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ABSTRACT: The exponential expansion of the Internet of Things (IoT), Industrial Internet of Things (IloT), and
Transportation Management of Things (TMoT) produces vast amounts of real-time streaming data. Ensuring system
dependability, operational efficiency, and security depends on the identification of anomalies in these dynamic and
resource-constrained systems. Due to their high computational requirements and inability to efliciently process
continuous data streams, traditional anomaly detection techniques often fail in IoT systems. This work presents a
resource-efficient adaptive anomaly detection model for real-time streaming data in IoT systems. Extensive experiments
were carried out on multiple real-world datasets, achieving an average accuracy score of 96.06% with an execution time
close to 7.5 milliseconds for each individual streaming data point, demonstrating its potential for real-time, resource-
constrained applications. The model uses Principal Component Analysis (PCA) for dimensionality reduction and a
Z-score technique for anomaly detection. It maintains a low computational footprint with a sliding window mechanism,
enabling incremental data processing and identification of both transient and sustained anomalies without storing
historical data. The system uses a Multivariate Linear Regression (MLR) based imputation technique that estimates
missing or corrupted sensor values, preserving data integrity prior to anomaly detection. The suggested solution is
appropriate for many uses in smart cities, industrial automation, environmental monitoring, IoT security, and intelligent
transportation systems, and is particularly well-suited for resource-constrained edge devices.

KEYWORDS: Anomaly detection; streaming data; IoT; IIoT; TMoT; real-time; lightweight; modeling

1 Introduction

The rapid development of the Internet of Things (IoT) and its specialised branches, like Industrial
Internet of Things (IIoT) and the Transportation Management of Things (TMoT), has transformed data-
driven decision-making across various fields, such as smart cities, industrial automation, environmental
monitoring, and intelligent transportation systems. These linked ecosystems generate vast real-time stream-
ing data from heterogeneous sensors and devices. However, for real-time anomaly detection, a necessary
component for ensuring system dependability, operational efficiency, and safety, the inherent resource
constraints of edge devices, such as low computational power, memory, and energy, pose major challenges.
Anomaly detection in IoT, IIoT, and TMoT networks helps to identify unexpected behaviours, including
equipment malfunctions, cyberattacks, environmental hazards, and transportation delays [1]. Furthermore,
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the dynamic nature of concept drift in streaming data and the need for real-time responsiveness, particularly
in resource-limited environments like edge computing platforms and Wireless Sensor Networks (WSN), is
a significant challenge [2].

This work presents a scalable anomaly detection system, especially for IoT, IIoT, and TMoT systems,
whereby real-time anomaly identification is based on predefined sensor thresholds. Anomalies can occur
as isolated outliers in spatial data or as unexpected shifts in time-series trends. The proposed method
combines Principal Component Analysis (PCA) for dimensionality reduction and a Z-score-based outlier
detection mechanism to efficiently flag deviations within a sliding window architecture, allowing contin-
uous streaming data processing. The system also employs linear regression-based imputation to handle
missing or incomplete sensor data, guaranteeing robust anomaly detection even in data gaps, a common
occurrence in IoT networks. The lightweight computational footprint of this approach is advantageous
for low-power edge nodes, Arduino, Raspberry Pi, and other IoT devices with limited resources. PCA
reduces data complexity, while the Z-score method enables fast, statistically driven anomaly detection
without requiring extensive model training. The sliding window mechanism supports real-time data updates,
allowing the system to adapt to evolving data patterns and detect contextual anomalies and point anomalies
in dynamic environments.

This work complements current advancements in anomaly detection systems such as IoT systems,
including quantised autoencoders [3] for intrusion detection in resource-limited devices and Preprocessed
Isolation Forest (PiForest) for streaming data [4]. The proposed anomaly detection system provides a
scalable, real-time, and resource-efficient solution for IoT, IIoT, and TMoT systems. Enhancing anomaly
detection capabilities in resource-constrained environments helps increase system resilience, operational
efficiency, and decision-making accuracy in significant, data-driven applications. The suggested model is
motivated by two factors. Its primary goal is to overcome concept drift, which occurs when previously trained
models lose accuracy over time due to changes in the target variable’s statistical characteristics. Second, it
addresses situations where sensor defects prevent data transmission. The model can nevertheless produce
accurate results in these situations. The following are this paper’s primary contributions:

o A resource-efficient anomaly detection framework intended for real-time monitoring in IoT and
network security environments.

o MLR-based technique estimates missing or corrupted sensor values, preserving data integrity prior to
anomaly detection.

« Following the application of PCA for dimensionality reduction, Z-score-based anomaly detection is
performed to obtain accurate predictions.

o The proposed Algorithm is tested on several real-world datasets.

The paper is organized as follows: Section 2 reviews relevant research and contributions. Section 3
outlines the datasets and methodology used to achieve high detection accuracy and efficiency. In Section 4,
we evaluate performance across multiple datasets, adjusting the sliding window size and threshold
value. Section 5 discusses the findings and their implications, while Section 6 concludes the paper and
suggests future improvements.

2 Related Works

Chatterjee and Ahmed [1] reviewed anomaly detection methods in the IoT, emphasising the increasing
need for reliable detection in sectors like smart cities, healthcare, and network security. They identified
challenges such as managing high-dimensional and multi-modal data, ensuring data privacy, and developing
lightweight models for resource-constrained IoT systems. Jain et al. [4] introduced PiForest, an enhanced
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anomaly detection method that overcomes the limitations of the isolation forest (iForest) algorithm by
incorporating a preprocessing stage and a sliding window mechanism. With the rise of real-time analytics,
traditional batch-oriented Machine Learning (ML) models struggle with scalability and latency. In response,
Jamil et al. [5] developed the Scalable Online ML and Data Mining Algorithms (SOLMA) package. SOLMA
improves Apache FlinK’s capabilities for low-latency processing of continuous data streams by integrating
scalable algorithms for classification, regression, and anomaly detection, making it a vital tool for IoT security
and real-time analytics.

Min-Gyu Kim [6] created an autoencoder-based model for one-class anomaly detection in encrypted
IoT network traffic, showcasing the potential of self-supervised learning in resource-limited scenarios. To
enhance Advanced Persistent Threat (APT) detection in the IloT domain, Kirubavathi and Guruakshya [7,8]
presented an ensemble stacked boosting framework using ML models like Gradient Boost, XGBoost,
LightGBM, and Random Forest, along with a meta-classifier based on Linear Discriminant Analysis (LDA)
to address DDoS and other network attacks. Liu et al. [9] introduced a distributed data streaming strategy
using random projection techniques in a sketch-based framework to enhance PCA-based anomaly detection.
This approach allowed local monitors to perform lightweight data aggregation before sending compressed
data to a centralised Network Operation Center (NOC), significantly reducing computational strain and
memory usage while preserving detection accuracy.

Kumar and Champa [10] proposed a hybrid data analysis system that integrated PCA with an enhanced
k-Nearest Neighbours (kNN) method for efficient outlier detection and sensor data aggregation in IoT
systems. Gupta et al. [11] introduced an LSTM-based framework for detecting elderly falls in smart homes,
focusing on resource-constrained settings. They employed the Synthetic Minority Over-sampling Technique
(SMOTE) to address class imbalances, resulting in an enriched dataset that improved classification perfor-
mance. Their model demonstrated the effectiveness of lightweight DL for real-time monitoring in smart
healthcare and IoT applications. Early anomaly detection in technical systems, especially in manufacturing
automation, is essential for worker safety and reducing downtime and losses. Migenda and Schenck [12]
proposed an improved version of Neural Gas Principal Component Analysis (NGPCA), incorporating
adaptive dimensionality reduction for every local PCA model in response to the challenges presented
by streaming data and concept drift in such situations. Especially in resource-limited technical systems,
traditional anomaly detection techniques such as autoencoders and Gaussian Mixture Models (GMM:s)
either suffer from poor interpretability or computational inefficiency.

Sun et al. [13] presented Dynamic Tensor Analysis (DTA) and its derivative Streaming Tensor Analysis
(STA), which expands conventional matrix decomposition to accommodate higher-order data structures,
such as tensors, while maintaining scalability and efficiency in dynamic contexts. By developing new methods
for approximating total functions over sliding windows in both single-stream and distributed-stream models,
Gibbons and Tirthapura [14] addressed this demand. Their study focused on the sliding window setting,
analysing only the most recent data items. This is essential for applications like network monitoring and
telecommunications, where outdated data loses value. The authors proposed methods to optimise time
and space complexity, enabling accurate estimations of important data and supporting tasks such as traffic
analysis, anomaly detection, and network security monitoring. Time-series data anomaly detection has
been extensively investigated using both unsupervised techniques like clustering and statistical analysis,
and conventional methodologies typically depending on supervised methods, including Support Vector
Machines (SVM) and Decision Trees (DT). However, many of these techniques, meanwhile, are meant for
batch processing and struggle with the specific challenges of real-time streaming data, such as concept drift,
noise, and the need for continuous learning [15].
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Cook et al. [16] examined the challenges of anomaly detection in IoT systems, such as high dimen-
sionality, contextual dependencies, noise, and concept drift. They reviewed various detection methods, from
traditional statistical techniques to advanced ML models like Recurrent Neural Networks (RNNs) and LSTM,
categorising anomalies into point, contextual, and collective types. The authors highlighted the growing
importance of unsupervised and semi-supervised learning for real-time anomaly detection and highlighted
the need for scalable, resource-efficient models that can adapt to changing conditions in IoT applications.
Lietal. [17] proposed a lightweight framework for unsupervised network anomaly detection that combines
deep autoencoding with density estimation, improving detection performance over baseline models on
intrusion detection datasets. Vazquez et al. [2] examined anomaly detection techniques in streaming data,
considering issues like non-stationary data and concept drift. They evaluated eight algorithms for accuracy,
memory use, and parameterisation across different conditions.

Zhang et al. [18] proposed a method using a novel y-distance metric enhanced by PCA to quickly
identify sensor problems in gas turbines, ensuring system integrity and safety with minimal computational
demands. Jinad et al. [19] developed a multi-squad monitoring architecture for military operations, enabling
real-time anomaly detection in vital physiological parameters with low latency. Alalwany et al. [20] explored
DL-based intrusion detection in Internet of Medical Things (IoMT) networks using a stacking ensemble
approach, achieving high accuracy in dynamic healthcare settings. Venkataanusha et al. [21] developed
a method for identifying outliers in high-dimensional datasets, emphasising efficiency and accuracy in
anomaly detection for critical areas like healthcare and fraud detection. Their Z-score approach highlights
anomalies by measuring deviations beyond 3 standard deviations, minimising false positives while handling
large datasets efficiently.

Sharmila and Nagapadma [3] introduced a Quantised Autoencoder (QAE) for anomaly detection in
resource-limited IoT devices, focusing on balancing model accuracy with lower memory usage, CPU load,
and energy consumption. Their work aims to improve network anomaly detection across sectors like smart
cities and healthcare. Teixeira and Milidia [22] presented the Fast Rank-adaptive row-householder Subspace
Tracking (FRAHST) algorithm, which dynamically adjusts latent variables to address anomaly detection
in changing data. FRAHST effectively processes real-time streaming data, making it suitable for network
monitoring and other scalability-required applications. Song et al. [23] introduced an adaptive Graph
Convolutional Network (AS-GCN-MTM) for anomaly detection in IoT systems, utilising a Mean-Teacher
Mechanism to improve generalisation with limited labelled data.

Qi et al. [24] proposed the Multiaspect Data Stream Anomaly Detection (MDS_AD) method for
intelligent intrusion detection in Industry 4.0 environments. This method addresses the challenges of
dynamic, multispectral data streams, which include both point and group anomalies, as well as inter-
attribute correlations. MDS_AD surpasses traditional techniques by using Locality Sensitive Hashing (LSH)
for efficient handling of mixed data types, iForest for anomaly isolation, and PCA for dimensionality
reduction. Operating in a streaming manner, it ensures scalability and real-time anomaly detection while
maintaining consistent memory and time complexity. Zachos et al. [25] presented a lightweight Anomaly-
Based Intrusion Detection System (AIDS) specifically tailored for resource-constrained devices in IoMT
networks, addressing the critical security issues raised by limited computational resources and network
heterogeneity. Operating on IoMT devices to gather behavioural data (e.g., CPU and memory consumption),
the Remote Detection Engine (RDE) component was deployed on a gateway to process and analyse data
for anomalies.

Huo et al. [26] developed a novel traffic anomaly detection method that combines an enhanced Gated
Recurrent Unit (GRU) model with an optimised K-means clustering algorithm, called EFMS-Kmeans. This
approach improves detection accuracy in streaming data environments by using a modified highway GRU
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(HS-GRU) to forecast traffic patterns, along with Seasonal Trend decomposition with the Loess (STL)
algorithm and Box-Cox transformation to capture periodic behaviours. EFMS-Kmeans processes the traffic
data, dynamically optimising the number of clusters through a combination of Mean Shift clustering and
electrostatic force optimisation. This method identifies anomalous traffic patterns in real-time with superior
accuracy and efficiency compared to traditional techniques, making it ideal for resource-constrained
IoT systems.

Yatagha et al. [27] assessed the complexity and real-time performance of ML models for anomaly
detection in environments with limited resources, emphasising RE, SVM, XGBoost, Neural Networks,
Autoencoders, and Logistic Regression. Utilising theoretical analysis and empirical testing on datasets
from industrial monitoring, agriculture, and healthcare, the paper underlined the trade-off between model
accuracy and computational requirements. Even if they offer great accuracy, complex models like neural
networks and autoencoders need major optimisation for edge implementation; simpler models like RF and
Logistic Regression may sacrifice accuracy. Variational autoencoders have shown better resistance against
adversarial attacks. The work offered a decision matrix to allow model selection based on variables including
resource use, real-time performance, and robustness, thereby supporting effective anomaly detection in
environments with limited resources. Table 1 provides a comparison of the state-of-the-art works.

Table 1: Comparison of state-of-the-art approaches

Study Year Method
Jain et al. [4] 2021 Preprocessed Isolation Forest
Hu et al. [28] 2021 Multiple Kernel Clustering
Qietal. [24] 2021 MDS_AD (Combining LSH, Isolation Forest, PCA)
Huo et al. [26] 2021 EFMS-Kmeans (Electrostatic Force Mean Shift
K-means)
Sharmila and 2023 Quantized Autoencoder
Nagapadma [3]

Rabbani et al. [29] 2024 Packet & Flow-based Lightweight ML Models
Gupta et al. [11] 2024 (LSTM)-based Neural Network
Kirubavathi and 2024 Ensemble Stacking Boosting with Linear Discriminant
Guruakshya [7] Analysis (LDA) as Metaclassifier
Jeffrey et al. [30] 2024 Signature-based, Threshold-based, and

Behavioral-based approaches with Ensemble Learning
Zohourian 2024 Packet representation-based Host Anomaly Detection
et al. [31]
Jinad et al. [19] 2025 Packet & Gradient Boosting

3 Materials and Methods

The datasets and techniques used to create and assess the proposed anomaly detection system are
described in this section. Continuous streaming data from IoT devices is analysed using anomaly detection
techniques and monitored in real-time to enable rapid identification of irregular activity and possible
system failures.
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3.1 Datasets

Three different datasets covering both environmental monitoring and network intrusion detection
scenarios were used to validate the efficiency of the proposed anomaly detection framework. These datasets
comprise two NetFlow-based network traffic datasets intended for cybersecurity research, as well as actual
sensor data from a WSN node.

3.1.1 Arduino Real-World Dataset

This collection came from a WSN node that combines three environmental sensors with an Arduino
UNO microcontroller. DHT11 is used for temperature and humidity monitoring, MQ6 is used for butane
gas detection, and MQ7 is used for carbon monoxide (CO) detection. Constantly observing environmental
conditions, the WSN node creates streaming data to replicate real-time operational scenarios [4]. Finding
abnormalities that might point to dangerous circumstances, such as fire hazards or gas leaks, is the main
goal of gathering this information. The dataset consists of four features and a binary classification as shown
in Tables 2 and 3, respectively. Carbon Monoxide: Sensor readings indicating CO levels, Butane: Sensor
readings for butane gas levels. Humidity: The percentage of humidity in the environment, Temp in °C:
temperature readings in degrees Celsius, Class: A binary class label where 0 represents normal conditions
and 1 indicates an anomaly. Created especially for real-time anomaly detection in IoT-based environmental
monitoring systems, this dataset is especially for uses like fire detection, where a mix of rising temperature,
CO levels, and butane gas may indicate an environmental hazard. The anomaly labels help in the training and
evaluation of ML models. Notably, PCA conducted on the dataset indicated the first principal component
accounts for approximately 99.06% of the total variance, indicating a highly structured dataset with minimal
redundancy. Using this dataset, the proposed framework aims to enhance early warning systems and safety
protocols in IoT systems with constrained means.

Table 2: Arduino Real-World dataset features

Feature Description

Carbon monoxide Carbon monoxide concentration in ppm

Butane LPG concentration in ppm
Humidity Humidity concentration in percentage
Temp in °C Temperature in degrees celsius

Table 3: Classification of normal and anomaly points in the Arduino Real-World dataset

Class Count Description
Normal 5722 Normal
conditions
Anomaly 678 Indication of a

fire outburst

3.1.2 NF-ToN-IoT Dataset

The NF-ToN-IoT [32] dataset is a widely used NetFlow-based variant of the ToN-IoT dataset developed
and evaluated for the aim of Network Intrusion Detection System (NIDS) development. This dataset was
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produced by converting raw packet capture (pcap) files into NetFlow records, offering a comprehensive view
of network traffic and supporting accurate anomaly detection and eflicient analysis. The dataset consists
of twelve features and a multiclass classification as shown in Tables 4-6. This dataset is meant to help
the creation of strong ML-based models on NIDS in challenging network environments and concentrates
on contemporary attack patterns. Its all-encompassing coverage of benign and attack traffic guarantees a
balanced dataset for training artificial intelligence (AI) models. Additionally, PCA on this dataset showed the
first principal component captures approximately 93.42% of the total variance, emphasising the compactness
of the dataset and its suitability for dimensionality reduction.

Table 4: Classification of network attacks in NF-ToN-IoT dataset

Class Count Description
Benign 270279 Normal network traffic
Backdoor 17247 Unauthorized remote access
DoS 17717 Overloading a system to deny access
DDoS 326345 Distributed attack to disrupt services
Injection 468539 Malicious code execution via input
MITM 1295  Intercepting communications between parties
Password 156299  Stealing passwords via brute force or sniffing
Ransomware 142 Encrypting files for ransom demand
Scanning 21467 Probing networks for vulnerabilities
XSS 99944 Injecting scripts into web applications

Table 5: Classification of network attacks in NF-BoT-IoT dataset

Class Count Description
Benign 13859 Normal network traffic
Reconnaissance 470655  Gathering network info (probing)
DDoS 56844 Large-scale service disruption
DoS 56833  Overloading system to deny access
Theft 1909 Stealing sensitive data

Table 6: Network flow features

Feature Description
IPV4_SRC_ADDR IPv4 source address
IPV4_DST_ADDR IPv4 destination address

L4_SRC_PORT IPv4 source port number
L4_DST_PORT IPv4 destination port number
PROTOCOL IP protocol identifier byte
TCP_FLAGS Cumulative of all TCP flags
L7_PROTO Layer 7 protocol (numeric)
IN_BYTES Incoming number of bytes

(Continued)
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Table 6 (continued)

Feature Description
OUT_BYTES Outgoing number of bytes
IN_PKTS Incoming number of packets
OUT_PKTS Outgoing number of packets
FLOW_DURATION_ Flow duration in milliseconds
MILLISECONDS

3.1.3 NF-BoT-IoT Dataset

Derived from the original BoT-IoT dataset, this dataset is yet another NetFlow-based dataset like
NE-ToN-IoT [32]. This dataset was produced by converting pcap files into NetFlow records. This method
is suitable for analysing network traffic and spotting hostile activity, and is structured and efficient. The
dataset consists of twelve features and a multiclass classification, as shown in Tables 5 and 6. The dataset
captures a wide spectrum of attack situations, which provides a consistent benchmark for the training
and testing of ML models intended to recognise and classify network intrusions. Its structure makes it
a great fit for anomaly detection systems aiming at IoT-based network environments, acknowledging the
need for real-time intrusion detection. Furthermore, PCA performed on the dataset revealed that the
first principal component alone explains approximately 86.97% of the total variance, indicating a strong
underlying structure in the data which can be used for dimensionality reduction.

3.1.4 Significance of the Datasets

Together, environmental monitoring data and network traffic datasets allow a thorough assessment of
the suggested anomaly detection system in several IoT contexts. While the Arduino Real-World Dataset
addresses real-time anomaly detection in environmental monitoring (e.g., fire hazards, gas leaks), the NF-
BoT-IoT and NF-ToN-IoT datasets focus on enhancing cybersecurity in IoT networks by detecting a wide
range of network intrusions. Together, these datasets facilitate the development and validation of a versatile
anomaly detection framework that can be adapted for various IoT, IIoT, and TMoT applications, improving
system resilience, operational safety, and security.

The logical workflow shown in Fig. 1 processes streaming sensor data using a sliding window approach,
handles missing values and detects anomalies using MLR, PCA, and Z-score-based outlier detection. This
method has been tested on three datasets separately.

3.2 Streaming Data and Sliding Window Initialisation

The sliding window mechanism processes streaming data by maintaining a fixed-size subset of the most
recent data, updating it as new information arrives. This allows for efficient real-time analysis. To combat
concept drift, the system tracks the most recent data within the sliding window and compares its distribution
to earlier windows. If drift is detected, the model is retrained using the current window’s data. This approach
reduces computing costs by focusing on recent data, ensuring the model remains adaptable to changes
over time.
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Figure 1: A systematic procedure for the proposed approach

The system processes real-time sensor data using a Sliding Window technique. The maximum window

size is denoted as w. If the current window size is < w, it continues accumulating data. If the current window
size = w, an MLR model, described by Eq. (1), is trained using the data within the window.

Yzﬂo+/31X1+/32X2+...+ﬁan+e (l)

where:

B =

Y is the dependent variable (e.g., the sensor with missing values),

X1, X5, ..., X, are the independent variables (other sensor readings),

X = [X1, X3, ..., X, ] is the combination of independent variables (matrix of all working sensor readings),
Bo is the intercept,

B1, B2, ..., Bn are the regression coeflicients,

€ is the error term.

The coefficients are computed by Ordinary Least Squares (OLS) using Eq. (2):
(XTX)_IXTY (2)

Updating Sliding Window—If the current window size > w, the sliding window updates dynamically.

The process repeats iteratively, ensuring continuous anomaly detection and sensor value prediction. Han-

dling Missing Values—If missing values are detected in the incoming new streaming data, they are imputed

using the trained MLR model. Missing sensor values are updated using Eq. (3). If no missing values are
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detected, the system proceeds directly to PCA and Outlier Detection.
Ymissing = /30 + Z /jiXi (3)
i=1

3.3 PCA for Dimensionality Reduction

Principal Component Analysis (PCA) is widely used for dimensionality reduction, aiming to simplify
complex datasets while preserving as much of the original variance as possible. It enhances efficiency in
anomaly detection by focusing on the most important features, which reduces computational overhead and
improves detection accuracy. PCA is particularly suitable for resource-constrained environments due to its
minimal memory requirements, computational efficiency, and ease of use. Unlike nonlinear techniques such
as t-distributed Stochastic Neighbour Embedding (t-SNE), Uniform Manifold Approximation and Projec-
tion (UMAP), or autoencoders, PCA relies solely on linear algebra (e.g., Singular Value Decomposition,
or SVD), making it deterministic, fast, and scalable even on low-end hardware. It does not necessitate
neural networks, extensive pairwise distance matrices, or iterative optimisation processes, all of which can
be resource-intensive in terms of memory and processing power.

Additionally, PCA is ideal for preprocessing, noise reduction, and providing quick insights while
working with limited computing or energy resources, thanks to its interpretability and ability to maintain the
global structure of the data. In this context, PCA transforms all features into a single predictor that captures
the individual contributions of every feature. The process begins with standardising the data to ensure that
each feature has an equal impact on the analysis. Eq. (4) illustrates how each feature in the dataset is centred
and scaled using its mean () and standard deviation (o).

X —
Xscaled = T‘u (4)

This step is crucial because features with larger scales could otherwise dominate the analysis. Once
standardised, the next step involves computing the covariance matrix, which captures the linear relationships
between the variables. The covariance matrix is calculated using Eq. (5):

1
C= ;Xq;aledxscaled (5)
where 7 is the number of samples in the dataset.

The covariance matrix serves as the foundation for identifying the principal components. Following
this, the eigenvalues (1) and their corresponding eigenvectors (V) are computed by solving the characteristic
equation, as expressed in Eq. (6):

CV=\V (6)

Whereas the eigenvectors define the directions of each principal component in the feature space, the
eigenvalues show the degree of variance explained by each component. The best eigenvector matching the
greatest eigenvalue is chosen to obtain a single predictor. At last, the new feature space generated by the best
eigenvector projects the original standardised data. Eq. (7) is used to accomplish this change.

Xpca = Xscaled Vbest (7)

where V5t contains the eigenvector corresponding to the largest eigenvalue.



Comput Model Eng Sci. 2025;143(3) 3015

The resulting data, Xpca, is the predictor that preserves the essential structure of the original data. By
reducing data complexity and focusing on key variance contributors, PCA enables more efficient and accurate
anomaly detection, especially in large-scale or resource-constrained environments.

3.4 Z-Score Outlier Detection
To detect anomalies in the data, the Z-score is applied to data Xpca using Eq. (8):

(8)

where:

e X, isthe observed value,

oy is the mean of the data,

o ¢ is the standard deviation of the data,
o 7 isthe threshold value.

If |Z] > 7, the data point is considered an outlier.

In conclusion, this framework processes streaming sensor data using a sliding window approach for
resource-efficient real-time anomaly detection and sensor failure prediction by successfully integrating MLR
for missing value prediction, PCA for dimensionality reduction, and Z-score for anomaly detection in real-
time sensor data streams. As depicted in Fig. 2, enabling accurate and efficient detection of anomalies in
dynamic environments. To enable continuous analysis, the streaming data produced by IoT devices is first
divided into segments using a sliding window technique. To guarantee data completeness, any missing data
points inside these windows are estimated and filled using an MLR model. After the data is finished, PCA is
used to apply dimensionality reduction, which turns the data into a single representative feature. The Z-score
approach, which divides each data point into normal and anomalous categories according to its statistical
divergence from the mean, is then used to examine this reduced feature. The step-by-step process of this
methodology is detailed in Algorithm 1.

&

Sliding Window

DATA DATA @ DATA

loT
devices Handling Missing
Values
fy
Anomaly Detection

DATA pata | Predicted | pops

v, o @
g2

Figure 2: Workflow of the proposed anomaly detection framework, illustrating key processes such as streaming data
collection, sliding window processing, handling of missing values, PCA-based dimensionality reduction, and anomaly
detection using the Z-score
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Algorithm 1: Proposed framework: resource-efficient anomaly detection

1: Input: Streaming data X = {X,, X1, X5, ..., X;, ... }, Sliding window size w, Threshold 7

2: Output: Anomaly Detection

3: Initialize sliding window isw « []

4: Initialize counter ¢ < 0

5: while ¢ < w do

6: Add X, into isw

7 c«<c+l1

8: end while

9: for each feature f; in isw do

10:  Train MLR for f; to predict missing values
11:  Store predicted value y; using MLR

12: end for

13: Initialize recurring sliding window sw <« isw
14: for new streaming data s do

15:  if missing value in s then

16: Predict missing value yissing < Ji
17: return s

18:  endif

19:  Remove the oldest data point from sw

20:  Append s to sw
21: end for
22: for each updated sw do

23:  Perform PCA to obtain PC; capturing maximum variance
24: Xpca < Projection of all points in sw on PC;
25: Compute mean y and standard deviation o of Xpca

26: pca_val < last value in Xpca
27: if 0 = 0 then

28: return Normal

29: else

30: Find Z-Score: Z = M
3L if |Z| > 7 then

32 return Anomaly
33: else

34: return Normal
35: end if

36: end if

37: end for

4 Results

This section presents the experimental results evaluating the performance of the proposed anomaly
detection framework using three distinct datasets: Arduino Real-World Dataset, NF-BoT-IoT, and NF-ToN-
IoT. The evaluation focuses on key metrics such as accuracy and processing time, assessed under varying

window sizes and Z-score thresholds to determine the framework’s adaptability and efficiency in resource-

constrained environments.
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The performance of the proposed anomaly-detecting system was assessed using the Arduino Real-World
Dataset, which consists of streaming sensor data gathered from a WSN, including environmental sensors for
temperature, humidity, and gas detection. Variations in sliding window size and Z-score threshold values let
the tests measure effects on processing time and detection accuracy.

Table 7 shows that, although at the expense of more processing time, larger window sizes usually
translate into better detection accuracy. Conversely, smaller windows afford somewhat less accuracy but
faster processing. We choose Z-score thresholds ranging from 1.5 to 2.5 to investigate the trade-off between
sensitivity and specificity in detecting outliers. A larger number of possible abnormalities, including marginal
cases, can be flagged by lower criteria, such as 1.5, which are often more sensitive. Higher thresholds, like
2.5, on the other hand, are more conservative and only flag more extreme deviations as outliers, which helps
reduce false positives. This range offers a useful compromise between minimising noise and overfitting and
identifying significant anomalies. We fine-tuned by using a step of 0.25, which aids in identifying the best
threshold for our particular dataset and task.

Table 7: Anomaly detection results for the Arduino Dataset: summary of time (in seconds) and accuracy for various
window sizes and thresholds

Windowsize Threshold: 1.5 Threshold: 1.75 Threshold: 2 Threshold: 2.25 Threshold: 2.5

Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy

2 0.00758  0.8940  0.00668 0.8940 0.00668 0.8940  0.00682 0.8940  0.00676  0.8940
4 0.00698  0.8478  0.00695 0.8939  0.00692 0.8939 0.00693 0.8939  0.00713  0.8939
8 0.00698  0.8510  0.00682  0.8961 0.00694 0.9120 0.00647 09197 0.00694 0.8998
16 0.00666 0.8864 0.00643 09019 0.00642 09152  0.00615  0.9281  0.00620  0.9307
32 0.00636 09155  0.00640 0.9287  0.00656  0.9315  0.00632  0.9299 0.00640  0.9329
64 0.00679  0.9524 0.00664 0.9499 0.00668 0.9447 0.00665 0.9386  0.00673  0.9362
128 0.00733  0.9663  0.00724  0.9598  0.00737 0.9504 0.00717  0.9424  0.00721  0.9379
256 0.00822  0.9671  0.00824  0.9620 0.00867  0.9545 0.00835 0.9449 0.00831  0.9381
512 0.01040  0.9663  0.01009  0.9624  0.01047  0.9549 0.01011  0.9449  0.00993  0.9380

1024 0.01364  0.9659  0.01305  0.9622  0.01449  0.9577  0.01365  0.9477  0.01388  0.9367
2048 0.02071  0.9607  0.02108  0.9590  0.02168  0.9568  0.02052  0.9423  0.02032  0.9322

With a window size of 128 and a threshold of 1.5, the ideal balance between accuracy and time
efficiency was found to produce over 96% accuracy with reasonable computation time. Fig. 3 shows the data
distribution of all data points of each of the four primary features of the Arduino Real-World Dataset as line
plots with respect to index values. Fig. 4 shows the comparison between actual values present in the data
and values predicted by our designed MLR model. Fig. 5 shows the distribution of reduced data obtained by
performing PCA. The data points lie further from the normal line, as shown in the plot, as vertical lines are
considered anomalies. Fig. 6A shows the variability of accuracy scores obtained by setting various threshold
values with respect to different window sizes. From the plot, we can see that a threshold value of 1.5 shows
the best accuracy results in most cases. On the other hand, a window size of 128 is seen as optimal, as
accuracies are seen to be more or less constant after that. Fig. 6B shows how increasing the window size
affects the time taken for anomaly detection. It is clearly depicted that as the window size is increased, the
time taken increases.
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Figure 3: Data distribution of individual features in the Arduino Real-World Dataset, illustrating the variation in sensor
readings for carbon monoxide, butane, humidity, and temperature over time
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Figure 4: The comparison between the expected values of the Arduino Real-World Dataset, calculated using Multiple
Linear Regression (MLR), and the actual sensor readings is shown. Each subplot reveals the model’s accuracy in
predicting expected feature values and identifying potential anomalies by illustrating the differences between the
observed and predicted values for each feature
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Figure 5: Data distribution on the Arduino Real-World Dataset following PCA. By reducing the multi-dimensional
data into a single reduced form and highlighting the variance captured by the principal component, the plot preserves
important patterns and anomalies for additional analysis
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Time vs Window Size Based on Threshold
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Figure 6: Variation of evaluation and efficiency metrics for anomaly detection in the Arduino Real-World Dataset. (A)
Accuracy score on different window sizes with varied threshold values. (B) Anomaly detection time (in seconds) on
different window sizes with varied threshold values

Table 8 shows the outcomes of the anomaly detection framework applied to the NF-ToN-IoT dataset,
illustrating the effect of different window sizes and threshold values on both processing time and detection
accuracy. The complex network traffic patterns of the dataset were used to assess the system’s capacity to
handle massive network data. The experimental results show that the processing time increases significantly
as the window size rises, particularly evident at bigger window sizes such as 2048. Nevertheless, the detection
accuracy remains relatively stable over several thresholds, with minor variations observed at very large
window sizes. With a window size of 128 and a threshold of 2.25, the highest accuracy over 90% while still
allowing reasonable computational time was noted. The study highlights the need to tune hyperparameters
depending on particular application needs to maximise performance.

Table 8: Anomaly detection results for NF-ToN-IoT dataset with varying window sizes and thresholds

Window Threshold: 1.5 Threshold: 1.75 Threshold: 2 Threshold: 2.25 Threshold: 2.5
size

Time (s) Accuracy Time(s) Accuracy Time(s) Accuracy Time(s) Accuracy Time(s) Accuracy

2 0.00116 0.9187 0.00111 0.9187 0.00109 0.9187 0.00115 0.9187 0.00105 0.9187
4 0.00128 0.7381 0.00105 0.9187 0.00117 0.9187 0.00105 0.9187 0.00118 0.9187
8 0.00107 0.7764 0.00121 0.8076 0.00120 0.8267 0.00117 0.8413 0.00107 0.8537
16 0.00116 0.7967 0.00120 0.8188 0.00115 0.8394 0.00114 0.8513 0.00111 0.8603
32 0.00127 0.8297 0.00121 0.8375 0.00127 0.8480 0.00122 0.8552 0.00124 0.8657
64 0.00140 0.8612 0.00134 0.8662 0.00151 0.8709 0.00133 0.8756 0.00104 0.8788
128 0.00179 0.8848 0.00163 0.8860 0.00189 0.8893 0.00177 0.8930 0.00170 0.8952
256 0.00227 0.8932 0.00236 0.8962 0.00249 0.8981 0.00243 0.9005 0.00236 0.9030
512 0.00369 0.8952 0.00354 0.8970 0.00381 0.8995 0.00400 0.9012 0.00355 0.9030
1024 0.00603 0.8873 0.00612 0.8900 0.00657 0.8925 0.00606 0.8958 0.00610 0.8961
2048 0.01107 0.8814 0.01103 0.8827 0.01202 0.8882 0.01006 0.8888 0.01118 0.8892

*The table summarises time taken (in seconds) and accuracy for varying window sizes and threshold values.
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Fig. 7 shows the data distribution of all data points of each of the four primary features that we used
from the NF-ToN-IoT dataset as line plots with respect to index values. Fig. 8 shows the closeness of expected
data values obtained when fed into our designed MLR model with the actual values that were present in
the data. Fig. 9 shows the distribution of reduced data obtained by performing PCA. The data points lying
further from the normal line, as shown in the plot as vertical lines, are considered anomalies. Anomalous
data is seen more prominently around index 1000. Fig. 10A shows the variability of accuracy scores obtained
by setting various threshold values with respect to different window sizes. From the plot, we can see that a
threshold value of 2.5 shows the best accuracy results in most cases. On the other hand, a window size of
256 is seen as optimal as accuracy appears to peak or plateau. From Fig. 10B, it is clearly depicted that as the
window size is increased, the time taken is also increased.
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Figure 7: Data distribution of every feature in the NF-ToN-IoT Dataset, showing the variation in network traffic
measurements. Essential for spotting network anomalies and intrusion patterns in IoT systems, the plots show swings
in data flow
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Figure 8: Comparison of actual and expected values for each feature in the NF-ToN-IoT dataset, estimated using MLR
equations. The plots highlight discrepancies between observed network traffic data and their predicted counterparts
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Figure 9: Distribution of the data after applying PCA on the NF-ToN-IoT dataset. This plot highlights the variance
captured by the principal component, effectively compressing the multi-dimensional network traffic data into a single
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Figure 10: The variation of evaluation and efficiency metrics as: (A) Accuracy score on different window sizes with
varied threshold values. (B) Anomaly detection time (in seconds) on different window sizes with varied threshold values

The proposed anomaly detection system was evaluated using the NF-BoT-IoT dataset, focusing on
the system’s capacity to manage significant network traffic while balancing accuracy and computational
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efficiency. The experiments varied the sliding window size as well as the Z-score threshold to assess their
impact on detection performance.

Table 9 summarises the generally high accuracy the framework obtained over many parameter values.
Atahigher window size across all threshold values, the highest accuracy was observed, even with a significant
increase in processing time. While keeping an accuracy above 93%, smaller window sizes-128 and 256
significantly reduced computational overhead. The results also show that threshold values had a small impact
on accuracy, with ideal performance reached at levels between 2.0 and 2.5. When real-time processing is
essential and speed and detection accuracy must be fairly balanced, window sizes between 512 and 1024
offer a good compromise. Especially in large-scale network intrusion detection activities represented by the
NE-BoT-IoT Dataset, these results generally confirm the resilience of the proposed framework for real-time
anomaly detection in IoT systems.

Table 9: Anomaly detection results for NF-BoT-IoT dataset with varying window sizes and thresholds

Window size Threshold: 1.5 Threshold: 1.75 Threshold: 2 Threshold: 2.25 Threshold: 2.5

Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy

2 0.00190 0.9805 0.00182 0.9805 0.00178 0.9805 0.00201 0.9805 0.00199 0.9805
0.00191 0.6867 0.00187 0.9809 0.00176 0.9809 0.00171 0.9809 0.00184 0.9809

8 0.00160 0.7852 0.00177 0.9062 0.00181 0.9272 0.00216 0.9519 0.00184 0.9689
16 0.00199 0.8166 0.00161 0.8816 0.00206 0.9209 0.00191 0.9486 0.00166 0.9608
32 0.00206 0.8401 0.00200 0.8880 0.00212 0.9227 0.00184 0.9450 0.00207 0.9597
64 0.00238 0.8656 0.00203 0.9066 0.00239 0.9327 0.00237 0.9477 0.00222 0.9592
128 0.00209 0.8889 0.00209 0.9179 0.00299 0.9359 0.00208 0.9495 0.00208 0.9603
256 0.00403 0.8927 0.00381 0.9125 0.00426 0.9312 0.00386 0.9464 0.00375 0.9537
512 0.00582 0.8946 0.00587 0.9389 0.00620 0.9469 0.00585 0.9552 0.00585 0.9621
1024 0.00960 0.9788 0.00919 0.9796 0.01017 0.9793 0.00965 0.9801 0.00957 0.9806
2048 0.01601 0.9959 0.01666 0.9959 0.01778 0.9959 0.01606 0.9959 0.01669 0.9959

Note: *The table summarises time taken (in seconds) and accuracy for varying window sizes and threshold
values.

Fig. 11 shows the data distribution of all data points of each of the four primary features that we used
from the NF-BoT-IoT dataset as line plots with respect to index values. Fig. 12 shows the closeness of expected
data values obtained when fed into our designed MLR model with the actual values that were present in the
data. Fig. 13 shows the distribution of reduced data obtained by performing PCA. The data points lie further
from the normal line, as shown in the plot, as vertical lines are considered anomalies. Anomalous data is
seen more prominently between indices 0 and 200. Fig. 14A shows the variability of accuracy scores obtained
by setting various threshold values with respect to different window sizes. From the plot, we can see that a
threshold value of 2.5 shows the best accuracy results in most cases. On the other hand, a window size of 256
is seen as optimal as accuracies are higher. From Fig. 14B, it is depicted that as the window size is increased,
the time taken increases.
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Figure 11: Data distribution of each feature in the NF-BoT-IoT Dataset, showcasing the network traffic metrics. The
plots highlight fluctuations and spikes in data flow, which are critical for identifying anomalies and potential intrusion
patterns in IoT network environments
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Comput Model Eng Sci. 2025;143(3)

Accuracy vs Window Size Based on Threshold

0.9

e 2 4 8 16 32 64 128 256 512 1024 2048

0

0

Accuracy

0

& o &
FEEERN

w

~J
v

Window Size

(A)

Time vs Window Size Based on Threshold

0.018

0.016

0.014

0,012

0.01

Time(s)

0.008

0.006

0.004

.00z

0

2 4 B 16 32 64 128 256 512 1024 2048

Window Size

(B)

Threshold:
Threshold
Threshold:
Threshold
Threshold:

Threshold:
Threshold:
Threshold:

Threshold

Threshold:

3025

1.5
: 1.75

: 2.25
2.8

1.5
1.75

: 2,25
2.5
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with varied threshold values. (B) Anomaly detection time (in seconds) on different window sizes with varied threshold

values

Table 10 presents the performance metrics for models evaluated on three different datasets. The Arduino
Real World Dataset, NF-ToN-IoT, and NF-BoT-IoT show varying results in terms of Accuracy, Precision,
Recall, and F1 Score. These metrics highlight the effectiveness and generalisation capabilities of the models

acCross

diverse data sources.
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Table 10: Performance metrics across different datasets

Dataset Accuracy Precision Recall Flscore
Arduino Real-World ~ 0.9671 1..0000  0.6827  0.8114
NF-ToN-IoT 0.8952 0.9174  0.9668  0.9414
NE-BoT-IoT 0.9959 0.9956 10000  0.9978

Fig. 15 shows a comparison of accuracy over several threshold values for the three datasets. Looking at
the Arduino Real-World Dataset, it is clear that raising threshold values does not improve accuracy, but in
cases of NF-ToN-IoT and NF-BoT-IoT, accuracy clearly improves. As such, it can be concluded that the ideal
threshold value depends on the properties of the dataset. Fig. 16 plots contrast accuracy over several window
sizes. When comparing the three, the optimal window size varies significantly across the datasets. As such,
it can be concluded that the ideal window size depends on the features of the dataset. Fig. 17 plots the time
needed for anomaly detection is evaluated over several window sizes, showing that for all three used datasets,
the time needed increases proportionately with window size. A smaller window allows for faster processing
per window.
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Figure 15: Accuracy score vs. threshold values on different datasets
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Figure 16: Accuracy score vs. window size on different datasets
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Anomaly Detection Time vs Window size
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Figure 17: Anomaly detection time (in seconds) vs. Window size on different datasets

Experimental Setup

All experiments were executed on a local computing environment consisting of an Intel Core i3-1215U
processor with 8.0 GB of RAM, operating on the Windows 11 platform.

5 Discussion

The presented resource-efficient anomaly detection system effectively addresses real-time anomaly
detection in streaming data. The framework guarantees data continuity and accuracy even with partial
data using a sliding window approach combined with MLR for missing value prediction. PCA helps to
reduce dimensionality, thus optimising computational efficiency without sacrificing data integrity. While
maintaining low computational overhead and simplicity, the Z-score approach for anomaly detection enables
the system to identify significant deviations. Framework robustness and adaptability are confirmed by
experimental data spanning several datasets, including the Arduino Real-World Dataset, NF-ToN-IoT, and
NE-BoT-IoT. The comparison of the obtained balance between detection accuracy and processing time
reveals the possible real-world applications of the framework in IoT ecosystems where fast anomaly detection
is needed for maintaining operational integrity and security. The comparative analysis of accuracy scores
across various existing studies and the proposed model is summarised in Table 11.

Table 11: Accuracy comparison across different studies

Study Dataset used Accuracy score (%)
Sharmila and Nagapadma [3] RT-10T-2022 97.25
Jain et al. [4] Mulcross Dataset 87.00
Breastw Dataset 88.00
Hu et al. [28] NSL_KDD Dataset 93.80
UNSW _NBI5 Dataset 92.00
AWID Dataset 95.60
Rabbani et al. [29] CICIoT2023 99.94
Jeffrey et al. [30] CICIoT2023 93.19
Zohourian et al. [31] CICIoT2023 98.74
Proposed model Arduino Dataset 96.71

(Continued)
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Table 11 (continued)

Study Dataset used Accuracy score (%)
NF-ToN-IoT Dataset 91.87
NEF-BoT-IoT Dataset 99.59

While the NF-ToN-IoT, NF-BoT-IoT, and Arduino Real-World datasets are frequently utilised for
developing IDS in IoT settings, each has its own drawbacks. Although the NF-ToN-IoT dataset is extensive,
its NetFlow-based format prevents payload-level data, and its simulated attacks may lack realism. The NF-
BoT-IoT dataset faces similar issues, including a significant class imbalance and synthetic traffic, and might
not accurately represent network behaviours. The Arduino Real-World dataset, although useful for sensor-
level anomaly detection, is limited to a few types of sensors, which limits its scalability and applicability to
larger IoT systems.

6 Conclusion and Future Works

In this work, we demonstrated the flexibility over many datasets, including the Arduino Real-World
dataset, NF-ToN-IoT, and NF-BoT-IoT, by presenting a resource-efficient anomaly detection framework
designed for real-time monitoring in IoT and network security environments. The system effectively balances
missing or corrupted sensor values through its use of MLR, so preserving data integrity prior to anomaly
detection, PCA for dimensionality reduction, and Z-Score-based anomaly detection essentially balance
detection accuracy and computational efficiency in the framework. The results show consistent performance
across different threshold values and sliding window sizes, preserving real-time feasibility in resource-
constrained environments. High accuracies were achieved, particularly on complex network datasets like
NF-BoT-IoT, which show the highest values. As our research highlights, depending on specific application
criteria, the trade-off between accuracy and processing time highlights the need for parameter tuning.

Though the proposed architecture shows promising adaptability and resilience, some limitations still
exist. One notable constraint lies in the use of the MLR model for imputing missing values. This model
is trained only once using the data available during the initial filling of the sliding window. As a result,
scenarios involving concept drift may degrade. Future work will focus on integrating adaptive thresholding
techniques and lightweight ML models designed for edge computing environments. Furthermore, improving
the scalability and responsiveness of the system could be done by exploring real-time stream processing
systems and advanced dimensionality reduction methods. Incorporating DL models for dynamic feature
extraction and anomaly classification, and testing the framework on more diverse datasets, could further
enhance its generalizability and robustness considerably. The ultimate goal is to extend the framework’s
applicability for broader uses in IoT, IIoT, and TMoT systems, enabling more accurate and efficient anomaly
detection in demanding real-world settings.
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Abbreviations

IoT Internet of Things

IIoT Industrial Internet of Things

TMoT Transportation Management of Things
IoMT Internet of Medical Things

PCA Principal Component Analysis

GRU Gated Recurrent Unit

MLR Multivariate Linear Regression

WSN Wireless Sensor Networks

NIDS Network Intrusion Detection Systems
DDoS Distributed Denial of Service

NOC Network Operation Center

GMM Gaussian Mixture Models

DTA Dynamic Tensor Analysis

STA Streaming Tensor Analysis

RNN Recurrent Neural Networks

kNN k-Nearest Neighbours

DT Decision Trees

LSTM Long Short-Term Memory

RF Random Forest

Al Artificial Intelligence

ML Machine Learning

DL Deep Learning

QAE Quantised Autoencoder

IDS Intrusion Detection Systems

AIDS Anomaly-Based Intrusion Detection System
RDE Remote Detection Engine

SVM Support vector machine

APT Advanced Persistent Threat

LDA Linear Discriminant Analysis

t-SNE t-distributed Stochastic Neighbor Embedding
UMAP Uniform Manifold Approximation and Projection

SVD Singular Value Decomposition
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STL Seasonal and Trend Decomposition Using Loess

SMOTE Synthetic Minority Over-sampling Technique

CAFFN Cross-Dimension Attentive Feature Fusion Network
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