for R-NGE
oR

r User metadata r binarized one-hot encoded
feature vector for M-NE

oS
s Item metadata s binarized one-hot encoded

feature vector for M-NE
W The neural network layer weight matrix
h The output layer weights
b Bias vector
a Activation function

3.1 Matrix Factorization
Let u denotes the user and i denotes the item. We assume the total number of users and items as M

andN, respectively. Let I ∈ RM×N be the implicit binarized interactionmatrix which is constructed using the
rating matrix as:

yui = {
1 if interaction (user u, item i) is positive;
0, otherwise. (1)

Here a value of yui = 1 indicates user u likes the item i. yui = 0 indicates that user u has not interacted
with the item i.

Let the user latent vector be zu and item latent vector be zi . Using matrix factorization we can calculate
the predicted rating ŷui as

ŷui = f (u, i∣zu , zi) = zT
u zi =

K
∑
k=1

zuk zi k , (2)

where K denotes the total dimensions of the latent space.This inner-wise dot product between latent vectors
limits the model performance as it only finds the linear correlation between them as with anyMF technique.
A common solution to this limitation is to use large value ofK but then it will not generalize the data properly
due to overfitting and therefore, resulting in a large ranking loss. As a result, we will use the neural networks
that learns the non-linear interaction function among the input data given.

4 The Proposed Model
This section describes a proposed model and algorithm using rating and metadata information for

users and items through the deep generative framework and shows its comparison with the popular neural
collaborative filtering (NCF) technique.



Comput Model Eng Sci. 2025;144(1) 469

4.1 Collaborative Neural Generative Embedding (C-NGE)
The Collaborative Neural Generative Embedding (C-NGE) model is inherently more complex than

traditional matrix factorization methods due to its multi-layered deep neural network architecture, which
enables the capture of non-linear user-item interactions andmetadata features.This complexity translates to
significant computational requirements, necessitating powerful GPUs for efficient parallel processing during
training, unlike standard CPUs commonly used in traditional methods.

The proposed Collaborative Neural Generative Embedding (C-NGE) model consists of three key
modules: (i) Rating Neural Generative Embedding (R-NGE), which captures user-item interactions from
the rating matrix, (ii) Metadata Neural Embedding (M-NE), which encodes user and item metadata, and
(iii) Collaborative Neural Generative Embedding (C-NGE), which fuses both R-NGE and M-NE modules
to enhance recommendation quality.

Each of these modules learns latent feature representations via deep neural networks (DNNs), ensuring
higher-order feature extraction and abstraction.

In the R-NGE module, the user-item interaction matrix is represented as binary implicit feedback.
We employ one-hot encoding followed by an embedding layer to extract latent features for both users and
items. To prevent overfitting, we introduce sampling noise as metadata features, which helps generalize the
learning process.However, direct backpropagation is challenging since themodel samples latent vectors from
a learned distribution rather than processing direct inputs. Specifically, the model estimates the mean (μ)
and variance (Σ) from input features and then samples a latent vector (z) from a Gaussian distribution. Since
this sampling step is non-differentiable, we utilize the reparameterization trick, where the noise component
is explicitly sampled from a normal distribution and then transformed using learned parameters. This
technique ensures the model remains differentiable, allowing effective gradient-based optimization.

The sampled latent vectors are then combined via an inner-wise dot product to produce a “pseudo-
rating” ( ŷ pseudo

ui ), which acts as an intermediate representation before final rating generation. This
pseudo-rating helps in capturing meaningful interactions between users and items before integrating
metadata features.

In the M-NE module, we encode user and item metadata as binary vectors and pass them through
an embedding layer. The embedded metadata is processed using multiple layers of a deep neural network
(DNN), with non-linear transformations (ReLU activations) applied to learn complex feature interactions.
This module serves as a regularizer for the rating prediction process, improving generalization.

The C-NGE module is the final stage, where we concatenate the latent representations from R-NGE
and M-NE to leverage both user-item interactions and metadata features simultaneously. This combined
representation passes through deep neural interaction layers, capturing collaborative patterns in the data.
The final output layer utilizes a sigmoid activation function to produce a probabilistic score, which represents
the predicted user preference (rating) for an item.This probabilistic interpretation incorporates uncertainty,
making the model more robust to noisy or sparse data.

By jointly learning from both rating and metadata information, the C-NGEmodel effectively generates
user and item latent vectors that contribute to accurate and personalized rating predictions. The overall
structure of our proposed model is illustrated in Fig. 1.
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Figure 1: The proposed model

4.2 Difference between Proposed C-NGE Model and the NCF Technique
The proposed model is the extension and application of the popular NCF technique. The extensions

are the following: (i) Incorporation of metadata features, (ii) the generative nature of the latent vectors as
well as the rating using the reparameterization trick, and (iii) employing both abstraction and generation
in a unified framework in a probabilistic manner to deal with the uncertainty in ratings. Therefore, the
proposed model results in actual learning of the latent vectors and hence the generated rating as compared
to the NCF technique. Incorporating metadata give neural networks additional information about user
preferences towards items. Metadata is essential when the user has no rating for a specific item, and also
when the new user has not rated any item, or a new item has no ratings. It avoids the cold start problem
and, at the same time, avoids overfitting of the sparse rating/interaction matrix by acting as a regularizer.
Metadata of users can contain user demographic information such as gender, age, and occupation. Metadata
for the item (in our case, movies) may contain item-specific features such as genre, director, and cast. This
information helps in understanding user preferences towards items and, therefore, increases the overall
recommendation accuracy.
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4.3 Algorithm Described Based on Proposed C-NGE Model
Let user metadata be r and itemmetadata be s. We define the I′ ∈ RM×N interaction matrix between the

user metadata and the item metadata features as an implicit binarized metadata features such that:

yrs = {
1, if the interaction (user metadata r and item metadata s) is observed;
0, otherwise. (3)

The value yrs = 1 denotes the interaction between r and s, otherwise 0. The implicit feedback has the
limitation of indicating only the positive feedback between r and s while ignoring the negative feedbacks
since 0 indicates either unobserved or missing entry.

Estimating the scores of missing entries in I′ required to rank the items is defined as implicit feedback
recommendation. Model-based approaches assume the use of the model itself to predict data. It can be
formally defined as learning ŷrs = f (r, s∣θ), where ŷrs indicates the predicted score of yrs and θ denotes
the model parameters, and f indicates the function that maps the model parameters to ŷrs , identified as
interaction function. Existingmachine learning techniques that optimise a specific cost function are required
to estimate model parameters θ. Pointwise loss and pairwise loss are the two most used cost functions. The
M-NEmodule uses neural networks to calculate function f on the metadata binarized information in order
to predict ŷrs . As a result, it inherently allows both pairwise and pointwise learning.

The model depicted in Fig. 1 is a layered neural network design. It has three modules as described
earlier: R-NGE neural network is for interaction matrix, M-NE neural network is for metadata features and
the C-NGE neural network is for collaborative embedding of the other two modules. The R-NGE neural
networks generates the user and item latent vectors by learning through the rating interaction matrix using
the reparameterization trick. To avoid overfitting of the model we use metadata features as the sampled
noise so that the model learns better latent representations. The M-NE neural networks comprises of the
deep neural layers representing the deep latent representations between user and item metadata features.
The C-NGE neural network generates the final rating by learning through the interactions between the other
two modules.

The R-NGE neural network calculates the predicted score ŷR
ui by performing the inner dot product

between the latent vectors of the user and item. The M-NE module employs a neural network structure to
forecast the score ŷM

rs (whereM represents M-NE) by utilizing metadata information from users and things.
In the C-NGE module, the values ŷR

ui and ŷM
rs are combined in the neural collaborative layers. To obtain the

ultimate anticipated rating ŷui , the combined output is inputted into a deep neural network, which further
learns non-linear interactions between the user and object.TheR-NGEmodule can serve as a versatile variant
of the MF approach with the utilization of a linear activation function. The C-NGE neural network utilizes
the linearity of R-NGE and the non-linearity of M-NE to describe user-item non-linear interactions. Denote
oR

r and oS
s as binary one-hot encoded feature vectors representing the user metadata r and item metadata s,

respectively. The content features are determined by the user’s demographic data and the genre information
of the item.

The M-NE module includes an embedding layer positioned above the input layer. A wholly connected
layer transforms a sparse vector representation, encoded in a one-hot format, into a denser representation.
The dimension of the last hidden layer determines the model’s capacity, denoted as X. The computed value
of the predicted score, denoted as ŷM

rs , is determined in the final output layer.
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M-NE framework can be expressed mathematically as:

ŷM
rs = f (Z′Tr , o

R
r , Z

′T
s oS

s ∣Z′r , Z′s , θ f ). (4)

The matrices Z′r and Z′s represent the latent vectors for users and items metadata. Z′r has dimensions
M × K1 and Z′s has dimensionsN × K2, whereM andN are the number of users and things, andK1 andK2 are
the dimensions of the latent vectors. The latent dimensions for user and item metadata are correspondingly
denoted by K1 and K2. The symbol θ f represents the model parameter associated with the interaction
function f . Let f denote a multi-layer neural network, which can be mathematically defined as:

f (Z′Tr , o
R
r , Z

′T
s , o

S
s ) = ϕout(ϕX(. . . ϕ2(ϕ1(Z′Tr , o

R
r , Z

′T
s oS

s )) . . .)). (5)

The mapping function for the output layer is ϕout , while the mapping function for the x-th M-NE layer
is ϕx . There are a total of X M-NE layers.

Current pointwise methodologies for learning model parameters mostly focus on regression tasks,
utilizing a mean squared loss function.

Lsqr = ∑
(r ,s)∈I′∪I′−

(yM
rs − ŷM

rs )2. (6)

In the binary metadata matrix for user-item interactions, I′ represents the observed interactions, while
I′− represents the unobserved interactions with negative feedback.

Given this information, M-NE is designed as a probabilistic model that limits the model output ŷM
rs to

the range [0, 1].This value represents the likelihood of usermetadata r being relevant to item s.We considered
a sigmoid activation function ϕout for the output layer. Let’s utilize this configuration to depict the probability
function in the following manner:

p(I′, I′−∣Z′r , Z′s , θ f ) = ∏
(r ,s)∈I′

ŷM
rs ∏
(r , j)∈I′−

(1 − ŷM
r j ). (7)

The negative logarithm of the above likelihood function is:

L = − ∑
(r ,s)∈I′

log ŷM
rs − ∑

(r , j)∈I′−
log(1 − ŷM

r j )

= − ∑
(r ,s)∈I′∪I′−

yM
rs log ŷM

rs + (1 − yM
rs )log(1 − ŷM

rs ).
(8)

The loss function is the target for minimization, and the Stochastic Gradient Descent (SGD) technique
can be employed for optimization. The equation referenced as Eq. (8) is synonymous with the log loss or
binary cross-entropy loss.

We compute the average and variability of the user and item embedded vectors, denoted as μ(zu), σ(zu),
μ(zi), and σ(zi), to address the uncertainty in the ratings and provide more precise latent representations.
Subsequently, we randomly select a zu (or zi) to transmit to the subsequent layer. Consequently, the
entire process becomes unpredictable, and the function acquired by a neural network is no longer a
continuous function of the inputs. In order to address this issue, we utilize a clever technique known as
the reparameterization trick, wherein we transfer the sampling process to an input layer. To sample from
a one-dimensional normal distribution with mean μ and standard deviation σ , we can generate a random
variable ε from a standard normal distribution and then transform it using the equation ε ∼N(μ, σ). The
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process involves generating a random variable from a standard normal distribution, denoted asN(0, 1).This
random variable is then used to compute an updated latent vector, zu = μ + σ ∗ ε, for the user (and a similar
computation is done for the object).The function randomness is now linked to ε instead of being dependent
on the inputs or parameters of themodel. Our approach considers ε as twometadata characteristics, denoted
as r and s. Following a normal distribution, these features are utilized as sampled noise in the R-NGEmodule.
Subsequently, the mapping function of the initial neural R-NGE layer is delineated as follows:

ϕ1(zu , zi) = zu ⊙ zi , (9)

where ⊙ represents the element-wise inner product between the vectors zu and zi . The vector is then
transformed to the output layer as follows:

ŷR
ui = aout(hT(zu ⊙ zi)), (10)

where h and aout are the weights and activation function of the output layer, respectively.
More accurately, the M-NE module under the C-NGE framework can be summarized mathematically

as:

z1 = ϕ1(z′r , z′s) = [
z′r
z′s
] ,

z2 = ϕ2(z1) = a2(W T
2 z1 + b2),

. . .
zL = ϕL(zL−1) = aL(W T

L zL−1 + bL),
ŷM

rs = σ(hT zL).

(11)

where bx , ax , Wx denote the bias vector, activation function, and weight matrix for the x-th layer of M-
NE, respectively.

Coupling an R-NGE layer with a one-layer M-NE can be mathematically defined as:

ŷui = ReLU(hT a(zu ⊙ zi +W [ z′r
z′s
] + b)). (12)

The sharing of the embedding of R-NGE and M-NE may hinder the performance of the combined
model by limiting their ability to utilize embeddings of the same length.

In order to enhance the versatility of theC-NGEmodel, distinct embeddings are utilized for eachmodel,
enabling them to learn their specific features more effectively.

In addition, the outputs of the last hidden layer for R-NGE and M-NE models are combined by
concatenation, which is mathematically described as:

ϕR = zu ⊙ zi ,

ϕM = aL(W T
L (aL−1(. . . a2(W T

2 [
z′r
z′s
] + b2) . . .)) + bL),

ŷui = ReLU (hT [ ϕR

ϕM ]) ,

(13)

where zu represents the latent vector for user u, and z′r represents the latent vector for user metadata r. Sim-
ilarly, zi represents the latent vector for item i, while z′s represents the latent vector for item metadata s. The
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activation function used forM-NE layers is theRectified LinearUnit (ReLU).The integratedmodel is referred
to as C-NGE, which simultaneously incorporates the non-linearity through a neural network structure. The
system utilizes rating and metadata information to acquire knowledge of the latent representation of the
user-item relationship.The learning algorithm for the rating prediction job in the C-NGEmodel is described
in Algorithm 1. The reparameterization trick is employed in the C-NGE model to render the sampling
process differentiable. Specifically, when the model samples latent vectors from a learned distribution (e.g.,
Gaussian), it encounters a non-differentiable step, which makes gradient-based optimization challenging.
By reparameterizing the samples into a function of the distribution’s parameters (mean and variance) and
independent noise, we avoid this issue. The sigmoid activation function is chosen for the final output layer
in the C-NGE model primarily because the output represents predicted ratings, which are typically treated
as continuous rather than categorical variables. Sigmoid outputs a value between 0 and 1, making it well-
suited for predicting probability scores or normalized ratings in a range suitable for interpretation as user
preferences. In contrast, softmax is generally used for multi-class classification tasks where the outputs
represent probabilities of distinct target classes summing to one. In the context of a rating prediction problem,
where ratings can take continuous values or where we aim for a probabilistic interpretation, sigmoid is more
appropriate, allowing each rating to be treated independently. In the R-NGE module, noise is incorporated
to help generalize the model and to prevent overfitting by providing stochasticity during training. This
specific noise formulation leverages metadata features as noise, which helps the model learn the latent
representations of users and items more robustly by incorporating variability in the embeddings without
introducing significant bias. This approach differs from other variational methods, which often rely on a
specific distribution (e.g., Gaussian) and involve variational inference techniques to approximate a posterior
distribution. While classical variational methods focus on estimating distributions to maximize evidence,
the noise formulation used in C-NGE simplifies the representation learning process by directly infusing
variability tied to metadata, thus enhancing the model’s capacity to capture meaningful interactions without
needing complete probabilistic modeling of latent spaces.

Algorithm 1: Algorithm for rating prediction using the proposed collaborative neural generative
embedding (C-NGE) model

Input: I ∈ RM×N , I′ ∈ RM×N , oU
u , oI

i , oR
r , oS

s
Output: Predicted rating ŷui

1: procedure BinarizedRatingInteractionVector (oU
u , oI

i )
2: for every oU

u and oI
i do

3: Using embedding layer on oU
u and oI

i to produce zu and zi, respectively
4: Using R-NGE layer to calculate ŷR

ui ← zu ⊙ zi ← zT
u zi

5: end for
6: end procedure
7: procedure binarizedmetadatafeaturesvector (oR

r , oS
s )

8: for every oR
r and oS

s do
9: Using embedding layer on oR

r and oS
s to produce z′r and z′s , respectively

10: Using final M-NE layer to calculate ŷM
rs ← σ(hT aL(W T

L (aL−1(. . . a2(W T
2 [

z′r
z′s
] + b2) . . .)) + bL))

11: end for
12: end procedure
13: procedure NeuralCollaborativeEmbedding (zu, zi, z′r , z′s)

(Continued)
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Algorithm 1 (continued)
14: ϕR ← zu ⊙ zi

15: ϕM ← aL(W T
L (aL−1(. . . a2(W T

2 [
z′r
z′s
] + b2) . . .)) + bL)

16: Using C-NGE layer to merge R-NGE and M-NE outputs and calculate for final rating prediction as:

17: ŷui ← ReLU(hT [ ϕR

ϕM ])

18: end procedure
19: return ŷui

5 Experiments and Results
In this section, the experimental setup is described, and an in-depth analysis based on the obtained

experimental results is provided.

5.1 Datasets
Two datasets, MovieLens and Indian Regional Movies (IRM), have been used in our work, which are

described below:
(1) MovieLens. MovieLens 100K1 (ML100K) and MovieLens 1M2 (ML1M) datasets were developed by

the grouplens research project at the University of Minnesota. These datasets contain explicit ratings from
users on items ranging from 1 to 5.

(2) IRM. Movies from all regions across the world can be found in popular datasets like IMDB,
MovieLens, and FilmTrust. They do not, however, contain a lot of information about Indian regional films.
Therefore, the IRMdataset [39] is also used in thiswork. It is the first Indian regional cinemadataset.The IRM
dataset can be accessed from https://goo.gl/EmTPv6 (accessed on 25 June 2025). The IRM dataset contains
2851movies, 919 userswith 10,000 ratings in 18 different Indian regional languages. Tomake the user’s process
of rating multiple movies easier, the ratings have two categories, 1 or 0, which corresponds to liked or not
rated. Usermetadata was collected while signing up through aweb portal.Moviesmetadata has been scraped
from IMDB, which consists of one of the most extensive collections of movies data. The following metadata
information is associated with every movie (readers are encouraged to refer [39] for the detailed description
on the IRM dataset):

(a) Movie id: Every movie is associated with a unique ID.
(b) Description: Synopsis of the movie.
(c) Languages: It is possible that a film was released in multiple regional languages.
(d) Release date: The movie’s release date.
(e) Rating: To judge the movie’s success, according to IMDB.
(f) Crew: Movie director, writer, and cast.
(g) Genre: A movie may have one or more genres out of the 20 different genres available on IMDB.

It is essential to include user metadata (demographic information) which influences user ratings for
better recommendations. User has the following demographic information:

(a) User id: Every user is associated with a unique ID.
(b) Languages: The languages that the user knows.

1https://grouplens.org/datasets/movielens/100K/ (accessed on 25 June 2025).
2https://grouplens.org/datasets/movielens/1M/ (accessed on 25 June 2025).

https://goo.gl/EmTPv6
https://grouplens.org/datasets/movielens/100K/
https://grouplens.org/datasets/movielens/1M/
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5.1.1 Datasets Pre-Processing
The dataset contains a lot of information, some of which may not be usable for rating generation.

Therefore, before the dataset can be used in the proposedmodel, itmust be pre-processed. Usermetadata and
item metadata are used as features in the proposed model. From user metadata, user id, gender, languages,
and occupation are selected. For movie metadata, movie ID, languages, and genre are selected.

The dataset included both languages and genres in the form of a list.Therefore, each language and genre
was segregated first. Now, for the movies dataset:

(i) Each movie was associated with all of the languages in a separate dataset created. Each language was
encoded as either 1 or 0, depending on whether or not the movie was available in that language.

(ii) Another dataset was constructed in which eachmovie was associated with all of the genres. Each genre
was encoded as either 1 or 0, depending on whether the movie belongs to that genre or not.

(iii) The movie ID was then used to combine the above two datasets.

For the users’ dataset:

(i) Each user was associated with all of the languages in a separate dataset created. If the user prefers to
watch a movie in that language or not, each language was encoded as either 1 or 0, respectively.

(ii) Gender and occupation were one-hot encoded using a label encoder and added to a separate dataset.
(iii) The user id was used to combine the above two datasets.

The two joined datasets (one for users and the other for movies) were joined once more to form a single
dataset. The proposed model was implemented using this final pre-processed dataset.

5.2 MovieLens versus IRM Dataset
IRM dataset for recommender systems is developed at IIIT Delhi institute and is the first of its kind. It

serves as a benchmark dataset for Indian regional cinema that has diversified languages, regions, and genres.
With the popularity of Indian cinema worldwide and a massive number of movies released per year, it is
essential to have this dataset so that further experiments can be performed.

MovieLens is a popular website that recommends movies to users. The MovieLens dataset inspired the
IRM dataset. The Department of Computer Science and Engineering at the University of Minnesota, under
the Grouplens project, developed the MovieLens dataset. The dataset has the user preferences in the form
of ratings. This dataset was publicly released in several versions, such as 100 K ratings in the year 1998, 1 M
ratings in the year 2003, and 10 M ratings in the year 2009.

Table 3 shows a comparison of the IRM, MovieLens 100 K, and MovieLens 1 M datasets.

Table 3: Comparison of datasets

Dataset Users Items Ratings Sparsity Year
MovieLens 100 K 943 1682 100000 93.70% 1998
MovieLens 1 M 6040 3952 1000209 95.80% 2003

Indian Regional Movies 919 2851 10000 99.96% 2017

5.3 Baseline Methods
The proposed C-NGE model is evaluated and compared to the following baseline methods:
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• Item-Item Similarity For model building, item-item similarity detects similarities between all item
pairings. Multiple possibilities exist for item pairs to be similar. One such method is cosine similarity.
Similar arguments apply to user-user CF. It is less popular than item-item collaborative filtering.

• Matrix Factorization (MF) Reference [40] approach generates latent features by multiplying two types
of entities.MF is used in collaborative filtering to determine user-item relationships.Wewant to estimate
how consumers would evaluate shop items based on user ratings so they can get recommendations.

• Blind Compressed Sensing References [41,42] calculate user and item latent factor matrices. The user
latent factor matrix may be dense compared to the item latent factor matrix because the user-item
interactionmatrix is sparse. Sparsity in the item latent factormatrix improves recommendation accuracy.

• Matrix Completion In Reference [43], by filling in the unknown elements in a rating matrix with users
as rows, objects as columns, and entries as ratings, the collaborative filtering problem can be addressed
as a matrix completion problem. A prominent method for solving the above problem is the nuclear-
norm-regularized (NNR) matrix.

• Singular Value Decomposition (SVD) Principal Component Analysis (PCA) is a prevalent linear
algebra methodology extensively used in machine learning to reduce the dimensionality of data [44].
The Singular Value Decomposition (SVD) is a method for factorizing a matrix that effectively decreases
the dimensionality of a dataset from N to K (where K is less than N).

• Probabilistic Matrix Factorization (PMF) Rating prediction is a challenge involving collaborative
filtering (CF) to forecast ratings [45]. It can handle enormous datasets because its processing capacity
increases proportionally with the number of examples in the dataset. It can be considered a probabilistic
version of the SVD model.

• Convolutional MF (ConvMF) [46] Convolutional transform to filter non-pertinent information and
integrate their learned latent profiles with probabilisticmatrix factorization via rating-count distribution
to reduce noise in the shared latent space.

• Neural Collaborative Filtering (NCF) [47] is a unified framework for implementing the MF method
with neural networks using implicit feedback to learn the interaction function using the NeuMF
neural network by concatenating Generalized Matrix Factorization (GMF) and Multilayer Perceptron
(MLP) networks.

• Supervised Matrix Factorization [48]. Predicting ratings is challenging because of the sparse nature
of the dataset. Utilizing data on user demographics and item categories can enhance the precision of
predictions [49–52]. Users are categorized by age, gender, and occupation. Class label information is
essential for learning user andmovie latent feature vectors in supervised learning. Class label knowledge
restricts the search space, minimizing problem identification.

5.4 Evaluation Metrics
We performed k-fold cross-validation to assess the model’s performance across different subsets of the

dataset. This allows us to validate the model on unseen data during the training process, providing a more
reliable estimate of its generalization capability. In order to assess the efficacy of our model compared to
previous baseline techniques, we employed two widely accepted metrics: Root Mean Squared Error (RMSE)
and Mean Absolute Error (MAE). The Root Mean Square Error (RMSE), as described in [53], is a widely
used metric for evaluating the accuracy of projected ratings. It is a standard quantitative measure commonly
employed in supervised regression applications. The RMSE quantifies the disparity between the projected
and actual rating. The root mean square error (RMSE) loss is computed using mathematical calculations:
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RMSE =
�
���Σ(r̂ui − rui)2

# of ratings
(14)

In error terms, MAE [54–56] does not impart any bias to extrema. Outliers or big error terms will be
weighed equally with the other predictions if they exist. As a result, MAE should be preferred for evaluating
rating accuracy when the importance of outliers is not a concern.The absolute difference between the actual
and predicted scores is calculated. Mathematically, it is computed as:

MAE = Σ∣rui − r̂ui ∣
# of ratings

(15)

For better recommendation accuracy, both RMSE and MAE are losses that should be minimised.

5.5 C-NGE Variants
We have used two variants of the proposed C-NGE model as follows:
(1) C-NGE (fixed latent vectors)
In this C-NGE variant, we remove the generative process using the reparameterization trick so that the

latent vectors learned are fixed and therefore, ratings are predicted and not generated.
(2) C-NGE (without metadata features)
In this C-NGE variant, we ignore user and itemmetadata features and therefore deal only with the rating

interaction matrix.
(3) C-NGE (with metadata features)
This is our proposed C-NGE model, which is used throughout the experiments as it allows us to

embed metadata features using neural networks and also deals with the generation of the latent vectors and
the ratings.

As indicated by the errors in Table 4 and Fig. 2, the C-NGEmodel showed remarkable improvements in
comparison to the baseline methods. C-NGE with metadata features showed the least error (MAE (0.3088)
and RMSE (0.5509)). It is because if no metadata is provided, the model will arbitrarily find the latent factors
on its own, which may or may not result in useful recommendations. When metadata is included as a side
feature in the model, however, the values are fixed but accurate, resulting in a more efficient model. It shows
that adding metadata in a recommendation model does provide leverage over models with no metadata
information.

Table 4: Loss evaluation of recommendation models on IRM dataset

S. No. Techniques MAE RMSE

Baseline methods
1. User-User similarity 0.5307 1.0312
2. Item-Item similarity 0.6482 1.049
3. Matrix factorization 0.471 0.9713
4. Probabilistic matrix factorization 0.4811 0.9372
5. Blind compressed sensing 0.4632 0.9612
6. Matrix completion 0.4827 0.9264

(Continued)
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Table 4 (continued)

S. No. Techniques MAE RMSE

Baseline methods
Our proposed model variants

7. C-NGE (with metadata features) 0.3088 0.5509
8. C-NGE (without metadata features) 0.3209 0.5690
9. C-NGE (fixed latent vectors) 0.4909 0.5986

Figure 2: Comparison of MAE and RMSE for methods used in Table 4

5.6 Quantitative Findings with Error Analysis
RMSE and MAE values for three datasets employing various approaches are presented in Table 5

(Unsupervised) and Table 6 (Supervised). Note: Improve indicates C-NGE’s relative relevance compared to
the best competition. As proven, the proposed strategy consistently and significantly beats baselinemethods.
C-NGE outperforms NCF inMovieLens 100 K dataset with RMSE 0.858% andMAE 1.392%, but lags behind
other baseline techniques.

Table 5:Unsupervised techniques

Techniques MovieLens 100 K Indian Regional Movies MovieLens 1 M

Errors MAE RMSE MAE RMSE MAE RMSE
User-User similarity 0.7980 1.026 0.5307 1.0312 0.707 0.8810
Item-Item similarity 0.744 1.061 0.6482 1.049 0.671 0.9196
Matrix factorization 0.828 1.128 0.471 0.9713 0.6863 0.8790
Probabilistic matrix
factorization

0.7564 0.9639 0.4811 0.9372 0.7241 0.9127

Blind compressed sensing 0.7356 0.9409 0.4632 0.9612 0.6917 0.8789
Matrix completion 0.8324 1.102 0.4827 0.9264 0.7196 0.9102

SVD 0.743 0.9521 0.493 0.938 0.686 0.8730
ConvMF 0.735 0.9469 0.471 0.930 0.676 0.8549

(Continued)
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Table 5 (continued)

Techniques MovieLens 100 K Indian Regional Movies MovieLens 1 M

Errors MAE RMSE MAE RMSE MAE RMSE
MLP 0.729 0.9743 0.446 0.9297 0.681 0.8773
NCF 0.718 0.9319 0.3209 0.569 0.668 0.8480
C-NGE 0.708 0.9239 0.3088 0.5509 0.661 0.8421
Improve 1.392% 0.858% 3.77% 3.181% 1.047% 0.695%

Table 6: Supervised technique

Techniques MovieLens 100 K Indian regional movies MovieLens 1 M

Errors MAE RMSE MAE RMSE MAE RMSE
Supervised matrix factorization 0.7173 0.9241 0.4367 0.9283 0.6659 0.8469

The C-NGE model outperforms baseline approaches on MovieLens 1 M and IRM datasets. It suggests
that using user/item metadata as supplementary information can improve latent factor interpretation
and rating prediction. By combining the non-linear M-NE model, the C-NGE model is expressive. MLP
outperforms MF by a small margin, leaving MF a special case of MLP.

On the MovieLens 100 K and MovieLens 1 M datasets, plots of C-NGE training error versus epoch are
shown in Fig. 3a and b, respectively.

Figure 3: Plot of model training loss on MovieLens datasets

As the C-NGE model’s last hidden layer determines the model’s potential, we refer it as explanatory
predictors and evaluated the predictors of [8, 16, 32, 64]. Large predictors overfits the model and degrade the
performance. Three hidden layers are used for M-NE. For example, if the explanatory predictors size is 8,
the M-NE layers architecture is 32→ 16→ 8, and the embedding size is 16. Firstly, it can be seen that C-NGE
outperforms the state-of-the-art ConvMF and NCF methods by a substantial margin, achieving the best
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performance over datasets (the relative improvement over ConvMF and NCF is 2.4% and 0.8% on RMSE,
respectively, on average). For MovieLens 1M, C-NGE significantly outperforms that of ConvMF and NCF
with a large predictor of 64. It reveals the high expressiveness of C-NGE by fusing non-linear M-NE model.
Note that M-NE can be improved even further by adding more hidden layers (more than five hidden layers
somewhat overfits the data), and here only the performance of three layers are shown.

5.7 Execution Time Analysis and Scalability
An analysis is conducted on the computing time of the C-NGE model and baseline approaches. Each

solution operates on a solitary system with an NVIDIA GeForce GTX 1080 GPU. During the training
phase, NCF and C-NGE require approximately 6 s per epoch on the MovieLens 100 K dataset. In contrast,
on the MovieLens 1M dataset, they take around 1 min and 20 s for each epoch. By employing the early
stopping criterion, it is common for all of the models to reach convergence in fewer than 25 epochs. The
recommendation prediction results exhibit a relatively rapid response time during the testing phase, with a
duration of only 3–4 s. MF-based techniques like PMF or SVD exhibit faster execution times than neural
network-based techniques. C-NGE necessitates a comparable amount of time to NCF during the training
period. However, it demands more time than SVD or PMF. During the testing phase, the suggested method
demonstrates similar time efficiency to previous strategies. Hence, in practical terms, the proposed C-NGE
architecture is viable for a movie recommendation system.

The issue with recommendation algorithms lies in their computational scalability, as the calculation
increases exponentially with the growth in the number of users and items. Scaling the dataset negatively
impacts the performance of the recommendationmodel, which was trained and achieved superior results on
a small dataset. Consequently, effectively implementing recommendation algorithms becomes more crucial
as the dataset expands. The utilization of neural networks for dimensionality reduction is employed to
tackle the issues related to scalability. The total number of neuron units in each subsequent hidden layer is
precisely half of the amount in the preceding hidden layer. It guarantees that each subsequent hidden layer
acquires novel representations while simultaneously diminishing noise (i.e., extraneous information) from
the preceding hidden layer, enabling the concentration on relevant features. Empirical studies demonstrate
that employing an equal number of neuron units in each hidden layer significantly increases the cost per
computation and backpropagation by about threefold. This, in turn, requires a more significant amount of
data, meaning a need for more than triple the training data and training time. We obtained the following
statistics in Table 7 to further investigate the average epoch needed to converge, the number of trainable
parameters to learn, and the prediction time for different methods with varying dataset sizes. The average
duration required to complete a single epoch is the average epoch time. Three distinct sizes of datasets
are taken into account: 25%, 75%, and 100% (entire dataset). The findings are as follows: (1) As the dataset
expands, there is a substantial rise in the average number of epochs required and in the number of learnable
parameters and prediction time. (2) Our method necessitates fewer epochs, parameters, and prediction time
during the training phase compared to the leading rival NCFmethod. (3)The slight disparity in performance
between NCF and our approach may be attributed to the fact that NCF employs neural networks directly
for the collaborative filtering task, enabling it to learn complex interactions nonlinearly. However, NCF does
not consider any additional information about the users or items involved. Our approach utilizes metadata
information for people and objects to model their interactions. We apply a decoder as a neural network to
forecast the final rating. This method is systematic and well-defined.
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Table 7: Over all datasets, average epoch, number of trainable parameters, and prediction time for different methods
with varying dataset size ratios

Model

IRM ML100K ML1M

Dataset Average Parameters Prediction Average Parameters Prediction Average Parameters Prediction
Ratio Epoch

(s)
(Million) Time (s) Epoch

(s)
(Million) Time (s) Epoch

(s)
(Million) Time (s)

MLP
25 1 2 0.1 1 3 0.2 6 7 1
75 1 4 0.4 2 6 0.7 11 9 3
100 2 7 0.6 3 11 0.8 14 17 4

NCF
25 1 4 0.2 2 6 0.2 182 11 3
75 3 11 0.6 5 15 0.6 254 19 5
100 4 20 0.8 7 26 0.9 281 37 7

Our 25 2 2 0.1 2 3 0.2 162 5 3
method 75 3 6 0.4 4 8 0.8 247 10 6
(C-
NGE)

100 5 10 0.7 6 13 1.1 278 19 7

5.8 Hyper-Parameters Tuning and Statistical Significance
Indicators that are commonly used to assess the reliability of experimental results, such as searching for

hyperparameters or statistical significance, are discussed.
Keras3 neural networksApplication Programming Interface (API) is used in experimentswith proposed

models. The experiments employ mini-batch gradient descent with the Adaptive Moment Estimation
(ADAM) optimizer. The model evaluation is conducted using learning rates of {0.0001, 0.0005, 0.001}
and batch sizes of {128, 256, 512}. The M-NE model is designed with three hidden layers. To maintain
fairness in comparison, all models, including C-NGE and the baselinemethods, are trained under consistent
hyperparameters, optimizers, and training epochs.

The proposed methods outperform other baselines with noticeable improvements, and further, one-
sample paired t-tests are conducted to verify that p < 0.02 is statistically significant for all improvements.
References [57,58] have reportedmost of the results on theMovieLens 1M dataset.The documented standard
deviation frequently exhibits a lower value, and the disparity in documented outcomes is deemed statistically
significant. The findings of the significance test should not be used as a reliable method to evaluate whether
algorithm A is superior to algorithm B. The significance test does not assess the efficacy of the algorithm’s
configuration; instead, it examines the standard deviation within the configuration. Consequently, it is
advisable only to conduct variance and significance tests if there is evidence that the algorithm being utilized
is effectively employed. During the process of implementing the utilized algorithm, a significant number of
errors arise. Statistical significance tests have limited utility and often result in erroneous interpretations of
experimental findings.

5.9 Is Deep Learning Beneficial?
More research is needed to examine user interactions and items utilizing neural networks. It is crucial

to determine whether deploying deep neural networks enhances the precision of the recommendations.
We explore this by augmenting the number of hidden layers in the M-NE model. The notation M-NE-3
indicates the presence of three hidden layers, excluding the embedding layer. It has been noticed that adding
additional hidden layers is advantageous for the recommendation task.The results achievedwithM-NE-3 are

3https://keras.io/ (accessed on 25 June 2025).

https://keras.io/
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auspicious, indicating that using deep neural networks for collaborative recommendation is quite efficient.
The improvement is attributed to the non-linearities that arise with addingmore hidden layers. Performance
is degraded when the number of hidden layers is increased to six or more due to overfitting of the user-item
interactions. Linear activation functions are used to verify the hidden layers. The inability to capture non-
linear interactions between users and items causes the performance to degrade. The factorization strategies
employed for the recommendation problem produced identical outcomes.

The performance of M-NE-0, which lacks hidden layers (consisting only of an embedding layer),
diminishes, indicating that only performing an element-wise dot product between the latent vectors of the
user and object is inadequate for modeling their interactions. Consequently, hidden layers are necessary to
convert it.

The RMSE values are evaluated while considering different components of K. As seen in Fig. 4, the
RMSE of the proposed model surpasses that of other baseline approaches. The findings are validated using
the IRM and ML1M datasets. The ML100K dataset findings are omitted due to their similarity to the ML1M
dataset results.The rating prediction challenge enhancements demonstrate the proposedmodel’s superiority
since deep neural networks are designed to effectively capture the underlying and interactive characteristics
between users and things. When K is set to 256, all models exhibit minimum rating prediction error.

Figure 4: On the test set, RMSE performance comparison with different embedding size K

The root mean square error (RMSE) validation error associated with the dropout ratios is displayed
in Fig. 5. Dropouts are a regularization technique to mitigate overfitting, with values between 0.1 and 0.9.
As the rate of students leaving school without completing their education increases, the inaccuracy in
the validation process varies. This could be attributed to a higher rate of dropouts, which may result in
underfitting the model. The proposed model underwent testing using four distinct activation functions.
The results revealed that ReLU exhibited the lowest error rates when smaller dropouts were applied to
the IRM dataset, whereas sigmoid yielded the lowest error rates for the ML1M dataset. The model, which
incorporates dropouts over 0.7, exhibits an inability to forecast ratings reliably for both datasets, leading to
the underfitting of the model. As dropouts increase, the identity function exhibits almost linear behavior,
albeit with a significant validation error.
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Figure 5: On the first hidden layer, RMSE validation error w.r.t. different activation functions and dropout ratios

6 Conclusion
In this paper, we have proposed a deep Collaborative Neural Generative Embedding (C-NGE) model

that generates the latent vectors dynamically and the final rating using the reparameterization trick. The C-
NGE model deals with uncertainty in the ratings without retraining the model when a cold user or cold
item arrives. The implementation and evaluation of C-NGE and other baseline methods on Indian Regional
Movies (IRM) and MovieLens datasets are discussed. The proposed work demonstrates the integration of
metadata features as sampled noise and rating information, using a unified neural networks framework. It
was observed that the C-NGEmodel gave a better performance in comparison with the baseline models due
to the incorporation of metadata features. The proposed model can further be improved by augmenting the
dataset with other auxiliary information, such as user reviews and multimodal data (like still images and
visual semantics), to get a better idea of the user’s preference. A limitation of the C-NGEmodel is its reliance
on the quality of metadata features; poor or incomplete metadata can adversely impact its performance.
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