Computer Modeling in & Tech Science Press
Engineering & Sciences ]

Do0i:10.32604/cmes.2025.066025

ARTICLE Check for

updates

Effects of Normalised SSIM Loss on Super-Resolution Tasks
Adéla Hamplova', Tomas Novak, Miroslav Zacek and Jifi Brozek

Department of Information Engineering, Faculty of Economics and Management, Czech University of Life Sciences Prague (CZU),
Prague, 165 00, Czech Republic

*Corresponding Author: Adéla Hamplovd. Email: hamplova@pef.czu.cz

Received: 27 March 2025; Accepted: 06 June 2025; Published: 30 June 2025

ABSTRACT: This study proposes a new component of the composite loss function minimised during training of the
Super-Resolution (SR) algorithms—the normalised structural similarity index loss Lgsyu,,, which has the potential
to improve the natural appearance of reconstructed images. Deep learning-based super-resolution (SR) algorithms
reconstruct high-resolution images from low-resolution inputs, offering a practical means to enhance image quality
without requiring superior imaging hardware, which is particularly important in medical applications where diagnostic
accuracy is critical. Although recent SR methods employing convolutional and generative adversarial networks achieve
high pixel fidelity, visual artefacts may persist, making the design of the loss function during training essential
for ensuring reliable and naturalistic image reconstruction. Our research shows on two models—SR and Invertible
Rescaling Neural Network (IRN)—trained on multiple benchmark datasets that the function Lgsrp, significantly
contributes to the visual quality, preserving the structural fidelity on the reference datasets. The quantitative analysis
of results while incorporating Lgss;a, shows that including this loss function component has a mean 2.88% impact on
the improvement of the final structural similarity of the reconstructed images in the validation set, in comparison to
leaving it out and 0.218% in comparison when this component is non-normalised.

KEYWORDS: Super-resolution; convolutional neural networks; composite loss function; structural similarity; normal-
isation; training optimisation

1 Introduction

In this research, we investigate the effect of incorporating a normalised Structural Similarity Index
Measure (SSIM) as a component of the composite loss function used in the training of deep learning-
based Super-Resolution (SR) models. The proposed approach is applied to two model architectures: a
conventional Super-Resolution convolutional neural network (CNN) and an Invertible Rescaling Neural
Network (IRN). Both models are trained on three commonly used benchmark datasets. We evaluate three
training configurations—excluding SSIM, including SSIM in its non-normalised form, and including SSIM
in its normalised form—to examine the influence of normalisation on the reconstruction quality. The results
are evaluated using Peak Signal-to-Noise Ratio (PSNR), SSIM and LPIPS metrics, allowing for a comparative
analysis of the reconstruction performance across all configurations.

Super-Resolution (SR) is a very demanding but fundamental artificial intelligence algorithm that is
used in many practical computer vision algorithms, e.g., noise removal [1], increasing resolution on smart-
phones [2], person identification [3], upscaling images from laboratory measurements from micrometres
to millimetres [4] and many others. In recent years, researchers have proposed various methods for solving
the SR task, which is often based on deep learning, in contrast to the initially used bicubic interpolation [5],
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e.g., Super-Resolution generative adversarial network (SRGAN) for the task of semantic segmentation of
geographic data [6], digital elevation model (DEM) for the task of flood mapping [7], full resolution class
activation maps (F-CAM) based on a parametric decoder in the form of a U-net as an alternative to the
previously used interpolation in this task [8], convolutional neural network (CNN) based on short-term
caching for ultra-high definition (UHD) in real-time [9] and others.

The latest research Refs. [10-12] includes the principle of invertibility in the training of these models,
where the image in the original size is mapped to a 4x (or even more, but with significantly worse results)
reduced image using a downscale neural network, from which the upscale neural network tries to obtain an
image as similar as possible to the original. The same procedure can also be used to reconstruct colours. This
procedure of reducing and enlarging the image is not dissimilar in principle to an encoder and decoder or
generative neural networks. Still, it uses different training and structures and layers of neural networks in
all steps.

The existing results of the methods presented have shown a significant improvement in the qual-
ity of reconstructed images compared to earlier mathematical methods. However, there is still room
for improvement.

It is a well-known fact that the loss function plays a key role in the overall quality of artificial intelligence
algorithms, next to constructing a suitable neural network architecture, selecting a suitable optimiser and
choosing an optimal learning rate value. This is no different in SR tasks. In existing published research, the
choice of the loss function is given a growingly decisive role; usually, it is the Mean Square Error (MSE)
comparing the original and output image, or a combination of MSE with one or more other components
is used. In the research as mentioned above Refs. [10-12], the networks are trained using a combined loss
function consisting of three elements—forward MSE loss, backward MSE loss and perceptual loss [13] based
on feature extraction using selected layers of the pre-trained VGG19 (Visual Geometry Group) classifier.

Inverse scattering research [14] is the first research that presents Lggyy as one of the components of the
composite loss function. They use MSE and the non-normalised form of Structural Similarity loss Lsgya,
which is defined as:

Lg, =Luse (9, y) + - Lssim (3, ) 1)

where a denotes a variable determining the representation of the component of the loss function, y denotes
the reconstructed image, and y denotes the original image.

The component of the Lgsyp (7, y) loss function is defined as:

Lssim (9, y) =1-SSIM (3, y) (2)

where the definition of similarity index SSIM, a commonly used metric designed to measure the perceptual
distance between two images, is based on the original definition [15]:

(uxpry + C1) (205 + Ca)

SSIM (x,y) =
(x.y) (43 + w3+ C1) (07 + 05+ Ca)

(3)

where x and y denote the images to be compared, 4, u, denote the mean brightness values of images x and
s 0x, 0, denote the variance (contrast) of images x and y, 0, denotes the covariance between images x and
y (structure), C; and C, are constants preventing division by zero, where

C = (KiL)? (4)
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C, = (K,L)* (5)

where L denotes the maximum pixel value (255) and Kj and K are small constants (e.g., 0.01 and 0.03), and
whose range of values D are:

D (SSIM) = (-1,1) (6)

whereas the value 1 indicates structural identity of the compared images, 0 indicates dissimilarity, and
negative values indicate anti-correlation, although it occurs quite rarely. As shown in Fig. 1 below, the
SSIM function is continuous, it accepts the input and output images, its maximisation is meaningful and
differentiable, and therefore its negation can be classified as a component of the loss function [16]. The SSIM
function was first defined by Wang et al. [15], as a metric evaluating the similarity between two images based
on their three components—brightness, contrast and structure. Its use in the field of Super-Resolution has
been popularised mainly in the framework of deep learning methods that try to maximise the visual quality
of reconstructed images [15]. The importance of SSIM as a loss function was further explored in [17], where
the SRGAN model was first introduced, which uses perceptual loss combined with adversarial loss. Also,
work on VGG19 models [18] highlights the importance of scaling the components of the loss function in
deep learning. When scaling the components of the loss functions, the same range of values should be kept
for each of them, i.e., between 0 and 1.

SSIM as a Function of Mean Brightness

SSIM

-0.75
0.50
0.75 —1.00 ¥

Figure 1: SSIM visualisation as a function of mean brightness

However, with a simple definition of the loss function as 1 - SSIM, a situation may arise where loss
values greater than 1 occur. In such a case, this component of the loss function is poorly scalable with other
loss function components, which are taking values between 0 and 1. This non-normalised variant of Lgsyy
is also used in the latest research [19].
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2 Methods
2.1 Description of the Experiment

In this research, let us assume a simultaneous training of two neural networks used for image
reconstruction—downscaler and upscaler—the final purpose of which is the ability to enlarge small images
with high reliability for further use in theoretical and applied research and to compare the influence of
loss function components on the quality of the reconstructed image. We present an updated loss function
component, the normalised similarity index loss Lssy,, and compare the image reconstruction results when
itis included, not normalised and not included using standard metrics explained in Eqs. (3) and (12) to assess
the impact of this component on validation subset results.

To build the downscaler and upscaler neural network architectures, we use the Keras and Tensorflow-
GPU frameworks, and for training, we use the NVIDIA GeForce GTX 970 hardware with 1664 CUDA cores.
As a dataset, we chose the standard DIV2K dataset [20] rescaled to 1000 x 1000 px, Generall00 [21], and
BSDS300 [22] resized to 500 px on longer side.

We train an Invertible Rescaling Neural Network with specific blocks from VGGI9 models in the
perceptual loss definition as per Eq. (9). and using the same selected specific layers, we train a Super-
Resolution network on all the above-mentioned benchmark datasets based on standard metrics, and we
examine the influence of the loss function component Lggy,,, explained in Eq. (10).

Pseudocode of the Experiment

The experimental workflow is described in the following pseudocode:

Inputs from configuration file:
1. Dataset paths (train/val)
2. Model type: IRN or SR
3. Loss weights:
A_bwmse - backward MSE
A_p - perceptual loss
A_fwmse - forward MSE
A_ssim - normalised SSIM
VGG feature lavers: f;, £,
Optimizer: Adam with learning rate n
Epoch count
Batch size
8. Checkpoint saving frequency
For each epoch:

~ O U1 >

For each high-resolution image I_high in training set:
I_low « downscale(I_high)
I_pred <« upscale(I_low)
Compute loss components:
L_bwmse <« MSE(I_high, I _pred) (Eg. (7))
IL_fwmse « MSE(I_low, downscale(I_pred)) (Eg. (8))
L_p <« perceptual_loss(I_high, I_pred) (Eg. (9))
L_ssim normalised « (1-SSIM(I_high, I_pred))/2 (Eg. (10))

(Continued)
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(continued)

L_total « A _bwmse - IL_bwmse + A_plL_p + A_fwmsel fwmse +
A _ssiml, ssim
Update model parameters using Adam optimizer to minimize
IL_total (Eg. (11))
After each epoch:
Run validation on a separate set of I_high images:
Compute PSNR (Eg. (12)) and SSIM (Eg. (3)) between I_pred and
I_high
Log average metrics and loss components
If epoch is at save interval:
Save model weights (downscaler and upscaler)

2.2 Neural Network Architectures
2.2.1 Invertible Rescaling Neural Network

Our Invertible Rescaling Neural Network uses invertible blocks in its architecture, similar to previous
research Refs. [10-12]. The network consists of two subnetworks, a downscaler and an upscaler, which can
be called separately during inference.

The invertible block divides the input function tensor, along the channel dimension, into two equal
parts, see Fig. 2 below. The first half goes through a sequence of transformations consisting of two con-
volutional layers. The first convolutional layer applies a nonlinear activation function (Rectified Linear
Unit—ReLU), while the second is a linear transformation. The output of this transformation is then added
to the second, unchanged part of the input. This makes the transformation invertible—the original input can
be reconstructed by reversing the operations.

Input (3 channels)

Input (4 channels)

Conv2D

Conv2DTranspose

Split tensors Split tensors

Conv + Relu Conv + Relu

iy

Final Conv2D Final Conv2DTranspose
(4 channels) (3 channels)

Figure 2: Invertible rescaling neural network architecture
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The downscaler takes a three-channel tensor representing a normalised input image between 0 and 1
and reduces the resolution of the input image by 4x. It then applies a convolutional layer, in which the spatial
resolution is reduced by a factor of two. After the convolution operation, an invertible block is applied. The
number of channels in the output convolutional layer is reduced to four.

The upscaler applies reconstruction using the inverse operation of the downscaler. It takes a four-
channel tensor as input, and its first layer is a transposed convolutional layer, which increases the spatial
resolution by a factor of four. This is followed by an invertible block and an output layer—a transposed
convolution—creating a three-channel output that matches the structure of the original image entering
the downscaler.

2.2.2 Super-Resolution Network

Our Super-Resolution Network differs from the Invertible Rescaling Network primarily in that the
downscaler has no trainable parameters—it is only used to reduce the image to a fractional size according
to the parametric number of layers. It repeatedly applies the downscaling operation for a specified number
of steps.

The upscaler transforms a 3-channel input image using a convolutional layer with 64 filters and ReLU
activation, followed by a sequence of eight residual blocks, each consisting of two 3 x 3 convolutional layers,
where the second layer does not apply an activation function, for explanation see Fig. 3 below. After feature
extraction, the number of feature maps is increased to 256 channels, preparing the data for resampling using
a pixel shuffle operation that reorganises the dimensions of the feature maps to increase spatial resolution.
To improve the reconstruction, a skip join is incorporated, where the original input image is resampled using
nearest neighbour interpolation, processed using a1 x 1 convolution, and then added to the resampled feature
representation. The output convolution layer adjusts the output to three channels and generates an image
dimensionally corresponding to the original input to the downscaler.

(n-times | | Skip connection |
( Residual blocks W

Resize + Conv
ConvRelu + Conv

Input (3 channels) Input (3 channels)

Final Conv2DTranspose

Output (3 channels) (3 channels)

Pixel Shuffle

Figure 3: Super-resolution neural network architecture

2.3 Composite Loss Function

The selected loss function is composed of four components. Three of them correspond with the
traditional invertible training and this work newly introduces the normalised SSIM loss Lgsiar,. While
there are tens of options for loss function components and hundreds of combinations, we selected Ly, psE,
Lfwmse> Lpere» and Lgsiyy, as the components of our composite loss function because they represent
commonly used, well-understood, and interpretable terms in the context of super-resolution tasks. The
MSE-based components assess pixel-wise differences between original and reconstructed images, as well as
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between their downscaled versions. The perceptual loss, based on VGG feature activations, reflects high-
level visual similarity and is widely adopted in the previously mentioned SR literature. We opted not to
include additional components such as the Learned Perceptual Image Patch Similarity (LPIPS) [23] and the
Charbonnier loss [24] for specific reasons. LPIPS is a learned perceptual metric whose behaviour can vary
depending on the choice of pretrained network and dataset, similarly to the perceptual loss. Although it is
occasionally adapted as a loss function, it is more commonly used as an evaluation metric. The Charbonnier
loss, a differentiable variant of the L1 loss, is robust to outliers but would not offer specific insight into
normalisation effects.

While there are many possible studies in this field, we wanted to focus our analysis on the effects of
normalisation on the Lggyy on SR task and to ensure interpretability, we designed a composite loss function
using standard loss components to isolate and evaluate the impact of normalisation within the composite
loss structure. The selected components are:

Backward M SELy,, sE, which compares the original image with the reconstructed image, which is the
output of the upscaler network:

> (HRij - Uz‘j)z (7)

j=1

M=

Lpwmse =

Il
—_

where HR;; denotes the pixel value of the original image, U;; denotes the pixel value of the reconstructed
image (upscaler output from the downscaled image), and m and n denote the dimensions of the image.

Forward MSELy,, msg, which compares the output of the downscaler of the original image with the
output of the downscaler of the reconstructed image:

n

Lwmse = ZZ(LRij_Dij)z (8)

i=1 j=1

where LR;; denotes the pixel value of the downscaler output from the original image, D;; denotes the
pixel value of the downscaler output from the reconstructed image, and m and »n denote the dimensions of
the image.

The perceptual loss L., is calculated based on the difference in features extracted using selected block
in specific layers of the pretrained VGG19 model from the original and reconstructed image as:

. 1 2
Lyerc(3,9) = Zier (ﬁz) « 20 (D), — Py, ) ©)

where y denotes the original image, j denotes the reconstructed image, ®;(,) and @ denote feature maps
extracted from layer / of the VGG19 model, and N; denotes the total number of elements in the feature map
at layer [ calculated as the product of the number of channels, the height, and the width of the feature map.

The novel normalised SSIM loss Lgsiar,, is calculated as:

1- SSIM(y, §)

3 (10)

Lssimy =
where SSIM denotes the structural similarity value of the original image y and the reconstructed image y
and whose range of values D (Lssy,, ) is, due to the normalisation of the pixels of the images in the dataset
compared to the non-normalised Lssyy [14], normalised to the interval (0,1) to ensure comparability with
other loss function components, whose values are also in this interval when the input images are normalised.
In deep learning applications, normalisation is a standard practice that helps stabilise training and prevent
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the dominance of any single loss component when multiple components are combined. When loss function
components operate over different ranges of values, the optimiser may disproportionately prioritise larger-
magnitude gradients, leading to suboptimal updates and convergence to poor local minima. By normalising
the SSIM values through a linear transformation of the input image pixel range from (-1,1) to (0, 1), which
corresponds to min-max scaling, we make sure that this loss component contributes proportionally to the
overall training and aims at a more meaningful interpretability. The overall calculation of the composite loss
function Ly, is defined as:

Lyt =Av - Lywmse + As - Lewmse + Ap - Lpere + As * Lssiay (11)

2.4 Evaluation Metrics

As quantitative evaluation metrics of reconstruction quality, we chose standard metrics used for this
type of task, namely SSIM according to the original definition [15] described in Eq. (3) and Peak Signal-to-
Noise-Ratio PSNR according to the definition available in [25]. PSNR is a common metric for measuring
image quality by comparing the original and reconstructed image using a logarithmic scale of MSE. It is
calculated as follows:

PSNR[dB] =10-log,, ( (12)

2
MSE )
where L denotes the maximum pixel value in the image, and MSE denotes the L;,, ysr loss function com-
ponent.

We also incorporated Learned Perceptual Image Patch Similarity (LPIPS) [23] as an evaluation metric
on the validation dataset. As noted earlier, LPIPS is not measured during training, but it serves as a
validation assessment of perceptual quality. Traditional SR literature uses PSNR and SSIM. It is worth
noting that LPIPS often does not correlate directly with PSNR or SSIM, which is expected and has been
documented. LPIPS range of values is (0, 1), and lower values indicate greater perceptual similarity between
the reconstructed and reference images. LPIPS is defined as follows:

LPIPS (x,x") = Y [jw; - (¢1 (x) = ¢; (x") |3 13
1

where ¢; (x) denotes deep feature activations from layer [ of a pretrained network, w; denotes a learned
scalar or vector weights (one per channel), || - ||3 denotes squared Euclidean norm (L2), and x and x denote
the two images being compared.

3 Results
3.1 Invertible and Super-Resolution Networks Results

We trained two architectures, Super-Resolution and Invertible-Rescaling-Network, whose structures
are described in detail in Sections 2.2.1 and 2.2.2. Training was performed by minimising the loss function
defined by Eq. (11), with the weights of the individual components set as follows: A, = A =1, = 1. All
coeflicients A were set to unity to ensure that each loss function component contributes equally to the training
and that the same range of values is maintained across all of these three components. Setting the coefficients
to unity also simplified a balanced optimisation process without introducing additional complexity that is
associated with hyperparameter selection. We focused solely on the influence of the SSIM loss component
on the resulting training quality, and therefore we tested the parameter A, in three variants. Thanks to this, we



Comput Model Eng Sci. 2025;143(3) 3337

were able to isolate and evaluate the contribution of the SSIM component within the composite loss function,
in accordance with the principles of ablation analysis.

In the first variant, we set A; = 0, thus omitting the SSIM loss completely. In the second variant, we
used a normalised version of the SSIM loss with the value A =1, i.e., comparable to the other loss function
components. In the third variant, we minimised the original, non-normalised SSIM loss according to Eq. (2),
by setting the parameter A; = 2. We applied each of these configurations to both architectures and all three
benchmark datasets, making it 18 experiments in total. Table | summarises the dataset sizes, the number
of training epochs, and the results achieved on the validation set after the first and last epochs, evaluated
using the metrics given in Eqs. (3) and (12) and the losses defined by Eqs. (7) and (11). For all 18 experiments
we selected the blocks ‘block4_conv4’ and ‘block5_conv4’ for feature map extraction based on experiments
shown in Appendix A in calculating the perceptual loss as described in Eq. (9). In order to select these
blocks, we conducted eight experiments on the DIV2K_1000 px dataset to compare the performance of
different blocks in minimising perceptual loss, and the results showed that the best results were obtained by
combining block3_conv2 with block4_conv4 and block4_conv4 with block5_conv4 as visible in Table A2. In
order to compare the highest-level features in the original and reconstructed images, we selected the feature
maps block4_conv4 and block5_conv4 for feature extraction. The detailed behaviour of the VGG19 blocks
and the results of additional experiments evaluating their impact are provided in Appendix A, specifically
in Tables Al and A2.

Table 1: Invertible and SR training without and with the inclusion of Lssyas,

Dataset Model  Dataset Epochs A_s Total Total BwMSE BwMSE PSNR PSNR SSIM SSIM
size loss loss (Start) (End) (Start) (End) (Start) (End)
(Start) (End)

BSDS300 IRN 250 30 1 0.1119 0.0577 0.0124 0.0071 19.93 22.41 0.8018 0.8991
BSDS300 IRN 250 30 0 0.0115 0.002 0.0102 0.0018 20.41 28.02 0.6063  0.8585
BSDS300 IRN 250 30 2 0.2074  0.0892 0.0081  0.0039 21.58 24.85 0.8015 0.9151
BSDS300 SR 250 30 1 0.0485  0.0354 0.0013  0.0008 29.43 3247 0.9064  0.9309
BSDS300 SR 250 30 0 0.0025  0.0007  0.0015  0.0007 28.78 33.15 0.8535 0.929
BSDS300 SR 250 30 2 0.0859  0.0748 0.0012 0.0012 29.7 29.74 0.9157 0.927

Generall00 IRN 92 50 1 0.4074 0.1133 0.0894  0.0086 10.83 2215 0.3912 0.7915
Generall00 IRN 92 50 0 0.0406  0.0089  0.0376  0.0084 15.68 21.73 0.5123 0.7235
Generall00 IRN 92 50 2 0.4675 0.193 0.0371  0.0049 16.22 23.29 0.5727  0.8122
Generall00 SR 92 50 1 0.057 0.0424 0.002 0.0009 2713 30.72 0.8917 0.9175
Generall00 SR 92 50 0 0.0309  0.0008 0.016 0.0008 19.32 32.87 0.5701 0.9059
Generall00 SR 92 50 2 0.1735 0.1311 0.0034 0.002 25.07 27.04 0.8322  0.8724

For all experiments, training was conducted using the Adam optimiser with a fixed learning rate of
0.0005, as higher learning rates could skip over optimal solutions during convergence. No learning rate
schedule or decay strategy was applied. The batch size was set to 1 due to varying image dimensions across
the datasets, which made batch processing impractical without image resizing. The number of iterations per
epoch corresponded to the dataset size (e.g., 100 iterations for Generall00, 250 for BSDS300, and 800 for
DIV2K). No data augmentation techniques were used, all images were used in their original orientation and
resolution. These settings, along with the associated codes and configurations, are available in the Availability
of Data and Materials statement of this manuscript.
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In Table 1, the columns denoted with “(start)” indicate results on the validation subset after Epoch 1,
the columns denoted with “(end)” indicate results on validation subset after the epoch number specified
in the column Epochs. The best results of the monitored metrics after the last epoch are marked in bold.
In the table, we use colours to group related experiments together for a better interpretability. Each colour
group corresponds to a specific combination of model architecture, dataset, and loss function configuration
comparing different experimental conditions. The table describes how the presence or absence of the Lgsiy
component—whether omitted (A; = 0), used in its normalised form (A; = 1), or unnormalised (A; = 2)—
influences reconstruction performance.

Across the majority of configurations, the inclusion of normalised Lgsipr, (As = 1) consistently results
in improvements in SSIM scores by the final epoch, with only a minimal trade-off in PSNR or total loss.
For example, in the Generall00 dataset with IRN, the SSIM increased from 0.7235 (A, = 0) to 0.7915 (A, = 1),
while PSNR improved from 21.73 to 22.15. Similar trends are observed for BSDS300 and DIV2K_1000, where
SSIM gains occur without substantial degradation in PSNR, suggesting that normalised Lgssy,, enhances
perceptual quality. In two cases, unnormalised Lgsry (A = 2) outperforms both other alternatives in SSIM,
but this is accompanied by the highest total loss. The baseline condition (A; = 0) generally achieves higher
PSNR in SR models (e.g., DIV2K_1000 SR: 34.07 vs. 30.58 with A, = 1), but at the cost of lower SSIM values,
which aligns with the known perception-distortion tradeof.

The results support the hypothesis that normalised Lsgya, (As = 1) provides a balanced improvement
in structural similarity without compromising reconstruction accuracy. A more detailed analysis of the
observed patterns and metric differences is presented in Section 4.

3.2 Validaition

We performed a separate validation using the BSDS300 models on BSDS validation subset (The
Berkeley Segmentation Dataset) that contains 50 images. We conducted a statistical paired ¢-test analysis
and measured the p-value, mean difference, confidence interval and Cohen’s d. We paired the reconstruction
results of the model which was trained by minimising normalised Lsgsy (A5 = 1) with unnormalised Lggsyn
(As = 2) and normalised Lggiar (As = 1) with absent Lggrar (As = 0) and observed the metrics SSIM, PSNR
and LPIPS in three variants—pretrained on AlexNet, SqueezeNet and VGGNet.

Tables 2 and 3 report detailed statistical analyses comparing validation performance across two
conditions—normalised (1 =1) vs. unnormalised Lggras (A =2) and normalised Lgsras (A5 =1) vs. its absence
(As = 0). In the first comparison shown in Table 2, normalisation of Lgsia (As = 1) resulted in a statistically
significant improvement in PSNR (p < 0.05, Cohen’s d = 0.85), while no significant differences were observed
in LPIPS or SSIM. However, a mean difference of 0.0051 SSIM was observed and in all cases, SSIM was
higher when reconstructed by the model trained using normalised Lgssp (A5 = 1).

Table 2: Statistical analysis of BSDS300 validation using models with normalised (A; = 1) vs. unnormalised Lgsiy
(As = 2)

Statistic metric Lpips_alex Lpips_squeeze Lpips_vgg PSNR SSIM
T-statistic 0.1962 (df ~ -1.1346 (df »  -1.4394 (df ~ 4.2626 (df ~ 0.6090 (df ~
9713) 98.00) 97.98) 83.49) 97.96)
p-value 0.844892 0.259304 0.153214 0.000053 0.543955
Mean difference 0.0019 —-0.0053 -0.0121 2.7828 0.0051
95% CI (min) —0.0174 0.0212 -0.0145 -0.0289 1.4845 —-0.0115

(Continued)
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Table 2 (continued)

Statistic metric Lpips_alex Lpips_squeeze Lpips_vgg PSNR SSIM
95% CI (max) 0.0212 0.0040 0.0046 4.0812 0.0216
Cohen’s d 0.0392 -0.2269 -0.2879 0.8525 0.1218

Table 3: Statistical analysis of BSDS300 validation using models with normalised (A, = 1) vs. absent Lgsrar (As = 0)

Statistic metric Lpips_alex Lpips_squeeze Lpips_vgg PSNR SSIM
T-statistic 0.2953 (df ~ —0.3596 (df ~ —0.0599 (df» —0.1548 (df ~ 0.2788 (df ~
97.76) 97.98) 97.75) 98.00) 97.98)
p-value 0.768428 0.719945 0.952389 0.877316 0.780949
Mean difference 0.0029 -0.0017 -0.0005 -0.1201 0.0023
95% CI (min) -0.0168 —-0.0108 -0.0169 -1.6604 —-0.0142
95% CI (max) 0.0227 0.0075 0.0159 1.4201 0.0188
Cohen’s d 0.0591 -0.0719 -0.0120 -0.0310 0.0558

Table 3 presents a statistical comparison of the model variants trained with normalised Lggrps (As =1) vs.
those trained without Lggsa (A5 = 0). Across all metrics evaluated, no statistically significant differences were
observed at the standard 0.05 significance level. The effect sizes, as measured by Cohen’s d, were uniformly
small, suggesting small differences between the two model variants. Still, SSIM was higher in the model
trained with Lgsyp,, (As =1) while PSN R was smaller, which points to a direct connection of PSNR to M SE.

These findings suggest that the benefit of including the Lgsip, (s = 1) may be marginal under these
conditions. However, the inclusion of Lgsiar, (As = 1) remains justified. A positive Cohen’s d related to the
SSIM metric indicates improvement in both ¢-tests. SSIM captures structural differences that simple pixel-
based losses may miss, and normalisation helps to keep its influence balanced during training. Even small,
statistically insignificant differences in metrics can lead to noticeably better results, especially in fine detail.
The results of the validation indicated, that although the statistical significance did not reach the standard
95% level, including normalised Lggsra (A =1) is still beneficial.

4 Discussions

In all examined cases, the quantitative results confirm that the inclusion of the composite loss function
component Lgsryr (As = 2) without normalisation or Lgsrp, (As = 1) with normalisation increases the
resulting similarity index value in comparison to when it was left out (A; = 0). As can be read from Table 1,
models trained without including the SSIM loss component in any variant (normalised or non-normalised)
(As = 0) tend to minimise only the MSE loss functions Ly, psg and L, pse, because in all three variants of
the training of each network (including normalised Lgsip, (A5 = 1), including non-normalised Lgsyp (As =
2) or not including any of them (A, = 0)), the perceptual loss is equal to zero after just a few training steps.

Although in case of omitting the Lgs;y component completely (A = 0), the total loss value is lower due
to the lower number of components and this may appear to be a better result as the generated images have
numerically more accurate pixels by the PSN R metric, still, slight visual artifacts on lines, edges and textures
may appear, as visible in Figs. 4-9 below, especially discontinuous lines and slight errors in smooth textures.
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(b) ) ' ()

Figure 4: Image of a baseball from Generall00 validation subset (im_100.png) and corresponding contrast-enhanced
difference maps (original minus SR reconstruction) using models trained on the BSDS300 dataset: (a) original
image, (b) SR reconstruction—model trained with A; = 1, (c) SR reconstruction—model trained with A; = 0, (d) SR
reconstruction—model trained with A, = 2

(@)

Figure 5: (Continued)
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(b) BT

Figure 5: Image of an author’s photo of a bike (20250220_121442.png) and corresponding contrast-enhanced difference

maps (original minus SR reconstruction) using models trained on the BSDS300 dataset: (a) original image, (b) SR
reconstruction with A, =1, (¢) A, =0, (d) A, =2

® ‘ ©) ' (d)

Figure 6: Image of an author’s photo of a cross in front of the church of John the Baptist in Velké Losiny
(20250220_150700.png) and corresponding contrast-enhanced difference maps (original minus SR reconstruction)

using models trained on the BSDS300 dataset: (a) original image, (b) SR reconstruction with A; = 1, (¢) A, = 0,
(d) A, =2
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(b) T (© ) )

Figure 7: Image of an author’s photo of a pink flower (20250217_151002.png) and corresponding contrast-enhanced
difference maps (original minus SR reconstruction) using models trained on the BSDS300 dataset: (a) original image,
(b) SR reconstruction with A, =1, (¢) A, = 0, (d) A, =2

(a)

Figure 8: (Continued)
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Figure 8: Image of an author’s photo of a common degu (20250503_141137.png) and corresponding contrast-enhanced
difference maps (original minus SR reconstruction) using models trained on the BSDS300 dataset: (a) original image,
(b) SR reconstruction with A, =1, (c) A, =0, (d) A; =2

(b) o (©) ] T

Figure 9: Image of an authors photo of an orange flower (20230622_175044.png) and corresponding contrast-
enhanced difference maps (original minus SR reconstruction) using models trained on the BSDS300 dataset: (a) original
image, (b) SR reconstruction with A; =1, (¢) A, =0, (d) A, =2
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Models not including the SSIM loss in their components (A; = 0) generally achieve higher scores in
the PSNR evaluation metric, because it is directly derived from MSE, by 1787 dB in mean in comparison
with models minimised with Lgsryr, (As = 1) and by 2.518 dB in comparison with models minimised with
Lssim (As = 2). The average improvement of the resulting SSIM value on the validation set when including
Lssimy, (As = 1) was 2.88% for all experiments in comparison with leaving it out (A; = 0), 2.67% when not
normalising it (A; = 2) in comparison with leaving it out (A; = 0) and the improvement when using Lgssi,,
(As =1) over Lggyp (As = 2) in the resulting SSIM value was by 0.218% and PSNR increased by 0.73 dB.

The highest SSIM value of overall experiments reached 93.09% on the SR algorithm trained with Lgsar,
(A5 =1) on the BSDS dataset.

4.1 Qualitative Comparison

Since the nominal difference in SSIM is in the order of hundredths, these differences are relatively
difficult to observe. However, the qualitative comparison shown in Figs. 4-9 indicates that the inclusion
of the Lgsia, (As = 1) loss component contributes to slightly improved edge sharpness and better texture
preservation, while leaving it out (A; = 0) causes slightly noisier results. Moreover, the detailed analysis
in Section 3.2 confirms the difference. Visually, it is not possible to compare models trained by minimising
the Lggiary (As =1) and Lggypm (A5 = 2) with the naked eye, but the contrast-enhanced maps in Figs. 4(b-d)-
9(b-d) make this difference visible, and Table 4 indicates the quantitative differences in selected Figs. 4-9.

Table 4: Quantitative analysis of metrics related to Figs. 4-9

Metrics/fig. Fig. 4 Fig. 5 Fig. 6 Fig.7 Fig. 8 Fig. 9
number
lpips_alex_A; =0 0.0174 0.0466 0.0064 0.0567 0.1113 0.1240
lpips_alex_A; =1 0.0167 0.0572 0.0048 0.0435 0.1134 0.1226
lpips_alex_A; =2 0.0254 0.0569 0.0118 0.0423 0.1089 0.1214
lpips_squeeze_A; = 0.0159 0.0398 0.0045 0.0446 0.0876 0.1138
0
lpips_squeeze_A; = 0.0195 0.0439 0.0049 0.0334 0.0849 0.1022
1
lpips_squeeze_A; = 0.0222 0.0486 0.0111 0.0355 0.0896 0.1103
2
lpips_vgg A, =0 0.0244 0.1044 0.0336 0.1172 0.1494 0.1667
lpips_vgg A, =1 0.0288 0.1137 0.0345 0.0988 0.1464 0.1600
lpips_vgg A, =2 0.0364 0.1213 0.0571 0.1042 0.1579 0.1657
PSNR A, =0 38.8282 33.0411 37.6367 28.5086 29.2682  26.7004
PSNR A, =1 38.5677 28.5630 38.2826 33.0719 29.2321 26.6421
PSNR_A, =2 34.4426 27.6628 30.7153 30.6072 27.8198 24.1584
SSIM_A; =0 0.9825 0.9083 0.9846 0.9091 0.8742 0.8406
SSIM_A =1 0.9850 0.9149 0.9866 0.9421 0.8774 0.8460

SSIM_A; =2 0.9803 0.9120 0.9847 0.9394 0.8750 0.8138
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The highest value of each metric for each image is highlighted in bold. The LPIPS score showed
significant variability across different model configurations, with no consistent pattern emerging across
images. This variation is consistent with the trends observed during the validation phase and suggests that
the perceptual similarity, as measured by LPIPS, is highly sensitive to the weights on which it was trained
(SqueezeNet, AlexNet, and VggNet). In contrast, the PSNR metric tended to reach its maximum when the
model was trained without including any Lgsy variant (A = 0), specifically in four out of six cases. However,
in two cases, the highest PSNR values were obtained when the model minimised the normalised structural
similarity loss Lssiam,, (As = 1). The SSIM metric consistently reached its highest values, and in the case of
the model trained with the normalised loss Lgssr,, (A5 = 1), this trend was uniform across all images.

While all three of the Super-Resolution models achieve high-quality results, subtle differences can
be observed, especially in rendering edges and fine details like a continuation of lines. Figs. 4-9 present
qualitative comparisons using test images that were included in neither the training nor validation subsets of
the BSDS300 SR model to make sure that the evaluation is unbiased and does not suffer from data leakage.
Selection was made manually to cover different visual characteristics, and no quantitative criteria or ranking
were applied in the selection process. Fig. 4 is picked and cropped from the Generall00 validation dataset
and Figs. 5-9 are photographs by the authors of this article, all of them are cropped to 400 x 400 px.

Figs. 4(b-d)-9(b-d) show contrast-enhanced difference images, i.e., pixel difference maps between ref-
erence images 4a—9a and corresponding reconstructions—outputs of SR algorithms trained with different A,
parameters—subsequently processed by contrast enhancement using histogram equalisation for individual
channels. Histogram equalisation visually increases the size of errors and thus improves the interpretability
of differences at first glance and serves as a diagnostic tool for visual inspection. To maintain the ratio
of brightness of the individual images and to allow for a better and more accurate comparison, all three
individual images were first combined into one composite, on which the histogram equalisation was then
performed. Brighter areas in these contrast-enhanced difference images indicate areas with a larger difference
between the reconstructed and real ones. Dark areas correspond to areas where the reconstructed image
matches the reference image. Light contours and textures reveal edge mismatches. Hue variations, i.e., places
where colour is preserved in contrast-enhanced difference images, indicate distortion of the colour spectrum
or incorrect colour reconstruction between individual RGB channels. From these difference images, it is
evident that the images with the highest SSIM value (i.e., images reconstructed with the normalized loss
Lssimy (As =1)) achieve the smallest differences compared to the original image.

4.2 Comparison with Related Works

Huang’s research [14] that introduced Lgs;y without normalisation reached similar results—increase in
SSIM in contrary with the decrease in Root Mean Square Error RMSE when incorporating Lgsry. Without
Lssiy SSIM reached the value of 0.855 in mean and RM SE reached the value of 0.176 in their experiments.
With Lgg;yr incorporated in the composite loss function, SSIM reached 0.886 after the last epoch and RM SE
reached 0.158. The improvement in image reconstruction results is noticeable in the figures provided in
the paper.

From the perspective of using this loss function component, its importance has already been proven in
Huang’s research. Still, the importance of normalisation, which ensures that the individual components of
the loss function are in the same range of values, has not been considered before. Another recent contribution
to the development of SR methods is the work by Gao et al. [26], who proposed a robust symmetrical and
recursive transformer network for image super-resolution (SRTNet) and tested it on multiple benchmark
datasets. Their model integrates a recursive feedback mechanism and a dual-branch design to improve the
reconstructed images and to address the problem of computational cost. While their focus is on architectural



3346 Comput Model Eng Sci. 2025;143(3)

innovation rather than loss function design, they also emphasise structural preservation as a key objective,
indirectly aligning with our goal of Lsgy)-based approaches. However, their work does not explore explicit
Lssim-based loss components or the effect of loss normalisation. Our research proved that normalising this
component can bring even better results.

4.3 Next Steps

Further research steps may be aimed at experimenting with the setting of the A weight coefficients
of the composite loss function described in Eq. (11) and their influence on the resulting quality of the
generated images, or the inclusion of adaptive weight settings during training or studying and comparing the
effect of other loss component functions, similarly to Hybrid Perceptual Structural and Pixel-wise Residual
(HyPSPR) [19]. It would also be possible to extend the experiments to other benchmark datasets to confirm
the ability to perform better reconstruction on completely different images and use this component in
training practical SR algorithms.

5 Conclusions

In this paper, we investigated the impact of loss function components on the outcome of Super-
Resolution tasks. We newly presented the loss function component Lggy,, calculated from the normalised
SSIM value between zero and one for better comparison and better scalability with other loss function
components in the composite loss function minimised during the training of Super-Resolution models and
found out it results in better quality images. This loss function is not generally applicable to a wide range of
deep learning tasks, it is focused exclusively on image reconstruction, but we believe it is beneficial to the
current state of knowledge.

When training Super-Resolution models, it is evident that including the normalised loss component
Lgssim, in the overall loss function has an impact on the visual quality of the reconstructed images. Upscaling
models using this function generate images that are visually more faithful to the original images for humans,
specifically, higher fidelity of textures and edges is evident.

If the goal is to achieve a reconstruction that looks natural and is structurally consistent with the original
images, Lgsim, has a significant role. However, if numerical pixel accuracy is a priority, e.g., for further
algorithmic processing, then omitting Lsssr,, may lead to better results in terms of pixel-wise accuracy.

Although the normalisation of the SSIM component is mathematically straightforward, our experi-
ments demonstrate that it improves the compatibility between loss components and contributes to more
efficient training and slightly better image reconstruction. The contribution of our research lies in the
systematic analysis within a controlled experimental environment, which has not been explicitly addressed
in previous works. We believe that our observations are relevant for future studies of loss function design in
image reconstruction tasks.

Acknowledgement: We would like to hereby thank doc. Ing. Arnost Vesely, CSc. for invaluable advice during writing
this article.

Funding Statement: The results and knowledge included herein have been obtained owing to support from the
following institutional grant. Internal Grant Agency of the Faculty of Economics and Management, Czech University
of Life Sciences Prague, grant no. 2023A0004 (https://iga.pef.czu.cz/, accessed on 6 June 2025). Funds were granted to
T. Novék, and A. Hamplové from the author team.

Author Contributions: The authors confirm contribution to the paper as follows: Conceptualisation, Adéla Ham-
plova; methodology, Adéla Hamplova; software, Adéla Hamplova; validation, Adéla Hamplova; formal analysis, Adéla


https://iga.pef.czu.cz/

Comput Model Eng Sci. 2025;143(3) 3347

Hamplova; investigation, Adéla Hamplovd; resources, Adéla Hamplova, Tomas Novak; data curation, Adéla Hamplova;
writing—original draft preparation, Adéla Hamplovd; writing—review and editing, Toma$ Novék, Miroslav Zacek,
Jifi Brozek; visualisation, Adéla Hamplova, Jifi Brozek; supervision, Adéla Hamplova; project administration, Adéla
Hamplovd; funding acquisition, Adéla Hamplova. All authors reviewed the results and approved the final version of
the manuscript.

Availability of Data and Materials: The code generated for this research is openly available on [normalised-
SSIM-loss-SR] GitHub repository at [https://github.com/adelajelinkova/normalised-SSIM-loss-SR]. The datasets
used for training the models are openly available at URL addresses: DIV2K [20] [https://data.vision.ee.ethz.ch/cvl/
DIV2K/], BSDS300 [22] [https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/] and General 100 [21]
[https://mmlab.ie.cuhk.edu.hk/projects/ FSRCNN.html]. Pre-trained models and logs, from which results were
calculated, are available at [https://drive.google.com/drive/folders/1-lvrKZ9koByt323fN2yCqt7pqJf9oK4L?usp=
sharing] (accessed on 6 June 2025.)

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

Appendix A Perceptual Loss Block Grid Search

Appendix A provides a list of options and an interpretation guide to the convolutional blocks available
in VGGI19 network that can be selected during minimising perceptual loss. Each block extracts features at a
different level of abstraction—lowest layers capture low-level features such as lines, edges, etc., and last layer
interprets the whole objects.

The list of blocks and their interpretations is as follows:

Table Al: Interpretation of VGGI19 convolutional blocks

Layer Blocks Feature type

Layer 1 blockl_convl, blockl_conv2 Low-level features (edges, textures)

Layer 2 block2_convl, block2_conv2 Simple shapes and repeated patterns

Layer 3 block3_convl, block3_conv2, Complex textures and patterns
block3_conv3, block3_conv4

Layer 4 block4 convl, block4_conv2, Higher-level structures (object parts)
block4 conv3, block4 conv4

Layer 5 block5_convl, block5 conv2, Abstract features (object identity)

block5_conv3, block5 conv4

To identify the most suitable layer configuration for our task, we performed a grid search over multiple
block combinations using the IRN model and the DIV2K_1000 dataset. We evaluated combinations of
VGGI19 feature layers that correspond to different levels of the network hierarchy, including the pairs
blockl_conv2-block4_conv4 combining lower-middle feature with higher-middle feature, block2_conv2-
block5_conv2 combining lower-middle feature with the highest-level feature, block3_conv2-block4_conv4
combining two middle-level features, and block4_conv4-block5_conv4 combining higher-middle features
with top-level features. The results of this comparison are provided in Table A2.
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Table A2: Results of incorporating different VGGI9 blocks when minimising perceptual loss. Two best results are

marked in bold
Experiment Training Lywmse Lperc  Lfwmse Lssimy, Total  PSNR  SSIM VGGI19 VGG
No./parameters time loss featurel feature2

El: epochl 0.0053 0 0.0004 0.094 0.0997 23.46 0.8119

El: epoch60 0.0033 0 0.0002 0.0574 0.061 25.23 0.8851

El: settings 14:02 1 1 1 1 block4_conv4  block5_conv4
E2: epochl 0.0131 0 0.001 N/A 0.0141 19.31 0.6121

E2: epoch60 0.0028 0 0.0002 N/A  0.0031 26.09 0.8309

E2: settings 13:57 1 1 1 0 block4_conv4  block5_conv4
E3: epochl 0.0126 0 0.0003 0.1215 0.1345 20.08 0.7569

E3: epoch60 0.0048 0 0.0001 0.0654 0.0704 23.99 0.8692

E3: settings 14:34 1 1 1 1 blockl_conv2  block4_conv4
E4: epochl 0.0704 0 0.0107 N/A  0.0811 11.89 0.3973

E4: epoch60 0.0019 0 0.0001 N/A 0.002 2799 0.8686

E4: settings 13:38 1 1 1 0 blockl_conv2  block4_conv4
E5: epochl 0.0066 0 0.0003 0.1058 0.1127 22.69 0.7884

E5: epoch60 0.0063 0 0.0002 0.0681 0.0746 22.7 0.8639

E5: settings 13:47 1 1 1 1 block2_conv2  block5_conv2
E6: epochl 0.0106 0 0.0009 N/A  0.0115 20.51 0.6803

E6: epoch60 0.002 0 0.0002 N/A  0.0021 277 0.8672

E6: settings 13:58 1 1 1 0 block2_conv2  block5_conv2
E7: epochl 0.0059 0 0.0004 0.0944 0.1007 231 0.8113

E7: epoch60 0.0037 0 0.0003 0.054 0.0581 251 0.8919

E7: settings 14:12 1 1 1 1 block3_conv2  block4_conv4
E8: epochl 0.0065 0 0.0004 N/A 0.0069 2241 0.7314

E8: epoch60 0.0027 0 0.0001 N/A  0.0029 26.24 0.8528

E8: settings 13:35 1 1 1 0 block3_conv2  block4 conv4
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