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ABSTRACT: Wireless Sensor Networks (WSNs) play a critical role in automated border surveillance systems, where
continuous monitoring is essential. However, limited energy resources in sensor nodes lead to frequent network failures
and reduced coverage over time. To address this issue, this paper presents an innovative energy-efficient protocol
based on deep Q-learning (DQN), specifically developed to prolong the operational lifespan of WSNs used in border
surveillance. By harnessing the adaptive power of DQN, the proposed protocol dynamically adjusts node activity and
communication patterns. This approach ensures optimal energy usage while maintaining high coverage, connectivity,
and data accuracy. The proposed system is modeled with 100 sensor nodes deployed over a 1000 m × 1000 m area,
featuring a strategically positioned sink node. Our method outperforms traditional approaches, achieving significant
enhancements in network lifetime and energy utilization. Through extensive simulations, it is observed that the network
lifetime increases by 9.75%, throughput increases by 8.85% and average delay decreases by 9.45% in comparison to
the similar recent protocols. It demonstrates the robustness and efficiency of our protocol in real-world scenarios,
highlighting its potential to revolutionize border surveillance operations.

KEYWORDS: Wireless sensor networks (WSNs); energy efficiency; reinforcement learning; network lifetime; dynamic
node management; autonomous surveillance

1 Introduction
Many sensor nodes in wireless sensor networks (WSNs) [1] send and receive information about things

like temperature, humidity, pressure, and movement. These sensor nodes can monitor and report data to
a central sink node or base station since they are outfitted with sensing, processing, and communication
capabilities. WSNs gather and monitor huge geographical areas in real-time in distant or inaccessible areas.
Many fields have discovered uses for WSNs because of their adaptability, affordability, and scalability. These
fields include healthcare, industrial automation, environmental monitoring, and military surveillance. The
deployment of WSNs in these diverse fields highlights their significance in gathering critical information
and facilitating informed decision-making. WSNs are an integral part of the Internet of things (IoT) [2].

Border surveillance is a crucial aspect of national security, aimed at preventing illegal activities
such as smuggling, human trafficking, and unauthorized border crossings. Traditional methods of border
surveillance involve the use of physical barriers, patrols by security personnel, surveillance cameras, and
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radar systems. While these methods provide a degree of security, they are often limited by their coverage
area, high operational costs, and susceptibility to environmental factors. Advancements in technology have
led to the integration of unmanned aerial vehicles (UAVs) and satellite imagery, enhancing the ability to
monitor vast and remote border areas. However, these methods still face challenges in terms of continuous
real-time monitoring and resource allocation. Fig. 1 shows a general scenario of the use of WSNs in terrestrial
border surveillance.

Figure 1: A general border surveillance wireless sensor network scenario

WSNs represent a highly effective technological approach for enhancing border surveillance. By
enabling continuous, autonomous monitoring across large geographical regions, WSNs provide com-
prehensive oversight of border areas. Strategically deploying sensor nodes along boundary lines allows
the construction of a robust surveillance framework capable of identifying and reporting unauthorized
intrusions or suspicious movements in real-time. These networks are engineered to sense and transmit
critical environmental data such as motion, vibrations, and other activity-specific signals, thereby improving
situational awareness. Moreover, due to their resilience, WSNs remain functional in harsh climates and chal-
lenging terrains where conventional methods may underperform. The consistent and adaptive monitoring
facilitated by WSNs substantially strengthens border security efforts, all while minimizing the reliance on
human personnel.

Reinforcement Learning (RL) has emerged as an effective paradigm for optimizing the operation and
control of WSNs [3]. Within these networks, RL algorithms have been successfully applied to manage
core challenges such as optimal node deployment, efficient resource usage, and intelligent communication
scheduling. Through interaction with their operating environment, RL agents learn adaptive strategies that
enhance key network performance indicators, including energy efficiency, data throughput, and latency.
For example, RL has been instrumental in dynamically modifying sensor node transmission power, timing
data transmission events, and managing topological adjustments in response to evolving conditions. These
practical implementations underscore the value of RL in improving the adaptability and efficiency of WSNs,
particularly in unpredictable and dynamic deployment environments.

One of the most critical challenges facing WSNs in border surveillance is energy efficiency. As sensor
nodes are generally powered by batteries, their maintenance–especially in remote or inaccessible areas–
poses significant logistical difficulties. Consequently, extending the network’s operational lifespan through
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smart energy management becomes vital. Without such measures, high energy demands can result in early
node failure, thereby degrading coverage, weakening communication links, and ultimately compromising
the surveillance infrastructure.

To address this concern, reinforcement learning presents an intelligent and flexible solution. By
designing Deep Q Learning (DQN)-driven energy aware routing protocols, it becomes possible to make real-
time decisions about node activity and transmission behaviors. DQN-based models learn to conserve energy
by determining optimal communication routes, adjusting transmission power as needed, and selectively
activating nodes based on operational requirements. These capabilities help preserve battery life without
sacrificing coverage or performance, resulting in significantly improved network sustainability. The protocol
uses IEEE802.15.4 and is specifically designed for WSNs by incorporating energy models, duty cycling,
and node-level decisions that reflect typical WSN constraints. Although the protocol is tailored for border
surveillance applications using WSNs, its core learning mechanism can be adapted to other sensor-based or
IoT deployments with similar energy and topology constraints.

The primary contributions of this paper can be summarized as follows:

1. A new energy-efficient protocol has been proposed based on reinforcement learning, specifically
tailored to extend the lifespan of wireless sensor networks deployed in border surveillance applications.

2. A dynamic mechanism is introduced to govern node behavior and communication schedules in
real-time, ensuring minimal energy usage while maintaining essential network parameters such as
connectivity, coverage, and data fidelity. The dynamic mechanism refers to the Q-learning agent
embedded in each node that, at each round, evaluates its current state (energy level, neighbor status,
coverage need) and selects an action (sleep, forward, sense, or idle) to minimize long-term energy
consumption while sustaining network performance.

3. The proposed protocol has been tested via simulation on a network of 100 sensor nodes distributed
across a 1000 m × 1000 m area, reflecting realistic deployment scenarios.

4. Experimental results reveal considerable improvements over existing techniques, with enhancements
including a 9.75% increase in network lifetime, an 8.85% gain in throughput, and a 9.45% reduction in
average packet delay.

This paper is organized as follows: Section 2 provides a comprehensive literature review, highlighting
recent studies and identifying gaps in the field. In Section 3, we outline the system model that serves as
the foundation for our research. Section 4 details the proposed approach, including the methodology and
techniques utilized. Section 5 presents an in-depth analysis of the simulation findings, featuring performance
metrics and comparisons with existing methods. Finally, Section 6 concludes the paper by summarizing the
main contributions and suggesting directions for future research.

2 Literature Review
The applications of WSNs in a variety of domains, such as industrial automation, healthcare, military

surveillance, and environmental monitoring, have been thoroughly investigated in this literature review.
The deployment of WSNs in border surveillance presents unique challenges and opportunities, particularly
concerning energy efficiency and network lifetime.

Akyildiz et al. (2002) conducted one of the earliest comprehensive surveys of WSN architecture,
applications, and design challenges [4]. Their study methodically reviewed the state of WSNs, identifying
fundamental technical issues such as severe energy constraints, limited computation, and the need for
scalability and robustness. As a result, they highlighted energy efficiency as a paramount concern and
outlined potential techniques (e.g., duty cycling and data aggregation) to mitigate power consumption. The
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strength of this seminal work lies in its broad, foundational insight–it established the key research problems
and performance metrics that guided subsequent WSN research–however, it did not propose concrete
solutions or quantitative evaluations. Studies such as [5] have highlighted the advantages of WSNs in terms
of scalability, flexibility, and cost-effectiveness for large-scale monitoring applications. Authors in [6] present
the use of edge computing in IoT networks.

Recent progress in the domain of WSNs has placed significant emphasis on improving system perfor-
mance under adverse and dynamic operating conditions. For instance, the work of [7] examines multiple
energy-conserving protocols aimed at extending the lifetime of WSNs. They reported that specialized routing
techniques–for instance, forming a data-gathering chain among nodes with greedy neighbor selection–can
drastically reduce redundant transmissions and thus conserve node energy. The results compiled in their
survey showed that protocols like Power-Efficient Gathering in Sensor Information Systems (PEGASIS)
achieve significantly longer network lifetime (by aggregating data to minimize communication cost) relative
to shortest-path routing. The advantage of this work is its comprehensive taxonomy and comparative analysis
of routing approaches, clearly identifying the strengths of each category (chain-based routing compresses
data effectively, cluster-based routing balances load). Likewise, reference [8] delves into the integration of
machine learning techniques to optimize various operational aspects of WSNs. When applied to border
surveillance, WSNs demonstrate their capability to detect and relay unauthorized movements in real time,
thereby enhancing situational awareness [9].

Conventional border surveillance infrastructures generally rely on a combination of physical barriers,
patrolling personnel, video surveillance, and radar systems. While these tools do provide a level of protection,
they suffer from inherent limitations such as restricted coverage, high maintenance costs, and vulnerability
to environmental disruptions [10]. The incorporation of advanced technologies, such as unmanned aerial
vehicles (UAVs) and satellite-based observation, has contributed to expanding surveillance reach in remote
border zones [11]. Nonetheless, maintaining uninterrupted real-time monitoring and efficient resource
allocation remains a major concern in such systems [12].

WSNs, in this context, offer multiple advantages. Their ability to function autonomously in isolated or
difficult-to-access regions makes them suitable for persistent border surveillance. These networks facilitate
real-time data acquisition and support adaptive monitoring based on situational needs. Empirical studies
such as [11] confirm the utility of WSNs in tracking unauthorized crossings and illicit activity. Furthermore,
WSNs can be effectively integrated with other surveillance technologies to establish a more resilient and
holistic security framework [13].

The installation of sensor nodes along border areas enables the formation of an extensive surveillance
grid that can continuously scan the surrounding environment. Data collected from such networks is typically
forwarded to a centralized base station for further analysis. This persistent flow of information minimizes
the need for constant manual oversight and enhances the efficiency of border security operations [11].

In recent years, advanced techniques from machine learning have been introduced to WSN problems,
aiming to autonomously improve network decision-making and efficiency.

A notable contribution in this area is the introduction of deep Q-learning by [14], which applies neural
networks to approximate Q-values, thus enabling better decision-making in complex operational spaces.
Within WSNs, RL has been used to dynamically regulate transmission power, organize communication
schedules, and restructure network topology based on current conditions [15].

Energy management remains one of the most pressing challenges in WSN applications, especially
when these networks are deployed in remote areas with restricted access to power infrastructure. Prior
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research, such as [7] and [16], explores different strategies and routing algorithms aimed at reducing energy
consumption and prolonging network longevity.

Reinforcement learning provides a strategic approach to counter this issue by enabling the development
of energy-aware routing protocols. These protocols adapt in real time by modifying transmission behavior
and node activity levels based on environmental feedback [10].

Research outlined in [14] demonstrates how RL can support intelligent routing, energy-efficient power
control, and adaptive duty cycling. These capabilities ensure continuous monitoring while significantly
extending the service life of WSNs [16].

The study by [17] offers a detailed analysis of clustering techniques tailored to heterogeneous WSNs,
aiming to improve energy efficiency. This scheme relies on a probabilistic model that incorporates parameters
such as node density within sensing range and current energy levels–initial, residual, and dynamic. This
clustering approach balances network load distribution and improves overall energy utilization. Simulation
results validated through MATLAB reveal that the protocol surpasses traditional models like Stable Election
Protocol (SEP), especially in terms of network stability and energy performance.

Additional contributions, such as those by [18], explore the concept of uneven clustering to address
the hotspot problem and optimize energy usage. Their analysis supports dynamic cluster creation and
hierarchical clustering as effective means to extend network lifetime while maintaining balanced energy
distribution across the WSN.

The authors in [19] used Circle Rock Hyrax Swarm Optimisation and Levy flight-based momentum
search to propose energy-efficient clustering and routing for wireless body area networks (WBANs). These
approaches optimize cluster head selection and routing patterns by enhancing energy use and decreasing
delays in healthcare monitoring.

A method to prevent primary user emulation attacks in Cognitive radio sensor networks (CRSNs) was
suggested by [20] using adaptive sensing. By using hardware-based validation and dynamically adjusting
sensing procedures, their solution improves energy economy, throughput and minimises the likelihood of
sensing errors.

The authors in [21] investigated the use of WSNs in precision farming, emphasising communication and
data collecting that uses less energy. They highlighted how IoT and AI technology may be used for sustainable
agriculture monitoring and highlighted issues like energy harvesting and scalability.

Several energy-efficient protocols for WSNs have been proposed in recent years to prolong network
lifetime. For instance, Saxena et al. [22] developed a fuzzy logic-based routing protocol for environmental
monitoring WSNs, which allows nodes to periodically enter low-power sleep modes to conserve energy. Their
hardware-implemented protocol achieved notable energy savings, though the fuzzy rules require careful
tuning and the approach was evaluated in a relatively static scenario. Reinforcement learning has also been
applied to WSNs–Kesavan et al. [23] introduce an RL-based multi-task scheduling model at the network
edge for Internet-of-Everything applications, focusing on secure and efficient data collection. This method
improved energy efficiency (achieving 89% energy efficiency and low latency) by dynamically allocating
tasks, but it is tailored to Internet of Everything (IoE) edge computing rather than sensor node routing.
Other recent works have explored dynamic clustering and sleep scheduling. For example, El-Shenhabi
et al. [24] discussed an RL-based clustering and sleep scheduling algorithm that yields a 77% extension
in network lifetime over traditional schemes, thanks to adaptive sleep cycles; however, the complexity of
their compressive data gathering technique may limit scalability. In the medium access control (MAC) layer
domain, Khan et al. [25] employ deep RL to optimize duty cycling (RL-BMAC), obtaining 35% better energy
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efficiency and 58% higher throughput than the baseline B-MAC protocol. In Tables 1 and 2, we summarize
key related works, comparing their techniques, performance, and limitations.

Table 1: Summary of related works

Reference Method Results Strengths Limitations
Akyildiz et al.

(2002) [4]
Survey of WSN

architecture
Identified key

challenges
Foundational

insight
No concrete

solution
Yick et al.
(2008) [5]

Scalability in WSN Suited for large
monitoring

Cost-effective Outdated scenarios

Donta et al. [6] Edge computing in
IoT

Enhanced control Real-time
decisions

Limited to IoT

Pantazis et al.
(2013) [7]

Routing protocol
survey

PEGASIS more
efficient

Routing taxonomy Qualitative only

Kumar et al.
(2019) [8]

Machine Learning
(ML) in WSNs

Improved
operations

Adaptive
techniques

Complexity of ML

Mostafaei et al.
(2018) [9]

WSN in
surveillance

Detected
intrusions

Real-time alerts Needs integration

Zhao (2010) [10] Sensing model Reduced energy
use

Environment-
adaptive

Needs validation

Ibrahim et al.
(2020) [11]

UAV in border
zones

Extended reach Remote
monitoring

Expensive
infrastructure

Sami and Chun
(2016) [12]

Satellite border
surveillance

Continuous data Automated
coverage

Resource-intensive

Bhadwal et al.
(2018) [13]

Smart surveillance Real-time tracking Holistic framework No RL component

Mnih et al.
(2015) [14]

Deep Q-learning Better decisions Neural
Q-approximation

Not WSN specific

Alsheikh et al.
(2014) [15]

RL for control Dynamic topology Real-time
adaptability

Training stability

Wang et al.
(2015) [16]

Energy-aware
routing

Increased life Efficient protocols Hardware not
tested

Tripathi et al.
(2022) [17]

Duty cycling in
WSN

Longer life, better
coverage

Scenario optimized Limited prototype

Sharma et al.
(2024) [18]

Uneven clustering Hotspot avoidance Balanced energy Needs testing

Poornima et al.
(2024) [19]

Hyrax + Levy
optimization

Better routing in
WBAN

Reduced delay High complexity

Ram et al.
(2023) [20]

Adaptive sensing
in CRSN

Prevented attacks Secure and
energy-efficient

Focused on CRSN
only

Aggarwal et al.
(2024) [21]

WSN in agriculture Sustainable
monitoring

AI for precision Energy harvesting
challenge

Saxena et al. [22] Fuzzy routing Energy savings Sleep scheduling Static rules, tuning
needed

(Continued)
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Table 1 (continued)

Reference Method Results Strengths Limitations
Kesavan et al. [23] RL edge

multi-tasking
89% energy
efficiency

Secure IoE control Not for routing

El-Shenhabi
et al. [24]

RL clustering/sleep 77% more lifetime Adaptive cycles High complexity

Khan et al. [25] RL-BMAC
protocol

58% higher
throughput

Energy-efficient
MAC

MAC-specific only

Table 2: Simulation parameters

Parameter Value
Learning rate (α) 0.1

Transmission energy (Eel ec) 50 nJ/bit
Number of nodes 20, 40, 60, 80, 100

Discount factor (γ) 0.9
Network area 1000 m × 1000 m

Sink node position Coordinates (0,0)
Exploration rate (ε) 0.1

Free space model (ε f s) 10 pJ/bit/m2

Multipath model (εm p) 0.0013 pJ/bit/m4

Threshold distance (d0) 87 m
Packet size 512 bytes

Research Gap
Despite significant advancements in WSNs and reinforcement learning, there remains a critical need

to address the issue of energy consumption in border surveillance applications. Current methods, while
effective in certain scenarios, often fall short in providing sustained energy efficiency and network longevity.
This paper proposes a novel reinforcement learning-based energy-efficient protocol aimed at prolonging the
lifetime of border surveillance WSNs. To improve the efficiency of border security operations, the suggested
approach fills the current research gap by improving the WSN system’s energy usage while preserving high
performance in terms of coverage, connection, and data accuracy.

3 System Model
This section outlines the modeling framework used to simulate the WSN for border surveillance. It

provides the network architecture, deployment assumptions, and the energy consumption model employed
for transmitting, receiving, and processing data within the network. These models form the foundation for
implementing and evaluating the proposed Q-learning based energy efficient protocol.
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3.1 Network Architecture
The network’s 100 sensor nodes are evenly spaced within a 1000 m × 1000 m region. At one corner of the

space, precisely at coordinates (0, 0), lies the sink node, which is in charge of data processing and aggregation.
The starting energy level E0 of every sensor node is the same.

3.2 Energy Consumption Model
Energy sensing and communication are both included in the energy consumption model. Reference [26]

provides the energy needed to send a k-bit packet across a distance d.

Etx(k, d) =
⎧⎪⎪⎨⎪⎪⎩

k ⋅ Eel ec + k⋅ ε f s ⋅d2 if d < d0

k ⋅ Eel ec + k⋅ εm p ⋅d4 if d ≥ d0
(1)

In the definition of the threshold distance, represented by d0, the energy dissipation factors of the free
space and multipath fading channel models are represented by epsilon f s and epsilonm p , respectively, while
the energy wasted per bit to run the transmitter or receiver circuit is represented by Eel ec .

d0 =
√

ε f s

εm p
(2)

The energy consumed to receive a k-bit packet is:

Erx(k) = k ⋅ Eel ec (3)

4 Proposed Method
This section presents the design and operation of the proposed DQN based energy efficient protocol

for WSNs deployed in border surveillance. The method leverages DQN to dynamically manage node
activity, transmission power, and communication decisions in real time. Detailed descriptions of the learning
framework, state-action representations, reward formulation, and learning algorithm are provided in the
following subsections.

4.1 Overview
The proposed method employs deep Q-learning (DQN) to dynamically manage the activity and

communication patterns of the sensor nodes to minimize energy consumption while maintaining network
performance. The DQN agent at a node learns an optimal policy to balance the trade-off between energy
efficiency, coverage and connectivity.

4.2 Reinforcement Learning Framework
The reinforcement learning framework consists of the following elements:

• State Space: The state space S represents the energy levels of all sensor nodes and their relative positions
to the sink node.

• Action Space: The action space A includes actions such as adjusting transmission power levels, changing
active/inactive states of nodes, and selecting communication paths.

• Reward Function: The reward function R is designed to penalize high energy consumption and reward
actions that extend network lifetime while maintaining coverage and connectivity.
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4.3 State Representation
Each state st ∈ S at time t is represented as a vector:

st = [E1(t), E2(t), . . . , E100(t), d1(t), d2(t), . . . , d100(t)] (4)

where Ei(t) is the residual energy of node i at time t, and di(t) is the distance of node i from the sink node
at time t.

4.4 Action Representation
The action at ∈ A at time t is a vector indicating the adjustments made to the nodes, such as transmission

power levels and active/inactive states:

at = [P1(t), P2(t), . . . , P100(t), A1(t), A2(t), . . . , A100(t)] (5)

where Pi(t) is the transmission power level of node i at time t, and Ai(t) is the active state (1 for active, 0
for inactive) of node i at time t.

The transmission power level Pi(t) for node i at time t can be calculated using the following equation:

Pi(t) = Pmin + (Pmax − Pmin)(
di(t)
dmax

)
ϕ

(Ei(t)
Einit

)
χ

( 1
LQi(t)

)
ψ

( 1
Hi(t)

)
ω

(6)

where:

• Pmin and Pmax are the minimum and maximum transmission power levels, respectively.
• di(t) is the distance of node i from the sink node at time t.
• dmax is the maximum communication range.
• Ei(t) is the residual energy of node i at time t.
• Einit is the initial energy of the nodes.
• LQi(t) is the link quality of node i at time t.
• Hi(t) is the number of hops from node i to the sink node at time t.
• ϕ, χ, ψ, ω are weighting factors that determine the importance of each parameter. We have considered

all the values equal to 1.

4.5 Reward Function
The reward function R(st , at) is defined as:

R(st , at) = −(κ
100
∑
i=1

Etx , i(t) + μ
100
∑
i=1

Erx , i(t)) + ν ⋅Coverage(t) + ξ ⋅Connectivity(t) (7)

where κ, μ, ν, ξ are weighting factors that balance the importance of energy consumption, coverage, and
connectivity. Etx , i(t) and Erx , i(t) are the transmission and reception energy consumptions of node i at time
t. Coverage and connectivity are functions that measure the performance of the network. We have considered
κ = 0.5, μ = 0.5, ν = 1 and ξ = 1.

Coverage at time t is a measure of how much of the monitored area is being covered by the active sensor
nodes. It can be defined as the ratio of the effective area covered by the sensor nodes to the total area that
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needs to be monitored, considering factors such as the sensing range, probability of detection, and overlap
of coverage areas. The equation for coverage is given by:

Coverage(t) =
∑Nactive(t)

i=1 (πr2
i ⋅ Pd(i , t)) − Aoverlap(t)

Atotal
(8)

where:

• Nactive(t) is the number of active sensor nodes at time t.
• ri is the sensing range of sensor node i.
• Pd(i , t) is the probability of detection for sensor node i at time t, calculated as:

Pd(i , t) = Pd0 exp(−di(t)
d0
) (9)

• Aoverlap(t) is the total overlap area covered by multiple sensor nodes at time t.
• Atotal is the total area that needs to be monitored.

Here, Pd0 represents the base probability of detection at zero distance, meaning the probability that
the sensor node i will detect a target if the target is located directly at the sensor node’s position. In ideal
conditions, Pd0 is typically set to 1, indicating maximum detection probability. In this work as well Pd0 is
set to 1. The parameter di(t) is the distance between the sensor node i and the target at time t, and d0 is a
characteristic distance that determines how quickly the detection probability decreases with distance.

The total overlapping area Aoverlap(t) is calculated as:

Aoverlap(t) =
Nactive(t)−1

∑
i=1

Nactive(t)

∑
j=i+1

Aoverlap(i , j, t) (10)

where the overlapping area between two sensor nodes i and j is given by:

Aoverlap(i , j, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if di j ≥ ri + r j

π min(r2
i , r2

j ) if di j ≤ ∣ri − r j ∣
r2

i cos−1 ( d2
i j+r2

i −r2
j

2di j r i
) + r2

j cos−1 ( d2
i j+r2

j−r2
i

2di j r j
)

− 1
2

√
(−di j + ri + r j)(di j + ri − r j)(di j − ri + r j)(di j + ri + r j) otherwise

(11)

where:

• di j is the distance between the centers of the two circles (sensor nodes i and j).
• ri and r j are the sensing ranges of nodes i and j, respectively.

Connectivity at time t refers to the network’s ability to maintain communication paths between sensor
nodes and the sink node. It is defined as the ratio of the number of nodes that can successfully communicate
with the sink to the total number of nodes in the network, considering factors such as energy levels,
communication range, and link quality. The equation for connectivity is given by:

Connectivity(t) =
∑Ntotal

i=1 (1{Ei(t)>Emin} ⋅ ∑
Ntotal
j=1 1{di j≤Rc} ⋅ LQi j(t))

Ntotal
(12)

where:
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• Ntotal is the total number of nodes in the network.
• Ei(t) is the energy level of node i at time t.
• Emin is the minimum energy level required for a node to be considered active.
• di j is the distance between node i and node j.
• Rc is the communication range of the nodes.
• LQi j(t) is the link quality between node i and node j at time t.
• 1{⋅} is the indicator function that is 1 if the condition inside is true and 0 otherwise.

Link quality LQi j(t) can be calculated using the following equation:

LQi j(t) = (RSS i j(t)
RSSmax

)
ζ
⋅ ( SNR i j(t)

SNRmax
)

η

⋅ (PDR i j(t)
PDRmax

)
θ
⋅ ( 1−BER i j(t)

1−BERmin
)

λ

⋅ ( dmax−di j(t)
dmax

)
ε

(13)

where:
• RSSi j(t) is the received signal strength between nodes i and j at time t.
• RSSmax is the maximum possible received signal strength.
• SNRi j(t) is the signal-to-noise ratio between nodes i and j at time t.
• SNRmax is the maximum possible signal-to-noise ratio.
• PDRi j(t) is the packet delivery ratio between nodes i and j at time t.
• PDRmax is the maximum possible packet delivery ratio.
• BERi j(t) is the bit error rate between nodes i and j at time t.
• BERmin is the minimum possible bit error rate (usually close to 0).
• di j(t) is the distance between nodes i and j at time t.
• dmax is the maximum communication range.
• ζ , η, θ , λ, ε are weighting factors that determine the importance of each parameter. We have considered

the values of all these parameters equal to 1.

4.6 Learning Algorithm
The Q-learning algorithm is utilized here, which is a type of model-free reinforcement learning

method. Q-learning aids in determining the optimal policy. The Q-value, represented as Q(st , at), signifies
the expected cumulative reward for performing action at in state st and subsequently following the
optimal policy.

The update rule for Q-learning is formulated as:

Q(st , at) ← Q(st , at) + α [rt + γ max
a′

Q(st+1 , a′) − Q(st , at)] (14)

Here:
• Q(st , at) stands for the current Q-value, indicating the expected cumulative reward of taking action at

in state st and later following the optimal policy.
• α is the learning rate, a parameter that tells the extent to which new experience overrides the old

information. A larger value of α means the agent learns more rapidly by giving more importance to
new experiences.

• rt is the reward got after taking at in st . This reward serves as feedback to the agent about the efficacy of
the action taken.
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• The discount factor, γ, is a measure of the significance of future benefits. While a discount factor close to
0 forces the agent to concentrate more on current benefits, a factor close to 1 rates future rewards almost
as highly as immediate rewards.

• st+1 is the next state the agent moves to after taking action at in state st .
• maxa′ Q(st+1 , a′) represents the maximum Q-value for the next state st+1, considering all possible

actions a′ in that state. This term signifies the best possible cumulative reward the agent can achieve
from state st+1 onwards, based on the current Q-values.

This method refines the Q-values iteratively based on the agent’s experiences. The update rule modifies
the Q-value Q(st , at) by adding a correction term:

α [rt + γ max
a′

Q(st+1 , a′) − Q(st , at)] (15)

It represents the variation between the existing estimate of the Q-value and a revised estimate, which
incorporates both the immediate reward and the maximum anticipated future Q-value, adjusted by the
learning rate α. This update mechanism is referred to as temporal difference (TD) learning. It enables the
learning agent to evolve through interaction with the environment, without requiring a predefined model
of it.

The Q-values are progressively updated by striking a balance between exploration of new actions
and exploitation of already learned behaviors. This iterative refinement guides the agent toward a policy
that yields the highest expected reward over time. Within the Q-learning framework, the exploration rate,
denoted as ε, plays a pivotal role. At the beginning of the learning process, ε is deliberately kept high to
promote exploration of diverse actions and environmental states. As the learning advances, this rate is
systematically reduced, allowing the agent to increasingly rely on the policies it has learned to be effective.
The balance between exploration and exploitation is maintained using an ε-greedy strategy.

Algorithm 1 illustrates the step-by-step structure of the proposed reinforcement learning-based energy-
efficient protocol tailored for WSNs. Initially, a Q-table Q(s, a) is established to store the utility estimates for
each state-action pair, which guides the agent in making decisions based on its experience. The initial state s
is defined by the residual energy levels and positions of the sensor nodes in the network. Essential learning
parameters such as the learning rate α, the discount factor γ, and the exploration rate ε are configured to
control the agent’s behavior during learning.

The agent operates in multiple learning episodes, where each episode comprises several time steps.
During each time step, an action at is selected from the current state st using the ε-greedy approach. Upon
execution of the action, the environment responds by transitioning the agent to a new state st+1, and a
corresponding reward rt is received. The Q-value for the state-action pair (st , at) is updated using the Q-
learning formula, reflecting the most recent experience. The state st is updated to st+1, and the node’s energy
and positional data are refreshed to reflect the new environment state.

Following this, transmission power levels for each node are adaptively adjusted based on multiple
parameters, including remaining battery energy, proximity to the sink node, and the observed link quality.
Duty cycling is applied to dynamically switch nodes between active and inactive states to conserve energy
while maintaining the integrity of the sensing operation. Communication routes are selected by evaluating
several link quality indicators such as signal-to-noise ratio (SNR), packet delivery ratio (PDR), received signal
strength (RSS), and hop count.

To stabilize the learning process, the agent records each transition as a tuple (st , at , rt , st+1) in a
replay buffer. This buffer is later used to sample mini-batches for training, reducing the effect of temporal
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correlations between sequential experiences. For reinforcement learning models that use deep Q-networks
(DQNs), an additional target network is periodically updated to improve learning convergence and avoid
instability. The learning episode concludes prematurely if all sensor nodes exhaust their energy supply,
signaling the failure of the network. At the end of each episode, the exploration rate ε is decayed to encourage
the agent to exploit the learned policies more frequently as training progresses.

Algorithm 1: Reinforcement learning-based energy efficient protocol
1: Initialize Q-table Q(s, a) with initial values
2: Initialize state s representing energy levels and positions of nodes
3: Set parameters: learning rate α, discount factor γ, and exploration rate ε
4: for each round do
5: for each time step t do
6: Choose at from st using ε-greedy policy
7: Execute at then calculate rt and st+1
8: Update Q-value Q(st , at) using the following equation:

Q(st , at) ← Q(st , at) + α [rt + γ max
a′

Q(st+1 , a′) − Q(st , at)]
9: Update state st ← st+1
10: Update energy levels and positions of nodes
11: Adjust transmission power levels based on st+1
12: Manage node duty cycles to conserve energy
13: Optimize communication paths considering link quality LQi j(t)
14: Integrate experience replay and store (st , at , rt , st+1) in replay buffer
15: Perform mini-batch updates from replay buffer to reduce correlation
16: Update target network periodically for stable learning (in case of DQN)
17: if all nodes are dead then
18: Break from loop
19: end if
20: end for
21: Decay exploration rate ε to balance exploration and exploitation
22: end for

5 Simulation and Results
To validate the effectiveness of the proposed reinforcement learning-based energy-efficient protocol,

extensive simulations were conducted. Network simulator 3 was used for this purpose. The number of nodes
varied from 20 to 100 in increments of 20. The simulation environment mimics the real-world scenario of
border surveillance using WSNs. Table 2 shows the simulation parameters.
Rationale for Simulation Parameters: The simulation parameters listed in Table 2 were carefully selected
based on widely accepted values in WSN simulations and reinforcement learning literature to ensure a
balance between energy efficiency, learning convergence, and practical deployment feasibility.

The learning rate (α = 0.1) was chosen to provide a moderate balance between convergence speed and
stability. A higher learning rate might cause instability, whereas a lower value may slow down convergence,
especially in dynamic environments. The discount factor (γ = 0.9) prioritizes long-term rewards, which is
essential in maximizing network lifetime over many rounds.
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The range of node numbers (20 to 100) was selected to study the scalability of the proposed method
under both sparse and dense deployment conditions. This range captures key behaviors such as reduced
connectivity at low densities and increased contention at higher densities.

The network area of 1000 m × 1000 m reflects a realistic border surveillance region. The fixed sink node
at (0,0) simplifies routing evaluation and ensures consistent baseline comparison across trials.

The transmission energy per bit (Eel ec = 50 nJ/bit) aligns with standard energy models in WSN liter-
ature. Similarly, the values for free-space (ε f s= 10 pJ/bit/m2) and multipath fading (εm p= 0.0013 pJ/bit/m4)
models are adopted from the first-order radio model commonly used in energy analysis. The threshold
distance d0 = 87 meters is derived from these two values and represents the switching point between
free-space and multipath channel models.

The exploration rate (ε= 0.1) was chosen to ensure sufficient exploration of actions while progressively
favoring exploitation as learning stabilizes. A very high ε would lead to suboptimal policy learning due to
excessive randomness, whereas a very low value might trap the agent in local optima.

A fixed packet size of 512 bytes was used to simulate uniform data reporting intervals, ensuring fairness
in comparison across protocols.
Impact of Varying Parameters: Altering these parameters would affect the performance and convergence
behavior of the protocol. For example, increasing the packet size would lead to higher energy consumption
per transmission, possibly reducing network lifetime. A larger exploration rate could result in poor conver-
gence of the Q-values, while a smaller one may prevent sufficient policy space exploration. Increasing the
number of nodes without proportionate energy or range adjustments could lead to increased collisions and
delay. Likewise, changing the energy model parameters would significantly affect transmission costs, thereby
impacting the effectiveness of the learned energy-saving policies.

Hence, these values were selected to strike a practical balance between simulation tractability and
realism in WSN-based border monitoring.

5.1 Performance Metrics
The performance of the proposed method is evaluated using the following metrics:

• Packet Delivery Ratio (PDR): The ratio of packets successfully delivered to the sink to the total
packets sent.

• Average Delay: The average time taken for a packet to reach the sink node from the source node.
• Average Remaining Energy after 2000 Rounds: The average energy remaining in the sensor nodes after

2000 rounds of data transmission.
• Throughput: The total number of packets successfully delivered to the sink node per unit time.
• Network Lifetime: The time until the half of the nodes deplete their energy.

5.2 Simulation Implementation Details
To simulate the proposed reinforcement learning-based energy-efficient protocol, the following step-

wise procedure was followed using NS-3.44 on Ubuntu 24:
1. Simulation Setup:

• A custom NS-3 simulation script titled rl1.cc was developed.
• IEEE 802.15.4 MAC/PHY layer was integrated via LrWpanNetDevice.
• 6LoWPAN and Internet Stack modules were used for IP-based communication.



Comput Model Eng Sci. 2025;143(3) 3853

2. Application Layer Implementation:
• A custom application class named RlApp was created, inheriting from ns3::Application.
• Each sensor node was equipped with:

– A socket bound to the sink node address for packet delivery.
– A reference to its BasicEnergySource object.
– Initialization of energy level and unique node ID for tracking.

3. Reinforcement Learning Logic:
• Q-learning was used with discrete state-action representation.
• State Space: Discretized based on remaining energy as a fraction of initial energy.
• Action Space: Includes abstract transmission behavior actions.
• Reward Function: Designed to maximize utility using:

(a) Negative energy consumption,
(b) Coverage efficiency (detection probability and sensing radius),
(c) Connectivity awareness (number of neighbors in communication range).

• Q-table is updated at each transmission step using standard temporal difference (TD) learning.
4. Energy Consumption Modeling:
• Instead of using LrWpanRadioEnergyModel, energy consumption was manually managed.
• A fixed transmission energy cost of 50 nJ/bit was deducted from the node’s remaining energy.
• For each packet of 512 bytes, energy consumed was computed as:

Etx = k × 8 × 50 × 10−9 (16)

where k is the packet size in bytes.
5. Packet Logging and Debugging:
• All transmissions and receptions were logged via std::cout, showing packet size, node ID, and

energy state.
• Guard checks were added to avoid pointer dereferencing errors after simulation ends.
• The simulation was configured to stop gracefully upon encountering invalid pointer states.

5.3 Results and Discussion
The simulation results are compared with traditional methods [17] to demonstrate the advantages of the

proposed Q-learning-based protocol. To provide clarity, the discussion is organized into subsections based
on five key performance metrics.

5.3.1 Packet Delivery Ratio (PDR)
Fig. 2 shows the Packet Delivery Ratio (PDR) for increasing numbers of nodes. As the number of nodes

increases, the PDR initially increases due to better connectivity and redundancy, as more nodes provide
more alternative paths for data packets to reach the sink. However, with further increases in the number of
nodes, the PDR decreases due to increased collisions and congestion, which occur when too many nodes are
transmitting simultaneously. The proposed method outperforms the existing method in all scenarios mainly
because of the consideration of coverage and connectivity in the calculation of the reward function. Another
reason for this improvement is the dynamic adjustment of node activity and transmission power, which helps
in reducing packet collisions and ensuring efficient data transmission by adapting to the current network
conditions, optimizing routes, and managing the load on individual nodes.
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Figure 2: Packet Delivery Ratio (PDR) for different numbers of nodes compared with [17]

5.3.2 Average Delay
Fig. 3 illustrates the average delay experienced in the network. As the number of nodes increases, the

average delay initially decreases due to improved path availability to the sink and reduced hop counts.
However, beyond a certain point, the delay starts to increase due to higher network traffic and the network
becomes congested with too many nodes attempting to communicate simultaneously. The proposed method
consistently achieves lower delays compared to existing method because it optimizes the communication
paths using coverage and connectivity terms, which further consider important parameters such as link
quality, distance to the sink, residual energy, and node density. These optimizations ensure that data
packets take the most efficient routes, avoiding congested or low-quality links, thereby reducing overall
network delay.

Figure 3: Average delay for different numbers of nodes compared with [17]
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5.3.3 Average Remaining Energy after 2000 Rounds
Fig. 4 depicts the average remaining energy in the sensor nodes after 2000 rounds. As the number of

nodes increases, the energy consumption is more evenly distributed, leading to higher average remaining
energy across the network. The proposed method shows higher remaining energy compared to the existing
method due to its efficient energy management strategies, such as adaptive transmission power adjustment,
which optimizes energy usage based on node location, remaining battery life and several other parameters.
Additionally, the method utilizes dynamic node activity scheduling to ensure that only necessary nodes
are active at any given time, further conserving energy. This comprehensive approach to energy efficiency
ensures that the sensor nodes maintain higher energy levels over prolonged periods, thereby extending the
overall network lifetime and improving its sustainability.

Figure 4: Average remaining energy after 2000 rounds for different numbers of nodes compared with [17]

5.3.4 Throughput
Fig. 5 shows the throughput of the network for different numbers of nodes. As the number of nodes

increases, the throughput increases continuously due to the higher volume of data being transmitted. The
proposed method achieves the higher throughput compared to the existing method. This improvement is
primarily due to the consideration of coverage and connectivity in the calculation of the reward function,
which ensures optimal routing and efficient utilization of network resources. Additionally, the dynamic
adjustment of node activity and transmission power reduces packet collisions and congestion, leading to
a more stable and higher data transmission rate. The adaptive nature of the proposed method allows it to
handle increased network traffic effectively by optimizing communication paths based on real-time network
conditions. This approach ensures that the network maintains high throughput even as the number of
nodes grows.
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Figure 5: Throughput for different numbers of nodes compared with [17]

5.3.5 Network Lifetime
Fig. 6 presents the network lifetime for increasing numbers of nodes. Network lifetime is taken as the

time since the starting of the simulation to the time at which the first node becomes dead. The proposed
method significantly extends the network lifetime compared to existing method. This improvement is due to
several factors. Firstly, the reinforcement learning-based approach continuously adapts to the network’s state,
optimizing node activity and communication patterns. Dynamic transmission power adjustments reduce
unnecessary energy expenditure. Further, the reward function incorporates coverage and connectivity,
balancing operational efficiency and energy conservation. This balance prevents overuse of certain nodes and
distributes energy consumption evenly across the network. Then the adaptive node activity control prioritizes
nodes with higher energy levels for data transmission, while nodes with lower energy levels are put into
sleep mode or assigned less frequent transmission duties, conserving energy. Finally, optimal path selection
avoids energy-depleted nodes and chooses the most energy-efficient routes, maintaining connectivity and
performance over a longer period. The proposed method’s ability to learn from real-time conditions ensures
the network remains functional for an extended duration, showcasing the effectiveness of the reinforcement
learning-based protocol.

Figure 6: Network lifetime for different numbers of nodes compared with [17]
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6 Conclusion
A reinforcement learning-based energy-efficient protocol is designed in this work to enhance the

operational lifetime of WSNs for border surveillance. By leveraging the adaptive capabilities of reinforcement
learning, the protocol dynamically optimizes node activity and communication patterns, ensuring optimal
energy consumption without compromising coverage, connectivity, or data accuracy. Simulation results
demonstrate significant improvements, with a 9.75% increase in network lifetime, an 8.85% boost in
throughput, and a 9.45% reduction in average delay compared to recent similar protocols. This percentage
improvement for each parameter is calculated using averaging the percentage improvement for each value
of the corresponding parameters. These improvements directly translate to enhanced operational longevity
and reliability in real-world border surveillance deployments. For instance, an increase in network lifetime
reduces the frequency of battery replacement or re-deployment missions, which is particularly valuable
in inaccessible or high-risk areas. Higher throughput and lower delay ensure faster and more reliable
detection and reporting of security breaches or unauthorized intrusions along borders. Despite its promising
performance, the proposed approach has certain limitations. First, the simulation assumes static sensor
nodes and a fixed sink node; mobility and environmental dynamics have not yet been considered. Second, the
DQN algorithm, although lightweight, may still present computational overhead for resource-constrained
sensor nodes if scaled beyond moderate network sizes. Lastly, current evaluation is limited to simulation
environments; real-world hardware implementations and field validations are required to assess robustness
under actual deployment conditions. Future research will focus on incorporating advanced reinforcement
learning techniques and addressing practical deployment challenges to further enhance the robustness and
scalability of the protocol for real-world border surveillance applications. This approach offers a promising
solution to revolutionize border surveillance operations.
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