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ABSTRACT: As primary load-bearing components extensively utilized in engineering applications, beam structures
necessitate the design of their microstructural configurations to achieve lightweight objectives while satisfying diverse
mechanical performance requirements. Combining topology optimization with fully coupled homogenization beam
theory, we provide a highly efficient design tool to access desirable periodic microstructures for beams. The present
optimization framework comprehensively takes into account for key deformation modes, including tension, bending,
torsion, and shear deformation, all within a unified formulation. Several numerical results prove that our method
can be used to handle kinds of microstructure design for beam-like structures, e.g., extreme tension (compression)-
torsion stiffness, maximization of minimum critical buckling load, and minimization of structural compliance. When
optimizing microstructures for macroscopic performance, we emphasize investigating the influence of shear stiffness on
the optimized results. The novel chiral beam-like structures are fabricated and tested. The experimental results indicate
that the optimized tension (compression)-torsion structure has excellent buffer characteristics, as compared with the
traditional square tube. This proposed optimization framework can be further extended to other physical problems of
Timoshenko beams.
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1 Introduction

Beam structures are widely used in many engineering fields, including aviation engineering, civil
engineering like bridge and building construction. The microstructures determine the macroscopic perfor-
mances of beams, and how to find proper microstructures to meet the design requirements becomes a key
problem. Compared to size and shape optimizations, topology optimization offers greater design freedoms
and serves as an effective tool for achieving the desired structural performance. With nearly 40 years of
development, various topology optimization methods have been proposed, such as the homogenization
method [1], the Solid Isotropic Material with Penalization (SIMP) method [2], the Bi-directional Evolution-
ary Structural Optimization (BESO) method [3], and the Level-set method (LSM) [4,5]. Among them, SIMP
is widely used for its simple concept.

Sigmund conducted pioneering work on the optimization of extreme material properties using the
asymptotic homogenization method (AHM) to evaluate equivalent properties of periodic unit cells [6-8].
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This methodology has been extended to design high-performance functional materials, such as maximum
bulk modulus [9], improved thermal conductivity [10], and optimized complex modulus (viscoelastic
materials) [11]. Zhai et al. [12] promoted a heat conduction-driven method for controlled microstructural
boundary expansion to ensure property continuity in functionally graded materials. Isotropic porous mate-
rials demonstrate significant engineering potential due to their direction-independent properties. However,
naturally occurring isotropic porous materials are rare. Xiang et al. [13] constructed a topological adjustment
strategy to derive isotropic porous structures from anisotropic configurations. The AHM-driven topology
optimization method can obtain metamaterials with properties difficult to attain naturally, including zero or
negative thermal expansion coefficients [14,15], chiral characteristics [16], and negative Poisson’s ratio [17,18].
Longetal. [19] found that incorporating negative Poisson’s ratio material into positive Poisson’s ratio material
can enhance the microstructure’s stiffness. Wang et al. [20] advanced the design of mechanical cloaking,
demonstrating that strategic assembling of various microstructures enables precise manipulation of elastic
responses around shielded objects, thereby rendering them undetectable within their surroundings.

Over the past decade, two-scale structural optimization has remained a prominent research focus,
offering enhanced design flexibility compared to single-scale microstructural design paradigms [21]. Within
the two-scale optimization framework built by Liu et al. [22], the AHM established the linkage between
macroscopic structural performance and micro unit cell configuration. This combining method reduces
the computational burden a lot since it transforms the original optimization analysis of a large heteroge-
neous structure into an analysis of an equivalent homogeneous structure. Building upon this optimization
framework, subsequent investigations were extended to address thermoelastic problem [23] and dynamic
problem [24], demonstrating its versatility across multi-physics domains. To fully exploit two-scale topology
optimization capabilities, researchers conducted systematic investigations into the design of functionally
graded microstructures tailored for heterogeneous macro structures [25-27]. The accelerated maturation of
additive manufacturing technologies demands high manufacturability of topology optimization solutions.
To integrate with computer-aided design, scholars evolved two-scale optimization frameworks incorporating
with moving morphable component/bar methods [28,29]. Stiffened shells have extensive applications in
aerospace engineering. Zhou et al. [30] applied a two-scale technique to maximize the critical buckling
load of grid-stiffened cylindrical shells. By implementing a p-norm constraint, Wu et al. [31] succeed
in bone-inspired porous structures. With growing interest in nonlinear optimization [32], Jia et al. [33]
established a crashworthiness optimization framework for porous architectures that eliminates the need
for sensitivity analysis. By using de-homogenization techniques, Groen et al. [34] realized high-fidelity
multiscale structural optimization on desktop computing platforms.

The Giavotto beam theory, which accounts for both warping and shear deformations, has been
widely used in beam section optimization [35-37]. In consideration of beam-column connections, Grubits
et al. [38] optimized steel I-beams by factoring in geometric and material nonlinear influences. To reduce
computational cost in non-uniform beam optimization, Liu et al. [39] developed a mapping strategy that
extrapolates sectional properties from a single reference profile to all geometrically similar cross-sections.
In two-scale optimization combined with AHM, macroscopic structure analyses often rely on three-
dimensional (3D) elastic theory. However, using solid elements for structures with numerous beams greatly
increases computational cost without significantly improving accuracy. Moreover, the AHM, constrained
to full-directional periodicity [40], is unsuitable for beam structures with limited scale separation along
width and thickness dimensions. Yi et al. [41,42] established a AHM for periodic beams and achieved the
microstructural design with the specified bending stiffness and extreme torsion stiffness. However, this
method ignored the shear effects. Xu and Qian [43] presented a novel method for beam microstructure
topology optimization based on the relaxed Saint-Venant solution, addressing the material separation
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problem (shear effects) with a constraint related to the ratio between two kinds of strain energies. However,
considering the influence of shear deformation through the Saint-Venant solution, rather than via the shear
stiffness, makes the optimization process less intuitive and complicates the analysis.

We propose a topology optimization framework integrating with fully coupled homogenization
theory [44] for periodic microstructure design in beam structures. Unlike conventional AHM-based
method [22], our method employs Timoshenko beam theory for macroscopic analysis. This treatment
resolves the inaccuracies in equivalent constitutive modeling for 3D homogenized analyses of beam struc-
tures while improving computational efficiency through macroscale dimensionality reduction. Compared
to previous beam-theory based studies, our method considers deformations not only tension, bending,
and torsion, but also for shear. The optimization objectives focus on the extreme tension (compression)—
torsion property, the maximization of minimum critical buckling load, and the minimization of structural
compliance. Both numerical and experimental results validate the effectiveness of the proposed optimization
framework. Notably, the experimental results reveal the effects of beam length on twisting behavior and
the energy absorption mechanism of the optimized chiral structure. It is of significance in accuracy and
efficiency, and has a great prospect for the optimization design of practical engineering structures with
numerous beam components.

The remaining parts of this paper are structured as follows: First, the homogenization or effective
stiffness prediction method for periodic beam-like structures is reviewed in Section 2; In Section 3, the
topology optimization formulations are presented; In Section 4, several examples are given to show the
topology optimization results by this proposed approach; Section 5 gives the conclusions of this work.

2 Homogenization Method for Periodic Timoshenko Beams

In this section, the homogenization method [44] for the effective stiffness prediction of periodic
beam-like structures will be briefly reviewed. The generalized constitutive relationship of the equivalent
Timoshenko beam as:

N Dy Dy, Dizs Dy Dis Dis &
M; D31 Dy Dz Diyy Dis Das K3
M, |_| D Ds» D33 D3y Dss Dss K2 1)
T Dy Dy Dys Dyy Dys Dys K1
Q> Ds; Dsy Ds; Dsy Dss Dsg Y12
| Q3 | | Da Dex Des Dss Dss Dss || y13 |

where [N, M3, M, T1, Q,, Qs] and [ &y, k3, k2, K1, Y12, Y13 | denote the generalized forces and strains of beams,
including the tension, the bending in two directions, the torsion, and the shearing in two directions;
Dqg (a, B=1,2,...,6) is the component of the effective stiffness matrix D.

To achieve the relationship in Eq. (1), the homogenization method considers the following unit cell
problems as:

aglel

l] —- — .

%, = 0(06 =1, 2,3,4,5,6) in \% 2)
ofj[“] nj=0 on Sy

where i, j and later appeared m, n are equal to 1, 2, 3 for 3D problems; V is the unit cell domain; Sy, and the
latter appeared S, respectively represent the non-periodic faces (or free boundary faces) and the periodic
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faces, as shown in Fig. 1; a variable with a superscript (¢) indicates that this variable is an actual field with
e[a]

microscopic oscillations; o; j is the actual stress as:

O';j[a] = Cijmnsin[z]
efa] _ 1 (Bufn["‘] + au;[“]) (3)

Emn = 2 0x, 0Xm

Figure 1: Sketch of boundary surfaces
In Eq. (3), Cjjmn is the fourth-order elastic tensor; efn[,‘f]

displacement u;E“], which is separated into two parts as:

is the actual strain in terms of the actual
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where u&[“] and ui,[l“] respectively denote the homogenized displacement and the warping (or the perturbed)

displacement. The related strains with uﬁ}"‘] and ufqg“] can be calculated as:
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With Eqs. (3)-(5), Eq. (2) can be re-expressed as:
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where e%,‘f ! (or eggx]) is the homogenized elastic strain corresponding to the a-th generalized unit strain
state, and they are listed as:
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With the given s(,)n[f,‘ ], u},&“] can be solved by Eq. (6) with the following constraint:

u}[“] 5, = ui[‘x] 5, =0
u;[‘x] u;[“] s
p- P+
u;[“] 5, = u;[“] 5o (8)
wl) =0
wis - wfsl) =0

where (o) = |—‘1/‘ [, #dV is the average operator defined over the unit cell domain V.

After obtaining ui,[l“] , the actual stress af.[a] or strain si,E,‘f ]

Dyg (@, f=1,2,...,6) can be predicted through

can be achieved. Further, the effective stiffness

L[ el ¢[6] 1 e\ gt
Dgp = i fvsif CijmnEnn dV:j]\;(s [ ]) celflav (9)
where [ denotes the length of a unit cell.

3 Topology Optimization Formulations
3.1 Material Interpolation Scheme

Following the modified SIMP interpolation rule [45], the Young’s modulus of element e, i.e., E,, can be
written as:

Ee = Emin + /35 (EO - Emin) (10)

where e =1,2,..., N, and N denotes the element number in a discretized unit cell; g, € [0, 1] is the physical
density of element e, and p, = 0 or 1 represents the element is void or solid; E,,i, and E, respectively denote
the Young’s moduli of void and solid materials; p represents the penalization power with the value of p = 3.
Epmin is set to 107 for avoiding the singularity of the stiffness matrix. Further, we denote C, as the elastic
constitutive matrix of element e, and it can be expressed in terms of E, as:

Ce = Ee CO (11)

where Cj is the elastic constitutive matrix with the Young’s modulus E = 1.

The physical density j, has the following relationships with the design variable p,. First, to avoid the
checkerboard phenomenon, the density filtering [46,47] is applied to p, as:

_ 1
P, = H,ip; (12)
¢ Z Hel 1;3 ¢

leN,

where p, is the filtered density; N, denotes the set of elements whose center-to-center distance A (e, 1) to
element e is less than the filter radius ryin; H,; is a weighting factor as:

H,; = max (0, rmin — A (e, 1)) (13)
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The filtering, however, can lead to the increase of gray elements between solids and voids. To get a clear
white-and-black topology configuration, the Heaviside projection [48] is applied to p, as:

_tanh (&n) +tanh (&(p, - 17))
tanh (£77) + tanh (£ (1-17))

where 7 is the threshold value and & controls the sharpness of the projection. In this work, 7 is set to be

(14)

0.5, and & starts at 1 for the first 60 steps, then doubles every 40 subsequent steps until reaching 64 by the
maximum iteration of 300.

The above treatments of design variables, including the density filtering and Heaviside projection, can
well solve the checkerboard problem and obtain a clear 0-1 topology.

3.2 Optimization Problem and Sensitivity Analysis

Taking the volume fraction as the constraint, the microstructural optimization of a beam-like structure
can be formulated as:

find p=(ppas..spn)
maxormin  f (p)
N

. . (15)
s.t. Ve = leeve/ij:lveSVf
e=

0<pe<le=1...,N

where f (p) is the optimization objective. In micromechanical beam optimization, two principal meth-
ods exist for microstructural design: one directly employs equivalent microstructural properties as
objectives [42], while the second evaluates structural performance of beams containing heteroge-
neous microstructures as design targets [43]. Our work systematically addresses both paradigms. For
microstructural extreme stiffness optimization, we demonstrate the method’s effectiveness through tension
(compression)-torsion metamaterial design, as other extreme stiffness optimization problems follow similar
principles. For microstructure design targeting macroscopic performance, our framework integrates two
critical objectives: stiffness maximization, which remains the predominant objective in structural topology
optimization, and buckling resistance enhancement, a key requirement for slender beam applications. v, is
the volume of element e; v and v} respectively denote the present and the upper limit of the volume fraction
of a unit cell. Furthermore, through Eqs. (12) and (14), the sensitivities of objective function f (p) can be
arrived through the chain rule

of (p) _ 9f (p) 9pe 9P,

o (16)
op. dp. dp, Ip.
Case I: Optimization of extreme stiffness of microstructure
As in Eq. (1), the diagonal stiffnesses Do (=1, 2, ..., 6) respectively represent the tension stiffness

(Dn1), the two bending stiffnesses (D,, and Ds3), the torsion stiffness (D44 ), and the two shearing stiffnesses
(Dss and Dgg ), while Dyg («, B =1, 2, ..., 6) for a #  denote their coupling stiffnesses. When optimiza-
tion problems targeting the extreme stiffness of microstructures, the objective function f (p) is formulated
as D,p (p) or their combinations guided by specific design requirements. For example, in optimizing
maximum bending stiffness, the objective function can be expressed as f (p) = aD,; + bD33. To achieve
balanced stiffness in both directions, coeflicients a and b should both be set to 0.5. When intentionally
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improving stiffness in a designated orientation, the corresponding coefficient should be assigned a higher
value compared to its orthogonal counterpart.

Using Eq. (9), the sensitivity of D4g to physical variable g, is derived as:

9D, 3 (ecl4)" e[F]
L f (14)" 2€ gelblgy 4 ! f (__)Cse[mdm ! f (1) ¢ gy 1)
op. 1Jv 0pe IJv  dp,. IJv ope

Since the last two terms are equal to zero [42], Eq. (17) becomes:

oD,
o _ 1 f (s1e)" 9C clplgy (18)
dp. 1Jv 9pe

Further, with Egs. (10) and (11), Eq. (18) transforms to:

0Dup  ppt ™ (Eg — Emy
s _ ppe_ (Bo = Emin) [ (1) coectFlav, (19)
ape l Ve

where V, is the region of element e. For objective function in a combinational form of D,g, such as f (p) =
aD;; + bDs3, its sensitivity can be dealt with via the linear combination of the sensitivities of D,, and D33.
As for the extreme tension (compression)-torsion stiffness, the objective function is selected as f (p) = Dia.

Case 2: optimization of global performance of beam
(1) Maximization of minimum critical buckling load

The beam, especially for a slender beam, tends to buckle when the axial force reaches or exceeds a certain
limit. This instability problem may lead to system damage. Therefore, it is of great importance to maximize
the minimum critical buckling load to prevent the structure from entering unstable states. Note that only
global buckling for the macroscale structure is considered in the present work.

For linear buckling problems with distinct eigenvalues, the optimization objective in Eq. (15) is rewritten
as the minimum or the first-order critical buckling load A, (p), which satisfies the relationship as:

(Kg +MKGg) 9, =0 (20)

where ¢, = [v(l), ways 031)> O21y5 - -5 V(K> W(k)» O3(5)» 93(k)]T is mode vector of the macroscale structure,
of which k denotes the node number in the equivalent beam model; Kz and K¢ respectively denote the
assembled elastic and geometric stiffness matrix related to the bending and shearing in x;-x, and x;-x3
planes, and can be expressed as follows [49].

—sub T —sub
K = f (BS ) DB d0 (1)
Q
I R
Ke=f[ o, ] [ o, ]do (22)
Q 0x1 ox;

where Q denotes the domain of a beam structure; the submatrix D", extracted from the equivalent

b
stiffness matrix D, exclusively considers the stiffness in two principle planes; B is the generalized strain—
displacement matrix; N, and N,, are the shape function matrices for interpolations of v and w. As shown
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in Eq. (22), K¢ is uncorrelated with the design variables in 1D (beam) problem but becomes correlated in
both 2D and 3D problems.

Here, for the convenience of the sensitivity derivations, the A; can be expressed in another form as:

T
Ky
Al = ——(p}r (P1 (23)
¢, Ko,
Then with Eq. (23), the sensitivity of A, to p, is derived as:
TaKE oK a(p N ( aKG roTK a(pl)
¢ = e Re Tt ¢ <929 Ke
on, __ OPe 9pe 9pe 9pe
"k Ke M,
T E T G T 2!
——— Mol —— ¢ +2¢  (Kg+ M Kg) ——
(Pl ap~e ‘P1+ I‘Pl ap~e ‘P1+ ‘Pl( Et+A1 G) aﬁe (24)
(P;FKG(Pl b
aKE T —sub\ T aDsu —sub
JRE B"’) —B™4dq.
_‘P;F ap-e P _(Pl (ezl [96( ) ap"e 91
¢1Kco, ¢/ Kco,

where ), is the region of the element e in the domain Q.

For linear buckling problems involving repeated eigenvalues, sensitivity analysis cannot be directly
applied via Eq. (24) due to the eigenvectors are non-unique. To handle this problem, one can solve the
following eigensystem as:

{@T(aIfE AlaKG)qn a’}ll}qeo (25)
9p. 9pe 0pe

where @ consists of the original orthogonal eigenvectors that correspond to the repeated minimum
eigenvalue A;, and I is the identity matrix with a dimension corresponding to the multiplicity of the repeated
minimum eigenvalues. The eigenvalue of Eq. (25) is the desired sensitivity of repeated eigenvalues and ¥ is
the corresponding eigenvector [50,51]. The correctness of the sensitivity derivation, including both distinct
and repeated eigenvalues, has been validated using the differential sensitivity method.

(2) Minimization of structural compliance

For an optimization problem concerning the minimum structural compliance, it aims to find a
microstructural configuration that maximizes the global stiffness of the periodic beam. The objective
function adopts the strain energy C (p) = UTKU/2, where KU = F governs the equilibrium condition. The
U, K and F are the displacement, assembled stiffness matrix, and load vectors of the beam structure, where

T
U = [uq)> vy way 011)> 8301y 0201y =5 H(k)> YRy Wik)» B1k)s B3k)» B2k | (26)
K- f (B)' DBdQ (27)
Q

and B is the generalized strain-displacement matrix in consideration of all deformation modes.

Then, the sensitivity of strain energy C to p. is derived as:

o _ lUTaKU vk - Ly Ky :——UT Zf B P Baa, |u (28)
0pe 0pe 0pe 2 0p. 0pe
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Using the computed sensitivities, we employ the Method of Moving Asymptotes (MMA) [52] to update
design variables. This gradient-based optimization algorithm can accommodate both single- and multi-
constraint problems. The iterative process terminates upon reaching the prescribed iteration limit. Fig. 2
presents the key workflow for microstructural topology optimization in periodic beam structures.

Start

v

Define design domain for the unit cell
and specify the initial parameters

»)

Interpolate elemental elastic
modulus using Egs. (10)—(14) |

v

Calculate the elemental effective
stiffnesses D, in according to
Egs. (6)-(9)

& Sensitivity calculation h

1) Address the microstructure's extreme stiffness problem
in sequence using Eqs. (19) and (16)

2) Address maximization of minimum critical buckling load
problem in sequence using Eqs. (24) and (16)

3) Address minimization of structural compliance problem

| in sequence using Egs. (28) and (16)
" _

.

I Update design variables using MMA

ES

//’ “'MH

/’- [ Hﬂx"‘“‘*
No ‘/ Max iterations is >

= reached? / —

—

x“‘x
Yes
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Figure 2: Flowchart of microstructure topology optimization in periodic beam structures

4 Optimization Results and Validations

In this section, the Young’s modulus and the Poisson’s ratio of the solid material are set as E; =1
and v = 0.3. The dimensions of the unit cell are 24 x 24 x 24 for the optimization problems of tension
(compression)-torsion stiffness and structural compliance. For the optimization of critical buckling loads,
we consider two unit cells with dimensions of 24 x 24 x 20 (without repeated minimum eigenvalue) and
24 x 24 x 24 (with repeated minimum eigenvalues). All unit cells are discretized by eight-node hexahedron
elements with a uniform size of 1 x 1 x 1. For those optimizations involving macro structural analyses, the
beam is discretized with elements of size 24. The filter radius 7, is set to 2.5 in this work.

4.1 Optimization of Extreme Tension (Compression)-Torsion Stiffness

To obtain a microstructure with extreme tension (compression)-torsion stiffness, the objective function
is selected as f (p) = D4, under the volume constraint of vi =25%. As illustrated in Fig. 3, the objective
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value increases rapidly at the beginning of the iterations and then maintains the convergence during each &
except for the oscillations that occurred with a sudden change of {. Compared to the objective iterations, the
volume fraction variations are relatively stable and can satisfy the target of 25% finally.

40( D'M
| —e—Volume fraction e
403
30
c
=]
-
o
loz's
Q 9
) 20 g
b
100 4 0.1
x.
%y, T " inclined rod
1 ] L 1 00
0 100 200 300

Iteration
Figure 3: Iteration histories and optimized microstructure for extreme tension (compression)—torsion stiffness

The optimized microstructure, comprising of inclined rods and square loops, demonstrates axial ten-
sion (compression)-torsion characteristic, with the resultant stiffness reaching D4 = 373.6. The calculated
stiffness matrix D exhibits symmetry, with other stiffness values as follows: Dy; = 77, Dy = Dy3 = D5 = Dy =
Dy3 = D34 = Dy5 = D3y = D3g = Dys = Dyg = Dsg = 0, D3y = D33 = 5834.6, Dyg = D35 = 186.1, Dyy = 2898.6
and D55 = D66 =11.9.

In the following, the compression—torsion and energy absorption performances of the acquired chiral
microstructure are investigated through the quasi-static compression test. To analyze the effect of length,
three groups of chiral structures with 3, 5, and 8 unit cells along the axial direction are fabricated with nylon
P9000. The tests were performed on Instron 2345 with a velocity of 1 mm/min. In Fig. 4a, the torsion degree
of the specimen ends is released with the aid of the thrust bearing. Moreover, the circular scale is fixed on
the platform, and the torsion angle can be obtained by recording the pointer rotation angle with the video
camera [53]. The experimental test would be stopped when the torsion angle of the chiral structure does not
change anymore.

Figure 4: Compression-torsion experimental setup and test specimens: (a) experiment setup; (b) test specimens with
different lengths
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Fig. 5a illustrates deformation progression across four temporal phases for 3 unit cells, while Fig. 5b,c
shows the corresponding force-displacement and torsional angle-displacement curves, respectively.
In Fig. 5b, with increasing of unit cells from 3 to 8, the structural stiffness and peak force monotonically
decrease due to the longer beams being more prone to buckling, of which the forces for 5 and 8 unit cells
drop rapidly after reaching the peak force due to global buckling. The whole deformation process with 3
unit cells is complicated and can be roughly divided into two stages, i.e., the twist-domination stage and
the compression-domination stage. In Stage 1, corresponding to the four deformation states in Fig. 5a, we
know that the twisted deformation is successive, i.e., the bottom cell first begins to twist, followed by the
middle cell, and finally the upper cell. After that, the deformation mode comes into Stage 2, in which the
twist effect weakens and deformation is gradually dominated by the compression until the structure is to
be dense. As shown in Fig. 5¢, the maximum torsion angle decreases with the increasing length of chiral
structures. And the trends of torsion angle vs. displacement can also be divided into two stages. In Stage 1,
the torsion angle changes quickly, while the slope becomes smaller in Stage 2. Moreover, it is noted that the
slope transformation point varies with the length of beams. As to the chiral structure with 3 unit cells, the
slope becoming smaller in Stage 2 is due to the potential of structural torsion being fully exploited, vs. the
same phenomenon that happens in chiral structures with 5 and 8 unit cells is due to the global buckling.

(a) (®) 1000 (c)

4~ : ; e
: 100 =

“ Stage 1 ri- Jf'fSIagE 2 » E Stage 1 - --o-i« _— Stage 2 "
/ . H
1

800 |-

-~

; : 80 L A
60f ~_ 1 I/ N .
[F Faaf v i ' —
R S yel  f

z B
& / J e, | o /4l
= = | - e i =1 1
i £ a0t [/ o e 8 :
! [f o™ ' 40 - A
| i / i \.hk i : i
| ' . 2 v
! 200 (|F ook . y ' :
1 If Deformatnon mode nlfansforr_natlon i 20 - Slop transformation point for Unit3 !
: |.'Jr point for strucu':ra with 3 unit cells E structure w|'||h 3 unit cells Units E
ok i ' ol | —e— Unit8 !
1 1 1 1 1 1 1 1 L) 1 1 1 A
0 5 10 15 20 25 Uy 30 0 5 10 15 20 25 Ly 30
Displacement/mm Displacement/mm

Figure 5: Experimental results of the chiral structures under compressive loading: (a) deformation states at different
times; (b) force-displacement curves; (c) degree—displacement curves. Note: color lines in (b) keep the same meaning
asin (c)

For comparative assessment of the chiral structure’s performance, a square-tube specimen with equiva-
lent mass and length (matching the chiral structure with 3 unit cells) was also tested. The energy absorption
(EA) is calculated via the force-displacement curves before the densification [54]. The comparison results
in Fig. 6 show that the peak force of the chiral structure is much lower than that of the square tube with
the comparable EA capacity, which indicates that the present chiral structure with tension (compression)-
torsion property has a strong buffering capacity and can be used in structural protection.

4.2 Optimization of Global Beam Performances

It is known that macroscopic performance mainly depends on the microstructures. In this part, the
global buckling and overall stiffness of cantilever beam problems are respectively discussed for the guidance
of the microstructure design.



3226 Comput Model Eng Sci. 2025;143(3)

(a)

2500 ®) 2500 55 25
° — — Tube Pl B Tube
[ —— Chiral 21.4 [ Chiral 1
1
2000 - \ 2000 19.1 120
l. |
- 1500 |- - 1500 145
< o~ =
S 8 {3
o [=]
- 1000 | = 4000 410
]
ek ! 500 15
-~z |
| | 4
o I I
1 N 1 i 1 il 1 s 1 L 0 0
0 5 10 Uy15 20 25 Uy 30 Peak force EA

Displacement/mm

Figure 6: Comparison results between the chiral and square-tube structures: (a) force-displacement curves; (b) peak
force and EA capacity

4.2.1 Maximization of Minimum Critical Buckling Load

This example aims to design microstructures for maximizing the minimum critical buckling loads of
beams with different lengths (composed of 5 and 20 unit cells) and different sections (rectangular 24 x 20
and square 24 x 24). The initial design domain of unit cell with dimensions of 24 x 24 x 24 is shown in Fig. 7,
in which the outer frames with a thickness of 2 are the undesignable areas during the optimization. Similarly,

the unit cell with rectangular sections (24 x 20) also has undesignable frames with a thickness of 2. The
volume constraint is v’f‘ =40%.

X3
%3
//VX-|

Figure 7: Design domain of a unit cell for maximizing the minimum critical buckling load

From Table 1, one can observe that the optimized minimum critical buckling load decreases with the
increase of the structural length, illustrating that long beams are more prone to buckling. Moreover, the
materials are observed to tend to move from the surface centers to the eight corners with the increase of
the structure length. This is caused by the decreasing shear effects in long beams. Besides, the optimized
microstructures are also different for unit cells with different sections. For the unit cell with rectangular
sections of 24 x 20, the optimized topologies for the upper-lower and front-back surfaces are different. This
is because of that the stiffnesses in the two principal planes are different. Thus, to make the beam have similar
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resistance to buckling in different principal planes, the optimized topologies are inconsistent. For the unit
cell with square sections of 24 x 24, the same topologies hold for the four (upper-lower and front-back)
surfaces due to the consistency of the two principal planes.

Table 1: Optimized microstructures for maximizing the minimum critical buckling loads of beams

5 unit cells 20 unit cells
A =-0.12

A =-181

Rectangular section

A =-291 2 =-0.19

Square section

Taking the square beam with 20 unit cells as an example, the predicted minimum bending stiffness
by the homogenization method [44] is Dy, = 1.75 x 10*. The analytical minimum critical buckling load of
the cantilever beam, calculated using the formula 7*EI/ (21)°, is determined as 0.19 with EI = 1.75 x 10%,
consistent with the value in Table 1. This agreement between numerical and analytical results validates the
accuracy of the computational method in predicting buckling behavior.

4.2.2 Minimization of Structural Compliance

In this case, we consider a cantilever beam structure consisting of 20 unit cells under a shear force
F = 0.2 acting on the right end. The material volume constraint is set as v = 40%.

As illustrated in Fig. 8, when only with volume fraction constraint, we can see that the materials are
distributed on the upper and lower surfaces with Dgg = 10.1, and there are no materials in the middle. The
optimization result is reasonable for this slender beam since its deformations are mainly caused by bending,
and bending stresses are maximum at the top and bottom. The material separation, however, is unreasonable
in terms of engineering application. Hence to avoid material separations, besides the volume constraint, the
shear stiffness constraint is introduced as D¢s > Dg,. With the additional constraint Dgg = 20 and Dgg = 35,
the materials firstly connect the middle parts of the lateral faces, then extend to the whole lateral faces,
reflecting the shear stiffness contributions within a unit cell. Furthermore, with the shear stiffness increasing
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from 10.1 to 35, the compliance monotonically increases with the specific values of C = 35.3, 36.3, and 39.2.
Though the optimized structures with additional shear constraints lost some stiffness performance, the
material connections are ensured, further demonstrating the necessity and effectiveness of shear constraints.

39+

38 +

37 +

Compliance

35

Shear stiffness

Figure 8: Optimized microstructures for minimum structural compliances with or without shear constraint

5 Conclusion

This study proposes a topology optimization framework for periodic beam microstructure design that
simultaneously addresses extreme microstructural stiffness and enhanced macrostructural performance
while incorporating shear stiffness constraints. Through the proposed method, the optimization problems of
tension (compression)-torsion stiffness, critical buckling load, and structural compliance are systematically
investigated. Experimental results elucidate the effects of beam length on both twisting behaviors and EA
characteristics in tension (compression)-torsion beams. Notably, the optimized chiral structure exhibits
promising potential for impact-resistant applications. Through the discussions on the critical buckling load
problems, the effects of beam lengths and sections on the optimization results are revealed. The shear stiffness
predominantly governs material distributions on lateral faces, effectively eliminate the material separation
of slender beams in structural compliance optimization.
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