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ABSTRACT: Global security threats have motivated organizations to adopt robust and reliable security systems to
ensure the safety of individuals and assets. Biometric authentication systems offer a strong solution. However, choosing
the best security system requires a structured decision-making framework, especially in complex scenarios involving
multiple criteria. To address this problem, we develop a novel quantum spherical fuzzy technique for order preference
by similarity to ideal solution (QSF-TOPSIS) methodology, integrating quantum mechanics principles and fuzzy
theory. The proposed approach enhances decision-making accuracy, handles uncertainty, and incorporates criteria
relationships. Criteria weights are determined using spherical fuzzy sets, and alternatives are ranked through the QSF-
TOPSIS framework. This comprehensive multi-criteria decision-making (MCDM) approach is applied to identify the
optimal gate security system for an organization, considering critical factors such as accuracy, cost, and reliability.
Additionally, the study compares the proposed approach with other established MCDM methods. The results confirm
the alignment of rankings across these methods, demonstrating the robustness and reliability of the QSF-TOPSIS
framework. The study identifies the infrared recognition and identification system (IRIS) as the most effective, with
a score value of 0.5280 and optimal security system among the evaluated alternatives. This research contributes to
the growing literature on quantum-enhanced decision-making models and offers a practical framework for solving
complex, real-world problems involving uncertainty and ambiguity.
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1 Introduction
Global security threats have become a major concern in recent years, according to researchers. To

make an organization invulnerable, it is essential to have a reliable security entrance system. Schools and
universities must provide staff and students with a secure environment where they can perform their duties.
Traditional security methods, such as pins and passwords, are easily falsified, and keys are commonly lost [1].
Biometric authentication is proving to be an effective way of combating these security threats. This type
of application has gained popularity because of biometric identification, which verifies a person’s identity
and behavioral patterns [2]. A variety of biometric techniques are used in various professions, such as the
face [3], fingerprints [4], infrared recognition and identification system (IRIS) [5], voice [6]. By providing
precise and efficient recognition systems, biometric systems play a crucial role in improving security. The
choice of the right security system, particularly in complex scenarios, requires careful consideration. Data-
driven insights will help us choose the right security framework by considering accuracy, cost, and reliability.
A decision-making process minimizes the gap between current security options and the optimal solution,
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ensuring that the system not only meets technical constraints but also aligns with strategic objectives. Thus,
integrating biometrics into a security system must take into account current and future security needs. To
meet the demands of the modern world, maximize outcomes, and solve our problems, we must make efficient
decisions. Decision making is highly beneficial when confronted with selecting the best option based on a
single criterion. We use a combination of criteria when rating possibilities to come up with a more flexible
answer, rather than relying solely on one criterion. As part of multi-criteria decision-making (MCDM),
alternatives are selected whose rankings are being examined, as well as criteria that summarize their crucial
attributes. It is crucial that these criteria be carefully weighed because they influence how a ranking system
for alternatives is devised based on the weighting of these criteria. Following the assessment information,
we gather several approaches to create a precise potential resolution based on a matrix format. Engineers,
doctors, economists, and social scientists all rely on MCDM in their daily lives. A significant proportion of
the research field has been examined by MCDM in recent decades [7–10].

The integration of biometrics into security systems raises the question of which biometric method is
the most effective in specific scenarios. For example, facial recognition may be more suitable for public
spaces, while fingerprints may be better for controlled environments like offices. Decision-making in such
scenarios requires tools that can handle uncertainty and complexity. To address this, advanced mathematical
frameworks like fuzzy sets (FS) [11], intuitionistic fuzzy sets (IFS) [12], Pythagorean fuzzy sets (PFS) [13],
and their extensions (e.g., q-rung orthopair fuzzy sets (q-ROFS) [14], p, q-quasirung orthopair fuzzy sets
(p, q-QOFS) [15]) have been developed. These frameworks allow for more nuanced decision-making by
incorporating degrees of membership (MB) and non-membership (NMB). Neutrosophic sets (NS) [16]
and spherical fuzzy sets (SFS) [17], which extend the capabilities of fuzzy logic by incorporating additional
parameters like indeterminacy degree (ID), have also gained attention. These advancements have been
applied to fields like decision support systems, pattern recognition, and medical diagnosis, demonstrating
their versatility and potential for addressing real-world problems [18–20]. Furthermore, the integration of
quantum mechanics into decision-making frameworks, such as quantum spherical fuzzy sets (QSFS), has
opened new avenues for modeling complex, uncertain, and dynamic systems [21]. QSFS are implemented to
address carbon emissions and foster sustainable business investments [21].

This research is motivated by the following reasons. A variety of fields have implemented spherical fuzzy
sets and aggregation operators to deal with uncertainty and ambiguity. Although modern decision-making
processes are complex, achieving accurate solutions can be challenging. This makes it essential to develop a
new multi-layer, comprehensive decision-making model. A gate security system (GSS) operates in a high-
stakes environment in which uncertainty and ambiguity play an important role in decision-making. The
growing challenges in security infrastructure necessitate the selection of the best GSS. Today, these challenges
pose a significant threat to society. To ensure robust protection, organizations must implement effective
security systems. An effective decision-making framework must be capable of dynamically addressing such
uncertainties. The proposed model integrates spherical fuzzy sets (SFS) with quantum logic to incorporate
probabilities in a variety of scenarios. A limited amount of literature integrates spherical fuzzy numbers
with quantum theory, hindering the exploration of decision-making to date. It also uses the golden ratio
to calculate degrees, which makes it easier to enhance performance. In the final stage, the proposed model
ranks the options with the help of TOPSIS model.

This paper contributes to the field by introducing a novel framework that integrates QSFS with
the technique for order preference by similarity to ideal solution (TOPSIS) method. This combination
enhances the ability to handle uncertainty and ambiguity in decision-making processes, particularly in the
context of gate security systems. The paper also addresses key limitations in existing methods, such as
inadequate integration of quantum mechanics, limited granularity, and challenges in real-time adaptability.
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The framework provides a multi-layered, comprehensive decision-making model that dynamically addresses
uncertainties, making it ideal for high-stakes environments like gate security systems.

The theoretical understanding of QSFS and its practical utility has been advanced. In decision-making
under uncertainty, they provide a solid foundation for future research and applications. The study structure is
as follows: Section 1 provides an introduction, followed by a comprehensive literature review in Section 2. The
preliminary definitions required in this study are discussed in Section 3. Section 4 introduces the proposed
work. Section 5 examines the application of the proposed MCDM method. Section 6 presents performance
evaluation metrics. An overview of the detailed discussion is presented in Section 7. Section 8 concludes the
study and future avenues.

2 Literature Review
Making the right decisions is an art and a science that is crucial to navigating today’s complex challenges.

Science fields such as engineering, economics, agriculture, and manufacturing face uncertain data problems.
Several researchers have tackled this dilemma in their research [22–25]. Classical mathematical structures
cannot be used to model problems involving uncertain data. In 1965, Zadeh introduced the fuzzy set
concept (FS) that represents ambiguous, vague, and uncertain elements [11]. FS did not account for NMB
and ID. After that, many extensions of FS are presented, like: IFS and PFS, etc. Al-Shamiri et al. [17]
have developed spherical fuzzy sets (SFS). In essence, the purpose of SFS is to give decision-makers the
ability to generalize fuzzy set extensions in other ways through the definition of membership functions
on a spherical surface. A large domain can be mapped to the parameters of that membership function
independently. The sum of squares of MB, ID, and NMB must not exceed 1. In this way, SFS offers a clearer
and more accurate reflection of membership within a set as it incorporates the MB, NMB, and ID levels.
SFS has demonstrated considerable potential in decision-making, as highlighted by recent studies. Qianwen
conducted research [26] to improve the efficiency and effectiveness of the metaverse system by utilizing
spherical fuzzy linguistics. Almulhim’s study [27] employs interval-valued spherical numbers to improve
decision-making for early-stage investments in start-up businesses. Nhieu [28] introduced the SFS Einstein
operation matrix energy decision-making approach to evaluate offshore wind energy storage technologies
in Vietnam, tackling complex factor interactions. Nhieu and Dang [29] extended this framework by
incorporating SFS into a group decision-making model for assessing concrete 3D printing robots in Vietnam,
integrating perspectives from multiple stakeholders. These contributions underscore the adaptability of SFS
to managing uncertainty, capturing nuanced preferences, and improving decision quality in diverse fields
such as energy, construction, and technology. Although these advancements have been achieved, the extent
of optimal MB in SFS remains to be precisely defined in decision-making processes [30].

In recent years, quantum mechanics has brought an alternative viewpoint to decision-making tech-
niques employing the principles of quantum theory, such as amplitude and phase angle [21]. Through
quantum models of mass functions, it was possible to analyze the probability of several conditions, enabling
a more precise understanding of spherical theory in complex information sets. Hence, QSFS are formed.
It is highly accurate, enables enhanced analysis of uncertainty, is broad in application, integrates multiple
parameters, and has a solid mathematical basis [31]. A more accurate elaboration of complex decision-
making problems can be achieved by using QSFS with the golden cut. Using this approach, decision
makers can concurrently evaluate multiple parameters of uncertain information, allowing them to make
intelligent decisions. Quantum mechanics, fuzzy sets, and the golden cut [21] are used in the methodology.
This methodology gains credibility and reliability from existing academic frameworks by integrating them,
enhancing their robustness and rigor. The present study proposes a comprehensive MCDM approach that
combine the TOPSIS method with QSF numbers. Through the integration of the QSF, this study examines the
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relationships and weights of the criteria. It determines the weights of the criteria through the SFS and ranks
alternatives using the QSF-TOPSIS. The purpose of this integrated approach is to determine the optimal gate
security system for an organization. An overview of the research conducted using TOPSIS is given in Table 1.

Table 1: Review of TOPSIS based research

Reference Year Focus
Hwang and Yoon [7] 1981 Proposed TOPSIS method
Wang and Elhag [32] 2006 A better way to maintain bridge structures

Boran et al. [33] 2009 Supply chain management
Zhang and Xu [34] 2014 Evaluating airline service quality

Al-Shamiri et al. [17] 2019 Developed SFS based TOPSIS
Tho Thong et al. [35] 2020 Performance evaluation of lecturers

Saeidi et al. [36] 2021 Improve enterprise resource management systems
Karamoozian and Wu [37] 2022 Assessment of supply chain risks in construction

Asante et al. [38] 2022 Approaches to overcome barriers in renewable energy industry
Karamoozian et al. [39] 2023 Occupational safety risk assessment in construction

Cui et al. [40] 2024 Potential of petroleum investment
Gaeta et al. [41] 2024 Analysis of disorder information

Biometric security systems have been a central focus in cybersecurity, with researchers examining
their vulnerabilities and proposing solutions. Faundez [42] highlighted that these systems are susceptible to
various attacks and suggested solutions that could improve their security. Subsequent studies have continued
to explore these vulnerabilities. Abdullahi et al. [1] emphasize the need to address biometric template
attacks and their impact on sensitive personal data, while also reviewing recent protective measures and
their effectiveness. Biometric systems, including fingerprints, IRIS, and face recognition, are susceptible
to diverse security threats. Grunenberg [43] observed that these systems are vulnerable to attacks that
compromise their security and functionality. Kaiwartya et al. [44] investigated the challenges and metrics
of biometric recognition across various network communications, identifying it as a critical e-security
solution with both strengths and limitations. Despite their vulnerabilities, biometric authentication offers
substantial cybersecurity advantages. Khan et al. [45] conducted a systematic analysis demonstrating
that biometric authentication enhances cybersecurity in conventional and Islamic banking by verifying
physical and behavioral traits, thereby providing robust safety and security. Benarous et al. [46] argue that
biometric authentication effectively mitigates cybersecurity threats by leveraging users’ unique physical
and behavioral characteristics. To mitigate vulnerabilities in biometric systems, several strategies have been
proposed. Sett et al. [47] suggested integrating fingerprint recognition with traditional password-based
authentication to enhance data security and protect sensitive information. Shuford [48] explores the potential
of behavioral biometrics in detecting and combating cyber threats, offering continuous authentication and
reducing dependence on static credentials, though challenges such as data privacy and system integration
remain. Mohammed [49] presents a feature-level-based multi-biometric identification system aimed at
enhancing secure and reliable communication systems in smart cities by leveraging an in-depth analysis
of multiple biometric features, including fingerprints, facial recognition, and IRIS scanning. Sasikala [50]
proposes a multi-modal secure biometric framework, which incorporates attention mechanisms and hash
compression to efficiently process and analyze combined biometric modalities for applications such as
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security surveillance and identity verification. Kansal et al. [51] developed a deep learning-based privacy-
preserving multimodal biometric recognition system for cross-silo datasets, facilitating seamless integration
and analysis of data from diverse sources in smart cities.

Many studies collectively explore various applications of fuzzy-based decision-making and machine
learning techniques in different security domains. Ogundoyin and Kamil [52] proposed an integrated
model for gateway selection in the fog-bolstered Internet of Things, highlighting the role of fuzzy methods
in handling uncertainty in network decision-making. Alamleh et al. [53] focused on federated learning
for Internet of Things (IoT) applications, presenting a framework for intrusion detection systems, while
Qahtan et al. [54] developed a multi-security and privacy benchmarking framework for blockchain-driven
IoT healthcare systems, emphasizing security in IoT applications. Tanaji and Roychowdhury [55] used
an integrated method with neutrosophic fuzzy sets for cybersecurity risk assessment of connected and
autonomous vehicles, addressing the risk evaluation problem in the context of emerging vehicle technologies.
Albahri et al. [56] introduced a rough Fermatean fuzzy decision-based approach to modeling Intrusion
Detection System classifiers in the federated learning of IoT applications, further advancing fuzzy logic
in intrusion detection. Almotiri [57] presented an integrated fuzzy-based computational mechanism for
selecting effective malicious traffic detection approaches, contributing to the field of network security. Deb
and Roy [58] conducted a software-defined network information security risk assessment using Pythagorean
fuzzy sets, and Lin et al. [59] developed an MCDM model for site selection of car-sharing stations in a
picture fuzzy environment, demonstrating the versatility of fuzzy methods in different decision-making
scenarios. Erdogan et al. [60] proposed a fuzzy-based MCDM methodology for risk evaluation of cyber-
security technologies, providing a comprehensive framework for assessing security risks. In general, these
studies showcase the wide-ranging applications of fuzzy techniques in addressing complex decision-making
and security problems across multiple domains. While existing fuzzy-based models have demonstrated
impressive adaptability across various security domains, they still face several critical limitations when
applied to specialized real-time systems like gate security. Current approaches often suffer from insufficient
adaptability, struggling to handle dynamic data streams characteristic of modern gate systems. For instance,
while neutrosophic fuzzy frameworks [55] and rough Fermatean fuzzy methods [56] improve uncertainty
handling, they fail to integrate advanced quantum-inspired techniques, which could significantly enhance
optimization and parallel processing capabilities for multi-criteria evaluations. Additionally, the lack of
domain-specific customization for gate security where real-time threat assessment, sensor fusion, and
multi-criteria are essential leaves these frameworks ill-suited to this application.

The proposed QSF-TOPSIS model addresses these gaps by combining SFS geometric precision with
quantum principles computational power. SFS inherently captures MB and NMB, and ID values, providing
a more nuanced representation of ambiguities in gate security scenarios. By incorporating quantum tech-
niques, the model achieves parallel processing capabilities for real-time assessment. Moreover, QSF-TOPSIS
extends classical TOPSIS by leveraging spherical geometry to evaluate criteria in decision space, enabling
more intuitive integration of diverse metrics in high-stakes environments. This model is specifically tailored
to gate security, supporting biometrics, and dynamic security prioritization. This makes it an ideal solution
for edge-deployed, resource-constrained systems.

3 Preliminaries
This research incorporates the MCDM technique and quantum spherical fuzzy numbers to investigate

the optimal choice of gate security systems. To accomplish our goal, we employ the TOPSIS method as an
MCDM methodology. Fig. 1 summarizes the research procedure. The research is divided into two phases.
The literature review process is used to identify and validate the criteria factors. Experts’ assessments of these
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criteria are weighted according to their education and experience. Our second step was to implement the
QSF-TOPSIS method to rank the alternatives and select the most appropriate gate security system. There
is also done a comparison between the results of the study and the results of previous studies. A notable
feature of expert assessments is that they are collected in linguistic form. They are then transformed into QSF
numbers based on the scale presented in Tables 2 and 3.

Figure 1: Flowchart of QSFS-TOPSIS method

Table 2: Linguistic variables and score index for different scales

Linguistic variable SFS (9 scale) [61] Linguistic variable SFS (5 scale) [62]
YG: Absolutely Higher (0.9, 0.1, 0.0) YG: Absolutely Higher (0.9, 0.1, 0.0)

VG: Very High (0.8, 0.2, 0.1) G: High (0.7, 0.3, 0.2)
G: High (0.7, 0.3, 0.2) R: Moderate (0.5, 0.4, 0.4)

SG: Slightly High (0.6, 0.4, 0.3) O: Low (0.3, 0.7, 0.2)
R: Moderate (0.5, 0.4, 0.4) YO: Absolutely Low (0.1, 0.9, 0.0)

SO: Slightly Low (0.4, 0.6, 0.3)
O: Low (0.3, 0.7, 0.2)

VO: Very Low (0.2, 0.8, 0.1)
YO: Absolutely Low (0.1, 0.9, 0.0)
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Table 3: QSFS linguistic variables and values

Linguistic variable Code QSFS [21]
Very high YG (0.6e i2π0.6 , 0.4690e i2π0.37 , 0.6481e i2π0.03)

High G (0.5477e i2π0.55 , 0.4359e i2π0.34 , 0.7141e i2π0.11)
Moderate R (0.5e i2π0.5 , 0.3873e i2π0.31 , 0.7746e i2π0.19)

Low O (0.4472e i2π0.45 , 0.3606e i2π0.28 , 0.8185e i2π0.27)
Very low YO (0.4e i2π0.4 , 0.3162e i2π0.25 , 0.8602e i2π0.35)

3.1 Spherical Fuzzy Sets
Let it be assumed that the SFS [17] Ãs of the universe of discourse ‘U’ is given by

Ãs = {⟨μÃs
(u), νÃs

(u), πÃs
(u)⟩∣u ∈ U} (1)

where μ∼As(u) ∶ U → [0, 1], ν∼As(u) ∶ U → [0, 1], and π∼As(u) ∶ U → [0, 1]

0 ≤ μ2
Ãs
(u) + ν2

Ãs
(u) + π2

Ãs
(u) ≤ 1 ∀ u ∈ U (2)

The weight of criteria can be calculated using the Eq. (3).

criteria weight = cwr =
Wr

∑e
r=1 Wr

(3)

where cwr ∈ [0, 1] and ∑ cwr = 1.

Wr = 1 − E (4)

E = 1
n

e
∑
r=1

[1 − 4
5
(∣μ2

rs − ν2
rs ∣ + ∣π2

rs − 0.25∣)] (5)

An overview of the SFS evaluation scale is provided in Table 2.

3.2 Quantum Spherical Fuzzy Set
The behavior of very small particles can be explained by quantum theory with golden cuts. It offers

certain indications about their behavior. These issues are examined by considering particle properties
in different situations. A key advantage of quantum theory is its ability to make precise measurements.
Even when uncertainty is high, particle analyses can be performed comprehensively and sensitively. As a
result of this advantage, it might be beneficial to use quantum theory in fuzzy MCDM. A major problem
in decision-making analysis is the high level of uncertainty involved in the process. It may reduce the
accuracy of the results. To maximize the accuracy and reliability of decision-making, some new applications
are suggested [63]. This study integrates quantum theory with fuzzy MCDM. As a result, uncertainty is
minimized more effectively. Eqs. (6)–(8) explain quantum theory.

K(∣ f ⟩) = ϖe jΘ (6)
∣Ω⟩ = ∣ f1⟩, ∣ f2⟩, ..., ∣ fn⟩ (7)
∑
∣ f ⟩⊆∣Ω⟩

∣K(∣ f ⟩)∣ = 1 (8)
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Spherical fuzzy numbers belong to the fuzzy number family. Three-dimensional spaces define spherical
fuzzy numbers [64]. This makes them different from other fuzzy numbers. Spherical fuzzy numbers are
flexible and can deal with a wide range of data, including linguistic, numerical, and interval data for more
accurate results [65]. A description of these sets and their conditions can be found in Eqs. (9) and (10). During
this process, ℶE, ℸE, and ℷE are used to represent MB, NMB and ID.

E = {⟨ f , (ℶE( f ),ℸE( f ), ℷE( f )∣ f ∈ F)⟩} (9)
0 ≤ ℶ2

E( f ),ℸ2
E( f ), ℷ2

E( f ) ≤ 1, ∀ f ∈ F (10)

A new model is proposed by integrating quantum theory with spherical fuzzy sets. A detailed expla-
nation can be found in Eqs. (11)–(13) where ΩℶE , ΩℸE , and ΩℷE define MB, NMB and ID, respectively. An
overview of the respondent evaluation scale is provided in Table 3.

∣ΩE⟩ = {⟨ f , (ΩℶE( f ), ΩℸE( f ), ΩℷE( f )∣ f ∈ 2∣ΩE⟩)⟩} (11)

Accordingly, quantum spherical fuzzy numbers Ω are formulated as below, with their amplitudes and
phase angles:

Ω = [Ωℶ.e i2π .J, Ωℸ.e i2π .K, Ωℷ.e i2π .L] (12)
ϖ2 = ∣Ωℶ(∣ fi⟩)∣ (13)

The amplitudes Ωℶ, Ωℸ, and Ωℷ correspond to quantum membership, non-membership, and hesitancy
degrees, respectively. The phase angles J, K, and L correspond to the sets of Θ phase angles. ϖ2 indicates the
amplitude of the MB function Ωℶ of QFS. The accuracy of evaluations depends on the efficient calculation
of degrees. To achieve this, the golden ratio (GR) is used [66]. A detailed explanation of the calculations
can be found in Eqs. (14) and (15). Along the straight line, a and b represent large and small quantities,
respectively. It is difficult for SFSs to agree on membership and other scales. A golden ratio is used in the
proposed model to address this issue. To calculate this ratio, extreme and mean ratios along a straight line
are used to create coefficients. Thus, this classification is considered more meaningful, which increases the
originality and accuracy of the proposed model [67,68].

G = a
b

(14)

G = 1 +
√

5
2

= 1.618 . . . (15)

The amplitude of NMB and ID are computed as in Eqs. (16) and (17).

Ωℸ =
Ωℶ
G

(16)

Ωℷ = 1 − Ωℶ − Ωℸ (17)

Similarly, the phase angle of MB is calculated as in Eq. (18).

J = ∣Ωℶ(∣ fi⟩)∣ (18)
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The phase angles of NMB and ID are computed in Eqs. (19) and (20).

L = J

G
(19)

K = 1 − J −L (20)

The basic operations of QSF number are presented in Eqs. (21)–(26). Consider ΩR and ΩS be two
QSF numbers.

ΩR = [ΩRℶ .e i2π .JR , ΩRℸ .e i2π .KR , ΩRℷ .e i2π .LR] and
ΩS = [ΩSℶ .e i2π .J, ΩSℸ .e i2π .K, ΩSℷ .e i2π .L], then

Ξ ∗ ΩR =

⎛
⎜⎜⎜⎜⎜
⎝

(1 − (1 − Ω2
Rℶ

)Ξ)1/2 e i2π(1−(1−JR
2π )

1/2

(ΩRℸ)Ξ e i2π(KR
2π )

Ξ

((1 − Ω2
Rℷ
)Ξ − (1 − Ω2

Rℶ
− Ω2

Rℷ
)Ξ)1/2 e i2π((1−(LR

2π )
2)Ξ−(1−(JR

2π )
2−(LR

2π )
2)

Ξ
)

1/2

⎞
⎟⎟⎟⎟⎟
⎠

(21)

ΩR
Ξ =

⎛
⎜⎜⎜⎜⎜
⎝

(ΩRℶ)Ξ e i2π(JR
2π )

Ξ

(1 − (1 − Ω2
Rℸ

)Ξ)1/2 e i2π(1−(1−KR
2π ))

1/2

((1 − Ω2
Rℷ
)Ξ − (1 − Ω2

Rℶ
− Ω2

Rℷ
)Ξ)1/2 e i2π((1−(LR

2π )
2)Ξ−(1−(JR

2π )
2−(LR

2π )
2)

Ξ
)

1/2

⎞
⎟⎟⎟⎟⎟
⎠

(22)

ΩR ⊕ ΩS

=

⎛
⎜⎜⎜⎜
⎝

(Ω2
Rℶ

+ Ω2
Sℶ

− Ω2
Rℶ

Ω2
Sℶ

)1/2 e i2π((JR
2π )

2+(JS
2π

2
)−(JR

2π )
2(JS

2π )
2)

1/2

ΩRℸΩSℸe i2π((KR
2π )(

KS
2π ))

((1−Ω2
Rℶ

)Ω2
Sℷ
+(1−Ω2

Sℶ
)Ω2

Rℷ
−Ω2

Rℷ
Ω2

Sℷ
)1/2e i2π((1−(LR

2π )
2)(JS

2π )
2+(1−(LS

2π )
2)(JR

2π )
2−(LR

2π )
2)(LS

2π )
2))

1/2

⎞
⎟⎟⎟⎟
⎠

(23)
ΩR ⊗ ΩS

=

⎛
⎜⎜⎜⎜
⎝

ΩRℸΩSℸe i2π((KR
2π )(

KS
2π ))

(Ω2
Rℶ

+ Ω2
Sℶ

− Ω2
Rℶ

Ω2
Sℶ

)1/2 e i2π((JR
2π )

2+(JS
2π

2
)−(JR

2π )
2(JS

2π )
2)

1/2

((1−Ω2
Rℶ

)Ω2
Sℷ
+(1−Ω2

Sℶ
)Ω2

Rℷ
−Ω2

Rℷ
Ω2

Sℷ
)1/2e i2π((1−(LR

2π )
2)(JS

2π )
2+(1−(LS

2π )
2)(JR

2π )
2−(LR

2π )
2)(LS

2π )
2))

1/2

⎞
⎟⎟⎟⎟
⎠

(24)

Ω̃ =

⎛
⎜⎜⎜⎜
⎝

[1 −∏k
i=1(1 − Ω2

ℶ)1/k]1/2
e2π[1−∏k

i=1(1−( J

2π )
2)1/k]

1/2

∏k
i=1(Ωℸ)1/k e2π∏k

i=1(K

2π )
1/k

[∏k
i=1(1 − Ω2

ℷ)1/k −∏k
i=1(1 − Ω2

ℶ − Ω2
ℷ)1/k]1/2
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de f (Ω̃) = Ωℶ + Ωℷ (
Ωℶ

Ωℶ + Ωℸ
) + ( J

2π
) + ( K

2π
)
⎛
⎝

J

2π
J

2π + L

2π

⎞
⎠

(26)
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4 Quantum Spherical Fuzzy TOPSIS Model
An extension of TOPSIS with QSF is described in this section. The process involves the following steps:
Step 1. Spherical fuzzy decision matrix
The spherical fuzzy numbers (SFNs) are used in a decision-making process involving m decision makers

to assess e alternatives based on f criteria. According to the yth expert, the spherical fuzzy decision matrix
(SF-DM) is constructed as follows:

Q y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q y
11 Q y

12 ⋅ ⋅ ⋅ Q y
1 f

Q y
21 Q y

22 ⋅ ⋅ ⋅ Q y
2 f

⋮ ⋮ ⋱ ⋮
Q y

e1 Q y
e2 ⋅ ⋅ ⋅ Q y

e f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27)

where Q y
rs = (μrs(u), νrs(u), πrs(u)), 1 ≤ r ≤ e and 1 ≤ s ≤ f and Q y

rs represents assessment value of rth
criteria in relation to sth criteria.

Step 2. Integrated spherical fuzzy decision matrix
Next, combine the expert decision matrices of each decision maker and create an integrated SF-DM as

outlined below:

I =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I11 I12 ⋅ ⋅ ⋅ I1 f
I21 I22 ⋅ ⋅ ⋅ I2 f
⋮ ⋮ ⋱ ⋮

Ie1 Ie2 ⋅ ⋅ ⋅ Ie f

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(28)

where Irs = {Q 1
rs , Q2

rs , Q3
rs , . . . , Qm

rs} is the collection of expert assessments for a single alternative in relation
to a specific criteria.

Step 3. Calculate criteria weight
The weight of criteria can be calculated using the Eq. (29).

criteria weight = cwr =
Wr

∑e
r=1 Wr

(29)

where cwr ∈ [0, 1] and ∑ cwr = 1.

Wr = 1 − E (30)

E = 1
n

e
∑
r=1

[1 − 4
5
(∣μ2

rs − ν2
rs ∣ + ∣π2

rs − 0.25∣)] (31)

Step 4. Formation of QSF decision matrix
The next step is to convert each cluster (outlined above) of integrated SF-DM to QSF numbers by

employing Eqs. (9)–(13) or with the help of Table 3. The new formulated QSF numbers based DM is as
follows:

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 G12 ⋅ ⋅ ⋅ G1 f
G21 0 ⋅ ⋅ ⋅ G2 f
⋮ ⋮ ⋱ ⋮

Ge1 Ge2 ⋅ ⋅ ⋅ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(32)



Comput Model Eng Sci. 2025;143(3) 3533

In matrix G, Grs = [ℶG rs .e i2π .J,ℸG rs .e i2π .K, ℷG rs .e i2π .L], where 1 ≤ r ≤ e and 1 ≤ s ≤ f .
Step 5. Aggregated decision matrix
An aggregated decision matrix was formulated applying Eq. (25) to matrix G.

Gag g =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Gag g
12 ⋅ ⋅ ⋅ Gag g

1 f
Gag g

21 0 ⋅ ⋅ ⋅ Gag g
2 f

⋮ ⋮ ⋱ ⋮
Gag g

e1 Gag g
e2 ⋅ ⋅ ⋅ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(33)

In matrix Gag g , Gag g
rs = [ℶG rs ,ℸG rs , ℷG rs], where 1 ≤ r ≤ e and 1 ≤ s ≤ f .

Step 6. Normalization of the QSF decision matrix
Normalize the decision matrix Gag g to create a normalized decision matrix Nrs using Eq. (34), where

1 ≤ r ≤ e and 1 ≤ s ≤ f .

Nrs =
Gag g

rs√
∑e

r=1 (Gag g
rs )2

(34)

Step 7. Formation of weighted normalized decision matrix
Using the criterion weights, construct the weighted normalized decision matrix described in Eq. (35).

Gn = cwr × Nrs =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Gn
12 ⋅ ⋅ ⋅ Gn

1 f
Gn

21 0 ⋅ ⋅ ⋅ Gn
2 f

⋮ ⋮ ⋱ ⋮
Gn

e1 Gn
e2 ⋅ ⋅ ⋅ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(35)

Step 8. Calculate positive and negative ideal solutions
Formulate matrices for the positive ideal solution (I+) and the negative ideal solution (I−)

using Eqs. (36) and (37).

I+ = {(max(ℶrs)∣s ∈ B) , (min(ℸrs)∣s ∈ C) , (min(ℷrs)∣s ∈ C)} = (p+1s , p+2s , p+3s , . . . , p+ns) (36)
I− = {(min(ℶrs)∣s ∈ B) , (max(ℸrs)∣s ∈ C) , (max(ℷrs)∣s ∈ C)} = (p−1s , p−2s , p−3s , . . . , p−ns) (37)

where B is benefit criteria and C is cost criteria.
Step 9: Calculate the distance to ideal solutions
Compute the distance of each alternative from the positive ideal solution I+ using Eq. (38), where i =

1, 2, . . . , m.

D+r =
/
001

e
∑
r=1
(prs − I+r )2 (38)

Similarly, calculate the distance from the negative ideal solution I− using Eq. (39).

D−r =
/
001

e
∑
r=1
(prs − I−r )2 (39)
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Step 10: Calculate the score values for each alternative
Calculate the value of preference Vr for each alternative using Eq. (40), where 1 ≤ r ≤ e.

Vr =
D−r

D+r + D−r
(40)

Step 11: Rank the alternatives
Arrange the alternatives according to the score values Vr and select the most suitable one.
A flowchart of the QSF-TOPSIS method can be found in Fig. 1.

5 Decision Making Application
In this section, we aim to demonstrate the decision-making process for selecting the most suitable

security system for an organization, incorporating various expert perspectives and security system features.
To address global security threats, an organization must make an informed decision that balances cost,
reliability, accuracy, and other crucial factors. A multi-criteria decision-making model is used to determine
the best security system, considering both the technical and operational needs.

5.1 Problem Background and Solution
The rapid evolution of technology, increasing urbanization, and growing concerns regarding security

threats are driving a significant need for reliable and efficient gate security systems across various sectors
globally. Traditional security methods such as PIN codes, passwords, and physical keys have shown lim-
itations in terms of reliability, ease of use, and vulnerability to security breaches [69]. This has led to the
need for more advanced, secure, and automated solutions to safeguard entrances to critical facilities such
as businesses, schools, universities, and government buildings. In line with the rising demand for enhanced
security and technological advancement, organizations are increasingly shifting towards biometric-based or
IoT-enabled security systems that are not only secure but also user-friendly and scalable [70]. Gate security
systems must address several challenges, including the prevention unauthorized access, ease of installation
and operation, and compatibility with existing infrastructure. They must also balance cost-effectiveness with
high reliability, accuracy, and minimal maintenance requirements. The effectiveness of a security system
also depends on how well it integrates with the overall safety protocols of an organization while considering
factors such as environmental conditions, user convenience, and scalability.

The growing complexity of security systems demands a structured approach to evaluating potential
solutions. To optimize the selection of the most suitable gate security system, multiple factors need to be
considered, including cost, security level, user experience, operational feasibility, system scalability, and
environmental compatibility [53,54,60]. Given the vast number of security technologies available, selecting
the best gate security system requires a holistic and MCDM approach to identify a solution that not
only meets the technical and security needs of the organization but also ensures compliance with broader
operational and organizational goals. Given the complexity of the decision-making process, a hybrid model
has been developed, which incorporates QSF numbers and TOPSIS model. The model helps prioritize
systems that align with the organization’s security objectives. Here we focus on a case study presented
in a research by Akram et al. [20]. Through this comprehensive approach, organizations can confidently
choose a security solution that ensures both the safety and convenience of users while meeting operational
requirements. Four decision experts have been selected to help make this decision [20].

• T1: Financial security expert: Expert in finance who evaluates security systems taking into account the
cost of establishing security systems.
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• T2: System engineer: To manage the functionality, scalability, and compatibility of the security system
with the existing infrastructure of the organization.

• T3: IoT security expert: He will work on the IoT security aspects of the system. He will assure that
all interacting devices and systems within the network are well protected against vulnerabilities and
cyber threats.

• T4: IT operations manager: Assuring a user-friendly operating environment, operational feasibility,
and ease of operation will enable users to adopt the system more readily.

The security system mechanisms such as ID cards, and biometric devices use cutting-edge technology
to facilitate access. Below are five state-of-the-art security systems under consideration:

• S1: IRIS recognition system: IRIS scanning is an optical biometric technique that identifies an
individual’s IRIS by analyzing patterns in their IRIS using a computational algorithm. All of us have our
own unique, complex pattern that remains stable throughout our lifetimes. It is impossible to have the
same pattern as two different people. Infrared light detects the eye’s pattern, which is then converted into
a code (transformed into a square design similar to a bar code or Quick Response system) and verified.
Fast-processing devices are more efficient.

• S2: Card scanner system: Card scanning systems mount keycard readers on doors as part of the system.
Upon swiping or inserting the cards into the smart card scanner, the encoded information on the cards
is read and the doors are unlocked. Student cards, Bank cards, and ID cards are just a few of the most
common cards.

• S3: Facial recognition system: Face recognition systems are generally considered to be most reliable
when using convolutional neural networks. Algorithms, computations, and AI are all used in facial
recognition systems. Using 3D imaging, the technologies can recognize and convert the attributes of an
individual’s face into electronic data. A “face print” is a digitized representation of this information. The
data needed to operate these systems requires a tremendous amount of space.

• S4: Voice recognition system: This type of biometric validation or identification involves recording the
voice of the individual, converting it into a particular format using specialized software, and then using
computational processing to confirm that individual’s identity. Through the use of pitch, intensity, and
amplitude, the system is able to distinguish between different types of voices.

• S5: Fingerprint scanner system: The reading and storing of fingerprint scans is enabled by optical
sensor technology, which uses light as a source of illumination. Then a comparison is made between
the fingerprint scans and the source information in the system. In addition, the system incorporates
thermographic and ultrasonic sensors.

Further information regarding these five security systems is available on the following websites:

• https://www.istockphoto.com/stock-photos/artificial-intelligence (accessed on 25 March 2025)
• https://www.spottersecurity.com/blog/gate-security-access-control/ (accessed on 25 March 2025)
• https://www.myq.com/commercial/industries/education (accessed on 25 March 2025)
• https://swiftlane.com/solutions-enterprise/ (accessed on 25 March 2025)
• https://smartrent.com/news/best-gate-entry-systems/ (accessed on 25 March 2025)

Analysis of these security systems’ key characteristics are used to evaluate their effectiveness. A
comparison of security systems revealed seven characteristics that should be considered when evaluating
them. Following are some of the categories described in more detail below:

• V1: Cost: The relative expenditure on establishing a security system is determined by this criterion.
• V2: Reliability: An important component of a system is its reliability. This guarantees the optimal

performance of an application component, despite when the system is down.

https://www.istockphoto.com/stock-photos/artificial-intelligence
https://www.spottersecurity.com/blog/gate-security-access-control/
https://www.myq.com/commercial/industries/education
https://swiftlane.com/solutions-enterprise/
https://smartrent.com/news/best-gate-entry-systems/
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• V3: Accuracy: A system has accuracy level evaluation, which measures how precisely a system performs
and record information in its information system in relation to how efficiently it works.

• V4: IP rating: The IP rating indicates that the system is water-resistant. In addition, it determines
whether the system stops functioning when water or dust enters.

• V5: Compatibility with existing infrastructure: A security system cannot function in every environ-
ment. There is a special architecture required for installing them. For them to work efficiently, they must
be compatible with their surroundings.

The selection of the optimal security system is executed through the implementation of a novel QSF-
TOPSIS model. Fig. 2 illustrates a flow chart of the numerical application.

Figure 2: Flowchart of numerical application

5.2 Evaluation of Alternatives Ranking by QSF-Based TOPSIS Model
The ranking of all alternatives is calculated using the TOPSIS technique based on QSFNs. The technique

is outlined in the following way:
Step 1. Surveys are conducted to gather objective opinions from decision makers regarding the relative

importance of different security technologies. The linguistic variables used for alternative assessment are
listed in Table 2. Table 4 presents the individual judgements of experts T1, T2, T3, and T4 for the alternatives.

Step 2. Next, combine the expert decision matrices of each decision maker and create an integrated
SF-DM as outlined in Table 5.

Step 3. The weights of criterion are calculated using the Eq. (29). The weights of criterion corresponding
to V1, V2, V3, V4 and V5 are 0.2030, 0.1994, 0.1855, 0.2231, and 0.1890, respectively.

Step 4. The next step is to formulate the QSF decision matrix using experts’ values. The linguistic
variables used for assessment are listed in Table 3 and a combined QSF-DM is given in Table 6.
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Step 5. An aggregated decision matrix was formulated by applying Eq. (25) to Table 6 and aggregated
values are shown in Table 7.

Step 6. Normalize the aggregated decision values to create a normalized decision matrix using Eq. (34)
and normalized values are shown in Table 8.

Step 7. Using the criterion weights, construct the weighted normalized decision matrix described
in Table 9.

Step 8. Calculate the positive ideal solution (I+) and the negative ideal solution (I−) using Eqs. (36)
and (37) and ideal solutions are given below:

I+ = {(0.1450, 0, 0), (0.1943, 0, 0), (0.1325, 0, 0), (0.1636, 0, 0), (0.1386, 0, 0)}
I− = {(0, 0.0649, 0.1414), (0, 0.0681, 0.1389), (0, 0.0593, 0.1292), (0, 0.0762, 0.1487), (0, 0.0645, 0.1317)}

Step 9. Compute the distance of each alternative from the positive ideal solution I+ using Eq. (38).
Compute the distance of each alternative from the negative ideal solution I− using Eq. (39) and final values
are outlined in Table 10.

Step 10. Calculate the preference value for each alternative using Eq. (40) and results are shown
in Table 11.

Step 11. Arrange the alternatives in descending order and IRIS is the most suitable option for the best
gate security system.

Table 4: SF linguistic values provided by experts

Experts Alternatives Criteria

V1 V2 V3 V4 V5

T1 S1 YG R SG VG G
S2 R G VG G R
S3 SG VG R YG SG
S4 VG SO G SO YG
S5 G G SO VG G

T2 S1 VG VG R G YG
S2 R G YG SG VG
S3 YG SO SG YG SO
S4 SG G G G R
S5 SO YG VG VG G

T3 S1 G YG VG G VG
S2 YG R SO YG R
S3 SG G YG SG G
S4 VG SG G SO VG
S5 VG YG VG YG G

T4 S1 VG YG VG G YG
S2 YG G R SG VG
S3 R YG G YG SO
S4 G SO SG G R
S5 SG VG VG YG VG
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Table 5: Integrated decision matrix

V1 V2 V3 V4 V5

Alt. μ ν π μ ν π μ ν π μ ν π μ ν π
S1 0.80 0.20 0.10 0.78 0.20 0.13 0.68 0.30 0.23 0.73 0.28 0.18 0.83 0.18 0.08
S2 0.70 0.25 0.20 0.65 0.33 0.25 0.65 0.33 0.20 0.70 0.30 0.20 0.65 0.30 0.25
S3 0.65 0.33 0.25 0.70 0.30 0.15 0.68 0.30 0.23 0.83 0.18 0.08 0.53 0.48 0.28
S4 0.73 0.28 0.18 0.53 0.48 0.28 0.68 0.33 0.23 0.55 0.45 0.25 0.68 0.28 0.23
S5 0.63 0.38 0.23 0.83 0.18 0.08 0.70 0.30 0.15 0.85 0.15 0.05 0.73 0.28 0.18

Table 6: QSF decision matrix

Alternatives V1 V2

S1 (0.6e i2π0.6 , 0.4690e i2π0.37 , 0.6481e i2π0.03)
S2 (0.5477e i2π0.55 , 0.4359e i2π0.34 , 0.7141e i2π0.11)
S3 (0.5e i2π0.5 , 0.3873e i2π0.31 , 0.7746e i2π0.19) (0.5477e i2π0.55 , 0.4359e i2π0.34 , 0.7141e i2π0.11)
S4 (0.5477e i2π0.55 , 0.4359e i2π0.34 , 0.7141e i2π0.11) (0.4472e i2π0.45 , 0.3606e i2π0.28 , 0.8185e i2π0.27)
S5 (0.4472e i2π0.45 , 0.3606e i2π0.28 , 0.8185e i2π0.27) (0.6e i2π0.6 , 0.4690e i2π0.37 , 0.6481e i2π0.03)

Alternatives V3 V4

S1 (0.5e i2π0.5 , 0.3873e i2π0.31 , 0.7746e i2π0.19) (0.5477e i2π0.55 , 0.4359e i2π0.34 , 0.7141e i2π0.11)
S2 (0.4472e i2π0.45 , 0.3606e i2π0.28 , 0.8185e i2π0.27) (0.5e i2π0.5 , 0.3873e i2π0.31 , 0.7746e i2π0.19)
S3 (0.6e i2π0.6 , 0.4690e i2π0.37 , 0.6481e i2π0.03)
S4 (0.4472e i2π0.45 , 0.3606e i2π0.28 , 0.8185e i2π0.27)
S5 (0.5477e i2π0.55 , 0.4359e i2π0.34 , 0.7141e i2π0.11) (0.5e i2π0.5 , 0.3873e i2π0.31 , 0.7746e i2π0.19)

Alternatives V5

S1 (0.6e i2π0.6 , 0.4690e i2π0.37 , 0.6481e i2π0.03)
S2 (0.5e i2π0.5 , 0.3873e i2π0.31 , 0.7746e i2π0.19)
S3 (0.4472e i2π0.45 , 0.3606e i2π0.28 , 0.8185e i2π0.27)
S4 (0.5e i2π0.5 , 0.3873e i2π0.31 , 0.7746e i2π0.19)
S5
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Table 7: Aggregated QSF decision matrix

V1 V2 V3

Alt. μ ν π μ ν π μ ν π
S1 0.6839 0.3184 0.5487 0.5214 0.2045 0.5008
S2 0.5965 0.2670 0.5199 0.4467 0.1720 0.4648
S3 0.5214 0.2045 0.5008 0.5965 0.2670 0.5199
S4 0.5965 0.2670 0.5199 0.4467 0.1720 0.4648 0.4467 0.1720 0.4648
S5 0.4467 0.1720 0.4648 0.6839 0.3184 0.5487 0.5965 0.2670 0.5199

V4 V5

Alt. μ ν π μ ν π

S1 0.5965 0.2670 0.5199 0.6839 0.3184 0.5487
S2 0.5214 0.2045 0.5008 0.5214 0.2045 0.5008
S3 0.6839 0.3184 0.5487 0.4467 0.1720 0.4648
S4 0.5214 0.2045 0.5008
S5 0.5214 0.2045 0.5008

Table 8: Normalized QSF matrix

V1 V2 V3

Alt. μ ν π μ ν π μ ν π
S1 0.9567 0.3414 0.5882 0.6940 0.2722 0.6666
S2 0.7143 0.3197 0.6226 0.6695 0.2578 0.6966
S3 0.6940 0.2722 0.6666 0.9018 0.3197 0.6226
S4 0.7143 0.3197 0.6226 0.6912 0.2578 0.6966 0.6695 0.2578 0.6966
S5 0.6695 0.2578 0.6966 0.9744 0.3414 0.5882 0.7143 0.3197 0.6226

V4 V5

Alt. μ ν π μ ν π

S1 0.7143 0.3197 0.6226 0.7331 0.3414 0.5882
S2 0.6940 0.2722 0.6666 0.6940 0.2722 0.6666
S3 0.7331 0.3414 0.5882 0.6695 0.2578 0.6966
S4 0.6940 0.2722 0.6666
S5 0.6940 0.2722 0.6666
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Table 9: Weighted normalized QSF decision matrix

V1 V2 V3

Alt. μ ν π μ ν π μ ν π
S1 0.0000 0.0000 0.0000 0.1907 0.0681 0.1173 0.1287 0.0505 0.1236
S2 0.1450 0.0649 0.1264 0.0000 0.0000 0.0000 0.1242 0.0478 0.1292
S3 0.1409 0.0552 0.1353 0.1798 0.0637 0.1241 0.0000 0.0000 0.0000
S4 0.1450 0.0649 0.1264 0.1378 0.0514 0.1389 0.1242 0.0478 0.1292
S5 0.1359 0.0523 0.1414 0.1943 0.0681 0.1173 0.1325 0.0593 0.1155

V4 V5

Alt. μ ν π μ ν π

S1 0.1594 0.0713 0.1389 0.1386 0.0645 0.1112
S2 0.1549 0.0607 0.1487 0.1312 0.0515 0.1260
S3 0.1636 0.0762 0.1313 0.1265 0.0487 0.1317
S4 0.0000 0.0000 0.0000 0.1312 0.0515 0.1260
S5 0.1549 0.0607 0.1487 0.0000 0.0000 0.0000

Table 10: Distances

D+ D−

0.3134 0.3505
0.3312 0.3184
0.3186 0.3407
0.3485 0.3199
0.3212 0.3468

Table 11: Alternatives ranking

Preference value Rank
0.5280 1
0.4902 4
0.5168 3
0.4786 5
0.5192 2

6 Comparison of the Developed Approach with Existing Methods
In the following section, we evaluate the proposed method against three well-established existing

techniques. To verify the validity and productivity of our proposed method, we applied the Spherical fuzzy
TOPSIS (SF-TOPSIS) [71], Spherical fuzzy VlseKriterijumska Optimizacija I Kompromisno Resenje (SF-
VIKOR) [72], and Spherical fuzzy Weighted aggregated sum product assessment (SF-WASPAS) [73] methods.
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6.1 Spherical Fuzzy Number-Based TOPSIS Approach
SFN-based TOPSIS method [71] is now used to select the best gate security system which is summa-

rized as:
Step 1. The spherical fuzzy decision matrices T1, T2, T3 and T4, presented in Table 4, provide complete

information on expert evaluation.
Step 2. Next, combine the expert decision matrices of each decision maker and create an integrated

SF-DM as outlined in Table 5.
Step 3. The weights of criterion are calculated using the Eq. (29). The weights of criterion corresponding

to V1, V2, V3, V4 and V5 are 0.2030, 0.1994, 0.1855, 0.2231, and 0.1890, respectively.
Step 4. Normalize the integrated decision matrixI to create a normalized decision matrix using Eq. (41)

and normalized values are shown in Table 12.

Nrs =
Irs√

∑e
r=1 (Irs)2

(41)

Step 5. Using the criterion weights, construct the weighted normalized decision matrix described
in Table 13.

Step 6. Calculate the positive ideal solution (I+) and the negative ideal solution (I−) using Eqs. (36)
and (37) and ideal solutions are given below:

I+ = { (0.1955, 0.0489, 0.0244), (0.1943, 0.0412, 0.0177), (0.1673, 0.0717, 0.0358),
(0.2194, 0.0387, 0.0129), (0.1842, 0.0391, 0.0167)

I− = { (0.1663, 0.0998, 0.0660), (0.1378, 0.1247, 0.0722), (0.1600, 0.0800, 0.0541),
(0.1629, 0.1333, 0.0741), (0.1307, 0.1182, 0.0684)}

Step 7. Compute the distance of each alternative from the positive ideal solution I+ using Eq. (42).
Compute the distance of each alternative from the negative ideal solution I− using Eq. (43) and final values
are outlined in Table 14.

D+r =
/
001

e
∑
r=1
(prs − I+r )2 (42)

D−r =
/
001

e
∑
r=1
(prs − I−r )2 (43)

Step 8. Calculate the preference value for each alternative using Eq. (44) and results are shown
in Table 15.

Vr =
D−r

D+r + D−r
(44)

Step 9. Arrange the alternatives in descending order and IRIS is the most suitable option for the best
gate security system.
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Table 12: Normalized SF matrix

V1 V2 V3

Alt. μ ν π μ ν π μ ν π
S1 0.9631 0.2408 0.1204 0.9567 0.2469 0.1543 0.8742 0.3885 0.2914
S2 0.9094 0.3248 0.2598 0.8458 0.4229 0.3253 0.8624 0.4312 0.2653
S3 0.8458 0.4229 0.3253 0.9018 0.3865 0.1932 0.8742 0.3885 0.2914
S4 0.9121 0.3460 0.2202 0.6912 0.6254 0.3621 0.8629 0.4155 0.2876
S5 0.8193 0.4916 0.2950 0.9744 0.2067 0.0886 0.9018 0.3865 0.1932

V4 V5

Alt. μ ν π μ ν π

S1 0.9121 0.3460 0.2202 0.9744 0.2067 0.0886
S2 0.8890 0.3810 0.2540 0.8572 0.3956 0.3297
S3 0.9744 0.2067 0.0886 0.6912 0.6254 0.3621
S4 0.7301 0.5974 0.3319 0.8849 0.3605 0.2950
S5 0.9831 0.1735 0.0578 0.9121 0.3460 0.2202

Table 13: Weighted normalized SF matrix

V1 V2 V3

Alt. μ ν π μ ν π μ ν π
S1 0.1955 0.0489 0.0244 0.1907 0.0492 0.0308 0.1622 0.0721 0.0541
S2 0.1846 0.0659 0.0527 0.1686 0.0843 0.0649 0.1600 0.0800 0.0492
S3 0.1717 0.0858 0.0660 0.1798 0.0771 0.0385 0.1622 0.0721 0.0541
S4 0.1851 0.0702 0.0447 0.1378 0.1247 0.0722 0.1601 0.0771 0.0534
S5 0.1663 0.0998 0.0599 0.1943 0.0412 0.0177 0.1673 0.0717 0.0358

V4 V5

Alt. μ ν π μ ν π

S1 0.2035 0.0772 0.0491 0.1842 0.0391 0.0167
S2 0.1984 0.0850 0.0567 0.1620 0.0748 0.0623
S3 0.2174 0.0461 0.0198 0.1307 0.1182 0.0684
S4 0.1629 0.1333 0.0741 0.1673 0.0681 0.0558
S5 0.2194 0.0387 0.0129 0.1724 0.0654 0.0416

6.2 Spherical Fuzzy Number-Based VIKOR Approach
SFN-based VIKOR method [72] is now used to select the best gate security system which is summa-

rized as:
Step 1. The spherical fuzzy decision matrices T1, T2, T3 and T4, presented in Table 4, provide complete

information on expert evaluation.
Step 2. Next, combine the expert decision matrices of each decision maker and create an integrated

SF-DM as outlined in Table 5.
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Table 14: Distances

D+ D−

0.0604 0.1807
0.1208 0.1054
0.1336 0.1377
0.1817 0.0755
0.0784 0.1864

Table 15: Alternatives ranking

Preference value Rank
0.7495 1
0.4659 4
0.5076 3
0.2935 5
0.7039 2

Step 3. The weights of criterion are calculated using the Eq. (29). The weights of criterion corresponding
to V1, V2, V3, V4 and V5 are 0.2030, 0.1994, 0.1855, 0.2231, and 0.1890, respectively.

Step 4. In the following step, we formulate the vectors closest to the positive ideal solution v+ and the
farthest from the negative ideal solution v−. The required values are shown in Eqs. (45) and (46).

v+ = { (0.9631, 0.2408, 0.1204), (0.9744, 0.2067, 0.0886), (0.9018, 0.3865, 0.1932),
(0.9831, 0.1735, 0.0578), (0.9744, 0.2067, 0.0886) (45)

v− = { (0.8193, 0.4916, 0.3253), (0.6912, 0.6254, 0.3621), (0.8624, 0.4312, 0.2914),
(0.7301, 0.5974, 0.3319), (0.6912, 0.6254, 0.3621) (46)

Step 5. This step involves the computation of utility and regret measures for each alternative, leveraging
criterion weights and Euclidean distances as described in Eqs. (47) and (48). The required values are shown
in Table 16.

U =
e
∑
r=1

cwr
d(v+r , Irs)
d(v+r , v−r )

(47)

R = max
r

(cwr
d(v+r , Irs)
d(v+r , v−r )

) (48)

Step 6. Calculate the VIKOR score V for the alternatives using Eq. (49) and calculated VIKOR scores
are shown in Table 17.

V = δ ( Ur − U−r
U+r − U−r

) + (1 − δ)( Rr − R−r
R+r − R−r

) (49)

Step 7. Arrange the alternatives in ascending order and IRIS is the most suitable option for the best gate
security system.
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Table 16: Utility and regret measures

U R
2.6336 1.3158
2.6419 1.3174
2.6468 1.3177
2.6620 1.3179
2.6295 1.3177

Table 17: Alternatives ranking

V Rank
0.0640 1
0.5794 3
0.7279 4
1.0000 5
0.4617 2

6.3 Spherical Fuzzy Number-Based WASPAS Approach
SFN-based WASPAS method [73] is now used to select the best gate security system which is

summarized as:
Step 1. The spherical fuzzy decision matrices T1, T2, T3 and T4, presented in Table 4, provide complete

information on expert evaluation.
Step 2. A Spherical Weighted Arithmetic Mean operator (Eq. (50)) is used to aggregate evaluations of

DMs. The aggregated decision matrix is shown in Table 18. A moderator can assign DMs directly or use any
method proposed in the literature to determine their expertise level ξr .

agg =
⎛
⎝

/
0011 −

e
∏
r=1

(1 − μ2
r)

ξr ,
e
∏
r=1

νξr
r ,

/
001

e
∏
r=1

(1 − μ2
r)

ξr −
e
∏
r=1

(1 − μ2
r − π2

r )
ξr⎞
⎠

(50)

Step 3. The weights of criterion are calculated using the Eq. (29). The weights of criterion corresponding
to V1, V2, V3, V4 and V5 are 0.2039, 0.2001, 0.1927, 0.2129 and 0.1903, respectively.

Step 4. The Simple Additive Weighting (SAW) approach is applied to Table 18 by incorporating the
weights of the criterion to determine the ŜAW scores of all alternatives using Eq. (51). A subsequent addition
operation is performed to sum up the weighted evaluations per attribute using Eq. (52). The results of the
SAW addition operator are presented in Table 19.

ŜAW =
e
∑
r=1

wr(μr , νr , πr) (51)

(μr1 , νr1 , πr1) ⊕ (μr2, νr2, πr2) = {
√
(μr1)2 + (μr2)2 − (μr1)2(μr2)2, νr1νr2,

√
(1 − μ2

r1)π2
r2 + (1 − μ2

r2)π2
r1 − π2

r1π2
r2} (52)
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Step 5. The Weighted Product Model (WPM) approach is applied to Table 18 by incorporating the
weights of the criterion to determine the ŴPM scores of all alternatives using Eq. (53). A subsequent product
operation is performed to take the product of the weighted evaluations per attribute using Eq. (54). The
results of the WPM product operator are presented in Table 20.

ŴPM =
e
∏
r=1

wr(μr , νr , πr) (53)

(μr1 , νr1 , πr1) ⊗ (μr2, νr2, πr2) = {μr1 μr2,
√
(νr1)2 + (νr2)2 − (νr1)2(νr2)2,

√
(1 − ν2

r1)π2
r2 + (1 − ν2

r2)π2
r1 − π2

r1π2
r2} (54)

Step 6. To integrate spherical fuzzy values of SAW and WPM, a threshold number δ is applied to them.
The aggregated value for each alternative is derived using Eq. (55) and is displayed in Table 21.

Ẑ = δŴPM + (1 − δ)ŴPM (55)

Step 7. Arrange the alternatives in descending order and IRIS is the most suitable option for the best
gate security system.

Table 18: Aggregated SF matrix

V1 V2 V3

Alt. μ ν π μ ν π μ ν π

S1 0.8156 0.0346 0.1066 0.8281 0.0283 0.1427 0.7075 0.0800 0.2300
S2 0.7890 0.0400 0.2066 0.6621 0.1039 0.2532 0.7378 0.0693 0.2036
S3 0.7131 0.0800 0.2498 0.7657 0.0600 0.1498 0.7318 0.0693 0.2276
S4 0.7392 0.0693 0.1780 0.5543 0.2078 0.2743 0.6784 0.1039 0.2257
S5 0.6629 0.1200 0.2239 0.8454 0.0245 0.0879 0.7450 0.0693 0.1465

V4 V5

Alt. μ ν π μ ν π

S1 0.7297 0.0735 0.1757 0.8454 0.0245 0.0879
S2 0.7441 0.0693 0.2023 0.6931 0.0800 0.2553
S3 0.8617 0.0200 0.0978 0.5543 0.2078 0.2743
S4 0.5878 0.1800 0.2466 0.7464 0.0566 0.2298
S5 0.8593 0.0200 0.0605 0.7297 0.0735 0.1757

Table 19: SAW addition operator values

Alt. μ ν π
S1 0.7844 0.0024 0.1371
S2 0.7302 0.0048 0.2234
S3 0.7504 0.0043 0.1955

(Continued)
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Table 19 (continued)

Alt. μ ν π
S4 0.6712 0.0121 0.2306
S5 0.7926 0.0018 0.1493

Table 20: WPM product operator results

Alt. μ ν π
S1 0.2119 0.0452 0.0667
S2 0.1462 0.0563 0.1063
S3 0.1564 0.0968 0.1093
S4 0.0694 0.0984 0.1046
S5 0.0140 0.0539 0.0475

Table 21: Alternatives ranking

̂Z Rank
0.2085 1
0.0990 4
0.1309 3
0.0666 5
0.1953 2

6.4 Sensitivity Analysis
To further demonstrate the robustness and reliability of the proposed model, we performed a Spearman

correlation, Kendall correlation, and sensitivity analysis of the criteria weights.
To assess the stability and validity of the proposed QSF-TOPSIS approach, a sensitivity analysis of

criteria weights was performed by altering the criteria weights for five different variations. The original weight
set used in the model was:

Original Weights: {0.2030, 0.1994, 0.1855, 0.2231, 0.1890}

The five alternative weight sets used for sensitivity analysis were:

Set 1: {0.203, 0.198, 0.186, 0.224, 0.189}
Set 2: {0.204, 0.198, 0.184, 0.223, 0.191}
Set 3: {0.202, 0.200, 0.185, 0.222, 0.191}
Set 4: {0.205, 0.197, 0.186, 0.221, 0.191}
Set 5: {0.203, 0.199, 0.183, 0.224, 0.191}

This analysis examined how changes in the relative importance of criteria affect the final outcome
of decision-making. For each of these weight variations, the closeness coefficients of the alternatives were
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recalculated to evaluate the influence of weight variation. As shown in Table 22, the values of the closeness
coefficient for the alternatives showed minor numerical fluctuations; however, the overall rankings remained
completely consistent with those produced by the original weight distribution.

Table 22: Closeness coefficients of alternatives under different criteria weights

Alt. Original Set 1 Set 2 Set 3 Set 4 Set 5
F1 0.5280 0.5277 0.5282 0.5279 0.5277 0.5280
F2 0.4902 0.4903 0.4901 0.4903 0.4903 0.4903
F3 0.5168 0.5166 0.5167 0.5164 0.5163 0.5166
F4 0.4786 0.4788 0.4785 0.4789 0.4790 0.4788
F5 0.5192 0.5189 0.5195 0.5189 0.5187 0.5191

This consistency across all tested weight sets demonstrates the robustness and reliability of the pro-
posed QSF-TOPSIS model. The model maintained its ranking results despite a moderate weight-change
distribution. This is particularly critical in real-world decision-making contexts, where subjective expert
judgments and changing priorities often lead to variations in assigned weights. Furthermore, Fig. 3 presents
a graphical representation of closeness coefficient values across all scenarios. Therefore, the results of
the sensitivity analysis confirm the effectiveness and validity of the QSF-TOPSIS method under varying
decision conditions.

Figure 3: Visualization of different closeness coefficients

Spearman rank correlation coefficient is a nonparametric assessment of statistical relationships between
two variables. Using a monotonic function, it evaluates whether two variables have a good relationship.



3548 Comput Model Eng Sci. 2025;143(3)

Spearman coefficients [74] can be calculated using the following formula:

Sρ = 1 − 6∑n
t=1 d2

t
(n2 − 1)n

(56)

where dt = (Mt − Et), the difference between the ranks of the t-th observation in two variables is given by
d. Here, Mt represents the rank of the t-th observation in the first variable. Et represents the rank of the t-th
observation in the second variable and n is the number of observations (sample size).

Spearman rank correlation is applied to assess consistency between rankings generated by the proposed
model and those produced by selected benchmark models. The correlation coefficients obtained between
the proposed model and the benchmark models are (1, 0.9, 1), reflecting a very strong positive monotonic
association. These high values indicate that the proposed model produces rankings that are highly consistent
with benchmark techniques. Fig. 4 presents a detailed visualization of Spearman correlation values across all
evaluated methods, illustrating the strength of associations between the models.

Figure 4: Spearman correlation

Kendall’s tau (τ) is a nonparametric measure that evaluates the strength and direction of association
between two ordinal variables [75]. It relies on the likelihood that a randomly selected pair of observations
is ranked in the same order (concordant) or in opposite order (discordant). This coefficient is particularly
useful when dealing with ranking or ordinal data, as it does not assume any specific distribution. This makes
it a distribution-free alternative to conventional correlation metrics. In studies involving bivariate normal
distributions, researchers have also examined how Kendall’s tau relates to other rank-based correlation
measures [75].

Kendall’s tau is well-suited to ordinal data, offering a reliable way to gauge associations without relying
on parametric assumptions. For a data set with k total observations, where CN denotes the number of
concordant pairs and S the number of discordant pairs, Kendall’s tau is defined as:

τ = CN − S
k(k − 1)/2

= 2(CN − S)
k(k − 1) (57)
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The coefficient ranges from −1 (indicating complete disagreement in rankings) to +1 (indicating
complete agreement).

To evaluate the ordinary relation between the proposed model and the selected benchmark models,
Kendall’s tau correlation is employed. The resulting correlation matrix, as shown in Fig. 5, demonstrates
the degree of consistency in the rankings produced by each method. QSF-TOPSIS model shows perfect
agreement with SF-TOPSIS (τ = 1) and SF-WASPAS (τ = 1), and a strong association (τ = 0.8) with SF-
VIKOR. Similarly, SF-TOPSIS and SF-WASPAS also exhibit perfect concordance with each other and with
the proposed model. The high Kendall’s tau values confirm a strong ordinal correlation among the methods.
This reinforces the reliability and robustness of the proposed model’s ranking behavior when compared to
established alternatives.

Figure 5: Kendall’s tau correlation

7 Discussion
According to the comparison, the discussion consists of the following points:
1. A comparison between the proposed technique for MCDM and other existing MCDM methods,

namely SF-TOPSIS, SF-VIKOR, and SF-WASPAS, is performed to confirm its validity and efficiency. An
overview of the results can be found in Table 23. According to the comparison, alternative S1 is the best
method based on all the approaches considered, thus supporting the proposed method. A graph showing
the results of the comparison can also be found in Fig. 6.

Table 23: Comparative analysis

Methods Ranking Best Alt.
QSF-TOPSIS S1 >S4 >S3 >S5 >S2 S1

SF-TOPSIS [71] S1 >S4 >S3 >S5 >S2 S1
SF-VIKOR [72] S1 >S3 >S4 >S5 >S2 S1

SF-WASPAS [73] S1 >S4 >S3 >S5 >S2 S1
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Figure 6: Comparison analysis

2. One of the methods available for ranking alternatives in the MCDM is SF-TOPSIS, which performs the
ranking of alternatives by taking the distances in addition to finding the closeness index for each alternative.
As a result, the chosen alternative is most optimal and farthest from the worst-case scenario. Although it
uses sophisticated uncertainty modeling, SF-TOPSIS is highly computationally efficient and robust.

3. The SF-VIKOR ranking method minimizes the distance from the ideal solution while balancing
conflicting criteria. This method ranks alternatives based on utility and regret measures. Due to its ability to
balance conflicting criteria, SF-VIKOR is a perfect solution for our chosen problem. Incorporating different
levels of confidence allows decision-makers to adjust the weight of criteria according to their validity.

4. The SF-WASPAS method is a flexible approach that provides a more precise way of determining the
relative importance of alternatives in an MCDM process by integrating the SAW and WPM decision-making
models. This method is a hybrid method that balances additive and multiplicative aggregation. In addition,
spherical fuzzy numbers are used to manage uncertain data. The alternative ranking becomes more accurate
and precise as a result.

Limitations
QSF numbers (QSFNs) integrated with TOPSIS leads to an escalation in computational complexity.

Quantum mechanics introduces additional intricacies to both mathematical and computational calculations,
necessitating specialized expertise. The combination of spherical fuzzy sets with quantum operations often
results in resource-intensive processes, particularly in the context of large-scale problems. The QSF-TOPSIS
model assumes criterion independence that is not always true in practice. TOPSIS may become compli-
cated in situations where there are many alternatives and requirements. As a result of some complicated
calculations, understanding the logic behind the results can be challenging. Real-world scenarios might not
always align with assumptions associated with quantum states. Similarly to other TOPSIS-based approaches,
QSF-TOPSIS assigns weights to the criteria, which can have a substantial impact on the final rankings.
Although QSFN are capable of handling uncertainty, inaccurately determined weights might cause results to
be unreliable.
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8 Conclusion
In this study, QSFNs were studied, which are extensions of SFNs. Their wider structure makes them

more accommodating of uncertainty than SFNs. We evaluated and selected the most optimal gate security
system using the QSF-TOPSIS method. The analysis revealed IRIS recognition as the most optimal alter-
native due to its superior performance across multiple criteria. In addition, the analysis was substantiated
via comparisons using TOPSIS, VIKOR, and WASPAS methods for SF numbers. QSF-TOPSIS rankings
were consistently aligned across all applied methods, indicating their robustness and reliability. The IRIS
recognition system gained the highest ranking across all applied methodologies. For modern security needs,
IRIS recognition provides superior effectiveness, reliability, and performance in gate security applications.
Quantum mechanics principles are incorporated into QSF-TOPSIS, which enhances the method’s ability to
deal with uncertainty and vagueness. It improves preference computation efficiency and enables a better
understanding of decision space. This is especially important in scenarios with high levels of ambiguity and
incomplete information.

Future research will address emerging challenges by applying quantum mechanics to decision-making,
integrating real-world data, and constructing hybrid models. We aim to integrate QSF-TOPSIS with other
MCDM methods like WASPAS, VIKOR, and Grey Relational Analysis. By using these approaches, we could
gain a deeper understanding of the relationship between criteria and alternatives. A QSF-TOPSIS method
can be automated through the integration of artificial intelligence and decision support systems.
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