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ABSTRACT: This study explores a sensitivity analysis method based on the boundary element method (BEM) to
address the computational complexity in acoustic analysis with ground reflection problems. The advantages of BEM
in acoustic simulations and its high computational cost in broadband problems are examined. To improve efficiency,
a Taylor series expansion is applied to decouple frequency-dependent terms in BEM. Additionally, the Second-
Order Arnoldi (SOAR) model order reduction method is integrated to reduce computational costs and enhance
numerical stability. Furthermore, an isogeometric sensitivity boundary integral equation is formulated using the direct
differentiation method, incorporating Cauchy principal value integrals and Hadamard finite part integrals to handle
singularities. The proposed method improves the computational efficiency, and the acoustic sensitivity analysis provides
theoretical support for further acoustic structure optimization.
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1 Introduction

In modern urban environments, traffic noise pollution has become a critical environmental issue,
significantly impacting daily life, work efficiency, and public health [1,2]. With the rapid advancement of
urbanization, traffic volumes on highways, railways, and city roads have surged, exacerbating noise pollution
and diminishing residents’ quality of life [3,4]. Prolonged exposure to high noise levels has been linked
to serious health risks, including hearing impairment, sleep disturbances, and cardiovascular diseases.
Addressing this growing concern necessitates effective noise mitigation strategies and advanced acoustic
modeling techniques [5,6].

Among the traffic noise control measures, sound barriers are widely used along highways, railways, and
urban roads because of their significant noise reduction effect and convenient construction. Sound barriers
mainly block the propagation path of noise and reduce the noise level in the far field area, thereby improving
the acoustic environment in the noise-affected area [7]. However, the noise reduction performance of tra-
ditional sound barriers is limited by material properties, geometric shapes, and surrounding environmental
factors, and it is difficult to maintain a good attenuation effect under different noise frequencies and complex
scenarios. In addition, the impact of ground reflection on noise propagation cannot be ignored. The design
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of optimized sound barriers needs to comprehensively consider ground effects, boundary conditions, and
noise propagation characteristics to improve the overall noise reduction capability.

The boundary element method (BEM) has long been recognized as a powerful tool for acoustic
analysis, particularly in solving unbounded field problems. Unlike finite element methods (FEM), BEM
discretizes only the boundary of the domain, drastically reducing computational effort while maintaining
high fidelity in capturing wave phenomena such as diffraction, reflection, and scattering. This feature
makes BEM particularly advantageous for road noise prediction and noise barrier optimization. Pioneering
work by Rizzo [8] laid the foundation for BEM in elastodynamics, which later expanded into acoustics,
as demonstrated by Hothersall et al. [9] in their studies on barrier shape effects and ground reflections.
Subsequent advancements, including fast multipole methods (FMM), adaptive integration techniques, and
hybrid collocation schemes for coupled vibro-acoustic problems, further enhanced BEM’s applicability to
large-scale engineering problems [10,11].

Despite its strengths, conventional BEM faces critical challenges in broadband acoustic computations.
The frequency-dependent kernel function necessitates repetitive reconstruction of system matrices across
frequency bands, leading to prohibitive computational costs and memory demands for large-scale prob-
lems [12-14]. Many approaches have been proposed to address this limitation [15-19], recent innovations
integrate Taylor series expansions to decouple the kernel function into frequency-dependent and frequency-
independent components. By precomputing and reusing frequency-independent terms, this approach
significantly reduces computational overhead while preserving accuracy, thereby extending BEM’s utility
to wideband noise barrier optimization [20,21]. Notably, the modified singular boundary method (SBM)
introduced by Wu et al. [22] incorporates a combined Helmholtz integral equation formulation and self-
regularization technique, which improves the accuracy and efficiency of numerical solutions, especially in
external acoustics.

This study integrates Taylor-expanded BEM with reduced-order computation for sensitivity analysis
of noise barrier structures. By employing Taylor series expansion, the frequency-dependent kernel is
decomposed into separable components, enabling efficient reuse of precomputed terms across broadband
frequencies [23-26]. Furthermore, a reduced-order model is adopted to alleviate the computational burden
associated with large-scale matrices [27-29]. To overcome singularities inherent in boundary integral
equations, Cauchy principal value integration and Hadamard finite-part integration are systematically
applied, ensuring numerical stability and accuracy. The proposed isogeometric sensitivity boundary integral
equation, based on the direct differentiation method, facilitates efficient sensitivity evaluation with respect to
control point coordinates. This methodology not only enhances the computational efficiency of broadband
acoustic optimization but also provides a theoretical foundation for acoustic optimization calculations.

Specifically, the research content of this section includes the following aspects:

1. Acoustic modeling of ground reflection: Based on the image source method, the sound field integral
equation including the ground reflection effect is established, and its influence on the acoustic response
is analyzed.

2. Derivation of acoustic sensitivity formula: Based on the formula in Section 3, the direct differential
method derivation considering the ground reflection term is extended to construct a new sensitivity
analysis formula.

3. Broadband calculation and order reduction implementation: Taylor expansion is performed on the
sensitivity formula under ground reflection conditions, and the system order reduction is completed in
combination with the SOAR method to reduce the calculation scale and memory requirements [30,31].
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4. Numerical verification and analysis: For typical acoustic problems, numerical simulations includ-
ing ground reflection conditions are performed to verify the accuracy of the derived formula and the
effectiveness of the order reduction method.

2 Acoustic State Analysis Using IGABEM

Isogeometric Boundary Element Method (IGABEM) is an advanced computational approach for
acoustic state analysis, leveraging the smooth basis functions of Non-Uniform Rational B-Splines to enhance
numerical accuracy and geometric representation [32]. By integrating geometric modeling with numerical
simulation, IGABEM reduces discretization errors and improves solution continuity, making it particularly
effective for solving Helmholtz equations in unbounded acoustic domains [33-36]. This method enables
precise analysis of sound propagation, diffraction, and scattering while maintaining computational efficiency.
It is widely applied in acoustic state analysis to evaluate sound field characteristics in complex engineering
scenarios, such as noise control and structural acoustics.

2.1 Construction of Model

By combining Isogeometric Analysis (IGA) [37-39] and the Boundary Element Method (BEM), IGA-
BEM utilizes Non-Uniform Rational B-Splines (NURBS) as basis functions for both geometry representation
and physical field approximation [40,41]. NURBS are widely used in Computer-Aided Design (CAD) due
to their ability to accurately model complex curves and surfaces with fewer control points compared to
traditional polynomial-based methods, eliminating the geometric discretization errors that often occur in
traditional methods [42]. The rational form of NURBS allows exact representation of conic sections (e.g.,
circles, ellipses) that cannot be captured by standard polynomials, ensuring geometric fidelity in acoustic
domains with curved boundaries. Such preservation is particularly critical for acoustic simulations, where
boundary conditions (e.g., impedance or pressure distributions) are highly sensitive to geometric accuracy.
In the constructed curve, the coordinates of any arbitrary point can be represented as follows:

x(§) = éRi,pg(f)Pi’ 1)

in which the coordinates of the control point are denoted by P;, and the NURBS basis function is represented
by R; ,,, defined as follows:

Nip, (§) wi

Ri,pg (f) = W,

(2)

where N; , () is the i-th B-spline basis function of degree p, w; is the weight associated with the control
point P;, W(§) is the weighted summation of the B-spline basis functions:

W(f):iz}wiNi,pg(f)- (3)

For boundary integral calculation in IGABEM, Gauss-Legendre quadrature is needed to handle singular
and nearly singular kernels appearing in the Helmholtz integral equation.

2.2 IGABEM Formulations for Acoustic State Analysis with NURBS

This subsection provides a detailed explanation of the isogeometric boundary element formulation used
to calculate the radiated and scattered acoustic fields generated by incident waves. Initially, the commonly
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employed Burton-Miller boundary integral equation is utilized to accurately evaluate the acoustic pressure
field at all frequencies, as follows [43,44]:

(0000 +aa(e) |+ [ Fex) + et prasiy @

OPinc (x)

in which x and y denote the source and field points, respectively. The term C(x) corresponds to the jump
condition, which is equal to 1/2 under conditions of smooth boundaries. The parameter « acts as the coupling
coefficient, defined by a = i/k when k > 1and by a = i otherwise [45]. The sound pressure flux is represented
by g(x) = 0¢(x)/0n(x). $inc stands for the sound pressure of the incident wave at the point x. The values
for G(x,z) and its normal derivative in the context of 2D full-space acoustics are presented as follows:

G(xy) = £H (k)
_0G(x,y) ik or
F(xy) = Tonly) -2 Hi (kr)an(y)
Kxy) - o) -0 )7 ®)
HOY) = 5o = 4 (ks ()
ik? 1) or or
_THZ (kr) on(x) on(y)’

where r = [x — y|, which represents the distance between the source point and the field point. The term #; is
a Cartesian component of n(x) or n(y), and % =1jn;j.

The assumed ideal conditions of the 2D full-space acoustics are often not met in actual engineering.
In many application scenarios such as urban noise control, sound barrier design, and architectural acoustic
analysis, the sound field is often affected by complex boundary conditions. Ground reflection, as a common
boundary effect, will significantly change the distribution characteristics and sensitivity of the sound field.
Therefore, ignoring ground reflection can lead to deviations in sensitivity calculations, which can affect the
reliability of design and optimization.

In order to be closer to actual engineering needs, we derive the acoustic formula of a two-dimensional
half-space, which refers to a scenario that introduces ground reflection conditions in acoustic analysis. Its
core feature is that sound wave propagation includes not only the direct path, but also the impact of the
ground reflection path on the sound field distribution. In the analysis of urban traffic noise or building noise,
the modeling of two-dimensional half-space and ground reflection is equivalent. The study of this model is
essentially to accurately describe the sound field distribution and sound pressure changes under complex
boundary conditions. The ground reflection effect is particularly significant in the near-surface area. The
sound pressure superposition effect caused by it will change the propagation law of noise, which is of great
significance to the design of noise barriers and the optimization of the sound environment around buildings.
In order to effectively deal with the impact of ground reflection on the sound field distribution, this chapter
introduces the mirror point processing method.

The core idea of the mirror point method is to regard the ground as the symmetric boundary of the
sound wave, and to construct the mirror point of the sound source below the ground, so that the ground
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reflection is equivalent to the mirror sound source in the whole space. The position of the mirror point is
determined by the symmetry relationship of the original sound source relative to the ground, and its acoustic
characteristics are consistent with the original sound source, but the corresponding correction coefficient
may be introduced due to the sound absorption characteristics of the ground. This method greatly simplifies
the sound field modeling under ground reflection conditions, so that it can be directly applied to the sound
field superposition calculation. The fundamental solution for half-space problems, referred to as G (x,y),
can be represented in the following form [45,46]:

G(x%y) =G (xy) +yG (%y) (6)

As shown in Fig. 1, in Eq. (6), X represents the mirror image of x relative to the horizontal plane. y
denotes the reflection coefficient, where y =1 when the boundary is a rigid plane, and y = -1 when the
boundary is flexible. By replacing G (x,y) in Eq. (4) with %, it can be rewritten as follows:

(0|09 +aa0s) |+ | ) + it orasty
aﬁ‘;inc (x)

- [ 6tn ok Jaas g ) +a 29 @)
where
G(xy)— HO (kr) + y HY (kF)
F(X>Y)=a§n(—z;)w=‘f Hy (kr ) S (r) y;k on ()
K(x,y)z%ﬁ(;’)— 1kH(”(k)a (r) y;k HY (ki )a () ®
Hmw=§§%§%5—ﬁH”“”m“”*”‘mHm()am@aﬂb

ik (1)(kr)nj(x)n](y)— ) (kr )anfx) ana(ry)

//g// /7 ’////f 7/ 7777 77 Ground level
Mino;;aoinl
Figure 1: The propagation of sound waves emitted by the source (considering ground reflection).

In the framework of IGABEM, the geometry is constructed by discretizing the physical field using
NURBS basis functions.

M®=imh@mi
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g (8) = z Rip, (8)d ©)

Since NURBS fundamental functions don’t have the Kronecker-delta characteristic, ¢; and §; do not
represent the actual sound pressure and flux values at the collocation points but rather the coefficients of
sound pressure and sound pressure flux.

Substituting Eqs. (1) and (9) into Eq. (7) and evaluating the equation at the discrete collocation point x,
the following expression can be obtained:

Cx(&))[$(x(8)) + aa(x(&))]

(10)

in which subscript i denotes the number of control points. Control points are projected onto the curve to
derive the collocation points. Eq. (10) can be rewritten in the following matrix form:

H® = Gq + @iy, (11)

where the matrices H and G are dense, non-symmetric, and frequency-dependent. The vectors @ and q
represent acoustic pressure and acoustic flux, respectively. ®@;,. denotes the incident wave vector. In the
paper, the impedance boundary condition g(x) = ikf3(x)$(x) is introduced, allowing Eq. (11) to be rewritten
as follows:

[H-GB]® =, (12)
where

B - 0
B=ik|: ~ (13)

0 - P

where the i-th element has a normalized admittance denoted by ;.
From Eq. (8), it can be inferred that a wave number k exists in the kernel function, resulting in Eq. (12)
being frequency-dependent. This frequency dependence leads to high computational costs when solving
broadband problems, as the coefficient matrix must be recalculated at each frequency point. To address this

computational burden, a Taylor series expansion is employed in this study to decouple the kernel function
into frequency-dependent and frequency-independent components, as described in the following process.

3 Acoustic Shape Sensitivity Analysis Using IGABEM

Shape sensitivity analysis is a method for evaluating the impact of geometric variations on sys-
tem performance or objective functions. This approach enables engineers to understand how geometric
modifications affect performance metrics, thereby facilitating design optimization and enhancing product
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performance [47,48]. In noise barrier design, shape sensitivity analysis is employed to evaluate the impact of
geometric variations on noise reduction performance, thereby guiding the optimization process to enhance
acoustic efficiency. By computing the sensitivities of acoustic wave reflection, diffraction, and absorption with
respect to key geometric parameters, such as height, angle, and curvature, engineers can identify the most
effective shape features for noise attenuation [49]. It not only improves the performance of noise barriers but
also reduces material usage and costs, achieving both economic and environmental benefits.

By directly differentiating Eq. (7), the expression for acoustic shape sensitivity considering ground
reflections can be derived:

CE) [$00 + ad(®)]+ [ [Fxy) +afi(xy) | $()ds(y)+
[[EGy) +afixy)]$(1dsy) + [ [Fexuy) + afi(xy)] 9()dS(y) =
[[6Gy) +akxy]e(masy) + [ [6xy) +ak(xy)] d(y)as(y)+

3, (x)
on(x)

The fundamental solution and its derivatives are governed by the coordinates of both the field and source
points. As the shape undergoes continuous modifications, their values may be affected by variations in the

[ 166y + aR(x ] (W) + 6, (x) + (1)

shape design variables. Consequently, the sensitivities of the coordinates, represented by G, F, K and H, can
be expressed as follows:

S(xy) = H“’(k) H‘”(k>
Vlk W |7 o yik? )y OF
PR )[ran()’) (8n(Y) ] s BT
Ié(x,y)—‘_H(l)(k [ran(X) (871(;)) _%Hgl)(kma:{x)
Vlk W |7 oF yik? () ayz OF
B0 )| L5 + (g )| e i
H(xy) = ;_I;Hl(l)(kr) [7;(x)n;(y) + nj(x)7;(y)] + %Hgl)(kr)”,jﬂj(x)r,l”I(Y) 15)
ik?

—THgl)(kr) nj(x)n;i(y)r ~ ik?
r

THgl)(kr)r,jnj(x) [7ami(y) + a7 (y)]

1k ik?

2ir jnj(x)rn(y)
r

H (kf)#F,jn;(x)F. 1 (y)

o H (k) (y) [fm; () + (0] = = H (kr)

ylk k

HO (k7) [71;(x)n;(y) + nj(x);(y)] +

_LICZH(l)(k;)nf(X)nJ(Y)r ylk
4 7 7

H(l)(kr)r inj(x) [rzﬂz(Y) + Tzﬂl(Y)]

yik?

o\ ~ K - . lk
‘THS)(kr)V,lnl(Y) [F1m;(x) + 717;(x)] - !

H(l)(k )er,j"j(?i)r,znz(}’)
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in which
r= r,j(Yj - XJ') (16)
F=7(y, - %) (17)
Ii,i _ (Yi - Xi)"; (yz' - X)7 (18)
2
(ﬁ) :17',,'1’1,' 27;',,'7’1,'4'7’,1'1;1,' (19)
on

J —x)m(y)  irami(y)

fan(y) +ran(y) = +1,71(y) (20)

where () represents the differential of the design variable. #;(y) and d$(y) are expressed as follows [50]:

n1(y) = =¥;,m(y) + =¥, (¥) nm (¥) i (y) (21)

dS(y) = [y, = Vi m(¥)mi(y)] dS(y) (22)

The sensitivity of boundary physical quantities is expressed using NURBS function interpolation as
follows:

8(8) = > Rip (H$(E)
S . (23)
() = 32 Rup, (D)

It is important to note that gb(cf ) and §(&) in the Eq. (23) do not represent the actual sensitivity values of
the physical quantities on the boundary. Instead, they are referred to as the coefficients of boundary physical
quantity sensitivity. Meanwhile, dS(y) can be expressed as follows:

dS(y) = J(§)d¢

. : (24)
dS(y) = J(§)d¢

By substituting Eqs. (1), (9), (23), and (24) into Eq. (14), the isogeometric discrete form of the sensitivity
boundary integral equation is obtained as follows:

=z
=

=

C)$(x) + aC(x)4(x) + [E(xy) + af(x,y) | Rjp, (x)$(x)dS(y)

ZN
1
~

Il
(=}

+
M=

—

[F(x,y) + aH(x,y) | R) 5, (x)$(x)dS(y)

Z Iy
1
~.

Il

(=]

+
M=

—

[F(xy) + aH(x,y) | Rjp, (x)$(x)dS(y)

Zm
< L
~.
I}
(=}

M=

—

(GO0 y) + aK(xp)| Ry, (x)9(x)dS(y)

o
I
—_
.
I}
[=}
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G(xy) + aK(xy) | Rjp, (x)$(x)dS(y)

+
R Mz
™M= T

Il
(=}

\\

[G(X’ y) +aK(xy)] Rjp, (x)$(x)dS(y)

)
I

1j

3,0 (x)
“an(x)

To determine all unknown boundary state values required for shape sensitivity analysis, solve Eq. (12)
and use all values on the boundary and known boundary sensitivity values to solve Eq. (25). According to
equation Eq. (14), let @ =0, C(x) =1, the value of any point x in the problem domain can be calculated.
Finally, the sensitivity between the objective function and the shape design variables of certain calculation
points in the acoustic scattering domain can be calculated. Finally, the sensitivity of the objective function of
certain calculation points in the acoustic scattering domain to the shape design variables can be calculated.

+ ¢mc(X) +a (25)

4 Rapid Frequency Sweep Analysis of Sound Pressure

The kernel function contains the wave number k, which causes Eq. (11) to be frequency-dependent.
This frequency dependence significantly increases the computational cost when solving broadband problems
because the coefficient matrix needs to be recalculated at each frequency [51]. To address this computational
burden, this chapter uses the Taylor series expansion method to decouple the kernel function into frequency-
dependent and frequency-independent terms; and uses the SOAR method to construct a ROM that retains
the key features of the original FOM to accelerate the solution process, thereby significantly improving
computational efficiency [52-54].

4.1 Frequency Sweep Analysis for Acoustic Sensitivity
The first-order n-th Hankel function can be expressed as a Taylor series expansion at the fixed frequency
expansion point kor [55].

kol’)

H{ (kr) = Z (kr = kor) [H (kr )] (26)

kr=kor,

in which k represents the fixed frequency expansion point. As shown in Fig. 2, the midpoint of the frequency
range is used as the fixed expansion point for this interval.

Frequency range

kmin klef kmid krig kmax
o o
U

Effective frequency Effective frequency
range for ki range for kg

Figure 2: Calculate the frequency band.
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By substituting Eq. (26) and Eq. (15) into Eq. (14), the integral form for kernel function at the fixed

frequency expansion point k is obtained:

Jénamasm - 5 ER 5 (sp e sp)

m
Jetenamas - 5 ER ()
Jeepamase - 5 ER ()

m

[Ecysmase = > E s gy sy osp]

m=0
(k_ko)m m m
BT (st + Sf~6)

[Feydmase) = >

m=0

JiEemasm = 3 B sp)

S ok matasey) = 33 E (57« 57) (57, +57)]
Jfaxtxitase - 3 ER g sy vsp)

[axanamaso - 5 EE k(s sp)

[aitysmase = > ED s smy sy, + s <0087+ 7))

S m=0

where
m__ I L0 1

Sg = fs 2 [H1 (kr)]kr:korrq(y)ds(y)
m_ _ yir"™ vy, M -

ng - L 4 [Hl (kr):lkf:ko; Tq(y)ds(y)

m_ [0
sp= [ L (1PN dmasy)

m_ [V TR0 81"
Séffs n [ (kr)]k;:koiq(y)ds(y)

m_ [T 0 ;
sp= [ [HO (0] a)dsy)

m)

m_ [V T ] ;
sp= [P (PG amdse)

r=

s 4 kr=kor

S}nl __ fﬂ [Hl(l)(kr)](m) [m +1,;1;(y) | ¢(y)dS(y)

(27)

(28)

(29)

(30)

1)
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o I [M v 7 i(y) [ s (y)

st [T O] o (0o)as(y)

7= [10" HU)(M)]"”’O i ‘nj<y>¢<y>ds<y>
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S?s:fsmr [H(l)( r)] o, X (y)¢(y)dS(y)
sto= [P HOG)]" iy () m ()9()dS(y)

nj(x)n;(y)r [ ]
Siz = % +r,;ni(x) 7’1”1()’) +7,1(y)

2¢r n](x)rlnl(y)

—

W) [Fm () + i (x)] +

-
Shar = M + f,j”j(x) Fani(y) + 7 (y)
- f,jnj(y)[?,mz(x) - f,mz(x)] 21t ”J(Xr)r m(y (34)

where Z L k") k3Sm and Z (k= ko) k3Sm in Eq. (30) can be expressed as follows, respectively.

 (k-k k—k

m§:0: (k=ko)" mO) Ksm —mE:O—( m.‘)) K2 [koSI + mSI] (35)
Z"" (k—ko)"  5em (k—ko)" m -

o T.Okas Z T.Okz [koSjig + mSji"]

By substituting Eq. (35) into Eq. (30), Eq. (30) can be rewritten as:

[aH(x DSy = 3 M[k(s"’ + S+ RS + ST (36)

m=0

+ koS + ms;"_;l +koS7, + msg“6—1)]

Substituting Eq. (26) and Eq. (15) into Eq. (14), the expanded expression of the kernel function
sensitivity integral is as follows:

Jraeninasiy) - 5 E ksp s« £ 57, )
_ (k ko)m m m 2/om m

f aF(x,y)$(y)dS(y) = Z S k(S + Sphy) + (ST + ST,)] (38)

where

s [ O] nm(mdmas(y)

fy“” H(”(kf)] O;nj(x)”j(Y)ﬁb(Y)ds(Y)

s = [ [0 )" ana(x) oS HAS()

m air™ W) /7 (m) o7 or .
Sito = _/; 4 [Hzl (kr)]ki=ko? on(x) Gn(y)(p(Y)dS(Y) (39)




Comput Model Eng Sci. 2025;143(3) 2797

st [ O] nom () enas(y)

m)

st = [ 2 [HOGN] niGom ()9S ()

m _ air™ 1) (M): or or
Sto=— 0] S S S asy)

m aif™ _7(m) of  oF )
S =~ /;YT [Hgl)(kr)]k;:koi on(x) on(y) ¢(y)dS(y) (40)

Substituting Eqs. (27), (28), (29), (36), (37) and (38) into Eq. (14), Eq. (14) can be restated as follows:

. had k - k() " om om 2om
CP0) +aCC00) + 5 E57, + k57 + 57
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Si'f’o = S}'; + S}"G, Si”fl = SJ’?I + S}”z + SZ’1 + SZ’Z +87 + ST,

om _ om m m m m m—1 m m—1 m m
Si»z_Sf3+Sf4+Sl:l3+S~4+k08;15+msi15 +kosh6+msl‘/‘16 +S- +S“

h h13 hl4
S;?o = S?s + S?s’ 5?1 =Sy + Sig Sgnz = Sio + Sio
Sy = Sp+Spe,  SY = SH+SE + S+ S+ ST+ 8, S =SP4+
Si'o = Sgs + S, Sy = SpL + ST (42)

Since the incident wave term also involves the wave number k, it can also be expressed as a Taylor series
expansion at a fixed frequency point kor:

e (43)

oo /. \M m
ikr _ eikgr Z (lr) (k B kO)
m=0 m!
Assuming that the incident wave propagates in the positive direction along the axis ¢, the terms in the
equation can be expanded as follows:

aﬂbinc(x) _g 0x; )_kz 0x; :|

Pinc(x) +a on(x) Pine(x) = ™ [k (i)'(l ’ “ian(x) (xa”(x)

(44)

The expanded expression of the incident wave sensitivity value can be obtained by substituting Fq. (43)
into Eq. (44) to obtain the expanded expression of the incident wave sensitivity value in Eq. (41):

buet) = > E i v ) (45)
m=0

1 inc, inc,2
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with

o7 = etkoxe (ix)" [ix, + ai IXe (46)
me on(x)

i ikoXp (:o \M 0xy

q)inc,z =€ kaxe (IXg) (—(X) al’l(x)

in which ¢ denotes the /-axis coordinate of the source point, where ¢ = x or y.

Substituting Eq. (45) into Eq. (41), Eq. (41) can be restated as follows:
. . S (k=ko)™ ram am | 12am
CRI$(x) + aC(x)q(x) + 3o —— [ + kS[ + k2877 ]
m=0 .

S (k_k )m om om om S (k_k )m om cm om
+ 2 m!o [Si,o +kS3y+ kzsi,z] - ZO T!O [83,0 + kS5 + kzsi,z]

m=0

2 (k—ko)™ & ~ > (k—ko)™ . .- .
* Z ( m'O) [SZO + ksZJ + 2 % [kq)?:lc,l + kzq)zr'r:qc,z] (47)
m=0 : m=0 .

By discretizing Eq. (47) using NURBS, we can get the following matrix form of shape sensitivity integral
formula:

o (k= ko)™

>

m=0

m m m ] & o (k= ko)™ m m m 1 5
[Si,o + kSi,l + kzsi,z] ¢+ Z % [Si,o + ksé,l + kzsi,z] ¢

(k- ko

)" :
o ISiorksia

m!
(k- ko)™
m!

k—ko)" [, o G
% [kq)inc,l + kzq)inc,z:l (48)

[sgjo + kS, + kzsgjz]q + i

Mg 108
3
<|I3

+

0

3|
I

Since the acoustic IGABEM sensitivity system is linearized, the solution ® and q in Eq. (48) with the
truncation term M consists of the following two parts:

o A k(k—ko)":g I K (k—ko)"
2 M k(k_ko)m;r;, M kz(k_kO)m:rh
q=m§::o—m! g +,,—1Z:o—n'1! q (49)

where p, p7, @™ and q}" represent the corresponding solutions to the following system of equations:

— (k_ko)m 2 y - (k_ko)m 2 cm
D STy + STy + KPS ¢ 3 e[S + RS + ST |9
m=0 : m=0 :
& (k-k)" rem 15 . o (k=k)" m s L G
-3 —m"’ (S, + kSY + kST, ]q+ ). —m"’ (S, + kSZu]qj +®,, (50)
m=0 : m=0 .
In fact, the coeflicient matrix Sfo, Si",lv sz, Sg’fo, S'{l, Sg’fz, S’;O, ngl, ngz, Sf{fo, Szl e CN*N are indepen-

dent of frequency. This means that broadband problems only need to be solved once. This solves the problem
of repeatedly calculating the coefficient matrix of the BEM system. However, for large problems with multiple
frequencies, it is still very challenging to solve Eq. (50) directly using GMRES due to the asymmetric full
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coefficient matrix and the huge storage requirements of using the truncated term M [56]. Since Eq. (50) is
also a second-order system with frequency, SOAR can be used to build a ROM with an initial FOM to reduce
storage and achieve the purpose of accelerating calculations.

4.2 Dimension Reduction of IGABEM System for Acoustic Sensitivity Analysis

This study considers the scattering of the incident wave by the rigid structure boundary. Since the
particle velocity on the structure boundary is zero, § and q in Eq. (50) are 0. Then Eq. (50) can be rewritten
as follows:

© (k=ko)" rem  em  1rem =
Pl L

2 (k—ko)" 1o . y S .

ZO%[SQ,o‘l'ksil"‘sziz] ¢j :¢inc,ja]:l,2 51)

Let m = 0 in Eq. (51) to create a set of frequency-independent orthogonal bases. Then Eq. (51) can be
re-expressed as:

(82, +kS3, +K%83,) ¢'>;” + (89, + k), + k280 ,) = by, 1 j=1,2 (52)

It is worth noting that Eq. (52) does not approximate the original acoustic shape sensitivity equation,
but is only used to establish an orthogonal basis. By using the SOAR method, we can obtain the orthogonal
basis Q;ﬂ € CN*" sequence of the subspace G, (A, B;#) of n << N [57]. The SOAR method is described in
detail in reference [58].

span {Q;n} =G, (A, B; o) = span{#g, 1,72, - -+, y_1} (53)
where
A=-(10) 71,
B=-(1)"' 1 -
1 = Ay,

The projection subspace is then constructed using the subspace spanned by the series of The projection

subspace is constructed using the span subspace of a series of nonzero columns of Q;n, and then the subspace
is used to define the simplified system equation corresponding to the original Eq. (51).

am . :
The original state vector of the BEM system p; is approximated as follows: use a different state vector

,:,1’;’1,11 A A A
¢; of dimension n, which is limited to the subspace G, (A, B; #)) spanned by Q; .

¢ - (@] ]b] (55)



2800 Comput Model Eng Sci. 2025;143(3)

After a series of derivations, we finally get the simplified system:

© (k=ko)" [emn  omn  2emn
{mz_:o o [y + kspy" + ks ]}b+

had (k—ko)m am,n am,n 2 a1 . m A MmN
Zo—m' [ISBI +k1§52 +k I¢;3 ] bj :(Dinc,j (56)
m= :
with
m,n A\ T m A
Si,(; = (Qj ) Si,oQ
Ai\T 0 A
S, = (Q;n) §i,Q
A\ T N
Si, = (QT) §7,Q
Am,N A\ L am am
15" = (Q7) 154
NN A M TAm N
i =(QF) 17.0Q]
Am,N A\ L am A
I¢3 :(Qj) 1 3Q]
A 1, Aam\L A
bl =(Q)) Dl (57)

The n-th order Padé-type approximation of d)? at the fixed expansion point kg is denoted by (i);n, as
shown below [59]:

$1 = ¢+ O((k —ko)") (58)

AMLN AM,N AM

S;”(;”,S;”f”,S;"Z’",I@ g, I(/;;n is a n x n order matrix in the ROM, where n << N, which greatly

improves the computing performance.

At the registration point on the structure boundary, the sound pressure sensitivity can be obtained by
applying Eq. (56), and then the sound pressure sensitivity of any point in the sound domain can be calculated
using Eq. (57).

5 Numerical Example

Numerical simulations were performed using the Fortran90 programming language on a laptop
featuring an Intel(R) Core(TM) i9-12900H CPU and 16 GB of RAM. In this section, sound barrier models
of different shapes are employed to validate the effectiveness of the proposed algorithm.

5.1 Acoustic Scattering from an Infinitely Long Rigid Cylinder

This section analyzes the sensitivity of an infinitely long rigid cylinder. As shown in Fig. 3, the center
of the circular model is located at (2 m, 2 m) and the radius is 1 m. An incident wave with an amplitude
of 1, represented by ¢;,. = ¢oe'* <%, propagates along the negative y-axis and is scattered by an infinitely
long rigid cylinder. The calculation point is located at (0 m, 2.5 m). The problem can be simplified to a
two-dimensional problem. Table 1 lists other parameters used in the numerical simulation [60].
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Figure 3: Design domain for sound scattering from an infinite cylinder with ground reflection.

Table 1: Parameters for the corresponding circle model.

Parameter Symbol Value Unit
Air medium density ps 121 kg/m’
Absorption coeflicient of sound B 0 -
Acoustic velocity Cair 343 m/s
Interval of frequencies fstep 1 Hz
Ground reflection coeflicient y 1 -

By comparing the calculation results of different numbers of Taylor expansion terms, compared with the
traditional boundary element method (DBEM) that calculates each frequency point separately, the algorithm
proposed in this paper uses the midpoint frequency of the interval as a fixed frequency expansion point to
represent all frequency points in the interval for calculation. Therefore, the accuracy of the numerical results
decreases with the increase of the distance from the fixed frequency expansion point. The frequency interval
is subdivided by the adaptive band refinement technology proposed in this paper. It is finally determined that
the relative error is small enough when the expansion terms are equal to or greater than 6 and the frequency
band range is 50 Hz, and the fluctuation is small. After determining the relatively accurate frequency band
range, we calculate the sensitivity of the acoustic model within this range.

The sensitivity of the calculation point obtained by using the algorithm taking ground reflection into
account is shown in Fig. 4. It presents the results obtained by applying Taylor series expansions with 3, 6, 10,
and 15 terms, respectively. The labels “Taylor_03”, “Taylor_06”, “Taylor_10”, and “Taylor_15" correspond to
the calculations using 3, 6, 10, and 15 terms of the Taylor expansion. The ROM obtained by the SOAR method

is set to order 10.

As shown in Fig. 4, the curves show the results of the sensitivity (|Sp|) of Taylor expansions of different
orders (Taylor_03, Taylor_06, Taylor_10 and Taylor_15) changing with frequency. The oscillation trend of
the sensitivity curve shows that within the frequency range of each sub-interval, the circular model has
significant changes in response to disturbances at different frequencies. Fig. 4 covers the frequency range of
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100 to 200 Hz. It can be found that the sound pressure sensitivity frequency is mainly concentrated at two
peaks of 125 and 170 Hz, which has guiding significance for practical engineering optimization. Moreover,
whether it is a low-frequency band or a high-frequency band, the results of different Taylor expansion orders
show consistency and good convergence. In particular, the results of Taylor expansion of six terms and

ten terms are almost completely overlapped with Taylor expansion of fifteen terms. Therefore, in actual

calculations, selecting Taylor expansion of six terms can balance the calculation accuracy and efficiency

without using a higher-order expansion. Table 2 lists the sound pressure sensitivity values calculated by

different Taylor expansions at some frequency points.
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-« Taylor 06  wewws Taylor 15
1.50 i el
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Figure 4: Sound pressure sensitivity calculated using the BEM method based on SOAR acceleration and Taylor
series in two sub-intervals of different frequencies at the calculation point (0 m, 2.5 m). (a) f = (100, 150) Hz

(b) f = (150, 200) Hz.

Table 2: Sound pressure sensitivity values calculated by different Taylor expansion terms at different frequency points.

Frequency (Hz) Taylor_03 Taylor_06 Taylor_10 Taylor_15
100 1.38352 1.38536 1.39179 1.39179
105 1.05820 1.05238 1.05335 1.05334
110 0.71990 0.71723 0.71739 0.71740
115 0.57058 0.57046 0.57048 0.57048
120 0.78267 0.78270 0.78270 0.78270
125 1.09452 1.09452 1.09452 1.09452
130 1.10164 1.10157 1.10157 1.10157
135 0.68533 0.68320 0.68319 0.68319
140 -0.05749 -0.07189 -0.07211 -0.07211
145 -0.85842 -0.91252 -0.91340 -0.91340
150 -0.89983 -1.08289 -1.09082 -1.09086
155 -0.81066 -0.83196 -0.83443 -0.83444
160 1.96812 1.98252 1.98052 1.98251
165 1.70805 1.70860 1.70861 1.70861
170 0.76082 0.76075 0.76075 0.76075
175 -0.17087 -0.17087 -0.17087 -0.17087
180 —-0.83357 —-0.83362 -0.83361 -0.83361
185 -1.06805 -1.06624 -1.06620 -1.06620

(Continued)
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Table 2 (continued)

Frequency (Hz) Taylor_03 Taylor_06 Taylor_10 Taylor_15

190 -0.86164 -0.83211 -0.83131 -0.83133
195 -0.29054 —-0.12442 -0.11791 -0.11790
200 0.53797 1.12152 1.15474 1.15493

5.2 Acoustic Scattering by a Semi-Y-Shaped Noise Barrier

Asshown in Fig. 5, the algorithm proposed in this chapter was used to numerically simulate the scattered
sound field of the semi-Y-shaped sound barrier, and the influence of ground reflection was taken into
account, with the calculation point located at (6 m, 2 m). The plane wave incident along the negative y-axis
is scattered by the sound barrier. The sensitivity of the calculation point is shown in Fig. 6.

Y& 0.2m

2m

Incident wave

0.2m Inspection point

-
(6m,2m)

Im

y
il 5m

>
X

Figure 5: Design domain for sound scattering from a semi-Y-shaped with ground reflection.

As shown in Fig. 6, the figure shows the relationship between the sensitivity of |Sp| and the frequency.
The Taylor expansion method is used for calculation, and the 3rd, 6th, 10th, and 15th order expansion terms
are used to consider the ground reflection effect. From the results, in the low frequency band (100-175 Hz),
the calculation results of each order of Taylor expansion are basically the same, indicating that the low-
order expansion (such as the 3rd order) can accurately describe the sensitivity change. However, in the high
frequency band (above 175 Hz), the low-order expansion (3rd order) begins to deviate, especially around
175 Hz, the curve deviates from the results of the high-order expansion (10th and 15th order). This shows
that as the frequency increases, the calculation error of the low-order expansion accumulates significantly,
and the high-order expansion can better capture the sensitivity change. In addition, considering the ground
reflection, the sensitivity curve shows periodic changes, which may be related to the interaction between the
structural resonance and the reflected wave. In summary, the low-order Taylor expansion can be used in the
low frequency band to reduce the amount of calculation, while the high-order expansion needs to be used
in the high frequency band to improve the accuracy, so as to more accurately describe the impact of ground
reflection on sensitivity.



2804 Comput Model Eng Sci. 2025;143(3)

Taylor 03 === Taylor 10 Taylor 03 === Taylor 10
— =« Taylor 06  ===== Taylor_15 ~=- Taylor 06  ==** Taylor_15
0.8 T v Idly l') = I) 3 T v dyI() —' 0.8 i |dy ('} — I) ¥ T b dyI() —‘ T
oy I & I
= 04r 7 = 0.0_- .
Z o0f 1 Z.ost -
& 04} 1 &6 ]
'D'SI(I)U 105 Ii(] liS IiO IiS '2'4Ii5 I?I)'[) IéS I-‘-:IO I-’-IIS IéO
Frequency[Hz] Frequency[Hz]
(a) (b)
Taylor_03 —-= Taylor 10 Taylor_03 ===+ Taylor_10
| e Taylor 06  ===» Taylor_15 N —— Taylor 06  ====* Taylor_15
2 o9l J B o
! £ 12 ]
Z 0.0f 1 E
= I = 0.0 ~
2 -09r . 2 .
&-18f g 12 |
27750 155 160 165 170 175 24175 180 185 190 195 200
Frequency[Hz] Frequency[Hz]
() (d)

Figure 6: Sound pressure sensitivity calculated using the BEM method based on SOAR acceleration and Taylor
series in two sub-intervals of different frequencies at the calculation point (6 m, 2 m). (a) f = (100, 125) Hz (b)
f=(125,150) Hz (¢) f = (150,175) Hz (d) f = (175, 200) Hz.

5.3 Acoustic Scattering by a Semi-Y-Shaped Concave Noise Barrier

This section studies the acoustic scattering field of a semi-Y-shaped concave sound barrier. The plane
wave is incident along the negative y-axis and is scattered by the sound barrier, as shown in Fig. 7. The
remaining numerical simulation parameters are the same as those given in the previous section. The
algorithm proposed in this chapter is used to calculate the sensitivity of the semi-Y-shaped concave sound
barrier, where the calculation point is located at (5 m, 2 m). The sensitivity of the calculation point calculated
using the algorithm considering ground reflection is shown in Fig. 8.

When using the algorithm proposed in this paper for numerical simulation, the calculation frequency
interval is 25 Hz. The fixed frequency expansion point in the frequency interval [ f;, f, ] is the midpoint, that
is, (fi + fu) /2. Different Taylor series expansion terms are used in the simulation. As can be seen from Fig. 8,
the Taylor expansion curves with different numbers of terms are quite consistent, which shows that the
algorithm can stably calculate the sound pressure sensitivity in different frequency intervals, and the high-
order expansion can further optimize the accuracy. However, as the number of expansion terms increases, the
amount of calculation is also gradually increasing. Therefore, a suitable number of expansion terms should
be selected to ensure both accuracy and efficiency. From the simulation results, it can be concluded that
when the Taylor expansion terms are six, both the calculation accuracy and efficiency can be met. Therefore,
the Taylor expansion of six terms is used in the simulation. And from Fig. 8, we can also conclude that the
sensitivity is frequency-dependent.
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Figure 8: Sound pressure sensitivity calculated using the BEM method based on SOAR acceleration and Taylor
series in two sub-intervals of different frequencies at the calculation point (5 m, 2 m). (a) f = (100, 125) Hz (b)

f=(125,150) Hz (c) f = (150,175) Hz (d) f = (175, 200) Hz.

6 Conclusions

Based on the direct differential method, this paper derives the generalized acoustic sensitivity analysis
formula, uses the image source method to model the acoustic effect of ground reflection, incorporates
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the reflection term into the framework of the boundary integral equation, constructs an acoustic analysis
model suitable for two-dimensional half-space, and further derives the corresponding sensitivity formula. By
performing Taylor series expansion on the sensitivity formula, not only broadband calculation is achieved,
but also the size of the system matrix is effectively reduced by combining SOAR, significantly reducing
memory usage and computational cost.

This method provides a theoretical framework for solving complex acoustic problems, especially
large-scale broadband acoustic sensitivity analysis under complex boundary conditions, and also provides
algorithmic support for subsequent optimization design. Specifically, this method provides new ideas and
theoretical support for urban traffic noise control, building acoustic environment optimization, and sound
barrier design. In addition, the successful application of this method in two-dimensional half-space acoustic
analysis has laid the foundation for further expansion to broadband acoustic analysis of three-dimensional
complex geometric shapes.

Despite these promising results, certain limitations of this study must be acknowledged. First, while the
current method is designed for 2D problems, extending it to 3D geometries introduces challenges such as
increased modeling complexity, greater computational demand, and more intricate treatment of singularities.
Second, the boundary conditions in this study are assumed to be ideal (rigid or perfectly reflective), which
may not fully represent practical scenarios involving elastic, damped, or nonlinear boundaries. Third,
although the frequency decoupling strategy works effectively in most cases, its accuracy and efficiency in
extremely high-frequency or highly resonant systems require further validation. Additionally, uncertainties
in material properties or boundary conditions are not currently addressed, which could significantly affect
real-world applications.

Addressing these issues will be a key focus of future work. The proposed method will be extended to
fully coupled vibro-acoustic systems to enable more accurate simulation of interactions between structural
vibrations and acoustic fields. Moreover, integration with advanced optimization algorithms—such as
gradient-based or surrogate-assisted approaches—will be explored for automated acoustic design and shape
optimization. Efforts will also be made to improve computational efficiency in high-frequency regimes and
to extend applicability to problems involving anisotropic materials and nonlinear boundary conditions.

In terms of potential applications, the method shows great promise in various engineering domains,
including acoustic optimization of high-speed train components, noise reduction in aircraft cabins, design of
quiet urban zones, and the development of advanced acoustic metamaterials. Furthermore, its extension to
3D geometries opens up new possibilities for practical implementations in large-scale architectural acoustics
and underwater acoustic stealth technologies.
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