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ABSTRACT: Most material distribution-based topology optimization methods work on a relaxed form of the opti-
mization problem and then push the solution toward the binary limits. However, when benchmarking these methods,
researchers use known solutions to only a single form of benchmark problem. This paper proposes a comparison
platform for systematic benchmarking of topology optimization methods using both binary and relaxed forms. A
greyness measure is implemented to evaluate how far a solution is from the desired binary form. The well-known Zhou-
Rozvany (ZR) problem is selected as the benchmarking problem here, making use of available global solutions for
both its relaxed and binary forms. The recently developed non-penalization Smooth-edged Material Distribution for
Optimizing Topology (SEMDOT), well-established Solid Isotropic Material with Penalization (SIMP), and continuation
methods are studied on this platform. Interestingly, in most cases, the grayscale solutions obtained by SEMDOT
demonstrate better performance in dealing with the ZR problem than SIMP. The reasons are investigated and attributed
to the usage of two different regularization techniques, namely, the Heaviside smooth function in SEMDOT and the
power-law penalty in SIMP. More importantly, a simple-to-use benchmarking graph is proposed for evaluating newly
developed topology optimization methods.

KEYWORDS: Topology optimization; Zhou-Rozvany problem; benchmarking; binary forms; relaxed forms;
power-law penalty; heaviside smooth function

1 Introduction

Topology optimization, as a conceptual design tool, has been widely applied in the fields of aerospace,
automotive manufacturing, and biomedical science [1-3]. Common element-based topology optimization
methods typically determine the optimal material distribution by solving problems in either their binary
or relaxed form. In the binary form of topology optimization, the material distribution within the design
domain is represented by only two values, 0 and 1, indicating void and solid regions, respectively. Methods
belonging to this category include the Evolutionary Structural Optimization (ESO) [4] and the Bidirectional
Evolutionary Structural Optimization (BESO) [5,6]. In contrast, the relaxed form allows the material density
in each element of the design domain to vary continuously between 0 and 1, which introduces intermediate
values that must be pushed back to the binary limits using a regularization technique. The Solid Isotropic
Material with Penalization (SIMP) method [7] is an example of this approach.

The importance of having standard benchmarks to evaluate the performance of different proposed
methods has been recognized in topology optimization [8]. A number of problems, like the simply supported
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MBB (Messerschmitt-Bolkow-Blohm) beam, have been used as classic benchmarks to test topology opti-
mization methods [9]. However, apart from few limited cases [10-12], the benchmark problems used have
no exact solution. Very few computational and theoretical results on global optimization using deterministic
methods are available for the topology optimization of continuum structures [13], and such results are even
more scarce for multiphysics and multimaterial problems [14-16]. One of the problems with relatively few
design variables for which global optimal solutions are known is the Zhou-Rozvany (ZR) problem [17].

The ZR problem is originally introduced to illustrate the limitations of the ESO method in solving
topology optimization problems [18]. It involves optimizing a tie beam demonstrated in Fig. 1. The structure
is supported by a fixed boundary condition on the left side and a roller support at the top. The material
is modeled as linearly elastic and isotropic, with a Young’s modulus of 1.0 and a Poisson’s ratio of 0.3. The
loading conditions consist of a horizontal force with an intensity of 2.0 and a vertical force with an intensity
of 1.0. The design domain is discretized using 100 four-node quadrilateral elements.
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Figure 1: Geometry and boundary conditions for the ZR problem

Using ESO on this problem results in Fig. 2 where the tie breaks and the optimization method fails to
recover it and successfully solve the problem. Rozvany stated that the issue observed in ESO cannot be solved
by using its bidirectional version, BESO [18].
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Figure 2: The solution obtained by ESO for the ZR problem after removing 1 element

Due to the significance of the ZR problem in evaluating binary-based topology optimization methods,
Several research works investigated the reasons why binary methods like ESO and BESO fail to solve the ZR
problem and proposed different approaches to address this issue. Some of the suggested techniques include
mesh refinement [19,20], using soft elements [21], and freezing elements [4]. Rozvany [22] critically reviewed
and questioned most of these suggestions. Ghabraie [23] showed that using high-order sensitivity analysis
can help binary-based methods like ESO solve the ZR problem but highlighted that ESO also suffers from
its unidirectional approach to the solution. More recently, the ZR problem is solved by adding a connectivity
constraint into the BESO method [24].

The ZR problem is suggested to be introduced into the standard repertoire of benchmark examples when
assessing new topology optimization methods [17]. To facilitate this benchmarking, Stolpe and Bendsee [17]
provided the global optima for the binary formulation of the ZR problem across different volume constraints.
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However, most of the material distribution-based topology optimization methods convert the binary form
to a continuous form before solving it and then push the solution back to binary limits. The binary form of
the ZR problem cannot be used to benchmark these methods properly, because as emphasized by Sigmund
et al. [25], the selected form of the problem can have a great impact on the final solution. To properly
benchmark topology optimization methods that solve the relaxed form of the problem, it would be ideal to
consider solutions to both relaxed and binary forms of the benchmark problem.

To establish the ZR problem as a comprehensive benchmark, this study utilizes both its global binary
solution [17] and its relaxed (convex) global solution, obtained via the Variable Thickness Sheet (VTS)
formulation [25]. This work implements a grayness measure (based on the proposed measure of discreteness
in [26]) to systematically benchmark a selected list of topology optimization methods against both binary
and relaxed global optima of the ZR problem. Selected topology optimization methods include SIMP with
a penalty factor of 3.0, SIMP combined with a continuation method [27], and the recently developed non-
penalization Smooth-edged Material Distribution for Optimizing Topology (SEMDOT) method [28,29]. It
should be noted that SEMDOT involves two steps: 1) solving the relaxed form and pushing it to binary using
the Heaviside smooth function resulting in greyscale solutions, and 2) finding the smooth boundary of the
design using a bisection approach on grid point densities. While the results obtained after the first step of
SEMDOT should be benchmarked against both relaxed and binary solutions, its final smooth results can be
benchmarked against the binary solutions.

The rest of this paper is organized as follows: Section 2 summarizes the global solutions to the relaxed
and binary forms of the ZR problem. Section 3 proposes an indicator to measure the relaxedness of
solutions. Section 4 explains the topology optimization methods to be benchmarked. Section 5 benchmarks
the SIMP, SIMP with continuation, and grayscale SEMDOT results, discussing their Pareto fronts. Section 7
evaluates the smooth structures from the SEMDOT method more accurately by remeshing approach,
presenting the Pareto front for binary-form designs. Finally, conclusions are drawn in Section 8.

2 Global Solutions for Binary and Relaxed Forms of the ZR Problem
Binary and relaxed forms of the ZR problem can be formulated as:

mXinC(xe) =f'u

subject to: K(x,)u = f

Lot Xe

-V*<0 1

and

x. € [0,1] for relaxed form

x, € {0,1} for binary form

where x = [x1,X2,...,X100] is the vector of design variables, C(x,) is the objective function of mean
compliance; K (x,) is the stiffness matrix which depends on design variables; f is the nodal load vector; u
is the nodal displacement vector, and V* is the target design volume fraction. x, is the design variable of
element e and will vary continuously between 0 and 1 if the relaxed form is used, or it could only be 0 or 1in
the binary form.

For plane stress problems, the relaxed version of Eq. (1) is a convex VTS problem [7,25,30]. The VTS
problem can be solved by using SIMP with a penalty factor of 1 (no penalization) and the solutions obtained
will be global as the problem is convex. The global optima for the binary form are presented in [17]. These
two sets of global optima are shown in Fig. 3.
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Figure 3: Optimal Pareto fronts for both relaxed and binary forms of ZR problem [17]

As expected, the solutions of the relaxed form are always lower than those of the binary form. This is
because the binary form is much more restrictive. Note that, unlike the relaxed form, the binary form cannot
be solved at very low-volume fractions. Hence the Pareto fronts in Fig. 3 are presented for V* < 0.4. The
optimal solutions of both forms at the volume fraction of 0.4 are shown in Fig. 4 for comparison.

|

(a) Global optima method result (b) VTS method result
when volume fraction is 0.4 when volume fraction is 0.4

Figure 4: Optimal designs at V* = 0.4 for binary (a) and relaxed (b) forms of the ZR problem

3 Measuring the Relaxedness of a Solution

To assess the relaxedness of a solution, a grayness measure defined below is used in this study:

g(x) = % g(xe) “(1-x.) )

where N is the number of design variables in the design domain, commonly defined as 100 for the original
ZR problem. The grayness value for a single element will be 0 if that element is either solid (x, = 1) or void
(x. = 0), and a positive value for all intermediate values. Larger g values indicate greater deviation from a
binary design, typically observed in more relaxed solutions, while smaller values suggest closer proximity
to a binary form. This measure is proportional to the measure of discreteness (M,;) defined in [26], with
g=M,,/4. 1t should also be noted that the number of elements N in the ZR problem is fixed at 100.



Comput Model Eng Sci. 2025;143(3) 3237

To facilitate a more intuitive comparison of the grayness values, the fixed denominator N is omitted in
the calculation.

The VTS formulation represents a fully relaxed formulation in topology optimisation, making the
problem fully convex and resulting in density fields that significantly deviate from binary designs. Therefore,
the maximum grayness value, denoted by g, is expected to be achieved by the results obtained from the VTS
method, as shown along the VTS Pareto front in Fig. 3. The values of ¢ = g(V*) are reported in Table 1. The
binary solutions have the g value of 0. For other methods, one generally expects that 0 < g(V*) < g. Also,
noting that g is an indirect measure of relaxedness, one expects that the global optima with other grayness
values are somewhere between the two Pareto fronts in Fig. 3.

Table 1: The grayscale values for the VTS results under different target volume fractions

V' g(x10°) V¢ g(x10°)  v* g(x10%)
040 184165 060 191106 0.80 123179
045 193902 065 175978 0.85 10.1098
050 19.8243 070 153541 090 73204
055 197633 075 137000 0.95  3.7082

As is clear from Table 1, as the target volume fraction increases, the g values decrease, and the result of
the relaxed form approaches the binary form solution (with g = 0). This can be seen in Fig. 3 where the two
Pareto fronts become progressively closer at higher volume fractions.

Monitoring g values when benchmarking topology optimization methods helps evaluate how close
or far the results are from the relaxed and binary solutions. In addition, when comparing two topology
optimization solutions, it is important to maintain consistent g values to ensure equitable comparisons. One
practical way to do so, as noted by Sigmund [8], is to convert all solutions to binary (g = 0) before comparing
different designs.

4 Topology Optimization Methods to Be Benchmarked

This section covers briefly introduces the methods that will be benchmarked here, namely SIMP and
SEMDOT. Like other density-based approaches, both methods initially relax the optimization problem by
using continuous design variables. These variables are then regularized to push the solution towards binary
results in different ways.

4.1 SIMP Method and Continuation Method

The SIMP method [7,31] applies a power-law regularization technique to steer the element densities
closer to binary solutions. In this approach, the Young’s modulus E, and stiffness matrix K, of each element
e are expressed in this form:

E.(x.) =xPE, K,(x.)=xfK, (3)

where p > 1is the penalty factor, and E° and K’ represent Young’s modulus and stiffness matrix of element
e, when they are solidly made of the base material.

The continuation approach [32] can be used to reduce the possibility of getting trapped in a local optima.
This approach applies the regularization gradually, e.g., by starting from p = 1and incrementally increasing it
by Ap upon convergence at each p value until reaching a predefined upper limit [27]. This method balances
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early exploration with later refinement, helping avoid suboptimal solutions and ensuring a near-optimal
design as noted by [25].

4.2 SEMDOT Method

The SEMDOT method defines the elemental volume fraction ¥, as a relaxed form design variable, with
continuous values between 0 and 1:

m

q’e = Pe,n (4)
01

1
mn

where p, , is the density of the nth grid points in the eth element, and m is the total number of grid points
in each element. Fig. 5 illustrates different types of elements in SEMDOT and their grid points.
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Figure 5: Different types of elements in SEMDOT and their grid points

A linear material interpolation scheme is used for calculating the stiffness of the element e:
K. (¥.) = (1= ¥)K" + WK = [(1= ¥.)pmin + V. ]K* )

where K" and K® are the stiffness matrices of the void and solid phases of elements, respectively, and ppi, << 1
is a very small density value used to represent voids while preventing singularity.

To push the design towards a binary solution, a smooth Heaviside regularization [33,34] is utilized in
SEMDOT:

pon = tanh(B - ¢) +tanh [ - (p(x,y) — ¢)] ©)
o tanh(B - ¢) + tanh [ (1.0 — ¢)]

where f is a scaling parameter that controls the steepness of the function, p (x, y) is the density of the grid

point at the global coordinate (x, y), and ¢ is a threshold value to satisfy the volume constraint [35-37]. The

scaling parameter f3 in Eq. (6) acts in a similar way to the penalty factor in SIMP and affects the grayness

of the solution. SEMDOT typically starts with 3 = 0.5 and increases by 0.5 with each iteration. This gradual

adjustment of 8 in SEMDOT is similar to using the continuation method with SIMP.

The densities of internal grid points are evaluated via a level set function ®(x, y) to form smooth
boundaries as shown with the green line in Fig. 5. This function can be expressed as:

p(x,y) —¢ >0 for solid region
®(x,y) =4p(x,y) —9 =0 for boundary (7)
p(x,y)—¢ <0 for void region
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where the threshold value ¢ is determined using the bi-section method such that the target volume constraint
can be satisfied in each iteration [28,35].

5 Benchmarking SIMP and Grayscale Designs in SEMDOT

This section presents the benchmarking results for the considered methods. For the SIMP method,
the 88 lines code [38] with p = 3 is used. For the continuation approach, the penalty factor is initialized at
p = 1and is incrementally increased by Ap = 0.05 upon each convergence until reaching a predefined upper
limit [27]. The filtering is effectively turned off by setting the filter radius at 1.0 across all methods. The effects
of filtering radius are studied in Section 5.3.

Table 2 presents the numerical results for different relaxed form methods. Topologies obtained by
SEMDOT, and continuation methods are very similar, but SIMP provides different topologies. Additional
holes are observed in SIMP solutions for volume fractions less than 0.8.

Table 2: Results of benchmarking methods for different volume fractions

v* SEMDOT SIMP (p =3) Continuation (p, = 3.0) VTS
0.95 =] ﬁ ﬁ ﬁ
C= 416.501 442.697 442 .860 408.39

g(x 10%) = 1.4464 3.8072 3.8117 3.7082
0.90 d _ — —
C= 468.675 467.826 477.819 430.851

g(x 10%) = 2.1856 1.6320 1.6300 7.3204
0.80 | :——‘ —d —
C= 519.536 536.151 531.836 483.94

g(x 10%) = 2.9385 1.5854 2.1774 12.3179
0.70 — d _J —
C= 606.540 645.165 643.755 552.19

g(x 10%) = 3.4033 1.3682 3.6080 15.3541
0.60 ——— —d _—l —
C= 715.824 791.737 792.604 643.797

g(x 10%) = 5.4288 2.0449 4.0544 19.1106
0.50 —— _‘E: _——t —
C= 856.951 1090.779 1018.434 771.514

g(x 10%) = 6.2861 4.8879 5.0357 19.8243
0.40 il a—— ——— —mm—
C= 1075.356 1794.981 1491.145 963.156

g(x 10%) = 6.7977 7.4228 5.1197 18.4165

SEMDOT produces compliance values more comparable to those of the VTS method and better than
the continuation method. On the other hand, the SIMP method with p =3 produces results with the
highest compliance compared to both SEMDOT and continuation methods. Although SEMDOT shows
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better objective function values, it tends to produce larger grayness values. Therefore, to ensure a reasonable
comparison, solutions at similar g values should be compared.

5.1 Comparison at Similar Grayscale Values

To achieve a more equitable comparison, the upper limit of the penalty factor (p,) in the continuation
method or p value in the SIMP method can be adjusted to obtain g values comparable to those of the
SEMDOT method. To envelope the SEMDOT grayness values, penalty values in SIMP and continuation
are adjusted to produce results with slightly lower and slightly higher g values compared to SEMDOT
results. Table 3 summarizes these results.

Table 3: Results of the continuation and SIMP methods with slightly lower and slightly larger grayness values compared
to SEMDOT. Corresponding compliance values are listed for comparison

A% SEMDOT Continuation SIMP
Smaller g Larger g Smaller g Larger g
0.4 pu = 215 pu= 21 p=33 ) p= 325
— e — i — E T —
g(x 10%)= 6.797 6.558 6.804 6.684 6.802
C= 1075.356 1327.866 1316.979 2022.711 1983.509
0.5 pu= 23 pu = 2.25 p= 245 p=24
———— e — e — e ]
g(x 10%)= 6.286 6.277 6.310 5.872 6.699
C= 856.950 973.742 968.543 1043.577 1043.075
0.6 pu= 24 pu= 235 p=195 p=19
=" _—l ——— ——]
g(x 10%)= 5.428 5.388 5.507 5.277 5.884
C= 715.824 775.655 773.061 760.039 758.637
07 pu = 3.05 pu=3 p= 165 | p=16
g(x 10%)= 3.403 3.033 3.608 3.251 3.634
C= 606.540 641.549 643.754 590.219 589.207
0.8 pu= 235 pu= 23 p= 225 p=22
g(x 10%)= 2.938 2.720 3.052 2.748 3.217
C= 519.536 526.835 526.810 525.582 525.893
0.9 pu= 29 pu= 285 p= 285 p=28
g(x 10%)= 2.185 2.146 2.192 1.629 2.212
C= 468.675 468.590 468.304 468.092 468.093
0.95 pu= 43 pu= 425 p= 375 p=37
= -ﬁ
g(x 10%)= 1.446 0.860 1.644 0.862 1.656

C= 416.501 443.135 446.631 441.828 443.693
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The SEMDOT results exhibit higher relaxedness, as the g values closely resemble those obtained with
p <3.00or p, < 3.0 in the SIMP or continuation methods, as shown in Table 3. SEMDOT outperforms both
SIMP and continuation methods at similar g values in most cases, highlighting the effectiveness of the
Heaviside smooth function in finding more optimal material layouts for the ZR problem.

The Pareto fronts corresponding to Table 3 are illustrated in Fig. 6. Notably, none of the methods
generate solutions spanning the entire range between the two global solutions. SEMDOT achieves solutions
within this range only for volume fractions below 0.65. On the other hand, for SIMP and continuation
methods with g values closest to those of SEMDOT, only results for a narrow range of volume fractions
between 0.55 and 0.65 sit between the two benchmarks.

2,200
\ —— SEMDOT method
2,000 —— SIMP (slightly larger g values)
- - - SIMP (slightly smaller g values)
1,800 —— Continuation method (slightly larger g values)
- - - Continuation method (slightly smaller g values)
1.600 == (Global optima for binary form
& ) = = = Global optima for relaxed form
1400
E
21,200
S
@)
1,000
800
600
400

04 045 05 055 06 065 07 07 08 08 09 095
Volume fraction (V*)

Figure 6: Comparing results of SIMP, continuation, and SEMDOT at similar g values

5.2 A Simple-to-Use Benchmarking Graph

Beyond basic comparisons, different sets of results can serve as a quick reference for benchmarking
topology optimization methods, as shown in Fig. 7. The five-pointed star region is bounded by the two global
solutions for the relaxed and binary forms of the ZR problem. The horizontal line region shows the results of
the continuation method, with the final penalty values ranging from p, = 1.5 to 1.0. The vertical line region
is generated using the SIMP method with a penalty factor ranging from p = 1.5 to 3.0.

The distinctions among various methods diminish at higher volume fractions because, as the volume
fraction increases, the available design space decreases and becomes predominantly filled with material.
This leads to a more continuous material distribution reducing the differences between methods in handling
intermediate density elements and material layouts [39]. Another key observation is that for the ZR problem,
achieving results within the green region becomes increasingly difficult at volume fractions above 0.7, as this
region is very narrow.
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Figure 7: Pareto fronts of the ZR problem with distinct regions for global optima, SIMP, and SIMP with continuation.
Patterned fills are chosen for grayscale compatibility. Outlines are added to improve visual separation. The SEMDOT
method is shown as a thick dashed black line [17]

Methods that generate results closer to the target five-pointed star region demonstrate better perfor-
mance. When benchmarking a method, if the results fall outside the five-pointed star region but lie within
the other two regions, it can be concluded that its performance is comparable to the well-established SIMP
or continuation methods. However, results that deviate significantly from these regions may be questionable.

As an example, the black dashed line represents the results of SEMDOT in solving the ZR problem.
For a target volume fraction below 0.7, the results fall within the five-pointed star (global) region. When the
volume fraction exceeds 0.7, although the results are not contained within the global region, they mostly
remain within the horizontal line (continuation) and vertical line (SIMP) regions. This indicates that the
grayscale results produced by the SEMDOT method are reasonable and effective. A similar assessment can
be applied to other developed topology optimization methods.

5.3 Impact of Filtering Radius

In topology optimization, filters are used to mitigate numerical issues like checkerboard patterns and
mesh dependency [32]. The selection of filter radius significantly affects geometric features and structural

performance of optimized results [26]. The value of filtering radius (7mmin ) can also impact the grayness value
of the final solution.

For all the methods tested in this paper, a density filter in the same form as illustrated in [26] is
employed. Fig. 8 depicts various methods’ responses to filter radius (ryi,) increases from 1.0 to 2.5 (in
increments of 0.5) across different target volume fractions.



Comput Model Eng Sci. 2025;143(3) 3243

5,000
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Figure 8: Impact of filtering radius on solutions obtained from different methods

Filter radius can significantly affect optimization outcomes as shown in Fig. 8. In particular, SIMP
and continuation methods exhibit high sensitivity to variations in filtering radius. Increasing the filter
radius leads to a substantial rise in compliance values especially at lower target volume fractions. Notably,
the solutions from both methods converge, resulting in identical Pareto fronts for r,,;, > 1.5. In contrast,
grayscale SEMDOT results are less sensitive to changes in filtering radius. VTS solutions remain largely
unaffected by changes in filtering radius.

6 Solutions Based on Different Mesh Discretizations

The ZR problem features a tie beam with a design domain initially discretized into 100 elements.
However, the sensitivity of the proposed benchmarking platform and associated optimization methods
to mesh discretization remains uncertain. To investigate this aspect, the ZR problem was analyzed under
different mesh refinement levels. To mitigate the checkerboard issue, the filter radius r,,;, was defined as 2.0
times one element size. The mesh refinement was implemented by multiplying the number of elements by
a factor » in both the horizontal and vertical directions, resulting in a total element count of N = 100 x n?.
The corresponding results are summarized in Table 4.

In Table 4, V* represents the design target volume fraction. It can be observed that SEMDOT is less
sensitive to mesh discretization compared to the SIMP and continuation methods. The compliance values
(C) obtained from SEMDOT remain nearly consistent across different levels of mesh refinement and are
lower than SIMP and continuation methods. However, the behavior of the grayness measure g differs from
the coarser mesh case presented in Table 2. Specifically, SEMDOT achieves significantly lower g values than
the other methods, indicating its superior capability to produce more binary-like structures when a finer
mesh is implemented.
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Table 4: The solutions to ZR problem based on different mesh discretizations

V* Element number 1600 (n=4) 3600(n=6) 6400(n=8) 10000 (n =10)

SIMP —’—é J‘é —’—"-L —
C 1499.090 1320.885 1238.368 1195.418
g 0.0734 0.0535 0.0411 0.0326
Contin- < ot J_E -
0.4 uation
C 1366.547 1231.141 1197.799 1158.024
g 0.0638 0.0444 0.0404 0.0334
SEMDOT — —t — "é
C 1031.938 1033.524 1028.806 1029.669
g 0.0308 0.0261 0.0215 0.0196
SIMP & d d 4
C 817.523 771.164 750.167 739.338
g 0.0576 0.0413 0.0311 0.0252
Contin-
0.6 uation
C 785.018 743.507 736.168 727.978
g 0.0519 0.0359 0.0322 0.0289
SEMDOT -—_| -——J —=£ ——_‘__Jé
C 679.789 679.803 677.884 678.963
g 0.0251 0.0231 0.0183 0.0153
SIMP d A d d
C 545.856 535.975 531.490 529.479
g 0.0303 0.0211 0.0165 0.0138

Contin- I J u

0.8 uation

C 545917 535.882 531.279 528.734
g 0.0309 0.0224 0.0193 0.0162
SEMDOT ﬁ ﬁ i —a
C 504.267 508.138 509.031 511.570
g 0.0191 0.0115 0.0118 0.0113

7 Benchmarking the Smooth Designs in SEMDOT
The SEMDOT method uses a two-step process:

1. Solve the relaxed form of the problem and push it to a binary solution using a smooth Heaviside
projection. The result is a grayscale solution on a fixed mesh.

2. Calculate grid point densities within elements using level-set values. Reported results are designs with
partial elements along the boundary. This step is schematically shown in Fig. 9.

It would be insightful to compare the performance of these smooth designs with the global solutions to
the binary form of ZR reported by [17]. It should be noted, however, that objective function and sensitivity
values calculated in SEMDOT are based on the grayscale structure. The values of the objective function for
the smooth and grayscale structures are obviously different. To calculate more accurate compliance values
for smooth designs of SEMDOT, one should properly re-mesh the design to capture the partial elements on
the boundary [40].
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(a)Grayscale result (b)Gird point density result (c)Smooth results

Figure 9: The transformation from grayscale results in smooth structures

7.1 Remeshing for More Accurate Calculation of Responses of SEMDOT Smooth Designs

Mesh regeneration significantly influences finite element (FE) calculations [41]. As noted by [42], a high-
fidelity evaluation is important to accurately assess optimization performance, which remains a common
challenge in many studies. To minimize interference, the mesh division process adopted here uses triangular
(T3) finite elements for accurate modeling of intricate smooth boundaries while the rest of the design (solid
regions) are modeled using the same quadrilateral (Q4) elements to the original mesh. This process is
shown in Fig. 10. This remeshing approach allows more accurate calculation of compliance values for smooth
designs while ensuring that only a limited number of elements are changed in the mesh.

Figure 10: A simple re-meshing approach to more accurately calculate the compliance of smooth structures

7.2 More Accurate Compliance Values of Smooth Designs in SEMDOT

Solving the ZR problem in its binary form is very challenging [17]. It is a common observation that one of
the tie elements is removed and the solution is trapped in a highly inefficient local optimum [23,43]. This also
applies to the SEMDOT method, where the material in tie elements can be insufficient to create a connected
link when the grayscale solutions are converted to smooth designs. Looking at the relaxed form solutions
in Table 2, it can be seen that, particularly for SEMDOT, the tie elements are becoming progressively softer
as the volume fraction decreases. In this situation, using the filtering radius of 7, =1 can easily result in
breaking the tie.

The break issue originates from the load distribution characteristics of the ZR problem. For the SIMP,
VTS, and SEMDOT methods, it is particularly difficult to allocate sufficient material to slender rod, which
are required to carry substantial loads primarily oriented in the horizontal direction. To better illustrate this
limitation, a test was conducted by gradually increasing the vertical load intensity W,, as shown in Fig. 11,
while keeping the minimum radius r,;, = 1.0 constant across all methods. The corresponding structural
designs are presented in Table 5.

Table 5 presents the results of the three methods under varying vertical load intensities at a 40%
target volume fraction. As the vertical load intensity W, increases, more material is allocated to the tie
elements. This occurs because the vertical load gradually becomes the dominant loading condition in the
structural design process, thereby driving increased material distribution to these regions. To sum up, relaxed
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form methods struggle to allocate sufficient material to slender rods when vertical loads are relatively low
compared to horizontal loads.

144/
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Figure 11: The vertical tensile load of intensity W, and positions of tie elements (red part)

Table 5: The design results based on different intensity of load

Intensity of load SIMP (p=3) VTS Non-penalization SEMDOT

Wy=1 ——r — T ——
Wy =2 -_!' T c——
W, =3 ﬂ _L l
W, = 4 ._.!, 1 Il

To address the above limitation and distribute more material for tie elements, numerical tests suggest
that 7i, values between 1.5 and 2.0 are more suitable to achieve smooth structures in SEMDOT as a larger
filter radius can potentially facilitate the allocation of higher material densities to slender rod. To examine
this effect, filter radii r,,;, ranging from 1.5 to 2.0, with an increment of 0.1, are evaluated in Fig. 12.

However, in Fig. 12, some data points are missing due to the breaking of the tie. It means that not all filter
radii within the range of 1.5 to 2.0 produce smooth designs, cause deviations and oscillations in optimizing
design variables through the method of moving asymptotes (MMA) optimizer can be difficult to control
precisely. Alternatively, smooth structures may be enforced using a fixed filter radius of 1.0 by fixing the
densities of elements along the slender rod. However, this approach falls outside the scope of the ZR problem.

Nevertheless, some well-performing structures can still be obtained according to the data
from Fig. 12, Table 6 lists the best-performing smooth structures and their corresponding more accurate
compliance values.
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Compliance value (C)

Figure 12: Recalculated compliance values of SEMDOT smooth designs for filtering radii between 1.5 to 2.0
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Table 6: More accurate compliance values of smooth structures versus grayscale compliance results under different

volume fractions

Compliance (C)
V*  fmin Smooth structure Grayscale Smooth design

040 16 __-L 1371.647 1513.799
045 16 -——_l 1219.203 1324.818
050 18 -—4 1063.475 1105.081
055 1.7 ; 852.725 880.967
0.60 1.6 _A 763.281 771.376
065 15 A 691.231 690.789
070 1.7 a 605.778 606.428
075 19 a 550.772 546.774
080 2.0 d 514.593 512.134
085 2.0 4 478.933 477.446
090 18 d 447.995 437.092
095 17 d 416.158 419240
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It should be noted that the compliance values of the smooth structures are comparable to those of
grayscale structures for target volume fractions larger than 0.55. On the other hand, significant fluctuations
appear at lower volume fractions, which can be attributed to two main factors: 1) increased geometric
discrepancies between the grayscale and smooth structures due to the higher presence of grayscale elements,
and 2) variations in the filter radius, which can negatively affect results, as illustrated in Fig. 8.

Hand-picking the best-performing smooth structures in SEMDOT, the resulting Pareto front is
visualised in Fig. 13.

1,600

—— Global binary optima (Stolpe & Bendsge, 2011)
—©-SEMDOT (best smooth designs)

1,400

1,200

1,000

800

Compliance (C')

600

400

04 045 05 055 06 065 07 07 08 08 0.9 095

Volume fraction (V*)

Figure 13: Pareto front of best-performing smooth SEMDOT results and the global binary optima [17]

Fig. 13 shows that when the best designs are selected, the more accurate compliance values for SEMDOT
can closely approximate the global binary optima [17] for volume fractions higher than 0.55. At volume
fractions of 0.6 and 0.9, SEMDOT results slightly surpass the global binary optima. This is due to the
smooth boundary structures not being confined to the predefined mesh, allowing for more flexible shapes
for boundary elements. At lower volume fractions, SEMDOT results deviate from global binary optima.

8 Conclusion

This study systematically benchmarks topology optimization methods using both the binary and relaxed
forms of the ZR problem. Within this benchmarking framework, the SIMP method, SIMP with continuation,
and the non-penalized SEMDOT method are compared. Through numerical tests, the main conclusions of
this study are as follows:

1. At comparable grayness levels, SEMDOT produces more optimal solutions for the ZR problem com-
pared to the SIMP and continuation methods, mainly due to the usage of smooth Heaviside function,
whereas SIMP and continuation methods rely on power-law approach. Furthermore, when the volume
fraction is below 0.8, the topologies generated by SIMP (p = 3) differ significantly from those of
SEMDOT, continuation, and VTS methods. Tests indicate that none of the methods can achieve a
continuous transition between the two global optima across the entire range of volume fractions. This
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is particularly challenging for all methods at volume fractions higher than 0.7, where the difference
between the global binary and relaxed optima is minimal.

2. All methods are influenced by the filter radius and mesh discretization, with SIMP and continuation
methods being the most sensitive to changes in these parameters. SEMDOT is less sensitive, with its
numerical results remaining almost consistent across different mesh resolutions and often achieving the
lowest compliance. Notably, for finer meshes, SEMDOT generates structures that are closer to binary
solutions (indicated by lower g values) compared to the other methods.

3. Similar to other binary methods, the smooth designs produced by SEMDOT in the ZR problem can
also become trapped in inefficient local optima due to tie breakage. Although adjusting the filter radius
can partially mitigate this issue, it cannot be completely avoided across all volume fractions. A simple
re-meshing approach used to assess the compliance of smooth designs more accurately shows that for
volume fractions above 0.55, the best smooth design by SEMDOT performs comparably to the global
binary optimum for the ZR problem.

Having a small number of finite elements, simple boundary conditions, and yet a challenging nature,
the ZR problem serves as a convenient test case for different topology optimization methods. Apart from
the above points, a key contribution of this study is the introduction of a simple-to-use benchmarking graph
(Fig.7) for the ZR problem. The proposed benchmarking graph can be used to quickly assess different
topology optimization methods and benchmark them against global solutions and the well-established
SIMP method.

However, this study primarily validates and benchmarks under the assumption of linear elasticity,
while in practical structural design, material and geometric nonlinearities (such as plasticity and large
deformations) often play a critical role. Future research could extend the linear elastic material model to more
complex constitutive relations (e.g., von-Mises plasticity) and adopt Lagrangian formulations to introduce
nonlinear stiffness matrices and large deformation effects in finite element solutions, thereby enhancing the
overall applicability of benchmarked methods.

Acknowledgement: Jiye Zhou appreciates the financial support from the school: School of Engineering HDR.
Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm contribution to the paper as follows: Conceptualization, Jiye Zhou, Yun-
Fei Fu and Kazem Ghabraie; methodology, Jive Zhou, Yun-Fei Fu and Kazem Ghabraie; software, Jiye Zhou; formal
analysis, Jiye Zhou and Kazem Ghabraie; investigation, Jiye Zhou; writing—original draft preparation, Jiye Zhou;
writing—review and editing, Jiye Zhou, Yun-Fei Fu and Kazem Ghabraie; visualization, Jiye Zhou and Kazem Ghabraie;
supervision, Kazem Ghabraie. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The data that support the findings of this study are available from the first author
upon reasonable request.

Ethics Approval: Not applicable.
Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References

1. Zhu]J, Zhou H, Wang C, Zhou L, Yuan S, Zhang W. A review of topology optimization for additive manufacturing:
status and challenges. Chin J Aeron. 2021;34(1):91-110.
2. Mallick PK. Materials, design and manufacturing for lightweight vehicles. Woodhead Publishing; 2020.



3250

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21
22.

23.
24,

25.

26.

27.

28.

Comput Model Eng Sci. 2025;143(3)

Wu ], Aage N, Westermann R, Sigmund O. Infill optimization for additive manufacturing-approaching bone-like
porous structures. IEEE Trans Visual Comput Grap. 2017;24(2):1127-40.

Xie YM, Steven GP, Xie Y, Steven G. Basic evolutionary structural optimization. London, UK: Springer; 1997.
Yang XY, Xie YM, Steven GP, Querin OM. Bidirectional evolutionary method for stiffness optimization. ATAA J.
1999;37(11):1483-8.

Huang X, Xie Y. Convergent and mesh-independent solutions for the bi-directional evolutionary structural
optimization method. Fin Elem Anal Des. 2007;43(14):1039-49.

Bendsge MP. Optimal shape design as a material distribution problem. Struct Optim. 1989;1:193-202.

Sigmund O. On benchmarking and good scientific practise in topology optimization. Struct Multidiscipl Optim.
2022;65(11):315.

Bulman §, Sienz J, Hinton E. Comparisons between algorithms for structural topology optimization using a series
of benchmark studies. Comput Struct. 2001;79(12):1203-18.

Rozvany G. Exact analytical solutions for some popular benchmark problems in topology optimization. Struct
Optim. 1998;15:42-8.

Lewinski T, Rozvany G. Exact analytical solutions for some popular benchmark problems in topology optimization
II: three-sided polygonal supports. Struct Multidis Optim. 2007;33(4):337-49.

Lewinski T, Rozvany G. Exact analytical solutions for some popular benchmark problems in topology optimization
III: 1-shaped domains. Struct Multidiscip Optim. 2008;35(2):165-74.

Stolpe M. On models and methods for global optimization of structural topology. Stockholm: Matematik; 2003.
Nguyen MN, Hoang VN, Lee D. Topology optimization framework for thermoelastic multiphase materials
under vibration and stress constraints using extended solid isotropic material penalization. Compos Struct.
2024;344:118316.

Banh TT, Lieu QX, Kang J, Ju Y, Shin S, Lee D. A novel robust stress-based multimaterial topology opti-
mization model for structural stability framework using refined adaptive continuation method. Eng Comput.
2024;40(2):677-713.

Nguyen MN, Hoang VN, Lee D. Multiscale topology optimization with stress, buckling and dynamic constraints
using adaptive geometric components. Thin-Walled Struct. 2023;183:110405.

Stolpe M, Bendsee MP. Global optima for the Zhou-Rozvany problem. Struct Multidis Optim. 2011;43:151-64.
Zhou M, Rozvany G. On the validity of ESO type methods in topology optimization. Struct Multidiscip Optim.
2001;21(1):80-3.

Edwards C, Kim H, Budd C. Investigation on the validity of topology optimisation methods. In: 47th
ATAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; 2006 May 1-4;
Newport, RI, USA.

Edwards C, Kim H, Budd C. An evaluative study on ESO and SIMP for optimising a cantilever tie—beam. Struct
Multidis Optim. 2007;34:403-14.

Rozvany GI, Querin OM. Combining ESO with rigorous optimality criteria. Int ] Veh Des. 2002;28(4):294-9.
Rozvany GI. A critical review of established methods of structural topology optimization. Struct Multidis Optim.
2009;37:217-37.

Ghabraie K. The ESO method revisited. Struct Multidis Optim. 2015;51:1211-22.

Munk DJ, Vio GA, Steven GP. A bi-directional evolutionary structural optimisation algorithm with an added
connectivity constraint. Fin Elem Anal Des. 2017;131:25-42.

Sigmund O, Aage N, Andreassen E. On the (non-)optimality of Michell structures. Struct Multidis Optim.
2016;54:361-73.

Sigmund O. Morphology-based black and white filters for topology optimization. Struct Multidis Optim.
2007;33:401-24.

Tarek M, Ray T. Adaptive continuation solid isotropic material with penalization for volume constrained
compliance minimization. Comput Methods Appl Mech Eng. 2020;363:112880.

Fu YE Long K, Rolfe B. On non-penalization SEMDOT using discrete variable sensitivities. ] Optim Theory Appl.
2023;198(2):644-77.



Comput Model Eng Sci. 2025;143(3) 3251

29.

30.

31.

32.

33.

34.

35.

36.

37

38.

39.

40.

41.

42.

43.

Fu YF, Long K, Zolfagharian A, Bodaghi M, Rolfe B. Topological design of cellular structures for maximum shear
modulus using homogenization SEMDOT. Mater Today Proc. 2024;101:38-42.

Kandemir V, Dogan O, Yaman U. Topology optimization of 2.5 D parts using the SIMP method with a variable
thickness approach. Procedia Manuf. 2018;17:29-36.

Rozvany GI, Zhou M, Birker T. Generalized shape optimization without homogenization. Struct Optim.
1992;4:250-2.

Sigmund O, Petersson J. Numerical instabilities in topology optimization: a survey on procedures dealing with
checkerboards, mesh-dependencies and local minima. Struct Optim. 1998;16:68-75.

Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S. Heaviside projection based topology
optimization by a PDE-filtered scalar function. Struct Multidis Optim. 2011;44:19-24.

Wang F Lazarov BS, Sigmund O. On projection methods, convergence and robust formulations in topology
optimization. Struct Multidiscip Optim. 2011;43(6):767-84.

Fu YE Rolfe B, Chiu LN, Wang Y, Huang X, Ghabraie K. SEMDOT: smooth-edged material distribution for
optimizing topology algorithm. Adv Eng Softw. 2020;150:102921.

Fu YF, Rolfe B, Chiu LNS, Wang Y, Huang X, Ghabraie K. Smooth topological design of 3D continuum structures
using elemental volume fractions. Comput Struct. 2020;231:106213.

Fu YE Ghabraie K, Rolfe B, Wang Y, Chiu LN. Smooth design of 3D self-supporting topologies using additive
manufacturing filter and SEMDOT. Appl Sci. 2020;11(1):238.

Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O. Efficient topology optimization in MATLAB
using 88 lines of code. Struct Multidiscip Optim. 2011;43:1-16.

Bendsoe MP, Sigmund O. Topology optimization: theory, methods, and applications. Berlin/Heidelberg, Germany:
Springer Science & Business Media; 2013.

Zhou J, Wang Y, NS L, Ghabraie K. On suitability of a simplified sensitivity estimation for partial elements in
topology optimisation. Eng Optim. 2025;1-23. d0i:10.1080/0305215X.2025.2466825.

Szab6 B, Babuska I. Finite element analysis: method, verification and validation. Hoboken, NJ, USA: John Wiley
& Sons Inc.; 2021.

Hua Y, Luo L, Le Corre S, Fan Y. Heat spreading effect on the optimal geometries of cooling structures in a manifold
heat sink. Energy. 2024;308:132948.

Huang X, Xie YM. A further review of ESO type methods for topology optimization. Struct Multidisc Optim.
2010;41(5):671-83.


https://doi.org/10.1080/0305215X.2025.2466825

	Systematic Benchmarking of Topology Optimization Methods Using Both Binary and Relaxed Forms of the Zhou-Rozvany Problem
	1 Introduction
	2 Global Solutions for Binary and Relaxed Forms of the ZR Problem
	3 Measuring the Relaxedness of a Solution
	4 Topology Optimization Methods to Be Benchmarked
	5 Benchmarking SIMP and Grayscale Designs in SEMDOT
	6 Solutions Based on Different Mesh Discretizations
	7 Benchmarking the Smooth Designs in SEMDOT
	8 Conclusion
	References


