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ABSTRACT: The Tactile Internet of Things (TIoT) promises transformative applications—ranging from remote
surgery to industrial robotics—by incorporating haptic feedback into traditional IoT systems. Yet TIoT’s stringent
requirements for ultra-low latency, high reliability, and robust privacy present significant challenges. Conventional
centralized Federated Learning (FL) architectures struggle with latency and privacy constraints, while fully distributed
FL (DFL) faces scalability and non-IID data issues as client populations expand and datasets become increasingly
heterogeneous. To address these limitations, we propose a Clustered Distributed Federated Learning (CDFL) archi-
tecture tailored for a 6G-enabled TIoT environment. Clients are grouped into clusters based on data similarity and/or
geographical proximity, enabling local intra-cluster aggregation before inter-cluster model sharing. This hierarchical,
peer-to-peer approach reduces communication overhead, mitigates non-IID effects, and eliminates single points of
failure. By offloading aggregation to the network edge and leveraging dynamic clustering, CDFL enhances both
computational and communication efficiency. Extensive analysis and simulation demonstrate that CDFL outperforms
both centralized FL and DFL as the number of clients grows. Specifically, CDFL demonstrates up to a 30% reduction
in training time under highly heterogeneous data distributions, indicating faster convergence. It also reduces commu-
nication overhead by approximately 40% compared to DFL. These improvements and enhanced network performance
metrics highlight CDFL’s effectiveness for practical TIoT deployments. These results validate CDFL as a scalable,
privacy-preserving solution for next-generation TIoT applications.
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1 Introduction
The Tactile Internet of Things (TIoT) integrates haptic and kinesthetic feedback into traditional IoT

systems—long confined to text, audio, and video exchanges—to enable real-time, touch-sensitive interac-
tions across healthcare [1], robotics, and entertainment domains [2,3]. Unlike conventional IoT’s low-power
sensor networks, TIoT connects sensors, actuators, and robots to deliver simultaneous tactile and visual
feedback, demanding ultra-low latency, high reliability, robust security, and continuous availability [4,5].
Predicting tactile signals is crucial: by forecasting contact events or force changes, intelligent agents can
preemptively adjust, thereby reducing delay and enhancing reliability in teleoperation, robotic manipulation,
and remote surgery [6]. These stringent requirements and dynamic conditions drive the need for novel
architectures and methods [7,8].

Fifth-generation (5G) networks, which offer up to 20 Gbps and 8 ms latency under ideal conditions,
fall short of the terabit-scale bandwidth and submillisecond latency needs of TIoT for applications such
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as holographic communication and autonomous vehicle swarms [9,10]. Limitations in spectral efficiency,
device density support, and energy use further expose 5G’s inadequacy for ultra-reliable low-latency
communication (URLLC).

To bridge this gap, researchers explore enhancements and new paradigms: Federated Learning (FL) [11],
network slicing [12,13], virtualized network functions [14,15], and software-defined networking [16]. In the
transition from 5G to sixth-generation (6G), cloud-native designs with dynamic resource allocation and
edge computing will enable Clustered Distributed Federated Learning (CDFL) for TIoT, satisfying URLLC
demands via adaptive client clustering and localized processing [17]. Advanced 6G slicing techniques create
tailored virtual networks for TIoT without degrading overall performance [18].

We propose a CDFL framework for TIoT that reduces the time to convergence, mitigate the Non-IId
and scalability challenges, and saves the cost. Thus, it will realize future green and sustainable production
factories [19]. While FL has proven effective in smart healthcare, transportation, Unmanned Aerial Vehicle
(UAV), and industrial IoT [20], TIoT’s unique latency and heterogeneity challenges require DFL and
clustering to reduce overhead, enhance privacy, and improve convergence under non-IID data [21–24].

Building on our prior in-content aware FL design for 6G [25], this study delivers the first evaluation of
DFL and CDFL in TIoT settings. We model their computational and communication costs, demonstrating
that while DFL matches centralized accuracy at higher overhead, CDFL mitigates degradation as scale and
data heterogeneity grow, offering compensatory mechanisms for system underperformance.

The main contributions of this work are:

1. Developing a fully distributed peer-to-peer architecture and workflow for TIoT applications.
2. Comparing the proposed DFL framework with traditional centralized FL architectures across various

performance metrics.
3. Proposing a CDFL architecture for IID scenarios to enhance scalability and streamline communication

and aggregation processes.
4. Addressing non-independent and identically distributed (non-IID) data challenges by grouping clients

into homogeneous clusters based on dataset similarities.
5. Analyzing the computational and communication cost factors associated with both DFL and

CDFL solutions.

This paper is organized as follows. Section 2 reviews the related work. Section 3 presents the proposed
fully distributed and clustered FL architectures along with their operational workflows. Section 4 details
the methodology, including the use case, dataset generation, and experimental settings. Section 5 provides
a comprehensive evaluation of the proposed approaches, analyzing their performance and complexity.
Finally, Section 6 concludes the paper and outlines potential future research directions. Fig. 1 detailed
this structure.
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Figure 1: Paper structure

2 Related Works
Several recent works in the literature have addressed the communication mechanisms of DFL. One such

mechanism is peer-to-peer (P2P) communication—where participants interact directly without a central
authority. For instance, reference [26] extended the primary centralized FL algorithm, federated averaging
(FedAvg), to demonstrate the potential of P2P communication by presenting Decentralized Federated
Trusted Averaging (DeFTA), a decentralized FL framework that serves as a plug-and-play replacement for
FedAvg. Behera et al. [27] leveraged a consensus algorithm called RAFT for aggregator selection to add a
secure layer for model delivery within the network. However, this approach inevitably increases communi-
cation costs, which reference [28] sought to reduce. Similarly, to enhance communication efficiency, Gupta
et al. [29] employed a graph theoretical framework.

All the aforementioned works assume homogeneous devices, whereas realistic environments inher-
ently exhibit heterogeneity. To address this challenge, other techniques have been proposed. For example,
reference [30] tackled non-IID scenarios by partitioning them into multiple IID clusters and performing
aggregation within each cluster. Meanwhile, Liu et al. [31] combined adaptive clustering with a hierarchical
DFL structure for Internet of Vehicles (IoV) applications. On a similar note, Wu et al. [32] incorporated
deep reinforcement learning-based adaptive staleness control along with a heterogeneity-aware client-edge
association strategy to improve system efficiency and mitigate the adverse effects of staleness without
compromising model accuracy. Furthermore, Chen et al. [33] addressed slow convergence and poor learning
performance by proposing a framework that enhances learning fairness and system efficiency via model
exchanges among local clients and adaptive aggregation based on performance.
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Clustering is one of the most common strategies to mitigate the impact of heterogeneity, offering
advantages in both scalability and communication efficiency. The principal objective of our work is to develop
an efficient CDFL architecture suitable for large-scale and non-IID scenarios.

Recent literature makes significant contributions to this field, aligning with our goal of developing
efficient solutions for non-IID scenarios. For example, Solat et al. [34] focused on improving the convergence
speed and efficiency of mobile traffic prediction models while minimizing the impact of stragglers. Wang
et al. [35] introduced a Clustered Federated Learning (CFL) paradigm combined with model ensemble
techniques within the Open Radio Access Network (O-RAN) architecture to enhance the generalization
performance of FL models. In addition, Morafah et al. [36] exploited inference similarity among client
models to form clusters based on the similarity of their learning tasks, while Zhao et al. [37] proposed an
ensemble FL paradigm to reduce the divergence caused by non-IID data by forming individual clusters
without explicitly grouping them based on inference similarity.

To address scalability issues, Chen et al. [38] employed hierarchical aggregation to improve communica-
tion efficiency and introduced mechanisms such as authenticated encryption, a random pairwise key scheme,
and key revocation to enhance security. In the realm of network anomaly detection in large-scale networks,
Sáez-de-Cámara et al. (2023) [18] leveraged unsupervised device clustering combined with autoencoder
neural networks.

The trade-off between performance (in terms of model accuracy) and communication overhead
has been the primary focus of several studies [39–41]. For example, reference [39] utilized hierarchical
aggregation to balance these factors, whereas Ouyang et al. [40] adopted cluster-wise straggler dropout and
correlation-based node selection. Additionally, the concept of dynamic clustering, which adapts to real-time
environmental changes and determines the optimal cluster partitioning without pre-specifying the number
of clusters, was explored in [42].

In all cases, due to the distributed nature of FL processing, both computing and communication
overheads must be meticulously considered. Although some of the aforementioned works provide analyses
of one or both of these complexity factors, a more in-depth evaluation is warranted—and is provided herein.
Furthermore, to the best of our knowledge, existing works still rely on a central server as the final aggregator
in the FL process, an approach that not only increases communication costs but also compromises reliability.
Our work offloads the entire aggregation process to the network edge (TIoT clients) in a fully P2P manner,
leveraging their capabilities and reducing network burdens. In addition, we integrate this solution with the
envisioned 6G enablers, thereby underscoring the advantages of our proposed framework.

Table 1 presents a comparative analysis of our proposed CDFL architecture against state-of-the-art
approaches cited in the literature. The table highlights key metrics and innovations, emphasizing the unique
advantages of the CDFL framework in terms of scalability, non-IID data handling, and communication
efficiency within 6G-enabled TIoT environments.

Table 1: Comparative analysis of CDFL against state-of-the-art FL architectures

Approach Key features Scalability Non-IID
handling

Comm.
overhead

Central
server

Ref.

Existing Approaches
Non-IID
clustering

Breaks non-IID data into
IID clusters

Moderate Partial High Yes [30]

(Continued)
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Table 1 (continued)

Approach Key features Scalability Non-IID
handling

Comm.
overhead

Central
server

Ref.

Hierarchical
DFL for IoV

Adaptive clustering with
edge hierarchy

High Partial Moderate Yes [31]

Inference
similarity
clustering

Clusters clients via model
similarity

Low Yes High Yes [36]

Ensemble
FL

Reduces divergence via
ensemble clusters

Moderate Yes Moderate Yes [37]

Hierarchical
aggregation

Secure hierarchical
aggregation

High No Low Yes [38]

Cluster-wise
straggler
dropout

Straggler mitigation via
correlation

Moderate Partial Moderate Yes [40]

Dynamic
adaptive

clustering

Dynamic cluster partitioning High Partial Moderate Yes [42]

Proposed CDFL Architecture

CDFL

● Clustering based on data
similarity/geography
● Fully decentralized P2P
aggregation
● 6G-enabled edge
computing and slicing
● Intra/inter-cluster
hierarchical aggregation
● Comprehensive cost
analysis

High Yes Low No This
Work

3 The Proposed Architectures
This section provides a detailed examination of the lower layer, emphasizing the capability for clients

to independently perform learning and inference tasks prior to engaging the virtual Edge and Core compo-
nents. Additionally, a portion of the aggregation process is offloaded to the client side, thereby conserving
valuable resources at the edge. Accordingly, our approaches focus on cross-device FL to maintain data privacy
and reduce communication overhead as well as computational resources on the access network—an aspect
that is critical for TIoT applications. In this context, we outline two principal approaches: one for a fully
distributed P2P FL solution and another that enhances DFL through CDFL.

It is important to note that the term Fully Distributed emphasizes that the raw data remain stored at
their sources, namely the tactile devices, rather than on any Edge or Core network entities. Although the
clustering mechanisms and related coordination tasks for aggregation may leverage select Virtual Network
Functions (VNFs), the primary focus remains on ensuring that data storage is localized.
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3.1 Fully Distributed FL P2P Architecture
This section details the proposed architecture for fully distributed FL using the P2P method. Initially,

we review the reference centralized FL architecture, which serves as the baseline for comparison.
Fig. 2 illustrates the foundational centralized FL architecture where each client trains its local model,

then upload it to the central server to be aggregated. Once the aggregation is completed, the global model
will be downloaded to each client. The Algorithm 1 outlines its primary steps which will be used in the
experiment for implementing the centralized method as a baseline architecture. The process commences
with the initialization of the global model weights wg0 and proceeds iteratively over multiple rounds. In each
round, a predetermined number of clients m is randomly selected from the available pool. Each selected
client k then updates its local model weights in parallel based on the current global model wg , as depicted in
Algorithm 2. Subsequently, the updates from the clients are aggregated to form the new global model weights
using the following equation:

wg = ∑
k∈St

(nk

nt
) ⋅w(k)

l (1)

where nk denotes the number of data points held by client k and nt represents the total number of
data points across the selected clients. This weighted aggregation ensures that each client’s contribution is
proportionately reflected in the updated global model.

Figure 2: Centralized federated learning

Algorithm 1: Centralized federated learning
Output: Updated global model weights wg

1 Initialize global model weights wg ← wg0 ;
2 for each round t = 1, 2, . . . do

(Continued)



Comput Model Eng Sci. 2025;143(3) 3867

Algorithm 1 (continued)
3 Determine the number of clients to participate in this round, m;
4 Select a random set of m clients, St;
5 foreach client k in parallel from St do
6 Download the global model wg from the server;
7 Update client model weights: wl ← LocalModelUpdate(k, wg);
8 Upload the updated local model to the central server;
9 end
10 Aggregate client updates to update global model weights:

wg ←∑k∈St (
nk
nt
) ⋅w(k)

l
11 end
12 return wg

Algorithm 2: Local model update function
Input: Client index k, Initialize global model weights wg ← wg0

1 Split client k’s data into batches of size B
2 for each local epoch i from 1 to E do
3 for each batch b in batches do
4 Update local model weights: wl ← average(wl , wg0);
5 end
6 end
7 return Updated local model weights wl

Fig. 3 presents the fully decentralized P2P FL architecture where each client shares its model after
local training to other peers to be aggregated locally and build the global model. In this P2P framework,
Algorithm 3 illustrates the distributed learning process executed across multiple client devices. Each client
independently initializes its local model and sets the required hyper-parameters, then trains its model on the
locally stored data by performing forward and backward passes to update its weights. Instead of transmitting
model parameters to a central server, clients share their parameters with randomly selected peers and
perform averaging to update the model weights. After each round of local training and aggregation, clients
validate their models on local validation sets. This iterative cycle of local training, P2P communication, and
aggregation continues over several global epochs. A convergence check is performed at each round; training
is halted once the average accuracy across clients surpasses a predefined threshold, otherwise, the process
iterates until convergence is achieved.



3868 Comput Model Eng Sci. 2025;143(3)

Figure 3: Fully distributed federated learning

Algorithm 3: P2P fully decentralized federated learning
Output: Updated global model weights wg

1 Initialize global model weights wg ← wg0 ;
2 for each round t = 1, 2, . . . do
3 Determine randomly selected clients St for this round;
4 W ← [], N ← []; // Local weights and data sizes
5 foreach client k in parallel from St do
6 w(k)

l ← Copy of global weights wg ;
7 Train w(k)

l on local data W ← w(k)
l , N ← nk

8 end
9 Aggregate local weights to update global model:

wg ←∑k∈St (
nk
nt
) ⋅w(k)

l
Broadcast global weights wg to all clients;

10 end
11 return wg

Table 2 shows the advantages of leveraging the P2P DFL rather than conventional CFL.

Table 2: Comparison between CFL and P2P DFL

Metric Centralized federated learning
(CFL)

P2P distributed federated learning
(DFL)

Reliability Dependent on a central server; single
point of failure

Eliminates central server; no single point
of failure

Availability Limited by the central server’s
availability

Increased by distributing workloads
across multiple nodes

Security Central server aggregates model,
increasing risk

Enhanced privacy, no single entity has
access to all models

Bandwidth
cost

High communication cost to and from
central server

Reduced cost by leveraging local
communications and private networks

(Continued)
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Table 2 (continued)

Metric Centralized federated learning
(CFL)

P2P distributed federated learning
(DFL)

Core network’s
occupancy

High occupancy due to centralized
processing

Offloads processing to the network edge,
reducing core occupancy

3.2 Clustered Distributed Federated Learning
In fully distributed P2P FL, two pivotal challenges emerge: scalability and non-IIDness. As the number

of clients increases, the overhead associated with communication and computation escalates, resulting in
prolonged convergence times. This scalability issue can severely hinder the practical deployment of FL in
large-scale environments [23]. Moreover, non-IIDness—characterized by varying levels of data heterogeneity
among clients—deteriorates the learning process [43], often leading to suboptimal model performance and
uneven learning progress across the network.

To address these challenges, we propose a clustering approach that partitions a large community of
clients into smaller groups based on selected criteria. As illustrated in Fig. 4, a cluster that initially contains
clients with diverse dataset sizes is subdivided into smaller clusters where each cluster comprises clients
with similar dataset sizes. In our investigation, we consider physical proximity as one grouping criterion and
additionally explore clustering based on data heterogeneity. The benefits of clustering include:

1. Improved Scalability: Clustering significantly enhances the scalability and overall performance of FL
architectures by reducing the number of clients involved in each training round.

2. Enhanced Convergence Efficiency: Partitioning clients into clusters according to proximity or data
similarity mitigates communication overhead and accelerates convergence.

3. Effective Handling of Non-IID Data: Grouping clients with similar data distributions addresses non-
IID challenges by ensuring that models are trained on more homogeneous data subsets.

4. Improved Model Performance: This approach fosters faster convergence, yields superior model
accuracy, and enhances robustness.

Figure 4: CDFL non-IIDness aware
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The integration of CDFL with the 6G architecture is motivated by its capability to address key challenges
posed by next-generation networks, including ultra-low latency, terabit-per-second data rates, massive
device connectivity, and heterogeneous data distributions. Academic studies consistently highlight the
synergy between FL-based approaches such as CDFL and the architectural innovations envisioned for 6G
networks [44,45]. In a 6G environment, CDFL can be organized logically based on criteria such as geographic
location or data distribution similarity. Recent works have leveraged complex algorithms such as federated
K-means [46] or the Federated Fuzzy c-Means Algorithm (FFCM) [47]. Regardless of the specific algorithm
employed, we consider two grouping strategies: vertical, where all cluster members are associated with the
same edge node, and horizontal, where cluster members may belong to different edge nodes, as depicted
in Fig. 5. Table 3 provides a comparative analysis between the vertical and horizontal strategies.

Figure 5: 6G Environment for CDFL

Table 3: Key differences between vertical and horizontal grouping strategies in CDFL

Grouping Strategy Vertical Horizontal
Basis ● Geography/Edge Proximity

● Clients under same edge node
● (e.g., factory floor robots)

● Data/Application Logic
● Clients across edge nodes
● (e.g., medical vs. industrial sensors)

Advantages ● Ultra-low latency (local P2P)
● Minimal core network dependency
● Simplified resource management

● Task-specific specialization
● Scalable for heterogeneous clients
● Efficient for non-IID data

Limitations ● Inflexible for mobility
● Limited cross-cluster sharing
● Redundant in dense deployments

● Higher coordination overhead
● Needs advanced SDN
● Risk of uneven cluster sizes

(Continued)
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Table 3 (continued)

Grouping Strategy Vertical Horizontal
6G Integration ● SDN manages local topologies

● URLLC slices for intra-cluster
● SDN orchestrates cross-domain
● Application-tailored slices

Fig. 6 illustrates the intra-cluster and inter-cluster aggregation processes for both vertical and horizontal
approaches. In the vertical scenario—where all clients are associated with the same edge node (base
station)—the green circles denote the intra-cluster aggregations, while the orange circle represents the inter-
cluster aggregation among cluster heads. The both aggregations are conducted using the same P2P FL process
we defined in the Algorithm 3. A similar notation applies to the horizontal scenario, with the distinction that
clients are associated with different edge nodes.

Figure 6: Intra-cluster and inter-clusters aggregation for vertical and horizontal

From software-defined networking (SDN) perspective, hardware and data storage (comprising trainers
and aggregators) are allocated in the infrastructure (data plane), while the control plane comprises all
coordinating and managing entities, and the application plane resides at the top. The key components
involved in the clustering and aggregation processes are described below:

1. Clustering Coordination
(a) Edge Coordinator: A Virtual Network Function (VNF) responsible for coordinating client nodes

during the aggregation process. It ensures alignment among clients and orchestrates the aggre-
gation steps under one or more edge base stations, thereby serving as the conduit to other
network planes.

(b) Cluster Manager: A comprehensive component for managing the lifecycle of clusters, which
includes several VNFs assigned specific roles:
i. Cluster Construction Module: Constructs clusters based on client data characteristics and

performance metrics. It analyzes client data and locations to determine the optimal cluster-
ing strategy prior to aggregation.
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ii. Cluster Maintenance Module: Monitors existing clusters’ performance and orchestrates
regrouping or reconstruction as needed.

iii. Cluster Head Election Module: Elects cluster heads based on criteria such as intra-cluster
aggregation results, test accuracy, or resource availability.

(c) Network Slicing Module: Utilizes network slicing to optimize resource allocation and performance
across different clusters, particularly when clients and cluster heads are associated with different
edge nodes. This integration enables tailored network slices that meet the unique demands of
various FL tasks while ensuring efficient network communication.

2. Aggregation Process
(a) Intra-Cluster Aggregator: Each client node (i.e., cluster member) shares its local model with other

members on a P2P basis.
(b) Inter-Cluster Aggregator: During inter-cluster aggregation, cluster heads aggregate models from

different clusters, ensuring that the resulting global model reflects the contributions of mul-
tiple clusters. Both aggregation processes leverage the hardware and raw data available at the
client level.

For both vertical and horizontal cases, the workflow of clustering and aggregation is illustrated in Fig. 7.
The flowchart outlines the proposed CDFL architecture workflow, beginning with the selection of a clustering
strategy—either horizontal or vertical. In horizontal clustering, clients with similar data distributions are
grouped together, followed by network slice allocation, local (intra-cluster) model aggregation, cluster head
election, inter-cluster aggregation, and global model distribution. In vertical clustering, clients are grouped
based on complementary features, after which intra-cluster aggregation, cluster head election, cross-cluster
model aggregation, and global model dissemination are executed. Both approaches iterate until model
convergence is achieved, ensuring efficient and scalable learning.

Figure 7: CDFL workflow steps
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The details of intra-cluster and inter-cluster aggregation are provided below.
Intra-Cluster FL

1. Each client trains its local model for a specified number of local epochs.
2. After local training, clients in the same cluster share their local model in a P2P manner.
3. Each client aggregates its global model based on the received models.

Inter-Cluster FL

1. Cluster heads further train their models for a specified number of local epochs.
2. Cluster heads share their local models in a similar P2P way to the first phase.
3. Cluster heads aggregate their models to form a global model until they reach the required convergence.

– The global model is returned to all clients within each cluster.
Algorithm 4 presents a two-phase training process designed to enhance model accuracy. Initially, in the

intra-cluster phase, each client within a cluster trains its local model over a specified number of epochs. The
resulting local models are then aggregated to form a unified cluster model.

Subsequently, cluster heads are selected from each cluster using a Multi-Strategy Fusion Snake Opti-
mizer (MSSO) [48]. MSSO is an advanced meta-heuristic algorithm developed for distributed FL to address
key challenges in inter-cluster communication. By integrating multiple optimization strategies—such as
adaptive mutation, bidirectional search, and dynamic parameter updates—MSSO effectively balances the
trade-off between exploration and exploitation during the cluster head selection process. This method
considers both residual energy and cluster characteristics, ensuring a fair rotation of cluster heads and
preventing the repetitive selection of energy-depleted nodes. Moreover, MSSO adapts to dynamic network
topologies and optimizes inter-cluster separation, thereby reducing communication overhead and improving
model convergence in non-IID data settings. Its flexibility in handling varying numbers of clients and
incorporating newly joined nodes makes it particularly suitable for real-world FL systems with fluctuating
client availability [49]. MSSO shows effectiveness in solving complex cluster heads selection problems,
particularly in energy-constrained environments [48].

In the inter-cluster phase, the selected cluster heads train their models over a designated number
of epochs and subsequently aggregate these models to form a global model. This global model is then
disseminated back to the clients within each cluster for further updates. This two-phase approach leverages
both localized data distributions and broader inter-cluster knowledge sharing, ensuring efficient learning.

Algorithm 4: Intra-cluster and inter-clusters training
Output: Updated global model weights wg

1 Initialize global model weights wg ← wg0 ;
2 Intra-Cluster Phase; // Decentralized P2P within clusters
3 for round t = 1, 2, . . . , Tintra do
4 foreach client k in parallel do
5 for local epoch 1 to E do
6 Train local model: w(k)

l ← LocalUpdate(wg);
7 end
8 Share w(k)

l with cluster members; // P2P communication
9 end
10 foreach cluster c ∈ C do
11 Aggregate models:

(Continued)
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Algorithm 4 (continued)

wc ←∑k∈c
nk
nc

w(k)
l

Select cluster head: chc ←MSSO_Select(c, Eres , ϕ, prevCH);
12 prev_CH ← chc ;
13 end
14 end
15 Inter-Cluster Phase; // Cluster head collaboration
16 for round t = 1, 2, . . . , Tinter do
17 foreach cluster head chc in parallel do
18 for local epoch 1 to Ecluster do
19 Train cluster model: w(c)ch ← LocalUpdate(wc);
20 end
21 Share w(c)ch with other cluster heads // P2P communication
22 end
23 Aggregate cluster head models:

wg ←∑C
c=1

nc
ntotal

w(c)ch
Broadcast wg to all clients;

24 end
25 return wg
26 Function MSSO_Select (c, Eres , ϕ, hist):
27 Initialize candidates with fitness:

f = α Eres
Einit
+ βϕcompactness − γϕseparation − δ∑T

t=1 I(chc ∈ hist)
Apply MSSO optimization; // Bidirectional search + α-mutation

28 Return best chc with Eres > 0.4Einit and chc ∉ hist
29 End Function

Having established the fully DFL and CDFL architectures and workflows 3, we now turn to the
methodology used to validate these designs. In Section 4, we describe the tactile-grasping use case, dataset
generation via the TACTO simulator, and the experimental parameters. Section 5 then presents the results
of these experiments and evaluates the relative performance of centralized FL, DFL, and CDFL in terms of
accuracy, convergence time, and communication/computation costs.

4 Methodology and Experimental Setup
This part describes the use case, used dataset, the simulator, and related settings.

4.1 Dataset and Simulator
There is a notable lack of ready-made datasets for tactile manipulation tasks in machine learning, as

TIoT is an emerging field. To address this gap, researchers initially attempted to utilize commercially available
tactile sensors; however, these sensors proved to be expensive and were primarily designed for industrial
rather than research purposes. As an alternative, an open-source simulator for high-fidelity tactile sensor
simulation was employed to generate realistic touch data for robot arms.

The simulator, known as TACTO [50], is capable of replicating a variety of sensor types and excels in
evaluating the stability of a robot’s grasp through tactile feedback. It offers several advantages, including
high-resolution data, rapid rendering, and flexibility in accommodating different sensor configurations.
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Nevertheless, TACTO may not perfectly capture all aspects of real-world tactile interactions and requires
further validation across diverse robotic applications.

For experimental purposes, TACTO was configured to emulate a two-fingered robotic gripper equipped
with BioTac SP tactile sensors. This setup captured multimodal tactile feedback (RGB, depth, and force
data) during object interactions. For each grasping attempt, the simulator recorded tactile signals under
varying conditions, including different object geometries (cube, cylinder, sphere), surface textures (smooth,
rough), and grasp forces ranging from 0.1 to 5.0 N, thereby replicating the diversity of real-world tactile
scenarios. The sensor data were sampled at 1 kHz, in alignment with TIoT latency requirements, and rendered
into 128 × 128 RGB-D frames using TACTO’s underlying physics engine (PyBullet). Following simulation,
the raw data underwent pre-processing: depth maps were normalized to a [0, 1] range, RGB frames were
converted to grayscale to reduce dimensionality, and temporal sequences were segmented into 500 ms
windows (equivalent to 500 samples per grasp). The final dataset comprised 10,000 samples, partitioned
into 90% training data (stratified by object class and force levels) and 10% testing data. All configuration
details, including sensor parameters and simulation scripts, are publicly documented in TACTO’s repository
to facilitate replication. For our work, we generated a dataset using exclusively tactile data with 10,000 samples
from the simulator, as the inclusion of video data did not yield significant performance improvements; this
sample size was selected as an optimal trade-off between execution speed and model performance.

4.2 Use Case
FL is increasingly applied in IoT environments, especially where the tactile Internet demands ultra-low

latency and high reliability. In smart healthcare, FL enables collaborative training of predictive models on
distributed patient data from wearables and medical devices, preserving privacy and regulatory compliance.
For example, reference [51] highlights how FL empowers decentralized analytics for personalized healthcare
while maintaining data sovereignty and security. In smart cities, FL enhances both security and efficiency
across distributed sensors and edge devices. Recent work by [52] introduces adaptive clustering techniques
within FL to improve security and reduce communication overhead, while blockchain-based FL frameworks
(see [53]) further strengthen trust and transparency in urban IoT systems. Manufacturing also benefits
from FL, particularly in Industry 4.0/5.0 settings where multiple stakeholders need to collaborate without
exposing proprietary data. FL allows manufacturers to develop robust models for predictive maintenance
and quality control jointly [54]. In tactile Internet scenarios, advanced FL architectures enable responsive,
real-time applications like remote surgery and industrial automation by leveraging multi-edge clustering and
AI-driven communication strategies [55,56]. A comprehensive study of such use cases can be found in this
work [19].

A notable example is a robotic arm that manipulates both virtual and physical objects based on remote
operator input, thereby demonstrating the seamless integration of human control and autonomous machine
learning. The tactile data used in this study are sourced from the TACTO simulator [50], a sophisticated tool
designed to emulate tactile sensing environments. In our use case, the predicted tactile signals are fed directly
into the robot’s control loop, allowing the system to adjust its grip or motion trajectory before undesired
events (such as slippage or excessive force) occur. This predictive feedback reduces reaction time and
enhances task success rates, as evidenced by improved performance metrics in related studies [57,58]. Fig. 8
illustrates the integration of the tactile prediction module with the decision-making process.

The CDFL architecture is employed to train a binary classifier designed to predict the success or failure
of a grasping attempt based solely on tactile sensor data. The grasping stability dataset from the TACTO
simulator is used to train and evaluate the CDFL-based model. By using the grasping stability task as a
concrete use case, we validate the effectiveness of the proposed CDFL architecture in enabling efficient and
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accurate tactile-based decision-making for real-world TIoT applications. Accurate prediction of grasping
success or failure has significant implications in robotics, manufacturing, and other domains where reliable
tactile sensing is crucial.

Figure 8: Decision making process

4.3 Settings
For each object grasping attempt (sample), the tactile data consisted of four attributes. This configuration

results from simulating a two-fingered gripper equipped with sensors on both the right and left sides, where
each side captures color and depth information as illustrated in Fig. 9.

Figure 9: Grasping stability use case

After evaluating various attribute combinations, the researchers decided to focus solely on one
attribute—namely, the color information from the right sensor (ColorRight). This decision reduced complex-
ity and saved time, as incorporating additional data did not yield significant performance improvements. For
model training, 90% of the data were allocated for training, with the remaining 10% reserved for testing. The
experiments were executed on Google Colaboratory (Colab), a cloud-based platform that provided Python
execution environments with GPU access, thereby satisfying the computational requirements of the study.
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All experiments were conducted on a local desktop featuring an Intel Core i5 CPU, 8 GB of RAM, and
an Solid-state drive (SSD). The system operated on Windows 10 (64-bit) and utilized Jupyter Notebook with
Anaconda 3.10 and Python 3.10.9. Additionally, NVIDIA CUDA 11.7 was employed in conjunction with an
NVIDIA GeForce RTX 2060 (12 GB memory, 14 Gbps clock speed) to simulate all participants sequentially,
with each client using these physical resources as needed.

Regarding hyperparameters, pre-trained lightweight ResNet models were leveraged. The aggregation
strategy used was FedAvg, with the Adam optimizer. The learning rate was set to 0.001, the batch size to 64,
the number of local epochs to 10, and the global epochs (communication rounds) to 5. The experimental
setup included 5 clients and a test data size of 10%.

5 Results and Evaluation
In this section, we detail the results and provide a comparative discussion of performance metrics

between the legacy centralized FL architecture and the P2P decentralized approach for TIoT applications. We
further examine the CDFL in comparison to DFL, including an analysis of the additional overhead incurred
by clustering.

With the experimental setup now defined (Section 4), we proceed in this section to evaluate the
three architectures. Section 5.1 compares centralized FL against fully distributed FL (DFL), and Section 5.2
examines how clustering (CDFL) mitigates scalability and non-IID challenges. Finally, Section 5.3 analyzes
the computational and communication complexity of each approach.

5.1 DFL Results and Evaluation
5.1.1 Accuracy and Loss

The evaluation focused on validation performance over 50 epochs, with Fig. 10 depicting the validation
accuracy curves and Fig. 11 the validation loss trends. In the CFL setup, validation accuracy climbed steadily
from 0.522 to 0.944, while validation loss fell from 1.45 to 0.13. Under DFL, validation accuracy rose from
0.512 to 0.945—nearly matching the centralized curve in Fig. 10—and validation loss declined from 1.65 to
0.14 as shown in Fig. 11. The centralized FL maintains a modestly lower loss at nearly every epoch (≈0.01–0.20
gap), even as both approaches converge to almost identical accuracy by epoch 50.

Figure 10: Accuracy comparision of centralized and decentralized FL architectures
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Figure 11: Loss comparision of centralized and decentralized FL architectures

These results demonstrate that DFL can achieve the same high validation accuracy as centralized FL,
yet converges slightly faster in loss reduction early on. The sharper early-epoch drop in decentralized loss
suggests that peer-to-peer weight exchanges act like a dynamic ensemble, delivering rapid local refinements
before consensus. CFL’s more gradual loss decline reflects its conservative aggregation, yielding marginally
better stability and slightly lower final validation loss. Given the negligible difference in end-point accuracy
(0.944 vs. 0.945) and the small loss gap, practitioners should choose between centralized and decentralized
FL based on system-level priorities—scalability, privacy guarantees, and communication overhead—rather
than on validation metrics alone.

5.1.2 Time to Convergence
We evaluated the convergence performance of both centralized and decentralized architectures by

measuring the time and number of communication rounds required to reach 90% accuracy, as Figs. 12,
and 13 illustrate. For the ResNet model, the decentralized setup achieved 90% accuracy significantly faster,
with a convergence time of 6443 s compared to 8458 s in the centralized configuration, albeit requiring
more communication rounds (4 vs. 1). ShuffleNet also showed improved convergence in the decentralized
architecture, achieving 90% accuracy in 8369 s vs. 8736 s in the centralized case, and required fewer rounds
(3 vs. 1). EfficientNet demonstrated the most dramatic improvement, with the decentralized setup converging
in 5806 s compared to 10354 s for the centralized setup, while needing 2 communication rounds instead of
1. MobileNet yielded the best overall performance in both architectures, achieving convergence in 5144 s in
the decentralized setup compared to 5877 s in the centralized one, though it required more rounds (3 vs. 1).
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Figure 12: Time to convergence comparison of centralized and decentralized FL architectures

Figure 13: Number of rounds comparison of centralized and decentralized FL architectures

These results highlight that decentralized architectures can significantly reduce convergence time for
reaching 90% accuracy across a range of deep learning models. This advantage is particularly pronounced
in models such as EfficientNet, which exhibited nearly a two-fold decrease in convergence time. However,
this reduction in time comes at the cost of an increased number of communication rounds. This trade-
off may be due to the characteristics of decentralized training, where peer-to-peer communication and
data distribution accelerate individual iterations but necessitate additional rounds for synchronization and
model convergence. These findings underscore the potential of decentralized architectures in minimizing
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convergence time and suggest that further optimization of communication protocols and synchronization
strategies could enhance the overall efficiency and practicality of decentralized FL systems.

5.1.3 Impact of Aggregation with Different Number of Clients
In a standard distributed architecture, local models from all clients are typically aggregated to form

a global model, enabling the system to leverage the full diversity and richness of the combined dataset.
However, an alternative strategy involves selecting only a subset of clients for aggregation, allowing for a
trade-off between communication overhead and model performance. Fig. 14 presents the results for a single
cluster containing 12 clients and a dataset of 1000 samples, evaluated under varying numbers of participating
clients in each aggregation round.

Figure 14: Impact of aggregation with different number of clients

The findings indicate that when fewer clients participate in the aggregation, more communication
rounds are required to achieve the same accuracy level. Nevertheless, all configurations eventually surpassed
the 85% accuracy threshold after approximately 7 rounds. This result underscores the significance of
balancing communication efficiency with model performance when determining the optimal number of
clients to include in each aggregation round. Furthermore, the ideal selection strategy is influenced by
the heterogeneity and representativeness of the data distributed across clients. Carefully choosing clients
that collectively offer a comprehensive view of the data can maintain high accuracy while reducing
communication costs.

5.2 CDFL Results and Evaluation
This section presents a detailed comparison of key performance metrics between DFL and CDFL,

focusing on two primary challenges: scalability and data heterogeneity (non-IIDness). The same simulation
environment, dataset, and configuration described earlier are used here, although each experiment includes
distinct input parameters and assumptions, introduced at the beginning of each analysis. Our focus is on
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the learning dynamics rather than the specifics of the clustering process; thus, we assume certain group
structures and sizes throughout.

5.2.1 Scalability Problem
Scalability Performance Degradation’s Impact:

Scalability in fully decentralized FL is evaluated based on the impact of increasing the number of clients
on convergence performance, measured in terms of the number of global iterations (communication rounds)
required to achieve a fixed test accuracy. As client count increases, so does communication overhead, poten-
tially degrading convergence speed due to the rising frequency and complexity of model synchronization.

Fig. 15 illustrates this effect in the DFL setup with a dataset of 1000 samples, revealing a near-linear
relationship between the number of clients and the time required to reach 90% test accuracy.

Figure 15: Impact of clients’ number on the convergence

Mitigating the Scalability by Clustering:
In contrast, Fig. 16 demonstrates how CDFL effectively mitigates the scalability issue by introducing a

hierarchical training structure composed of intra-cluster and inter-cluster phases, as previously described.
In an experiment involving 12 clients (each with 1000 samples), we compared the time required to achieve
varying levels of accuracy under both architectures.

Time was chosen as the primary comparison metric over communication rounds due to the inherent
structural differences between DFL and CDFL. While DFL employs a single type of communication round
across all clients, CDFL alternates between intra-cluster and inter-cluster communication phases, each
contributing differently to the overall process.
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Figure 16: Time to convergence: DFL vs. CDFL

The results clearly show a significant reduction in convergence time when using the CDFL approach,
highlighting its scalability benefits. Although the advantage narrows slightly at higher accuracy levels,
it remains substantial, reinforcing the effectiveness of clustering in accelerating learning in large-scale,
decentralized environments.
Impact of Clustering on the Communication Overhead:

Table 4, corresponding to Fig. 17, provides important insights into the trade-offs between commu-
nication overhead and accuracy in various CDFL configurations. The data reveals that increasing the
number of clusters leads to a noticeable rise in communication rounds, especially in the second phase
of communication.

Table 4: Communication costs for various CDFL architectures and different accuracies

Accuracy
threshold Clusters 1-Phase communication

rounds
2-Phase communication

rounds

89%
2 clusters 3 0
3 clusters 5 1
4 clusters 5 2

90%
2 clusters 5 0
3 clusters 5 2
4 clusters 5 3

91%
2 clusters 5 2
3 clusters 5 3
4 clusters 5 4
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Figure 17: Communication costs for various CDFL architectures and different accuracies

This second phase—inter-cluster communication—is inherently more expensive due to longer trans-
mission paths between cluster heads, as opposed to the intra-cluster communication of the first phase, which
remains relatively low-cost due to local interactions. For example, when the number of clusters increases from
2 to 4, the second-phase communication rounds required to reach 89% accuracy rise from 0 to 2, reflecting
this additional overhead.

Furthermore, a clear pattern emerges linking accuracy targets to communication cost. Achieving higher
accuracy consistently demands more communication rounds. As an illustration, reaching 91% accuracy with
4 clusters necessitates 4 rounds of second-phase communication, while only 2 rounds are needed for 89%
accuracy. This trend highlights the inherent trade-off between model accuracy and communication efficiency
within CDFL architectures.

Increasing the number of clusters leads to a higher total number of communication rounds across both
phases. While clustering enhances scalability and can accelerate convergence by distributing the training
burden, it also introduces communication complexity—particularly in the inter-cluster phase. These findings
underscore the need to carefully balance clustering granularity against the desired model performance and
communication resource constraints.

5.2.2 Non-IIDness Problem
Proportional Bias Concept:

In practical FL scenarios, variations in client-side performance, data distributions, and computational
resources result in inconsistent local training progress. Such heterogeneity can manifest as a form of bias
when measuring the communication and computation costs. Therefore, it becomes essential to model these
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discrepancies systematically to achieve fair and efficient aggregation or scheduling. In this work, we focus on
the heterogeneity type of the data.

We define the bias level of a client as a normalized measure of its deviation from a reference identical
dataset. Let ψi denote the dataset size (number of samples) for client i, and let ψ̄ represent the reference or
average samples across all participating clients. The deviation of each client from this average is central to
our bias modeling.

To represent the relative deviation proportionally, we introduce the Proportional Bias (PB) as follows:

PBi =
ψi − ψ̄

ψ̄
(2)

Here, PBi captures the normalized deviation of client i’s cdataset size from the average size. A value
of PBi > 0 implies that client i has a higher cost than average (i.e., more biased), while PBi < 0 indicates
a lower-than-average size (i.e., less biased or more efficient). When PBi = 0, the client aligns exactly with
the average.
Derivation Justification:

To contextualize this, consider the bias as a relative difference rather than an absolute one. If we were
to use the absolute deviation ψi − ψ̄, it would not fairly reflect the scale of differences, especially when
comparing across diverse environments. Hence, dividing by the reference size ψ̄ ensures proportional fairness
and allows for meaningful comparison.
Illustrative Example:

Assume three clients with the following sizes:

ψ = {120, 100, 80} (in MB)

Then,

ψ̄ = 120 + 100 + 80
3

= 100

Proportional bias values:

PB1 =
120 − 100

100
= 0.20

PB2 =
100 − 100

100
= 0.00

PB3 =
80 − 100

100
= −0.20

As seen above, client 1 is 20% more than average, client 3 is 20% less, and client 2 is perfectly aligned.
This proportional bias value serves as a foundational metric for subsequent weighting schemes, selection

strategies, or cost-adjusted aggregation mechanisms within the proposed framework.
Impact of proportional bias on the communication overhead:

Fig. 18 illustrates the exponential relationship between the proportional bias and the number of com-
munication rounds required for model convergence. As described earlier, the proportional bias quantifies the
relative deviation of each client’s dataset size from the average. A higher proportional bias implies a greater
disparity, which can severely affect synchronization and model aggregation efficiency in FL.
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Figure 18: Impact of proportional bias on the communication overhead

Fig. 19 presents the performance degradation associated with different levels of proportional bias. It
demonstrates how increased bias results in a significant drop in test accuracy and a prolonged convergence
process. In extreme cases of high bias, the model may not converge within a reasonable number of rounds.

Figure 19: Impact of different proportional bias values on the convergence

In this experiment, we evaluated five distinct bias configurati ons across three levels, with a step
size of 0.2 between successive levels, as detailed in Table 5. Each configuration simulates varying levels of
proportional bias by adjusting the contribution share of clients to the global model. The setup involves six
clients, each capable of contributing up to 2k samples (representing 100% participation). The evaluation
metric is the number of communication rounds required to reach a test accuracy threshold of 70%.

Table 5: Table of bias values ξ and associated levels

Bias value Level 1 Level 2 Level 3
ξ1 100% 80% 60%
ξ2 90% 70% 50%

(Continued)
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Table 5 (continued)

Bias value Level 1 Level 2 Level 3
ξ3 80% 60% 40%
ξ4 70% 50% 30%
ξ5 60% 40% 20%

Mitigating the Non-IIDness performance degradation by Clustering:
This experiment addresses the performance degradation commonly caused by Non-IID data dis-

tributions by grouping clients with similar data characteristics into the same cluster, as previously
described. Fig. 20 presents the test accuracy progression over communication rounds for 12 clients, each
possessing 1000 data samples.

Figure 20: Mitigating the Non-IIDness performance degradation by Clustering

The results clearly demonstrate that incorporating Non-IID awareness into the architecture leads to
significantly improved performance. Specifically, in the 4-cluster configuration, the Non-IID aware design
achieves a smooth and consistent accuracy increase, reaching a peak of 0.85 after 10 communication rounds.
In contrast, the Non-IID agnostic architecture struggles with performance instability, ultimately achieving
a much lower peak accuracy of only 0.57. This contrast highlights the value of designing architectures
that are cognizant of underlying data heterogeneity, as such awareness allows for better optimization
and convergence.

However, the benefits of Non-IID awareness do not scale linearly with the number of clusters. The
experiment reveals a slight performance decline as the number of clusters increases. For instance, the
2-cluster Non-IID aware setup achieves the highest peak accuracy at 0.89. Increasing to 3 clusters leads to
a marginally lower peak of 0.87, and the 4-cluster setup further declines to 0.85. These findings suggest that
while clustering similar clients enhances model accuracy under Non-IID conditions, excessively increasing
the number of clusters may introduce inefficiencies. These could stem from elevated communication costs
or increased complexity in coordinating across multiple clusters, which may outweigh the benefits of finer
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granularity in data grouping. Thus, a balance must be struck between leveraging Non-IID awareness and
managing the operational overhead introduced by clustering.

Our results demonstrate that the CDFL architecture not only improves the accuracy of tactile prediction
but also supports real-time decision-making by providing timely, actionable insights to the control system.
This aligns with findings from recent works, which show that tactile prediction models can be directly
leveraged for closed-loop control in contact-rich tasks [57,58].

5.3 Complexity Analysis
In this section, the modeling of both DFL and CDFL systems will be conducted. results and discussion

of both computing and communication costs will be detailed.

5.3.1 DFL Computing and Communication Costs
Computing Cost:
The computing cost represents the total number of operations the local models perform on the clients

during training. It can be defined as:

Computing Cost =
N
∑
i=1

E
∑
e=1

Bi

∑
b=1

Ops(xi ,e ,b) (3)

where:

• N is the number of clients.
• E is the number of local epochs.
• Bi is the number of batches for client i.
• Ops(xi ,e ,b) is the number of operations performed on the batch b in epoch e by client i.

Communication Cost:
The communication cost accounts for the total data exchanged between the server and clients during

the FL process. It can be defined as:

Communication Cost =
R
∑
r=1
(

N
∑
i=1

UploadSize(Mr) +
N
∑
i=1

DownloadSize(Mr)) (4)

where:

• R is the number of global rounds.
• N is the number of clients.
• UploadSize (Mr) is the size of the model Mr uploaded by each client in round r.
• DownloadSize (Mr) is the size of the model Mr downloaded by each client in round r.

In our experiments, the model size is calculated as follows:

Model Size (MB) =
∑param param.size × param.element_size +∑buffer buffer.size × buffer.element_size

10242 (5)

These equations help us quantify the costs associated with FL, providing a basis for evaluating and
optimizing different FL strategies.

The complexity metric revealed notable differences in both computing and communication costs. In
centralized architectures, ResNet required 5490 operations and had a communication cost of 2133.78 MB,
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whereas in decentralized architectures, it required 27,450 operations and a communication cost of 5334.46
MB. ShuffleNet under centralized architecture demanded 15,210 operations and 242.6 MB in communication,
while the decentralized setup required 76,050 operations and 606.51 MB. For EfficientNet, the centralized
architecture needed 16,200 operations with a communication cost of 772.9 MB, compared to 81,000
operations and 1932.25 MB for the decentralized. Finally, MobileNet required 14,220 operations and 556 MB
in centralized architecture, while the decentralized setup needed 71,100 operations and 1390 MB. Figs. 21
and 22 summarized these facts.

Figure 21: Computing cost comparison of centralized and decentralized FL architectures

Figure 22: Communication cost comparison of centralized and decentralized FL architectures
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The results indicate a significant increase in both computing and communication costs when tran-
sitioning from centralized to decentralized FL architectures. This increase is consistent across all models.
For instance, ResNet and EfficientNet exhibit a fivefold increase in computing operations and more than
a doubling in communication cost in the decentralized setup. This pattern is due to the inherent nature
of decentralized systems, which require more frequent model updates and communication between peers,
leading to higher overhead. The substantial rise in computing cost, particularly for models like ShuffleNet
and MobileNet, underscores the computational inefficiency in a decentralized framework. These results
suggest that while decentralized FL offers better data privacy and eliminates the need for a central server, it
incurs significantly higher operational costs. Balancing these costs with the benefits of decentralized systems
remains a crucial consideration for the practical deployment of FL frameworks.

5.3.2 CDFL Computing and Communication Cost
This part addresses the computing and communication costs of the CDFL and compares it with the DFL

which is detailed in the first part of the experiments section.
Computing Cost:

Computing Cost = (
K
∑
k=1

Nk

∑
i=1

E
∑
e=1

Bi

∑
b=1

Ops(xi ,e ,b)) + (
K
∑
k=1

E
∑
e=1

Bk

∑
b=1

Ops(xk ,e ,b)) (6)

where:

• K is the number of clusters.
• Nk is the number of clients in cluster k.
• E is the number of local epochs.
• Bi is the number of batches for client i.
• Ops(xi ,e ,b) is the number of operations performed on batch b in epoch e by client i.
• Bk is the number of batches for the cluster leader k.
• Ops(xk ,e ,b) is the number of operations performed on batch b in epoch e by cluster leader k.

Communication Cost:

Total Communication Cost = Cdistance + Ccluster + Cintra + Cleader + Cinter + Cfinal (7)

The above equation represents the six factors of communication cost of the CDFL architecture as
detailed below. The used notations are illustrated in Table 6. Some terms involve downloading or uploading
the model where the size of it is calculated by the Algorithm 5.

1. Distance Information Exchange

• Variables:
- N: Total number of clients.
- d: Data size exchanged between two clients during the clustering process.
Formula:

Cdistance = N × (N − 1) × d (8)

2. Cluster Assignment Communication

• Variables:
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- K: Number of clusters.
- n: Number of clients per cluster (assuming equal-sized clusters, n = N

K ).
- m: Size of the cluster membership information.
Formula:

Ccluster = K × n × (n − 1) ×m (9)

3. Intra-Cluster Communication Cost (Phase 1 of Distributed FL)

• Variables:
- R: Number of global rounds.
- Nk : Number of clients in cluster k.
- UploadSize(Mr): Size of the model Mr uploaded by each client in round r.
- DownloadSize(Mr): Size of the model Mr downloaded by each client in round r.
- D1: Smaller distance between clients within the same cluster.
Formula:

Cintra =
R
∑
r=1

K
∑
k=1

Nk

∑
i=1

Nk

∑
j=1, j≠i

(UploadSize(Mr) +DownloadSize(Mr)) × D1 (10)

4. Leader (Cluster Head Selection)

• Variables:
- K: Number of clusters.
- n: Number of clients per cluster (assuming each cluster has 4 clients).
- l : Data size exchanged per client for accuracy information.
Formula:

Cleader = K × n × (n − 1) × l (11)

5. Inter-Cluster Communication Cost (Phase 2 of CDFL)

• Variables:
- R: Number of global rounds.
- D2: Distance between different clusters.
Formula:

Cinter =
R
∑
r=1

K
∑
k1=1

K
∑

k2=1,k2≠k1

(UploadSize(Mr) +DownloadSize(Mr)) × D2 (12)

6. Final Model Distribution Cost

• Variables:
- M: Size of the final model.
Formula:

Cfinal = M × (N − K) × D1 (13)
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Total Communication Cost Formula:

Total Communication Cost = [N × (N − 1) × d]
+ [K × n × (n − 1) ×m]

+
⎡⎢⎢⎢⎢⎣

R
∑
r=1

K
∑
k=1

Nk

∑
i=1

Nk

∑
j=1, j≠i

(UploadSize(Mr) +DownloadSize(Mr)) × D1

⎤⎥⎥⎥⎥⎦
+ [K × n × (n − 1) × l]

+
⎡⎢⎢⎢⎢⎣

R
∑
r=1

K
∑
k1=1

K
∑

k2=1,k2≠k1

(UploadSize(Mr) +DownloadSize(Mr)) × D2

⎤⎥⎥⎥⎥⎦
+ [M × (N − K) × D1]

(14)

Table 6: Notation’s definision

Notation Name of notation
N Total number of clients
K Number of clusters
n Number of clients per cluster
d Data size exchanged between two clients
m Size of cluster membership information
R Number of global rounds

Nk Number of clients in cluster k
UploadSize (M_r) Size of model uploaded by each client in round r

DownloadSize (M_r) Size of model downloaded by each client in round r
D1 Smaller distance between clients within the same cluster
l Data size exchanged per client for accuracy information

D2 Distance between different clusters
M Size of the final model

Algorithm 5: Calculating the model size in PyTorch
Input: Predefined model global_model
Output: Model size in megabytes (MB)

1 Initialize: param_size← 0
2 foreach param in global_model.parameters() do
3 param_size← param_size + param.nelement() × param.element_size()
4 Initialize: buffer_size← 0
5 foreach buffer in global_model.buffers() do
6 buffer_size← buffer_size + buffer.nelement() × buffer.element_size()
7 model_size_all← (param_size + buffer_size) / 10242

8 return model_size_all (in MB)

Fig. 23 highlights the substantial reductions in both computation and communication costs achieved
through the adoption of the CDFL approach. The experiment is conducted with 12 clients, targeting a
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convergence threshold of 90% test accuracy. Assumptions for this scenario include communication distances
of D1 = 0.1 km for intra-cluster exchange, D2 = 1 km for inter-cluster interactions, and an average distance
D = 0.5 km. Additionally, the data file size for tasks such as distance exchange, cluster assignment, and cluster
head selection is set to 1 KB.

Figure 23: Communication and computing cost comparison of DFL vs. CDFL

In the traditional DFL setup, the computation cost is notably high, totaling 1,067,568 units, with a com-
munication cost of 2932.984 units. In contrast, the CDFL approach dramatically reduces the computation
cost to 139,040 units and lowers the communication cost to 1623.248 units. This comparison underscores
the efficiency gains of CDFL, particularly in computation, where the reduction is significantly greater than
in communication.

The pronounced decrease in computation cost can be attributed to the structure of CDFL, which
partitions clients into smaller, localized clusters. This strategy minimizes redundant processing by taking
advantage of intra-cluster data similarities and reducing the volume of data each node must process.
Although communication cost also benefits from this clustering—mainly due to reduced long-distance
interactions—the gains are relatively modest because of the continued need for coordination between
cluster heads during inter-cluster rounds. Overall, the results demonstrate that CDFL offers a compelling
improvement in resource efficiency, especially in computation, making it a suitable choice for scalable and
resource-constrained FL environments.

5.4 Comparison Study
In terms of time to convergence, combined cost metric, and core network overhead; We compare:

• The legacy CFL: where all clients communicate with one central server.
• DFL: peer to peer.
• DistFL [30]: where the CFL occur first inside each cluster first then the CFL happen among cluster heads.
• CDFL: where peer to peer in both intra-cluster and inter-clusters phases.

5.4.1 Combined Cost Metric
We define a Power Consumption Index (PCI) to unify computing and communication costs, validated

by energy measurements from IoT literature like [59], where many factors contribute. For simplicity, we
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assume values on average as follows:

PCI = α ⋅Computing Cost
�����������������������������������������������������������������������������������������������������������

Energy (J)

+ β ⋅Communication Cost
����������������������������������������������������������������������������������������������������������������������������������������������

Energy (J)

(15)

where:

α = 1 × 10−10 J/FLOP

(energy per Floating point operations (FLOP)).

β = 0.5 J/MB

(energy per MB transmitted).

5.4.2 Core Network Overhead
Due to bidirectional client-server communication, CFL imposes a significant load on the core network.

For N clients and R rounds:

Core Traffic (MB) = R ⋅ N ⋅ (UploadSize +DownloadSize) (16)

In contrast, DFL and CDFL eliminate core network dependency by leveraging edge P2P
communication.

5.4.3 Comparison Study Results
Table 7 summarizes the comparison metrics for CFL, DFL, DistFL, and CDFL.

Table 7: Comparison study: CFL vs. DFL vs. DistFL vs. CDFL

Metric CFL DFL DistFL CDFL
Time to 90% acc. (s) 8458 6443 6102 5806

Computing cost (FLOPs) 5490 27,450 10,132 13,904
Communication cost (MB) 2134 5334 3254 1623

PCI (J) 1068 2668 1628 812
Core traffic (MB) 25,605 0 17,432 0

5.4.4 Key Observations
• DFL vs. CFL:

- DFL reduces convergence time by 23.8% (8458 s → 6443 s) but increases PCI by 250% (1068 J →
2668 J) due to P2P overhead.

- Eliminates core network traffic (25,605 MB→0 MB), critical for latency-sensitive TIoT applications.
CDFL vs. DFL:
- CDFL reduces PCI by 70% and accelerates convergence by 9.9% via clustering.
- Retains DFL’s core network independence while mitigating scalability issues.
CDFL vs. CFL:
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- Taking into account the cost of the core traffic, CDFL achieves a comparable power consumption
but with 31.4% faster convergence, higher accuracy, and zero core network load.

CDFL vs. DistFL:
- DistFL outperforms CFL and DFL in terms of energy consumption because of clustering, which

significantly reduces communication cost. But still suffers from core traffic due to central server
aggregation. Overall, CDFL excels in energy consumption and time to convergence.

5.5 Limitations
While our experiments rely on a controlled simulation environment, real-world deployment introduces

additional challenges. These include unstable peer-to-peer links, dynamic client availability, hardware
heterogeneity, and the overhead of real-time synchronization and cluster head coordination. These factors
may affect performance consistency and system scalability in practical TIoT settings. Future work will
address these aspects through testbed-based validation and adaptive protocol design tailored to real-world
network constraints.

Regarding the dataset used, due to the limited availability of robust and publicly accessible TIoT datasets,
we utilized one generated by the simulator explained earlier. After some data processing, it was made
suitable for FL architectures. The conducted experiments were only for small-scale binary datasets. So, the
generalization and applicability for other use cases could be limited.

6 Conclusion
We introduced a CDFL framework tailored for scalable, heterogeneity-aware TIoT. First, we showed that

while fully distributed FL matches centralized FL in accuracy and loss, it boosts privacy and lowers latency
by removing a central server, but at the cost of higher communication overhead and challenges with non-IID
data. To overcome these drawbacks, CDFL groups clients into homogeneous clusters and applies streamlined
aggregation. This design cuts network traffic, speeds up convergence, and improves model accuracy. In
comparative analysis, CDFL outperforms both centralized FL and P2P FL. In comparison with CFL, it
reduces convergence time by 31.4%, and eliminates core-network dependency while ensuring scalability.

Looking ahead, we plan to embed CDFL into a full end-to-end TIoT architecture with dynamic resource
allocation strategies, and explore integration with SDN, blockchain, and network slicing. We also recognize
emerging privacy risks introduced by clustering-such as inferring data similarity from shared updates and
targeting cluster heads-and will harden the system using differential privacy, secure multi-party aggregation,
and Byzantine-resilient protocols. These extensions will be crucial to balance efficiency, scalability, and trust
in real-world TIoT deployments.
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