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ABSTRACT: The accelerated global adoption of electric vehicles (EVs) is driving significant expansion and increasing
complexity within the EV charging infrastructure, consequently presenting novel and pressing cybersecurity challenges.
While considerable effort has focused on preventative cybersecurity measures, a critical deficiency persists in structured
methodologies for digital forensic analysis following security incidents, a gap exacerbated by system heterogeneity,
distributed digital evidence, and inconsistent logging practices which hinder effective incident reconstruction and
attribution. This paper addresses this critical need by proposing a novel, data-driven forensic framework tailored to the
EV charging infrastructure, focusing on the systematic identification, classification, and correlation of diverse digital
evidence across its physical, network, and application layers. Our methodology integrates open-source intelligence
(OSINT) with advanced system modeling based on a three-layer cyber-physical system architecture to comprehensively
map potential evidentiary sources. Key contributions include a comprehensive taxonomy of cybersecurity threats
pertinent to EV charging ecosystems, detailed mappings between these threats and the resultant digital evidence
to guide targeted investigations, the formulation of adaptable forensic investigation workflows for various incident
scenarios, and a critical analysis of significant gaps in digital evidence availability within current EV charging systems,
highlighting limitations in forensic readiness. The practical application and utility of this method are demonstrated
through illustrative case studies involving both empirically-derived and virtual incident scenarios. The proposed data-
driven approach is designed to significantly enhance digital forensic capabilities, support more effective incident
response, strengthen compliance with emerging cybersecurity regulations, and ultimately contribute to bolstering the
overall security, resilience, and trustworthiness of this increasingly vital critical infrastructure.

KEYWORDS: Electric vehicle charging infrastructure; digital forensics; incident investigation; charging network;
vulnerability analysis; threat modeling; open-source intelligence (OSINT)

1 Introduction
The global energy paradigm is undergoing a significant transformation, with a pronounced shift

towards electrified transportation as a cornerstone of achieving a zero-carbon economy and enhancing the
integration of renewable energy sources [1]. This transition is catalyzing the rapid expansion and increasing
sophistication of the electric vehicle (EV) charging infrastructure. More than just power dispensers, these
deployments are evolving into complex cyber-physical systems (CPS) that integrate diverse hardware com-
ponents, a variety of communication protocols, and multiple software layers, establishing critical interfaces
with national power grids, financial payment networks, and advanced vehicle management platforms [2]. The
economic magnitude of this sector is substantial; the global EV charging market is projected for exponential
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expansion, which firmly underscores the strategic importance of these systems within critical national
infrastructure paradigms. As this infrastructure matures, it not only facilitates the primary function of EV
charging but also paves the way for advanced functionalities such as vehicle-to-grid (V2G) capabilities, which
position EVs as distributed energy resources capable of bolstering grid stability and improving operational
efficiency, particularly when harmonized with fluctuating renewable energy outputs.

However, the intricate interconnectivity inherent in the EV charging infrastructure, while enhancing
functionality and user convenience, concurrently creates an expanding attack surface. The rapid expansion
of charging networks, characterized by heterogeneous components and interconnected systems, presents
an increasingly expansive attack surface vulnerable to sophisticated cyber threats [3]. This heightened
risk environment is not merely theoretical; automotive cyber incidents and vulnerabilities are increasing
annually, with high-profile attacks exploiting weaknesses in charging protocols, communication standards,
and devices highlighting the diverse threat landscape [4]. Such security incidents can precipitate significant
consequences, ranging from direct financial losses for both charging operators and end-users to the potential
disruption of power grid stability, and, critically, an erosion of public trust in EV technology. In recognition
of this escalating criticality and the potential systemic risks, regulatory frameworks are beginning to mature.
A notable example is the European Union’s Network and Information Security (NIS) 2 Directive [5], which
explicitly categorizes EV charging operators as essential entities. This directive mandates the implementation
of comprehensive cybersecurity measures, encompassing robust risk management practices and formal
incident response protocols. Such regulatory endeavors are largely driven by the mounting evidence of
tangible cybersecurity risks within the EV charging ecosystem.

1.1 Motivation and Problem Statement
Despite the growing recognition of cybersecurity risks and the evolution of regulatory frameworks like

the NIS 2 Directive, existing cybersecurity measures within the EV charging domain have predominantly
emphasized prevention and vulnerability mitigation. Standards such as ISO 15118 and the Open Charge Point
Protocol (OCPP) focus significantly on preventive security mechanisms like authentication and encryption.
However, a critical gap persists concerning structured and standardized methods for performing digital
forensic analysis after a security incident has occurred in these complex EV charging ecosystems. While
regulations acknowledge the importance of securing this infrastructure, they often lack specific guidance on
post-incident digital forensic procedures, leaving a void in standardized response capabilities.

This deficiency in post-incident analysis capabilities presents a significant problem. It severely hinders
effective incident response, makes the reliable attribution of malicious activities exceptionally challenging,
and complicates the processes for legal recourse or insurance claims following security breaches. The problem
is further compounded by several inherent characteristics of the EV charging infrastructure. Forensic
investigations frequently concentrate on the Electric Vehicle Charging Station (EVCS) as a primary target or
point of compromise in security incidents. However, significant challenges impede such investigations. These
challenges stem from the inherent heterogeneity of EVCS hardware, firmware, and the diverse range of EVs
and Charging Station Management Systems (CSMSs) involved. Pertinent digital evidence related to a single
incident is often distributed across multiple entities—the EVCS, the connected EV, and the backend CSMS—
making evidence correlation and holistic incident reconstruction inherently difficult. These difficulties are
frequently exacerbated by the technical intricacies of the governing communication protocols (e.g., ISO 15118
for EV-EVCS interactions and OCPP for EVCS-CSMS connections), potentially deficient or inconsistent
logging mechanisms within these systems, and the practical challenges encountered in data acquisition,
especially from proprietary EVCS components [6]. The often optional nature of crucial security logging
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features in prevailing standards also leads to inconsistent security postures and further hinders effective
investigation across different vendor systems.

1.2 Related Work
While significant efforts have focused on preventive cybersecurity in the EV charging infrastructure,

comprehensive forensic investigation methods explicitly tailored to incidents involving EVCSs remain
considerably underdeveloped. Framework profiles, such as NIST IR 8473, have been developed to enhance
the cybersecurity of EV fast charging networks [7]. These profiles offer recommendations for forensic
considerations, including logging, yet they often lack detailed digital evidence analysis methodologies
suitable for the intricacies of EVCS incidents. The bulk of existing research on digital forensic methods has
traditionally centered on conventional information technology systems, industrial control systems (ICS), or
broader automotive systems. This focus leaves a notable gap concerning EVCSs, which uniquely integrate
characteristics from multiple domains (automotive, power grid, payment systems), presenting distinct
challenges for digital investigators [8,9].

Addressing this specificity, Girdhar et al. [10,11] highlighted that despite the existence of forensic
frameworks for related areas like smart grids and automated vehicles, no established forensic investigation
framework had been explicitly adapted to the nuances of EVCSs. In response, they proposed an incident
analysis framework employing the “Who, What, When, Where, Why, and How” (5W1H) model, com-
plemented by stochastic anomaly detection methods, to investigate cyberattacks and abnormal operations
within EVCSs. This structured approach emphasizes systematic evidence collection and the chronological
analysis of logs and system data, aiming to facilitate root cause identification and effective incident response.

Nonetheless, current methods, including those proposed, exhibit limitations in their practical appli-
cation, largely due to the inherent complexities of the EV charging ecosystem. A significant issue is that
studies have rarely explored comprehensive digital evidence identification across the various architectural
layers (physical, network, application) of EVCSs in a holistic manner. While general recommendations for
acquiring digital evidence from physical hardware, network communication logs, and application-level data
exist, clearly defined digital evidence taxonomies or structured mappings between threats and evidence—
designed explicitly for the EV charging infrastructure—remain largely absent [12,13]. Consequently, existing
approaches often fall short in terms of ensuring adequate forensic readiness, enabling systematic digital
evidence identification, and supporting effective incident response tailored to EVCSs. For instance, present
forensic frameworks seldom incorporate comprehensive digital forensic readiness from the design and
deployment phases of EVCSs, leaving these systems ill-equipped to generate and preserve the necessary
digital evidence crucial for effective post-incident investigations. These gaps underscore the need for a more
specialized and data-driven forensic framework.

1.3 Research Scope and Contributions
The scope of this research is to propose and evaluate a structured, data-driven framework for the

analysis of digital evidence to support forensic investigations of security incidents within the Electric
Vehicle Charging Infrastructure (EVCI). This study focuses on addressing the identified deficiencies in
post-incident analysis by providing a systematic approach tailored to the EVCI’s specific operational and
technical characteristics.
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The primary contributions of this work are:

• Development of a Structured Digital Forensic Framework for EVCI: this paper introduces a struc-
tured, data-driven digital forensic framework designed for the EVCI environment. It considers the
complexities arising from its diverse components and multi-stakeholder interactions.

• Systematic Identification and Classification of Digital Evidence: the framework outlines a method-
ology for systematically identifying and classifying forensically relevant digital evidence across the
physical, network, and application layers of EVCSs. This process incorporates information from protocol
specifications, relevant datasets, and Open-Source Intelligence (OSINT).

• Establishment of Threat-Evidence Mappings: the research proposes the development of struc-
tured mappings between identified cybersecurity threats common in the EVCI ecosystem and the
corresponding digital evidence these threats are likely to generate. This aims to facilitate more tar-
geted investigations.

• Formulation of Adaptable Forensic Investigation Workflows: adaptable forensic investigation work-
flows are presented, which include systematic system modeling, threat analysis, strategies for digital
evidence acquisition, and considerations for evidentiary value assessment.

• Analysis of Digital Evidence Availability Gaps: the study identifies and analyzes existing gaps in
the availability of crucial digital evidence within current EVCS implementations. This analysis aims
to highlight limitations in forensic readiness and suggest areas for future improvements in logging
standards and practices.

• Integration of OSINT into Forensic Processes: the framework emphasizes the integration of OSINT
techniques throughout the forensic investigation process, including system modeling, data collection,
and threat analysis, to supplement traditional data sources.

The remainder of this paper is organized as follows. Section 2 provides a detailed overview of the
EV charging infrastructure, covering its core components, operational stakeholders, the layered network
architecture crucial for understanding potential points of evidence, and a review of the prevalent cyberse-
curity threat landscape. Section 3 meticulously presents the proposed data-driven digital evidence analysis
framework, detailing its systematic phases: system modeling, data collection strategies including OSINT
integration, threat analysis methodologies, and specific techniques for digital evidence identification and
assessment. Section 4 validates the practical applicability of the framework through comprehensive case
studies, encompassing both empirically derived scenarios and diverse virtual incidents. Section 5 discusses
the key findings from the case studies, evaluates the effectiveness of the proposed method, and critically
examines the identified gaps in digital evidence availability. Finally, Section 6 concludes the paper by sum-
marizing the main contributions and proposing avenues for future research in this rapidly evolving domain.

2 Background

2.1 Overview of the Electric Vehicle Charging Ecosystem
The EV charging infrastructure represents a complex cyber-physical ecosystem comprising multiple

interconnected components and stakeholders, as illustrated in Fig. 1. Users interact with this infrastructure
by plugging their EVs into charging stations, initiating a sophisticated network of interactions that involve
payment systems, charging management entities, and the broader electrical grid. These systems operate using
various standards and protocols that facilitate vehicle authentication, automated billing processes, and real-
time operational management.
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Figure 1: Overall electric vehicle charging ecosystem

• Users: primary stakeholders initiate charging sessions by physically connecting their EVs to EVCSs.
Modern EVs incorporate technology, such as V2G, allowing them to function as energy consumers and
providers, returning energy to the grid under certain conditions.

• Electric Vehicle Charging Stations: physical interfaces connect the electric grid and EVs, delivering
electrical power through specialized charging terminals equipped with power supply systems and
network communication equipment. Advanced EVCSs that are compliant with ISO 15118 support “Plug
& Charge,” enabling automatic authentication and billing without user intervention, streamlining user
experience but introducing cybersecurity considerations.

• Charge Point Operators (CPOs): entities manage EVCSs via backend management platforms. The
CPOs handle charge session management, real-time operational data transmission, firmware updates,
and remote command execution via OCPP. These operations produce significant datasets and logs for
forensic investigations.

• Distribution System Operators (DSOs): these operators are responsible for managing electrical power
distribution networks supporting EV charging infrastructures. The DSOs employ demand-response
strategies for load balancing during peak usage periods and coordinate with V2G-enabled EVs to
manage grid stability and energy distribution.

• E-Mobility Service Providers (e-MSPs): providers manage user authentication, transaction processing,
and customer service. The e-MSPs facilitate a seamless user experience by offering platforms to locate
charging stations, process payments, manage user accounts, and provide value-added services, such as
loyalty programs and tariff discounts.

• Payment Gateways: systems securely process financial transactions initiated by users via e-MSP
platforms. They integrate with EV roaming systems, enabling effective transaction management and
cross-provider financial settlements.

• EV Roaming Systems: platforms enhance interoperability across diverse charging networks managed by
CPOs. They handle automated authentication, payments, and transaction settlements among operators,
significantly improving user convenience and operational efficiency.
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This intricate interplay between numerous stakeholders and the extensive data interactions occurring
across the ecosystem inherently underscores the necessity of developing and applying structured forensic
methodologies. Such methodologies are essential to thoroughly investigate security incidents, attribute
actions, and effectively mitigate the diverse cybersecurity risks present in this critical infrastructure.

2.2 Electric Vehicle Charging Network Architecture
The EV charging infrastructure comprises two main domains: the physical layer with hardware

components, such as EVs, charging stations, and grid interfaces, and the cyber layer covering software
systems and communication networks [14]. This architecture can be extended by referencing models from
smart grids, cyber-physical systems, or Internet of Things (IoT) architectures [15–17]. In addition, Fig. 2
illustrates the cyber-physical system-based EV charging architecture in this study, highlighting the structured
interactions and data exchanges between the physical hardware, network communications, and application
software layers.

Figure 2: Electric vehicle charging infrastructure network architecture

2.2.1 Physical Layer
The physical layer encompasses the hardware components and direct physical interactions involved

in the charging process. This layer includes EVs, EVCSs, and the Power Grid. EVs connect to EVCSs via
standardized physical connectors. EVCSs manage the physical power transfer and perform essential real-
time monitoring of operational parameters for control and safety.

2.2.2 Network Layer
The network layer provides the communication infrastructure enabling data transfer between physical

devices and application layer systems, as well as internally within complex devices like the EVCS. Key
protocols facilitating these interactions include:

• ISO 15118: governs communication between the EV and the EVCS, enabling secure authentication,
authorization, and charging parameter exchange.

• OCPP: manages communication between the EVCS and the CSMS for session management, status
reporting, and remote commands.
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• Hypertext Transfer Protocol Secure (HTTPS): secures data exchange between the user’s Mobile App and
the CSMS.

• Open Charge Point Interface (OCPI): facilitates interoperability and data exchange between the CSMS
and Mobility Operator or Roaming Operator platforms.

• Modbus: often employed internally within the EVCS for communication between different hardware
modules (e.g., controllers), enabling detailed status monitoring and internal control functions.

2.2.3 Application Layer
The application layer comprises high-level software platforms and services managing overall system

operations and user interactions. Key components shown at this layer are:

• Mobile Application: provides end-user interfaces to locate stations, initiate charging sessions, and
manage accounts through interaction with the CSMS.

• CSMS: A central backend system managing EVCSs. Its functions include configuration, monitoring,
session authorization, firmware updates, and aggregation of operational data received via OCPP.

• Mobility Operator/Roaming Operator: Entities providing services potentially across different charg-
ing networks. They interact with the CSMS via OCPI to handle aspects like user authentication,
authorization for roaming, and billing data aggregation.

2.3 Cybersecurity Threat Analysis in the Electric Vehicle Charging Infrastructure
Cybersecurity threats to the EV charging infrastructure are diverse and can be effectively analyzed by

categorizing them according to the three-layer architecture detailed in Section 2.2. Research has increasingly
focused on specific threats at these distinct layers as the infrastructure’s complexity and criticality have grown.

At the physical layer, studies have explored a range of hardware and firmware vulnerabilities. These
include risks associated with unauthorized firmware updates, direct physical tampering with charging
equipment, the presence of hardware backdoors, and weaknesses in cryptographic practices implemented in
charging hardware. Johnson et al. [18] examined such hardware-related risks, with a particular emphasis on
vulnerabilities found in charger firmware and associated maintenance interfaces. Ronanki and Karneddi [19]
contributed through case studies illustrating sabotage scenarios, such as modification and interference
attacks targeting hardware operations, firmware integrity, and the overall operational stability of chargers.
Furthermore, empirical studies on deployed infrastructure, like the work by Szakály et al. [20], have revealed
practical challenges such as the widespread lack of transport layer security (TLS) encryption in some
systems and potential weaknesses in key management and communication establishment processes, leaving
systems vulnerable.

Research focusing on the network layer has become increasingly specific, concentrating on detailed
analyses of communication protocols critical to EV charging operations, notably the OCPP and ISO 15118.
Hu et al. [15] presented a survey identifying various protocol-specific vulnerabilities. These include man-in-
the-middle (MITM) attacks, replay attacks, denial-of-service (DoS) threats, and side-channel attacks that
exploit weak encryption or insecure implementations of these communication standards.

Concerning the application layer, recent studies have significantly focused on vulnerabilities within
mobile applications and backend software systems. This includes extensive evaluations of insecure appli-
cation programming interfaces (APIs), insufficient authentication methods, and compromised payment
processing mechanisms. Concurrently, research by Sarieddine et al. [21] identifies mobile applications as
a distinct and significant attack surface, revealing prevalent deficiencies in areas like vehicle ownership
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verification and authorization processes for critical operations, which could potentially facilitate the remote
hijacking of charging sessions.

Table 1 provides a summary of critical cyberattacks identified across these three architectural layers of
the EV charging infrastructure. It maps common attack vectors to the affected components, outlines their
potential effects, and lists supporting literature.

Table 1: Types of cyberattacks on the electric vehicle charging infrastructure

Layer Object Vulnerability/Attack Effects Reference

Physical

EV Relay attack Unauthorized vehicle
control [22,23]

GPS spoofing Manipulating location
information

EVCS Firmware tampering Data leakage, charging
schedule manipulation

[24–26]

Communication interface Charging service
suspension

[20,27]

Power grid power outage/overload Disruption of power grid
stability

[25,28,29]

Network

EV-to-EVCS Side-channel attack Charging session
interruption

[30]

MITM attack Data tampering,
authentication bypass

[31,32]

EVCS-to-CSMS

Packet replay Abnormal charging
activities

[33]

MITM attack User authentication and
payment information

theft

[34–36]

DoS/DDoS Charging service
suspension

[25,34]

API and web service
vulnerabilities

Data leakage, system
control

[37]

Vehicle-to-Grid
Relay attack Unauthorized energy

theft
[38]

Delayed charging attack Sudden surge in power
grid load

[39]

DDoS Power grid stability
impairment

[40]

Application CSMS Malware injection Remote control of the
EVCS

[14,24]

Data leaks and
manipulation

User information and
payment information

leaks

[18,41]

(Continued)
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Table 1 (continued)

Layer Object Vulnerability/Attack Effects Reference
Mobile app Remote charging session

hijacking
Grid instability [21]

Notes: MITM: man in the middle, DoS: denial of service, DDoS: distributed DoS, GPS: global positioning system.

3 Proposed Digital Evidence Analysis Method
To address the complexities inherent in investigating security incidents within the EVCI, this section

introduces a systematic, multiphase method for the analysis of digital evidence. This method, which inte-
grates OSINT as a cross-cutting element, provides a structured approach to decompose system intricacies,
guide evidence collection, facilitate comprehensive analysis, and enable robust incident reconstruction. Fig. 3
outlines the core of this method, which consists of four foundational phases: (1) system modeling, (2)
data collection, (3) threat analysis, and (4) digital evidence identification. The outputs of these phases
converge into a final investigative synthesis. This structured progression is designed to allow investigators to
systematically navigate the complexities of EV charging ecosystems, ensuring a thorough, evidence-based,
and repeatable forensic process.

Figure 3: Digital evidence analysis method for the electric vehicle charging infrastructure

To further articulate the procedural logic of this method, Algorithm 1 is presented as a detailed
illustration of a potential workflow. This algorithm systematically guides an investigation, commencing with
the formal modeling of the target system and the identification of critical assets. Based on this model, it
proceeds through structured data collection and threat analysis, which includes attack surface mapping and
the correlation of threats with potential digital evidence. The core analytical phase then involves identifying,
evaluating, and correlating relevant forensic digital evidence to reconstruct incident timelines and events.
Ultimately, these results are synthesized into structured investigation findings. Algorithm 1 thus details an



3804 Comput Model Eng Sci. 2025;143(3)

exemplary sequence of operations and the flow of information between the phases depicted in Fig. 3, offering
a computationally grounded and repeatable procedure for conducting forensic investigations in this domain.

Algorithm 1: Digital evidence analysis process for EV charging infrastructure
Input: Incident Information (Iinfo), System Knowledge Base (KBsys), Threat Taxonomy (Ttax), Evidence
Definitions (Adef), OSINT Sources (Sosint)
Output: Investigation Findings (Findingsreport)
Procedure: SystemModeling(KBsys, Iinfo)

Identify System Components C, Interfaces I from KBsys, Iinfo
Construct Formal System Graph G = (C, I)
Map System Functions F onto Graph G
Identify Critical Assets Assetscrit within G using F, Iinfo
Return G, Assetscrit ▷ Define formal system structure (G) and identify

critical assets
End Procedure
Procedure: DataCollection(G, Assetscrit, KBsys, Sosint, Adef)

Gather Relevant Data Sources (Docs, Datasets, Specs) guided by G, Assetscrit, Sosint
Compile Data Source Inventory DSI
List Potential Digital evidence Apot by scanning DSI using Adef
Return DSI, Apot ▷ Gather data sources and list potential digital evidence

based on system model
End Procedure
Procedure: ThreatAnalysis(G, Iinfo, Ttax, DSI, Apot)

Analyze Data Flow pathways on G
Identify relevant Threats Tid using Ttax, Iinfo
Map Attack Surface AS onto G based on Tid
Generate Threat-Digital evidence Map MTE correlating Tid with Apot
Return Tid, AS, MTE ▷ Analyze threats, attack surface, and generate Threat-Digital evidence

Map (MTE)
End Procedure
Procedure: EvidenceAnalysis(Iinfo, G, Assetscrit, DSI, MTE, Tid, Adef)

Select Candidate Digital evidence Acandidate based on MTE, Iinfo
Acquire Candidate Digital evidence as Aacquired from DSI sources
For each Evidence A in Aacquired:

Calculate Evidentiary Value E(A)
Filter Aacquired yielding Arelevant where E(A) ≥ Ethreshold
Correlate Arelevant using temporal, spatial, and G-based analysis
Reconstruct Incident Timeline TL from correlations
Determine Investigation Findings and supporting Evidence from Arelevant, TL
Return TL, Findings, Evidence ▷ Consolidate results and produce final

structured findings
End Procedure
Procedure SynthesizeFindings(Iinfo, TL, Findings, Evidence, G, AS)

Consolidate TL, Findings, Evidence with context (G, AS, Iinfo)
(Continued)
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Algorithm 1 (continued)
Produce structured Investigation Findings Findingsreport
Return Findingsreport

End Procedure

The subsequent subsections will detail the specific procedures, formalisms, and data utilized within each
phase of this proposed method.

3.1 System Modeling
The system modeling phase establishes the structural foundation for the proposed forensic investigation

framework. Its objective is to create a precise and manageable model of the target EV charging infrastructure,
explicitly identifying components, interfaces, their functions, and critical data flows pertinent to post-
incident analyses. This comprehensive architectural decomposition is crucial for navigating the complexities
of distributed and often proprietary charging systems, enabling investigators to effectively target relevant
data sources and potential points where digital evidence may be generated.

3.1.1 Component Identification
This initial step identifies all relevant hardware and software elements within the investigation’s scope.

Formally, we define the set of components as C = {c1 , c2, . . . , cn}, where each ci εC represents a distinct
system element. The process involves reviewing available technical documentation, analyzing network
topology data, conducting controlled network discovery, and consulting system diagrams to enumerate
components such as specific EVCS models cevcs CPO backend servers (ccsms), e-MSP platforms (cems p),
communication gateways (cgw), databases (cdb), and the associated EVs (cev). Each component (ci) can
possess attributes like type, vendor, model, and version, contributing to the detailed system understanding.

3.1.2 Interface Identification
The next step is to map the communication links and protocols that connect the identified components.

The system’s interaction structure is formally modeled as a directed graph G = (C , I), where C is the set
of vertices (components) and I is the set of edges representing the interfaces. An interface i ∈ I is defined
as a tuple (csrc , cdst , p), where csrc , cdst ∈ C are the source and destination components, respectively, and
p ∈ P is the communication protocol (from a set of relevant protocols P) utilized over that interface;
thus, I ⊆ C × C × P. Identifying these interfaces involves analyzing protocol information from documenta-
tion (e.g., specific versions like OCPP 1.6J, ISO 15118-2), reviewing network configurations, and potentially
analyzing network traffic samples. This helps in understanding how data, including potential digital evidence,
are exchanged.

3.1.3 Function Identification
This step involves documenting the critical operational functions performed by the identified compo-

nents and interfaces, particularly those relevant to potential security incidents. A set of critical functions
F = {f1 , f2 , . . . , fm} is defined. Each function fk ∈ F can be formally mapped to the set of components
responsible for its execution MapF→C∶F→ 2C and the set of interfaces utilized MapF→I∶F→ 2I. For instance,
an authentication function fauth might involve components {cev, cevcs , ccsms} and utilize interfaces associated
with protocols piso15118 and pocpp. This mapping, derived from protocol specifications, user manuals, and
system requirements, allows investigators to anticipate where digital evidence related to specific actions (e.g.,
authentication failures, unauthorized commands) might be generated within the formal model G.
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The intended output of this system modeling phase is a formalized initial asset analysis. Based on
the modeled graph G = (C , I) and the function mappings MapF→C, MapF→I, this analysis identifies critical
system assets. A criticality score, Crit (x), can be assigned to each element x ∈ C ∪ I. This assignment
considers factors such as its role in critical system functions (derived from F), its potential to store
sensitive data or operational logs (information typically part of the System Knowledge Base, KBs ys), and its
direct relevance based on the preliminary incident information (Iin f o). Critical assets, Assetscr i t , are then
identified as those elements meeting or exceeding a certain criticality threshold, θ; formally, Assetscr i t =
{x ∈ C ∪ I ∣ Critx ≥ θ}. It is important to note that while this describes a formalized approach, the practical
assignment of criticality scores and determination of thresholds may be adapted based on the specific
investigative context, available information, and experienced judgment, potentially incorporating qualitative
assessments alongside or in place of strict quantitative scoring. Regardless of the specific evaluation method,
the clearly identified set Assetscr i t and the formal graph G are the key outputs of this phase passed to
subsequent procedures.

3.2 Data Collection
Following the system modeling phase, the data collection process focuses on systematically gathering

diverse data sources essential for the subsequent data-driven analysis of potential digital evidence. This phase
is guided by the formal system model (G) and the identified critical assets (Assetscr i t i cal ) from Section 3.1,
ensuring that data gathering is both targeted and efficient. A significant challenge in EVCI forensic
investigations is often the limited access to internal data within closed, proprietary systems; therefore, this
process emphasizes supplementing available internal data with crucial external intelligence, notably through
Open-Source Intelligence methods (Sosint). While OSINT can provide valuable contextual information,
investigators must acknowledge its limitations in scenarios involving highly proprietary system details or
outdated public information; these practical considerations are further discussed in Section 5.4.

The primary categories of data sources to be considered include technical documentation, compliance
requirements, operational datasets, and specific communication protocol standards relevant to the interfaces
(I) in G. The goal is to compile a comprehensive Data Source Inventory (DSI) and identify a list of potential
digital evidence (Apot) using predefined digital evidence definitions (Ad e f ). Table 2 provides illustrative
examples of common data sources in EVCI investigations, their potential forensic value, and acquisition
considerations, serving as a general guide.

Table 2: Data sources for electric vehicle charging infrastructure investigations

Data source Name/Identifier Forensic
Relevance/Digital

evidence focus

Considerations

Technical
documenta-

tion

Vendor manuals,
datasheets

Hardware specifications,
vendor-specific log formats,
error codes, sensor details

Proprietary—requires
vendor

access/cooperation
Standards and
requirements

Evidence related to
mandated security controls,

diagnostic logging,
operational reporting

Depends on compliance
by

region/program

(Continued)
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Table 2 (continued)

Data source Name/Identifier Forensic
Relevance/Digital

evidence focus

Considerations

Dataset

Multifaceted Analysis of
EV charging data [42]

Detection of anomalous
transactions via regional

usage patterns

Retrospective data
lacking confirmed
security incidents

DESL-EPFL data [43] Analysis of power-related
digital evidence and SoC

anomalies in DC
fast-charging

Controlled sessions may
differ from public usage

DOE EV charging
data [44]

Correlation of vehicle- and
charger-based digital
evidence at fleet scale

Requires data
normalization and time

synchronization
Workplace charging for
electric vehicles [45,46]

Contextualizes user behavior
digital evidence

in workplace charging
environments

Scenario specific to
workplaces

ACN-data [47] Evaluation of managed
charging algorithms
and API interactions

Research setting may not
reflect production

conditions
Protocol

specification
OCPP Primary EVCS–CSMS

communication (sessions,
metering, security events)

Depends on the protocol
version; optional security
features affect the Digital

evidencescope
ISO 15118 Authentication (PnC/EIM),

V2G interactions, TLS
handshakes between EV and

EVCS

Multivendor
interoperability can
complicate analysis

Notes: PnC/EIM: plug and charge/external identification means, DC: direct current, CAN: controller area network,
SoC: state of charge.

3.2.1 Technical Documentation
This involves gathering specific documents describing the target system’s implementation, focusing on

critical assets (Assetscr i t). Sources include vendor manuals, system requirements, firmware notes, security
advisories, and component datasheets, often found via OSINT (Sosint) or direct requests.

3.2.2 Dataset
The Data Source Inventory (DSI) should incorporate operational data (e.g., logs from CPOs/CSMSs,

EVCSs, network devices, databases, particularly from Assetscr i t) acquired through authorized procedures,
and comparative datasets from public repositories or OSINT (Sosint) to provide analytical context and
baseline behaviors.
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3.2.3 Protocol Specification
Precise technical specifications for communication protocols (p ∈ P) identified in G (e.g., ISO 15118,

OCPP) are essential for accurately interpreting communication-related digital evidence from the DSI. They
define message structures, data fields, and forensically relevant information, forming a basis for analysis.

3.3 Threat Analysis
The threat analysis phase undertakes a systematic identification and evaluation of cyber threats per-

tinent to the EV charging infrastructure, as formally modeled by the system graph G. This phase applies
the outputs from system modeling (G) and data collection (DSI, Apot) to establish a contextualized threat
landscape, guiding subsequent forensic activities. Sosint methods are integrated here to enrich the analysis
with publicly available information regarding known vulnerabilities, relevant attack vectors, and potential
threat actor tactics associated with the system components (C) and communication protocols (P) used in
interfaces (I). The principal outputs of this phase, which inform the subsequent digital evidence identification
procedures, are a set of identified relevant threats (Tid ), a delineated attack surface map (AS), and a
formalized Threat-Evidence Map (MTE) that links threats to potential digital evidence.

3.3.1 Data Flow Analysis
This initial step scrutinizes the communication pathways and data exchanges between system compo-

nents (ci ∈ C) as delineated in the system model G. Applying the collected protocol specifications (part of
DSI) corresponding to interfaces (ik ∈ I), the flow of critical data types across these defined interfaces is
examined. This process can be visualized using data flow diagrams (DFDs) to identify potential junctures
for data interception or manipulation, delineate attack vectors predicated on data flow characteristics, and
anticipate the location of potential digital evidence generation within G. Fig. 4 provides an example of such
a DFD for a representative EV charging infrastructure, illustrating how this technique can map out data
movements between various entities and processes. Sosint can contribute by providing intelligence on known
protocol implementation weaknesses or common misconfigurations affecting data flow security.

Figure 4: Data flow diagram of electric vehicle charging infrastructure
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3.3.2 Threat Modeling
Threat modeling extends the insights from data flow analysis by applying established methodologies,

such as STRIDE (Spoofing, Tampering, Repudiation, Information disclosure, Denial of Service, and Ele-
vation of privilege), to categorize and identify potential threats relevant to the EVCI, possibly drawing
from a predefined threat taxonomy [22,31]. This approach links identified data flows and system elements
to potential threat vectors. For example, spoofing threats might compromise EV-to-EVCS authentication
processes (potentially related to interfaces using piso15118), while tampering could alter metering data
transmitted via OCPP. This structured analysis helps reveal how adversaries might exploit system weaknesses
and results in the identification of a set of relevant threats for the investigation, guiding the subsequent search
for associated forensic evidence.

3.3.3 Attack Surface Analysis
The attack surface analysis synthesizes the findings from data flow analysis and the identified threats to

provide a comprehensive mapping of the system’s attack surface. This involves identifying all interfaces and
components in G through which the system could potentially be accessed or influenced by the threats in Tid .
Each identified element of the attack surface is correlated with specific threats and associated vulnerabilities.
For instance, communication channels susceptible to interception or components prone to tampering are
highlighted. Fig. 5 conceptually demonstrates how an attack surface can be identified within the EV charging
infrastructure, focusing forensic efforts on the most significant vulnerabilities defined within AS. The Threat-
Evidence Map is then generated by correlating these identified threats and attack surface elements with the
list of potential digital evidence compiled during data collection.

Figure 5: Identifying the attack surface in the EV charging infrastructure

3.4 Digital Evidence Identification
This final core phase of the proposed framework focuses on enumerating, acquiring, and evaluating

digital evidence with forensic value. The process is critically guided by the Threat-Evidence Map generated in
the preceding Threat Analysis phase (Section 3.3), which links identified threats to potential digital evidence.
Utilizing MTE ensures that digital evidence identification, acquisition, and subsequent analysis are targeted
and relevant to the specific incident context and the modeled system. This section outlines the general
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steps involved, including the use of incident taxonomies, evidence acquisition strategies, and an approach to
evidentiary value assessment.

3.4.1 Layer-Specific Incident Taxonomy
To effectively utilize the MTE and guide the search for digital evidence, a structured taxonomy of

potential incident types, categorized by the affected architectural layer, is a useful tool. This classification
schema can be derived from the threats Tid identified during threat analysis (Section 3.3.2) and mapped onto
the layered system architecture. Such a taxonomy facilitates a structured investigative approach by enabling
investigators to associate observed anomalies or alerts with specific incident categories, thereby refining the
focus within the MTE to pinpoint types of digital evidence most likely to be relevant.

• Physical layer: physical layer incidents include hardware tampering, unauthorized physical access, or
power grid disruptions. For instance, tampering with EVCS units (cevcs) might involve altering charging
parameters or injecting malicious firmware.

• Network layer: network layer incidents encompass attacks on communication protocols (p ∈ P).
Examples include man-in-the-middle attacks, protocol manipulation, or DoS attacks targeting network
interfaces (ik ∈ I).

• Application layer: application layer incidents involve breaches at the software level, such as unau-
thorized access to management systems (ccsms), data theft, or fraudulent activities (e.g., manipulating
transaction records or stealing user credentials).

3.4.2 Evidence Acquisition
This step details the process of identifying and acquiring specific digital evidence pertinent to the

forensic investigation. Guided by the Layer-Specific Incident Taxonomy and the MTE , candidate digital
evidence (Acand id ate) is selected from the pool of potential digital evidence. Acquisition procedures are then
employed to retrieve these Acand id ate items from the sources cataloged in the DSI, often prioritizing sources
associated with critical assets. The resulting set of collected digital evidence is denoted as Aacquired . The
identification of specific relevant digital evidence within Apot involves a systematic analysis of collected data
(DSI, including protocol specifications, datasets, documentation), categorized across the architectural layers.
The following tables (Tables 3–10) present a comprehensive catalogue of digital evidence types identified
as potentially valuable for forensic investigations within the EVCI. This catalogue is intended to guide
investigators on what to look for and serves as a baseline for establishing forensic readiness.

Table 3: Electric vehicle-related digital evidence identified via the ISO 15118 protocol analysis

Category Identified digital
evidence

Source message type Investigation value

Battery
information

Battery state-of-charge
data

ChargingStatusReq/Res Charging state
verification, anomalous

charging detection
Requested voltage

parameters
ChargeParameterDiscovery

Req/Res
Validation of requested

electrical parameters
Maximum power/voltage

capabilities
ChargeParameterDiscovery

Req/Res
Vehicle capability

baseline establishment

(Continued)



Comput Model Eng Sci. 2025;143(3) 3811

Table 3 (continued)

Category Identified digital
evidence

Source message type Investigation value

Charging
parameters

Real-time power/voltage
measurements

ChargingStatusReq/Res Operational condition
verification

Cumulative energy
delivery

MeteringReceiptReq/Res Energy usage validation

Vehicle
information

Electric vehicle ID AuthorizationReq/Res Session attribution,
vehicle tracking

Vehicle certificate data CertificateInstallationReq/ResAuthentication verificationCertificateUpdateReq/Res
Status

information
Vehicle operational status ChargingStatusReq/Res Condition monitoring,

anomaly detection

Table 4: Electric vehicle charging station-related digital evidence identified via a dataset comparison

Evidence type Identified digital evidence Dataset
coverage*

Significance and value

Session information Session start/end timestamps 5/5 Temporal correlation,
session reconstruction

Session ID 3/5 Uniquely identifying
transactions

Charging power
parameters

Requested power and
maximum power

3/5 Anomalous power request
detection

Battery state of charge 2/5 Battery condition
monitoring

Billing information Total energy delivered 5/5 Charging transaction
verification

Session payment amount 1/5 Financial transaction
validation

Identity information User ID 3/5 User attribution
Vehicle ID 1/5 Vehicle tracking and

correlation
Infrastructure
information

Charger ID 4/5 Equipment attribution

Charger location data 3/5 Geographic correlation

Note: *Number of datasets containing the digital evidence out of the five analyzed datasets.
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Table 5: Electric vehicle to charging station network communication digital evidence

Communication
element

Identified digital
evidence

Data source Significance and value

Physical connection
signaling

Control pilot signal
parameters, PWM

duty-cycle measurements

ISO 15118-3 [48]
specification

Detection of signal
manipulation, connector

tampering
Network handshake

mechanisms
EXI encoded message

sequences, V2G session
establishment parameters

ISO 15118-2 [49]
(Section 8.3)

Authentication integrity
verification, session

manipulation,
identification

Transport layer
security

Certificate exchange
records, TLS cipher suite

negotiations

ISO 15118-2 [49]
(Section 7.9)

Cryptographic integrity
verification, security
downgrade detection

Connection
management

Session
initiation/termination
events, error recovery

sequences

ISO 15118-2 [49]
(Section 8.7)

Connection disruption
analysis, communication

interference detection

Notes: PWM: Pulse Width Modulation, EXI: Efficient Extensible Markup Language Interchange.

Table 6: OCPP-based electric vehicle charging station to management system communication digital evidence

Message category Identified digital evidence Significance and value
Authentication AuthorizeRequest/Response

messages, IdToken validation
records

Authentication integrity
verification,

credential misuse detection
Transaction
management

StartTransaction/StopTrans
action messages, MeterValues

records with timestamps

Session boundary verification,
energy measurement validation

Status reporting StatusNotification messages,
ErrorCode fields, connector

status changes

System state transition analysis,
anomalous condition detection

Remote operations RemoteStartTransaction/Rem
oteStopTransaction messages,

triggering entity identifiers

Administrative action verifi
cation, unauthorized control

detection
Security events SecurityEventNotification

messages, SignedMeterValue
fields

Security incident verification, data
integrity validation
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Table 7: Authentication-related digital evidence

Evidence type Data elements Significance and value
User identification User ID values, IDToken

parameters
User attribution, session
ownership verification

Authorization records Authorization
requests/responses,
authorization status

Authentication attempt
verification, access control

validation
Session tokens Session identifiers, session

contexts
Session tracking, session

hijacking detection
Authentication timestamps Login/logout events,

authentication attempts
Temporal correlation, access

pattern analysis

Table 8: Transaction management digital evidence

Evidence type Data elements Significance and value
Session records Session ID values,

transaction start/stop
messages

Session boundary verification,
transaction reconstruction

Consumption
measurements

Energy delivered (kWh),
meter values

Energy delivery verification,
consumption anomaly detection

Financial data Payment amounts, billing
parameters

Financial transaction validation,
fraud detection

Transaction timestamps Start/stop times, meter
reading intervals

Temporal analysis, charging
pattern verification

Table 9: Status notification digital evidence

Digital evidence type Data elements Significance and value
Operational states Charger status codes,

connector states
System condition verification,

abnormal state detection
Control indicators Controlled session flags,

management intervention
records

External control verification,
unauthorized management

detection
Connection states Connection/disconnection

timestamps, charging state
changes

Session timeline reconstruction,
usage pattern analysis

Fault indicators Error codes, diagnostic
information

Fault condition analysis, system
integrity verification
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Table 10: System management digital evidence

Digital evidence type Data elements Significance and value
Remote commands RemoteStartTransaction/Remote

StopTransaction records
Administrative action

verification, unauthorized
control detection

Configuration changes GetConfiguration/Change
Configuration messages

System configuration analysis,
setting modification detection

Firmware management UpdateFirmware notifications,
firmware status

Software integrity verification,
unauthorized update detection

Diagnostics DiagnosticsStatusNotification,
log retrieval records

System health analysis,
tampering evidence

identification

Physical layer digital evidence originates from hardware components (ci ∈ C) and their operational data.
Based on the analysis of protocol specifications like ISO 15118 and examination of various datasets within
DSI, critical physical layer digital evidence can be identified:

• EV-related digital evidence: analysis of standards such as ISO 15118-2 reveals message types generating
valuable digital evidence [49]. Message structures identified (e.g., from specific standard sections) yield
digital evidence detailed in Table 3, representing critical evidence for physical layer incidents.

EVCS-related digital evidence: comparative analysis of multiple charging session datasets (examples
referenced in Table 2 and detailed in Appendix A) enables the identification of common digital evidence
generated across diverse charging systems (cevcs). Table 4 shows this digital evidence, providing essential
evidence for incidents involving charging equipment.

Network layer digital evidence comprise data generated during communications between components
over interfaces (Ik ∈ I). Critical forensic evidence is identified across primary communication segments:

• EV-to-evcs communication digital evidence: analysis extends beyond the ISO 15118 message content (as
referenced for physical digital evidence) to include network-level communication traces with significant
forensic value, detailed in Table 5. These encompass physical connection signals, handshake parameters,
security mechanism traces, and connection events.

• EVCS–CSMS communication digital evidence: the OCPP protocol governs standardized communica-
tion between cevcs and ccsms . Table 6 presents systematically identified OCPP-generated digital evidence
categorized by message type, crucial for analyzing interactions over this interface.

Application layer digital evidence encompass data generated by management systems (ccsms), user
applications, and related services. Systematic analysis identifies several categories of application-level digital
evidence with significant forensic value:

• Authentication digital evidence: the OCPP generates several authentication-related digital evidence
for forensic investigation as detailed in Table 7.

• Transaction management digital evidence: Table 8 shows consistent transaction-related digital evi-
dence across implementations, vital for verifying session details and financial data.

• Status notification digital evidence: critical evidence regarding system conditions, derived from OCPP
status notifications, is presented in Table 9.
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• System management digital evidence: management-level digital evidence documenting administrative
actions via OCPP are outlined in Table 10.

The collection and categorization of these diverse digital evidence (Aacquired ) across all layers, guided
by MTA and the incident context, provide the foundation for the subsequent evidentiary value assessment
(Section 3.4.3). Investigators can reconstruct complex incident scenarios, attribute malicious activities to
specific actors, and document the effects of security events on charging operations by collecting and
analyzing these digital evidence.

3.4.3 Evidentiary Value Assessment
Following the acquisition of potentially relevant digital evidence (Aacquired ), a critical phase involves

the formalized assessment of their evidentiary value. This assessment provides a quantitative basis for
prioritizing analytical efforts, focusing resources on digital evidence most likely to contribute significantly to
the investigation. The evaluation is based on established forensic criteria—Relevance, Reliability, Temporal
Fidelity, and Completeness—considered within the specific context of the EV charging infrastructure
incident, and utilizes a structured quantitative model.

We define the Evidentiary Value E (A) for each Digital evidence A ∈ Aacquired using a multi-criteria
decision analysis approach, specifically a weighted sum model as presented in Eq. (1). This model was chosen
initially for its clarity, while acknowledging the potential for more complex models in future work.

LE (A) = wR ⋅ fR (A) +wL ⋅ fL (A) +wT ⋅ fT (A) +wC ⋅ fC (A) (1)

where fR , fL , fT , fC represent scoring functions that quantify the digital evidence’s Relevance, Reliability,
Temporal Fidelity, and Completeness, respectively. A critical step for practical application, which is beyond
the scope of the current definitions provided in this paper, is the development of specific, objective rubrics or
mathematical formulas to operationalize each function fX (A), mapping diverse digital evidence attributes
onto a normalized scale (e.g., [0, 1]). The weights wR , wL , wT , wC represent the relative importance of each
criterion, determined contextually for the specific investigation, satisfying∑wi = 1.

• Relevance ( fR): this function must quantify the direct linkage between Digital evidence A and the
incident hypothesis or investigative questions. Defining the scoring mechanism requires establishing
rules based on factors like the evidence’s ability to confirm/refute specific questions (e.g., event timing,
actor identity).

• Reliability ( fL): this function must quantify the trustworthiness and integrity of A. Operationalization
involves creating a scoring system based on source credibility, creation process integrity, potential for
tampering (e.g., hash verification status), and chain of custody documentation.

• Temporal Fidelity ( fT ): this function must quantify the accuracy, precision, and synchronization of
timestamps associated with A. Defining this function requires assessing timestamp source reliability,
precision level, and potential temporal discrepancies using a consistent method.

• Completeness ( fC ): this function must quantify the sufficiency of detail and context provided by A.
Operationalization involves assessing whether the Digital evidence captures an event adequately or
presents only a fragment, considering the presence of necessary contextual information.

A critical consideration for the practical application of Eq. (1) is the necessary development of specific,
objective rubrics or detailed mathematical formulas to operationalize each scoring function fX (A). Defining
these functions rigorously is a complex task and is considered beyond the scope of the current paper’s primary
contributions, representing an area for significant future research. Therefore, in the context of this paper
and its case studies, the assessment of evidentiary value is primarily guided by these criteria in a qualitative
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or conceptual manner, rather than through strict quantitative calculation using Eq. (1). The aim is to filter
Aacquired to yield Arel ev ant where E(A) is deemed sufficiently high based on these guiding criteria and a
conceptually applied threshold. Subsequent analysis involves correlating Arel ev ant to reconstruct the incident
timeline and determine findings.

4 Case Study
This section validates and demonstrates the practical applicability of the data-driven forensic method

proposed in Section 3. The efficacy of the method is illustrated through its application to credible threat
scenarios, some derived from empirical security research targeting EVCSs and others elaborated as rep-
resentative virtual incident investigation scenarios. These case studies demonstrate the application of the
structured forensic workflow. This workflow is conceptually guided by the phases outlined in Fig. 3 and the
procedural logic illustrated in Algorithm 1, integrating system modeling, OSINT-informed data collection,
threat analysis, digital evidence identification, conceptual evidentiary value assessment, and systematic
investigation principles. The objective is to substantiate the method’s capacity to address complex forensic
challenges within contemporary EV charging ecosystems, thereby aiming to enhance forensic readiness and
response capabilities.

4.1 Digital Evidence Analysis Based on Demonstrated Threat Scenarios
This first case study focuses on the forensic investigation process for incidents corresponding to

threat vectors whose viability and influence were empirically confirmed by the Electric Vehicle Secure
Architecture Laboratory Demonstration (EV SALaD) project [27]. The significance of using these EV SALaD
findings is their empirical validation. The project moved beyond theoretical vulnerabilities to demonstrate
tangible attack consequences on real-world extremely fast charging systems. Therefore, the observable
outcomes documented during these demonstrations represent high-fidelity examples of potential security
incident manifestations.

Table 11 presents these empirically observed outcomes as potential incident scenarios that a forensic
investigator might encounter. The descriptions focus on the observable results of the incident, facilitating the
forensic task of determining the cause. This approach aligns with the initial investigation phase, where the
primary information is often the manifestation of the problem itself.

Table 11: Incident scenarios derived from demonstrated threats

# Incident scenario description Affected component Potential impact
1 Displays abnormal charging

amount and power values Human-machine
interface

Misleading information, user
confusion, potential billing
errors, unnecessary service
interruption

2 “Emergency Shutdown” message
appears on the display

during an active charging session
3 “You’ve Been Hacked” message

appears on the display
4 Unstable power delivery with

observable fluctuations during the
charging session

Power conversion
system

Degraded charging quality, EV
battery stress

(Continued)
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Table 11 (continued)

# Incident scenario description Affected component Potential impact
5 Charging cable temperature

increases abnormally during
charging

Thermal management
system

Safety hazard, automatic power
reduction, and equipment
reliability concerns

6 Charging cable cooling system
makes irregular on-off sounds

during operations
7 AC input contactors unexpectedly

open during high-power charging,
causing abrupt session termination

Power management
system

Charging service interruption,
charging failure

8 Vehicle charges much slower than
selected with the wrong battery

level displayed

EV-EVCS communic
ations

Extended charging duration

9 Charging session unexpectedly
terminates or will not start despite

proper connection
Charging service interruption

10 Charger interface behavior
unexpectedly changes after vehicle

connection
11 Charging session automatically

ends without apparent cause or
error message

EVCS–CSMS
communications

4.1.1 System Modeling for Digital Evidence Analysis
Following the method outlined in Section 4.1 and the System Modeling procedure in Algorithm 1, we

constructed a detailed system model relevant to the scenarios in Table 11. This involved identifying the key
system components (C) and their communication interfaces (I), formally conceptualized as a graph G =
(C , I). Table 12 provides an overview of the primary components and interfaces considered in this case
study’s system model.

Table 12: Components and interfaces in the case study system model

Type Element (c ∈ Cori ∈ I) Description/Protocol
(p ∈ P)

Relevant scenarios

Component

Electric vehicle The vehicle being charged 8, 9
EVCS controller Central processing unit

of the charging station
1–11

HMI Human-Machine
Interface (Display/Input)

1, 2, 3, 10

Power module Converts and delivers
electrical power

4, 7, 8

(Continued)
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Table 12 (continued)

Type Element (c ∈ Cori ∈ I) Description/Protocol
(p ∈ P)

Relevant scenarios

Thermal management Cooling system (e.g.,
cable cooling)

5, 6

AC input contactor Connects/disconnects
AC power input

7

Charging station
management system

Backend system
managing multiple

EVCSs

11

Interface

EV-EVCS interface Communication between
EV and EVCS 8, 9, 10

ISO
15118/CCS/CHAdeMO

EVCS internal interface Communication between
internal EVCS modules 1–7

CAN bus, Modbus,
Ethernet

EVCS-CSMS interface Communication between
EVCS and Backend 11

OCPP
EVCS maintenance

interface
Port for

diagnostics/updates (e.g.,
USB, Ethernet)

1–7

This model synthesizes the architectural representations in Figs. 1 and 2. Regarding the physical layer,
relevant hardware components identified in Table 12 include the HMI display systems, power conversion
modules, cooling management subsystems, and input contactors. The interface mapping identified critical
communication pathways, such as the internal bus between the HMI display and the central controller
(relevant to Scenarios 1–3) and interfaces controlling the power module and cooling system (relevant
to Scenarios 4–7). The function identification process revealed that these components execute critical
operations like power delivery control, thermal regulation, and safety monitoring, generating forensically
significant data. The model also captures network layer interfaces like the EV-EVCS communication (using
CCS/CHAdeMO) and the EVCS-CSMS communication (using OCPP), relevant to Scenarios 8–11.

4.1.2 Data Collection Application
This phase focused on gathering diverse data sources essential for the investigation. The collection was

specifically targeted towards obtaining information related to the key system components and interfaces
identified in the system model (Table 12). The primary goal was to compile a comprehensive Data Source
Inventory (DSI) and subsequently identify a list of Potential Digital evidence (Apot) by analyzing the DSI
based on predefined Digital evidence definitions (Ad e f ). This involved gathering technical documentation,
relevant datasets, and specific communication protocol standards governing the identified interfaces.



Comput Model Eng Sci. 2025;143(3) 3819

The technical documentation analysis focused on specifications like ISO 15118 and OCPP, which define
the communication structure pertinent to the interfaces listed in Table 12. These specifications supply
detailed message formats, data fields, and parameter definitions crucial for interpreting communication
digital evidence potentially present in the collected data.

The dataset analysis incorporated multiple datasets identified during data collection (examples ref-
erenced in Table 2 and detailed in Appendix A), including the Multifaceted Analysis of EV charging
data, DESL-EPFL data, and DOE EV charging data. These datasets provided baseline behavioral patterns
for charging operations related to the modeled components (EV, EVCS), enabling the identification of
anomalous activities characteristic of the security incidents described in Table 11.

The examination of the protocol specifications (part of the DSI) revealed substantive differences in
security-relevant data fields between protocol versions, directly impacting the Apot derivable from com-
munications over interfaces like the EVCS-CSMS link (Table 12). For example, OCPP 1.6 implementations
often omit critical security event logging capabilities present in OCPP 2.0, whereas implementations of ISO
15118 vary significantly in certificate handling and authentication mechanisms. These variations substantially
affect the forensic digital evidence available during investigations and require tailored analysis approaches
for different deployment scenarios impacting the components and interfaces modeled in Table 12. Table 13
summarizes the key differences between protocol versions and their implications for forensic investigations.

Table 13: Protocol version differences and forensic implications

Protocol Version Security features Digital evidence
available

Limitation

OCPP
1.6J Basic authentication,

Optional TLS
Authorization logs,

Transaction records,
Basic status
notifications

Limited security event
logging,

No mutual authentication
records, No firmware

security logs

2.0.1 Mutual authentication,
Mandatory TLS, Security

events

Enhanced
authentication logs,

Rarely implemented in
current charging

infrastructure
Security event

notifications, Firmware
integrity checks,

Transaction signatures

ISO 15118 −2 Basic TLS, Certificate
exchange

Certificate exchange
logs, Basic charge
parameter records

Limited authentication
details,

Basic session
management logs

−20 Enhanced Public Key
Infrastructure (PKI),

Plug & Charge security

Certificate validation
records,

Comprehensive
session security logs,
Contract certificate

records

Not widely implemented,
Backward compatibility
issues limiting adoption
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4.1.3 Threat Analysis Based on Incident Scenarios
The threat analysis procedure utilized the system model and the collected data sources and potential

digital evidence from the previous phase as primary inputs, along with incident information (Iin f o) derived
from Table 11 scenarios and a predefined threat taxonomy (Ttax ). The objective was to systematically identify
relevant threats (Tid ), delineate the attack surface (AS) pertinent to the modeled system, and critically,
generate the Threat-Digital Evidence Map (MTE) that links identified threats to Apot , guiding the subsequent
digital evidence identification phase.

The data flow analysis scrutinized communication pathways between the system components and across
interfaces defined in Table 12. For Scenarios 1 to 3 involving HMI anomalies, we mapped the flow of display
instructions from the EVCS Controller to the EVCS HMI, identifying potential interception points on the
EVCS Internal Interface. For Scenarios 4 to 7 affecting power and thermal systems, we traced control signals
between the EVCS Controller, Power Module, and Thermal Management system via internal interfaces,
highlighting vulnerable points where malicious commands could be injected. For communication-related
scenarios (8 to 11), we analyzed the bidirectional data flows over the EV-EVCS and EVCS-CSMS interfaces,
identifying potential protocol vulnerabilities.

Threat modeling then classified each scenario according to its predominant threat category using
the STRIDE framework (drawing from Ttax ), explicitly linking threats to the components and interfaces
in Table 12. This classification, summarized in Table 14, connects Tid to their likely manifestations in system
data and guided the generation of the MTE .

Table 14: Threat classification of incident scenarios

Protocol Scenarios Threat Affected system
elements

Potential attack
vectors

HMI
Aanomalies

1–3 Tampering,
Information
disclosure

Display subsystem,
Controller-HMI

interface

Maintenance
interfaces, USB port

Power &
Thermal system

manipulation

4–7 Tampering, Denial
of service, Elevation

of privilege

Power conversion
modules, Thermal

management system,
Input power
contactors

Maintenance
interfaces, Firmware
update mechanisms

Communication
protocol

exploitation

8–11 Spoofing,
Tampering,

Denial of service

Certificate exchange
logs, Basic charge
parameter records

Protocol
implementation flaws,

Communication
channel interception,

Lack of message
authentication

The attack surface analysis integrated these findings to map the system’s overall AS comprehensively.
As illustrated conceptually in Fig. 6, this involved correlating the identified vulnerable components and
interfaces from Table 12 (e.g., EVCS Maintenance Interface, EV-EVCS and EVCS-CSMS communication
link) with the Tid relevant to the scenarios. This analysis highlighted that maintenance interfaces, physical
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connectors (related to EV-EVCS interface), protocol implementations (affecting all communication inter-
faces), and administrative access mechanisms (potentially via EVCS-CSMS interface) represent the most
significant elements of the AS for these scenarios.

Figure 6: Attack surface identification for EV charging infrastructure incident scenarios

The key output of this phase, the MTE , formally links the identified threats (Tid ) and attack surface
elements (AS) to the Apot listed in the previous step, providing a crucial input for the evidence analysis in
the next section.

4.1.4 Layer-Specific Digital Evidence Identification
This procedure systematically processes potential evidence based on the findings from the preceding

threat analysis phase. Key inputs for this procedure, as defined in Algorithm 1, include the MTE , Iin f o ,
G, Assetscr i t , DSI, and Ad e f . The core of this analysis begins by selecting Candidate Digital evidence
(Acand id ate ) pertinent to the scenario, guided by the MTE , followed by acquiring these candidates (Aacquired )
from DSI. Subsequently, the Evidentiary Value (E(A)) of acquired digital evidence is conceptually evaluated
using the criteria from Eq. (1), and only those meeting the required evidentiary threshold are filtered as
Relevant Digital evidence (Arel ev ant). These relevant digital evidence are then correlated using temporal,
spatial, and system-model-based analysis. This correlation enables the reconstruction of the incident timeline
and the determination of findings based on the consolidated evidence. The relevant digital evidence
(Arel ev ant) identified through this process for the case study scenarios are discussed below, organized by
architectural layer.

For HMI-related incidents (Scenarios 1 to 3), the Evidence Analysis procedure, guided by the relevant
part of MTE, focused on identifying digital evidence from the EVCS Controller and HMI components
(Table 12). Key Arel ev ant identified included controller-HMI communication logs (from EVCS Internal
Interface), system status codes indicating component communication errors, external device connection
records (via EVCS Maintenance Interface), and command history logs. HMI-controller communication
logs were assessed (conceptually, via E(A)) as having high evidentiary value for distinguishing system
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malfunctions from malicious manipulations. For example, a simplified logical check applied during the
correlation step to detect potential display tampering in these logs can be formulated. In the following
expression in Eq. (2), cmd represents an individual command or log entry within the log:

IsTampered (LogHMI) = ∃cmd ∈ LogHMI ; s.t; (cmd .source ∉ TrustedSources)
∨ (¬Veri f yChecksum (cmd)) (2)

For power and thermal management incidents (Scenarios 4 to 7), the analysis targeted digital evidence
related to the EVCS Power Module, Thermal Management system, and Input Contactor. Relevant digital
evidence identified through the process included power module control signals, real-time power/voltage
measurements (potentially derived from ISO 15118 messages exchanged over the EV-EVCS interface, if
logged), thermal management system logs documenting cooling system behavior, state transition records,
and internal network traffic captures (EVCS Internal Interface). However, our analysis, stemming from
the difficulty in acquiring sufficient Aacquired for evaluation, highlighted a critical digital evidence gap:
detailed thermal management data such as cooling pump operation status, fan activation patterns, and
precise cable temperature sensor readings are often not systematically recorded or available in the DSI of
current implementations. This lack of granular data severely hampers the forensic analysis and conclusive
determination (timeline reconstruction) of thermal incidents.

For communication protocol incidents (Scenarios 8 to 11), the focus was on digital evidence generated
during communications over the EV-EVCS and EVCS-CSMS interfaces. Significant Arel ev ant identified
included Controller Area Network (CAN) bus communication packets documenting protocol-level interac-
tions, control pilot signal data detailing pulse-width modulation signals and duty-cycle patterns, charging
session timing information, battery SoC reporting data, and network traffic patterns potentially revealing
attacks like Man-in-the-Middle or replay on either interface. The Evidence Analysis process again revealed
significant gaps: CAN bus communication packets and detailed pilot wire signal logs were identified as
potentially high-value digital evidence (high potential E(A)) but are not consistently captured or available
in the DSI from existing systems. This represents a significant limitation in current forensic capabilities for
investigating attacks targeting these communication layers.

The analysis revealed substantive patterns in digital evidence availability and utility across these
scenarios. Physical layer digital evidence provided the most direct evidence of system manipulation but
were often inadequately logged in existing implementations. Network layer digital evidence offer the most
consistent forensic value, particularly when protocol-level traffic is comprehensively captured. Application
layer digital evidence vary significantly in forensic utility depending on implementation-specific logging
practices, with substantial inconsistencies across charging networks. These patterns strongly highlight the
need for improved standardization of forensic logging practices across the EV charging ecosystem to ensure
sufficient high-value digital evidence (Arel ev ant) can be reliably identified, acquired, and analyzed using this
method, thereby enhancing overall investigative capabilities.

4.2 Case Studies Based on Virtual Scenarios
This section extends the application of the forensic method proposed in Section 3 beyond the empiri-

cally derived scenarios presented in Section 4.1. We explore four hypothetical yet plausible incident scenarios
in the EV charging infrastructure, each representing a distinct category of security threats with significant
forensic implications. These scenarios were selected primarily to demonstrate the adaptability of our
forensic method’s analytical logic and procedural flow across diverse investigative contexts that charging
infrastructure operators and forensic analysts might encounter. It is important to note that these virtual
scenarios, while designed for plausibility, are illustrative and serve to explore the method’s application under
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assumed data conditions; they do not represent empirical validation based on real-world incident data.
The analytical checks and equations (Eqs. (3)–(6)) presented within these scenarios operate on conceptual
data inputs. Table 15 provides an overview of the four virtual scenarios explored. Unlike the scenarios
in Section 4.1, these virtual scenarios often represent complex, multi-stage security events, allowing for a
broader exploration of the method’s potential application.

Table 15: Virtual incident scenarios for forensic method application

# Incident scenario
description

Affected component Potential impacts

1 Fire incident at EVCS during
an active charging session

EVCS hardware, Power systems,
Connected EV

Equipment damage, Safety
hazard, Service disruption,

Potential liability issues
2 Coordinated attack targeting

multiple charging stations to
disrupt the power grid

Multiple EVCSs, Grid
connection points, CSMS

Grid instability, Power outages,
Cascading infrastructure

failures
3 Tracking a stolen EV

through its charging
activities at various stations

EV, Multiple charging stations,
Authentication systems

Identification of unauthorized
usage patterns, Evidence for

criminal investigation
4 Unauthorized access to

charging network resulting
in data theft and system

manipulation

EVCS network, CSMS, User
data repositories

Personal data exposure,
Payment information theft,

Network compromise

4.2.1 Investigation of an Electric Vehicle Charging Station Fire Scenario
This first virtual scenario involves a fire incident at an EVCS. The potential causes are varied, including

EVCS malfunction, EV battery faults, user actions, or external environmental factors. Applying the struc-
tured forensic method proposed herein, the goal of the investigation is to determine the root cause. The
process involves identifying and acquiring critical digital evidence, such as battery SoC information from
the EV, EVCS data, and corresponding user authentication/payment data from the CSMS. The subsequent
analysis phase examines these identified digital evidence for anomalies and correlations indicative of the fire’s
origin. For example, scrutinizing power logs (LogPow er) for overcurrent conditions preceding the incident
could involve the illustrative check shown in Eq. (3). In this equation, Tw indow represents the specific time
window being analyzed within the power log, and Imax l imit denotes the predefined maximum current
threshold considered safe for the EVCS operation:

DetectOvercurrent (LogPow er , Tw indow) = ∃t ∈ Tw indow ; s.t.; Current (LogPow er , t)
> Imax_ l imi t

(3)

Further analysis would involve examining EVCS status codes and EV SoC data for electrical faults
(overvoltage, overcurrent, overcharging), analyzing power logs for other abnormal requests or delivery
patterns, reviewing available environmental sensor data (temperature, water ingress), and correlating CSMS
data with the incident timeline to assess user actions. Finally, synthesizing the findings from the correlated
evidence allows inferring the most probable cause.
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4.2.2 Investigation of a Grid Attack Scenario via Charging Stations
This scenario considers a coordinated attack leveraging the EV charging infrastructure to disrupt the

electrical grid. Guided by the proposed systematic method, the investigation aims to identify the attack
vector, method, and involved entities. Critical digital evidence identified during the evidence analysis phase
include EV SoC data, EVCS power logs, charger status codes, EVCS-CSMS communication logs (OCPP),
session timing data, and CSMS logs (user authentication, network traffic, OS access).

The analysis phase focuses on detecting anomalies indicative of such a coordinated attack across
multiple chargers. As an example of specific logic that could be applied, detecting potentially coordi-
nated high charging demands might involve a check like the one defined in Eq. (4). In this equation,
Csubse t represents the subset of chargers under scrutiny within a specific time window tw indow ,
IsHighDemand (Logc , tw indow) is a function evaluating if an individual charger c’s log indicates high
demand during that window, and Demandthreshol d is a predefined threshold representing the minimum
ratio of chargers in the subset that need to show high demand simultaneously to trigger suspicion:

DetectCoordinatedDemand (Logs, Csubse t , tw indow) L

=
⎛
⎝

1
∣Csubse t ∣

∑
c∈Csubse t

IsHighDemand (Logc , tw indow)
⎞
⎠
> Demandthreshol d (4)

Beyond such specific checks, the broader analysis involves scrutinizing power logs and status codes for
abnormal grid feedback or simultaneous faults. Communication logs and session timing data are analyzed
for patterns suggesting orchestrated commands or communication jamming. CSMS logs are assessed for
evidence of unauthorized access or command injection targeting grid interaction parameters. Correlating
suspicious network activity with authentication data helps identify compromised accounts or actors involved.
Consolidating the evidence then confirms the nature and source of the attack.

4.2.3 Investigation Tracking a Stolen Electric Vehicle
This scenario involves tracking a stolen EV using charging station data. Following the defined forensic

process, the investigation focuses on reconstructing the vehicle’s location and movement patterns. Essential
digital evidence identified during the investigation include the stolen vehicle’s unique identifier (EVstol en), its
battery SoC data recorded during charging sessions, charger IDs and their physical location data, requested
power logs, session timestamps, and relevant CSMS data (like user authentication and network logs).

The core of the analysis involves querying CSMS and EVCS logs using the (EVstol en) to retrieve all
associated charging events. The locations from these events are then mapped chronologically to reconstruct
the vehicle’s path. The logic for this path reconstruction can be represented by Eq. (5). In this equation,
QueryLogsByEV_ID(EVstol en) retrieves the relevant session records for the EVstol en , the Map function
extracts the timestamp (session.timestamp) and location (session.location) from each session record
(session), and Sorttime orders these timestamp-location pairs by time to produce the final path sequence
(Path):

Path = Sorttime(Map(QueryLogsByEV_ID(EVstol en),
λsession∶ (session.timestamp, session.location))) (5)

In addition to path reconstruction, the SoC data recorded at the start and end of the identified sessions
can help estimate the travel range and predict potential subsequent locations. Analysis of the requested
power data might also help distinguish the stolen vehicle’s unique charging signature. Furthermore, user
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authentication information and network logs associated with these sessions can provide clues regarding
the perpetrator’s methods or location. Integrating these digital findings with physical evidence (e.g., CCTV
footage from charging sites) completes the investigation picture.

4.2.4 Investigation of Charging Station Hacking and the Data Breach Scenario
This scenario addresses a compromise of the charging network or CSMS for data exfiltration or manipu-

lation. Following the proposed structured approach, the investigation aims to determine the intrusion vector,
breach scope, data manipulation, and trace attacker activities. Relevant digital evidence identified during the
analysis include potentially compromised data (EV IDs, SoC logs), charger/location info, OCPP logs, session
times, and critical CSMS logs (authentication, network traffic, OS access, database audit, firewall).

The analysis phase focuses on identifying the breach point and potential data exfiltration pathways. For
instance, network traffic logs (LogNet) are examined for suspicious outbound connections. An example rule
applied during this analysis to flag potentially suspicious network flows ( f low) is given in Eq. (6). Here,
f low .dest is the flow’s destination address, TrustedDestinations is a predefined set of legitimate desti-
nations, f low .protocol is the protocol used, Pex f i l represents protocol(s) potentially used for exfiltration
(e.g., FTP, specific TCP ports), f low .volume is the data volume transferred, and Vex f i lt hreshol d is a volume
threshold indicating potential large data transfer to an untrusted destination:

IsSuspiciousFlow ( f low) = ( f low .dest ∉ TrustedDestinations) ∧ ( f low .protocol = Pex f i l)∧
( f low .volume > Vex f i l_threshol d) (6)

In addition to network traffic analysis, CSMS access logs are examined for unauthorized access attempts
or privilege escalation. OCPP communication logs are reviewed for signs of data tampering or unauthorized
command injections directed at charging stations. Database audit logs are crucial for identifying any
unauthorized record modification or deletion. Comparing potentially exfiltrated data with original system
records helps determine the scope of the breach and any data manipulation. Correlating various logs allows
reconstruction of the attacker’s actions, identifying compromised accounts or systems, and potentially
tracing the attack origin. The final phase involves synthesizing the findings into a comprehensive report on
the breach.

5 Results and Discussion
This section presents the key findings derived from the application and evaluation of the data-

driven digital forensic method proposed in this research, which is designed for the complexities of the
EV charging infrastructure. The application of this method, conceptually demonstrated through the case
studies (Section 4), yielded insights into digital evidence identification, overall analysis capabilities, and,
significantly, the critical limitations imposed by current data logging practices within EV charging systems.
The following subsections will discuss these findings in detail, assess the effectiveness of the proposed
forensic method, elaborate on identified implementation challenges and digital evidence gaps, and outline
the limitations of this study along with directions for future work.

5.1 Findings and Effectiveness
The application of the proposed data-driven forensic method, as illustrated through the diverse case

studies (Section 4), yielded significant insights into the utility of this structured approach and highlighted
the current state of forensic readiness within the EV charging infrastructure. The systematic evaluation of
scenarios based on both empirically demonstrated threats and representative virtual incidents confirmed
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the method’s capability to guide effective investigations, even while simultaneously identifying critical
limitations inherent in existing EVCS implementations.

A key finding is that the structured approach, particularly the systematic digital evidence taxonomy
developed in Section 3.4, is effective in directing investigators toward high-value evidence sources across
all three architectural layers (physical, network, and application) of an EVCS. The method facilitates the
identification and classification of diverse forensically relevant digital evidence, including, but not limited to,
battery State of Charge data from EVs, operational status codes from charging stations, transaction records
from management systems, and protocol-level communication data across various interfaces.

The case studies conceptually demonstrated the strengths of this method in:

• Guiding systematic evidence collection across organizational boundaries and diverse technical domains.
• Facilitating the correlation of digital evidence generated at various architectural layers through a

structured and systematic analytical process.
• Supporting comprehensive timeline reconstruction even when evidence sources are distributed.
• Aiding investigators in differentiating between malicious activities and system malfunctions when

sufficient digital evidence is available and analytical checks (such as those conceptualized in Eqs. (2)–(6))
can be effectively applied.

For instance, as notionally explored in the virtual fire incident investigation (Section 4.2.1), the method
would guide the correlation of physical anomalies (e.g., abnormal charging rates potentially flagged by
logic similar to Eq. (3)) with system logs (e.g., error codes) and communication records. Similarly, in the
conceptual EV theft investigation (Section 4.2.3), the method’s approach would facilitate cross-network
evidence correlation (as illustrated by Eq. (5)) to establish movement patterns. These examples underscore
the method’s potential to improve the consistency and reliability of forensic investigations in this domain.

5.2 Implementation Challenges and Digital Evidence Gaps
Despite the potential strengths of the proposed forensic method, its practical application, as indicated

by the analysis underlying the case studies (Section 4) and a review of current EV charging infrastructure
characteristics, faces significant implementation challenges. These challenges primarily stem from critical
gaps in the availability and consistency of digital evidence across existing EV charging systems. Such
gaps can severely limit the depth, certainty, and efficiency of forensic investigations, regardless of the
analytical method employed. Table 16 summarizes several critical digital evidence gaps that were identified
as commonly present or likely in current EV charging systems. The table details these gaps across different
architectural layers, outlines their potential adverse effects on forensic analyses, and indicates their typical
implementation status.

Table 16: Critical digital evidence gaps and their effects on forensic investigations

Architectural
layer

Digital evidence gap Effects on investigations Implementation
status

Physical
HMI-controller

communication logs
Unable to distinguish

between system errors and
malicious display

manipulation

Rarely implemented

(Continued)
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Table 16 (continued)

Architectural
layer

Digital evidence gap Effects on investigations Implementation
status

Thermal management
system status data

Cannot verify cooling
system tampering or trace

thermal anomalies

Inconsistently
implemented

Power module control
signal history

Limited ability to detect
unauthorized command

injection

Vendor-specific
implementation

Network
CAN bus traffic

captures (CHAdeMO)
Reduced visibility into

protocol manipulation in
EV-EVCS communications

Rarely implemented

Control pilot signal
data

Cannot detect PWM signal
manipulation or interference

Virtually nonexistent

Session establishment
metrics

Limited ability to diagnose
communication disruptions

Partial
implementation

Application Detailed
administrative action

logs

Difficulty tracing
unauthorized commands to

specific accounts

Basic implementation
is common

Configuration change
history

Cannot establish a baseline
for detecting unauthorized

modifications

Inconsistent
implementation

Cross-layer Temporal correlation
mechanisms

Challenges in establishing a
precise event sequence

across components

Rarely implemented

These identified digital evidence gaps significantly impede the ability to conduct comprehensive forensic
investigations. For example:

• At the physical layer, the common absence of detailed HMI-controller communication logs (as noted
in Table 16) makes it exceedingly difficult to definitively distinguish between genuine system errors and
malicious display manipulation in incidents like Scenarios 1–3 (Table 11), even when conceptual analyti-
cal checks (e.g., similar to Eq. (2)) are considered. Similarly, insufficient logging of thermal management
component states (e.g., cooling pump status, fan activation patterns, precise sensor readings) hinders
conclusive determination regarding potential tampering versus hardware failure in thermal incidents
(relevant to Scenarios 5 and 6, Table 11).

• Within the network layer, the limited availability of detailed CAN bus traffic captures for protocols like
CHAdeMO hampers the investigation of potential protocol manipulation during EV-EVCS communi-
cations (related to Scenario 8, Table 11). Furthermore, the near-universal absence of detailed logging for
CCS control pilot signal parameters (PWM signals, duty-cycle patterns) impedes the analysis of attacks
targeting that specific physical/electrical signaling interface (relevant to Scenarios 9 and 10, Table 11).

• In the application layer, while basic administrative logs might be present, they often lack the granularity
necessary to effectively trace unauthorized commands or configuration modifications back to specific
accounts or to establish a reliable baseline for detecting unauthorized system alterations.
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These examples, drawn from the analysis of potential incident scenarios and the recognized state
of current logging practices, underscore systemic challenges in digital evidence availability within many
contemporary EVCS implementations. Addressing these gaps is crucial for enhancing forensic readiness and
the overall effectiveness of any investigative method. The implications of these gaps for the proposed method
and potential avenues for future work, including strategies for dealing with incomplete data, are further
discussed in Section 5.4.

5.3 Method Effectiveness Assessment
The application of the proposed data-driven forensic method, as illustrated through the case studies

(Section 4), indicates notable improvements in the investigative process, particularly when contrasted with
conventional ad hoc or less structured mainstream forensic practices. The method demonstrably enhances
the structure, explicitness, and systematic nature of investigations. This structured approach provides inves-
tigators with a repeatable and logically organized process, which can be particularly beneficial in complex
EVCI environments where mainstream techniques might rely more heavily on individual investigator
experience or a disparate set of tools without a unifying analytical workflow. Key aspects of its effectiveness,
offering advantages over less systematic approaches, include:

• Enhanced digital evidence management: the method promotes more complete identification and
classification of potential digital evidence within the bounds of available data. Its systematic nature helps
investigators to methodically consider evidence sources across different architectural layers, increasing
the likelihood of uncovering relevant traces that might be missed in less structured approaches.

• Improved correlation and contextualization: by guiding a systematic approach to system modeling,
data collection, and threat analysis, the method inherently supports more robust correlation of disparate
digital evidence. This allows for better contextualization of individual pieces of evidence and aids in
reconstructing a more coherent narrative of events.

• Systematic approach to complex environments: even when faced with challenges such as data gaps or
novel attack patterns, the method’s methodical phases encourage a comprehensive survey of the system
and potential threat vectors. This systematic process can help in forming more informed hypotheses,
identifying what crucial evidence is missing and more clearly documenting the knowns and unknowns,
leading to a more rigorous assessment of investigative certainty than purely intuitive methods.

Despite these enhancements to the investigative process itself, the ability to reach definitive forensic
conclusions with high certainty is often influenced by factors external to the methodology. The pervasiveness
of digital evidence gaps in current EVCS implementations remains a fundamental constraint on the ultimate
conclusiveness of any investigation. Therefore, while the proposed method offers a robust and systematic
approach to optimize the analysis of available information and improve the rigor of the investigation, its
overall success in achieving definitive outcomes is significantly influenced by the availability, quality, and
granularity of the digital evidence generated and preserved by the EVCS in question.

5.4 Limitations and Future Work
This study presents a structured method for digital forensic investigations in EVCI, yet several areas

define its current boundaries and offer avenues for future research.

• Validation scope and real-world data: the method’s validation relied on case studies using specific
empirically-derived scenarios and illustrative virtual incidents. Broader validation with diverse real-
world incident data across various proprietary EVCS platforms is a key priority for future work to assess
practical effectiveness and generalizability more comprehensively. Furthermore, such future work should
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include comparative studies or benchmarking of the proposed method against established mainstream
forensic techniques using common datasets or controlled scenarios to provide practitioners with a
clearer understanding of its relative performance, efficiency, and resource requirements.

• OSINT in proprietary contexts: the utility of OSINT can be reduced in highly proprietary EVCS envi-
ronments with limited public technical data or encrypted communications. Future research could focus
on advanced OSINT techniques or complementary data inference methods for such closed systems.

• Addressing novel attack vectors: the current method is primarily oriented towards known threat
categories. Enhancing its capability to address entirely novel or zero-day attacks, potentially by inte-
grating adaptive security mechanisms like ML-based anomaly detection, is an important area for
future development.

• Managing digital evidence gaps: significant digital evidence gaps are common in current EVCSs.
While this method aids in analyzing available evidence, future research should focus on robust
algorithmic solutions for investigation with incomplete or sparse data, such as data imputation or
probabilistic reasoning.

• Operationalizing evidentiary value assessment: the quantitative model for evidentiary value is con-
ceptual, as its scoring functions require mathematical operationalization. Future work should develop
and validate objective rubrics for these functions to enable practical, quantitative assessment.

• Standardization and automation: the development and adoption of standardized logging profiles for
EVCSs are crucial for improving forensic readiness by addressing identified evidence gaps. Further
research into automated techniques for large-scale digital evidence correlation and anomaly detection
is also needed to enhance practical forensic capabilities.

6 Conclusion
The rapid global adoption of electric vehicles necessitates robust security measures and effective digital

forensic capabilities to safeguard the expanding and increasingly complex EV charging infrastructure.
Traditional forensic approaches often struggle within these heterogeneous cyber-physical systems, largely
due to system diversity and inconsistent data logging practices. This paper addressed these challenges by
proposing and evaluating a structured, data-driven method for the analysis of digital evidence specifically
tailored to the EV charging domain.

The proposed method offers a systematic approach integrating system modeling, OSINT-informed data
collection, threat analysis, and layered digital evidence identification. As illustrated through representative
case studies, this approach enhances the structure and repeatability of the forensic process, aiding in the
correlation of digital evidence and the reconstruction of incident timelines.

However, a critical challenge underscored by this research is the significant and pervasive gaps in
the availability of crucial digital evidence within current EVCS implementations. These deficiencies—
particularly concerning detailed internal system communications, low-level protocol interactions, and
granular administrative logs—substantially hinder conclusive forensic analysis and can complicate the
definitive differentiation of malicious attacks from system failures, even when a systematic method is applied.

This study provides a foundational method for advancing digital forensic capabilities within the EV
charging infrastructure. While the proposed method offers a pathway toward more rigorous investigations,
achieving comprehensive forensic readiness across the ecosystem requires concerted industry efforts and
regulatory guidance to implement improved and standardized data logging practices. Addressing these
identified digital evidence gaps is paramount for enabling the consistent and effective application of sys-
tematic analytical techniques, ensuring accountability, facilitating effective incident response, and ultimately
bolstering the security and trustworthiness of this vital and rapidly growing critical infrastructure.
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Appendix A Dataset Field Analysis for Digital Evidence Identification
This appendix provides a detailed analysis of the datasets employed during the data collection process

(Section 3.2), documenting field specifications and their corresponding forensic significance.
Appendix A.1 Multifaceted Analysis of EV Charging Dataset

This dataset originates from the 2023 research publication “Multi-faceted Analysis of Electric Vehicle
Charging Transactions” [42]. It contains 72,856 charging session records from 2337 EV users and 2119
charging stations, collected via OCPP with 30-s data transmission intervals.

Table A1: Multifaceted analysis of electric vehicle charging dataset fields

Field Data type Description Forensic value
User ID Integer User identifier (0 for

nonmembers, 1–2337
for members)

User attribution and
session ownership

verification
Charger ID String Unique charging

station identifier
Equipment

identification and
location correlation

Charger company Binary Charging station
operator classification
(0 = own company, 1 =

other)

Operational
responsibility

attribution

Location String Charging station
installation location

Geographical context
establishment

(Continued)
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Table A1 (continued)

Field Data type Description Forensic value
Charger type Binary Charger classification

(0 = standard, 1 = fast
charger)

Equipment capability
verification

Start day Date Session connection
start date

(YYYY-MM-DD)

Temporal context
establishment

Start time Time Session connection
start time

(HH:MM:SS)

Session initiation
timing

End day Date Session connection end
date (YYYY-MM-DD)

Session termination
dating

End time Time Session connection end
time (HH:MM:SS)

Session termination
timing

Start datetime Date Time Combined connection
start timestamp

Session boundary
verification

End datetime Date Time Combined connection
end timestamp

Session boundary
verification

Duration Integer Connection duration
in minutes

Session length
validation

Demand Float Energy delivered to
vehicle (kWh)

Energy consumption
verification

Appendix A.2 DESL-EPFL Level 3 Electric Vehicle Charging Dataset
This dataset was published by the Distributed Electrical Systems Laboratory (DESL) at École Polytech-

nique Fédérale de Lausanne (EPFL) in 2022 [43]. It contains charging session data from DC fast-charging
stations in southwestern Switzerland, collected from April 2022 to July 2023.

Table A2: Distributed electrical systems laboratory at école polytechnique Fédérale de Lausanne dataset fields

Field Data type Description Forensic value
Session Integer Unique charging

session identifier
Session correlation and

event sequencing
CCS String Connector identifier

(CCS1/CCS2)
Physical connection

documentation
Arrival Date Time Vehicle arrival time Session initialization

context
Departure Date Time Vehicle departure time Session termination

context
Stay Integer Vehicle presence

duration (minutes)
Physical presence

verification

(Continued)
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Table A2 (continued)

Field Data type Description Forensic value
Energy Float Energy delivered to

vehicle (kWh)
Energy delivery

verification
Pmax Integer Maximum charging

power during session
(W)

Power delivery
capability verification

Preq_max Integer Maximum power
requested by vehicle

(W)

Vehicle power request
verification

Controlled session Binary Session control status
(0 = uncontrolled, 1 =

controlled)

Charging management
intervention

Total capacity Float Vehicle battery total
energy capacity

Vehicle capability
baseline

Bulk capacity Float Vehicle battery usable
energy capacity

Operational capacity
verification

SoC arrival Float Battery state-of-charge
at arrival (%)

Initial charge state
verification

SoC departure Float Battery state-of-charge
at departure (%)

Final charge state
verification

Energy capacity Integer Approximate vehicle
energy capacity (Wh)

Vehicle capability
estimation

Appendix A.3 Department of Energy Electric Vehicle Charging Dataset
This dataset was released by the US Department of Energy’s Office of Scientific and Technical Infor-

mation in 2024 [44]. It contains vehicle–charger interaction data collected by CALSTART from multiple
vehicles and charging stations.

Table A3: Department of energy electric vehicle charging dataset fields

Field Data type Description Forensic value
Vehicle ID String Unique vehicle

identifier
Vehicle attribution and

fleet correlation
Charger ID String Unique charging

station identifier
Equipment

identification
Local connect time DateTime Vehicle-charger

connection timestamp
Connection
initialization
verification

Local disconnect time DateTime Vehicle-charger
disconnection

timestamp

Connection
termination
verification

(Continued)
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Table A3 (continued)

Field Data type Description Forensic value
Charge start time DateTime Actual charging

process start timestamp
Charging operation

initiation
Charge end time DateTime Actual charging

process end timestamp
Charging operation

termination
Average power Float Average power delivery

during session (W)
Power delivery profile

verification
Max power Float Maximum power

delivery during session
(W)

Peak power
consumption

documentation
Total energy delivered Float Total energy

transferred to vehicle
(kWh)

Energy consumption
verification

Starting SoC Float Battery SoC at charging
start (%)

Initial battery state
verification

Ending SoC Float Battery SoC at charging
end (%)

Final battery state
verification

SoC charged Float Battery SoC increases
during the session

Charging effectiveness
verification

Note: SoC: state of charge.

Appendix A.4 Adaptive Charging Network Data Electric Vehicle Dataset
This dataset was published by the California Institute of Technology in 2019 [47], collected from the

Adaptive Charging Network (ACN) at Caltech and NASA’s Jet Propulsion Laboratory (JPL), providing
charging data from 2018 onwards.

Table A4: Adaptive charging network dataset fields

Field Data type Description Forensic value
_id String Unique record

identifier
Record integrity

verification
ClusterID String Charging network or

station cluster
identifier

Network segment
identification

ConnectionTime DateTime Vehicle-charger
connection timestamp

Connection
initialization
verification

DisconnectTime DateTime Vehicle-charger
disconnection

timestamp

Connection
termination
verification

DoneChargingTime DateTime Charging completion
timestamp

Charging operation
termination

(Continued)
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Table A4 (continued)

Field Data type Description Forensic value
kWhDelivered Float Energy delivered

during session (kWh)
Energy consumption

verification
SessionID String Unique charging

session identifier
Session correlation and

event sequencing
SiteID String Charging location

identifier
Geographical context

establishment
SpaceID String Specific parking space

identifier
Physical location

verification
StationID String Charging station

identifier
Equipment

identification
Timezone String Time zone for

timestamp
interpretation

Temporal context
verification

UserID String User identifier User attribution and
session ownership

UserInputs Object User-provided
information before

charging

User intention
documentation

Appendix A.5 Departement of Energy Workplace Charging Dataset
This dataset, published on the Harvard Dataverse in 2019 [45,46], was collected by Georgia Tech’s

Asensio Lab to analyze charging behavior and vehicle usage patterns in workplace environments. It comprises
3395 charging sessions from 85 EV drivers.

Table A5: Department of energy workplace charging dataset fields

Field Data type Description Forensic value
SessionID String Unique charging

session identifier
Session correlation and

event sequencing
kwhTotal Float Energy delivered

during session (kWh)
Energy consumption

verification
Dollars Float Payment amount for

session (USD)
Financial transaction

verification
Created DateTime Session creation

timestamp
Session initialization

context
Ended DateTime Session termination

timestamp
Session termination

context
StartTime Integer Hour of session start

(HH)
Temporal pattern

analysis
EndTime Integer Hour of session end

(HH)
Temporal pattern

analysis

(Continued)
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Table A5 (continued)

Field Data type Description Forensic value
ChargeTimeHrs Float Session duration in

hours
Session length

verification
Weekday String Day of week for session Weekly pattern analysis
Platform String Platform used for

session management
(android/iOS/web)

Interface usage pattern
verification

Distance Float Distance between user
home and charging

location (miles)

User proximity
verification

UserID Integer 8-digit user identifier User attribution
StationID Integer 6-digit station

identifier
Equipment

identification
LocationID Integer 6-digit location

identifier
Geographical context

establishment
MangerVehicle Binary Fleet vehicle status (1 =

manager vehicle, 0 =
other)

Usage categorization

FacilityType Integer Facility classification (1
=manufacturing, 2 =

office, 3 = research and
development, and 4 =

other)

Environmental context
establishment

ReportedZip Binary User ZIP code
reporting status (1 =

reported, 0 = not
reported)

User information
verification
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