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ABSTRACT: Early detection of Alzheimer’s disease (AD) is crucial, particularly in resource-constrained medical
settings. This study introduces an optimized deep learning framework that conceptualizes neural networks as compu-
tational “sensors” for neurodegenerative diagnosis, incorporating feature selection, selective layer unfreezing, pruning,
and algorithmic optimization. An enhanced lightweight hybrid DenseNet201 model is proposed, integrating layer
pruning strategies for feature selection and bioinspired optimization techniques, including Genetic Algorithm (GA)
and Harris Hawks Optimization (HHO), for hyperparameter tuning. Layer pruning helps identify and eliminate
less significant features, while model parameter optimization further enhances performance by fine-tuning critical
hyperparameters, improving convergence speed, and maximizing classification accuracy. GA is also used to reduce the
number of selected features further. A detailed comparison of six AD classification model setups is provided to illustrate
the variations and their impact on performance. Applying the lightweight hybrid DenseNet201 model for MRI-based
AD classification yielded an impressive baseline F1 score of 98%. Overall feature reduction reached 51.75%, enhancing
interpretability and lowering processing costs. The optimized models further demonstrated perfect generalization,
achieving 100% classification accuracy. These findings underscore the potential of advanced optimization techniques in
developing efficient and accurate AD diagnostic tools suitable for environments with limited computational resources.
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1 Introduction
Alzheimer’s disease (AD), a progressive neurodegenerative disorder characterized by amyloid-beta

plaques and tau tangles, represents a growing global health crisis with over 50 million affected individuals
worldwide [1]. Early detection is critical, as irreversible neuronal damage occurs years before clinical
symptoms manifest, yet traditional diagnostic methods struggle with sensitivity and specificity in preclinical
stages [2–4]. In recent years, deep learning—a subset of artificial intelligence (AI)—has emerged as a
powerful tool for analyzing complex medical data. Deep learning models, particularly convolutional neural
networks (CNNs), have shown promise in detecting patterns in neuroimaging data (e.g., MRI and PET
scans) and other diagnostic modalities to aid in Alzheimer’s diagnosis [5]. These models can potentially
improve diagnostic accuracy, automate processes, and identify subtle biomarkers that are challenging for
human experts to detect. Additionally, ensemble learning and attention mechanisms have further advanced
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the field of medical image classification. However, these advancements continue to face significant challenges,
including:

• Overfitting: Deep learning models often overfit due to the limited availability of labeled data, especially
when working with complex architectures like convolutional neural networks (CNN) [6].

• Feature Selection and Extraction: Identifying the most relevant features from high-dimensional
datasets is critical but challenging. Advanced techniques like Weighted Geometric Mean Principal
Component Analysis (WGM-PCA) and Improved Attribute Ranker (IAR) are required for effective
feature selection [7].

• Computational Complexity: Training deep learning models on high-resolution imaging data requires
significant computational resources, which may not be accessible in all clinical settings [8].

• Parameter Tuning: The application of deep learning models in medical diagnosis has demonstrated effi-
cacy; however, because of the high dimensionality and complexity of the search space, their performance
is frequently limited by less-than-optimal parameters. A conventional optimization approach may not
properly adjust network weights or hyperparameters, leading to problems such as overfitting or slow
convergence. These problems could ultimately compromise diagnostics in clinical settings [7,8].

The current study introduces a novel hybrid framework that integrates different methodologies to
address these limitations, as follows:

1. This study proposes a novel feature extraction strategy that combines fine-grained texture analysis with
high-level deep learning features by integrating layer pruning methods. The objective is to concurrently
extract both local and global features from medical images to improve the accuracy of Alzheimer’s
disease classification.

2. To reduce dimensionality while preserving essential information related to Alzheimer’s disease, the
Genetic Algorithm (GA) is employed to select the most significant features. This approach aims to
minimize computational overhead and enhance efficiency by utilizing only the most relevant features
for classification.

3. An enhanced classification model will be developed by incorporating optimization algorithms such as
Genetic Algorithm (GA) and Harris Hawks Optimization (HHO). These optimization strategies aim
to preserve high classification performance while leveraging the efficiency and learning capability of a
lightweight deep neural network for MRI data classification.

4. This novel approach aims to facilitate the early and accurate identification of Alzheimer’s disease (AD),
especially in settings with limited resources and limited access to cutting-edge medical infrastructure.
The proposed method combines a lightweight deep learning model with advanced optimization
techniques to create a dependable, efficient, scalable diagnostic tool.

Through these contributions, this study offers a comprehensive solution to the challenges of Alzheimer’s
diagnosis, advancing methodologies in feature extraction, optimization, and classification.

2 Literature Review
Neuroimaging is essential for the early detection of Alzheimer’s disease, offering comprehensive insights

into brain structure and function. The primary modalities employed are Magnetic Resonance Imaging
(MRI), Positron Emission Tomography (PET), and Diffusion Tensor Imaging (DTI). Jack et al. [3] favored
MRI for its capacity to obtain high-resolution structural images of the brain for Alzheimer’s disease.

Recent studies demonstrate the effectiveness of combining multiple imaging modalities to enhance
diagnostic accuracy. Suk et al. [2] introduced a multimodal deep learning framework that combines MRI
and PET data to classify stages of Alzheimer’s disease, achieving an accuracy of 92.5%. In a similar study,



Comput Model Eng Sci. 2025;143(3) 3711

Liu et al. [9] employed a combination of structural MRI (sMRI) and functional MRI (fMRI) to identify
early-stage Alzheimer’s disease, achieving a sensitivity of 89.4% and a specificity of 91.2%.

Preprocessing is a crucial step in preparing neuroimaging data for deep learning models. Standard
techniques encompass skull stripping, noise reduction, intensity normalization, and spatial normalization
to a standard brain template, such as MNI space. These steps guarantee the consistency of input data and
eliminate artifacts that may impair model performance. Advancements in preprocessing have emphasized
the automation of these steps to minimize manual intervention. Mehmood et al. [10] presented a fully
automated pipeline for skull stripping and intensity normalization, attaining a Dice coefficient of 0.95 on
the ADNI dataset. Similarly, Chamakuri & Janapana [6] introduced a deep learning approach for motion
correction in fMRI data, resulting in a notable enhancement in the quality of functional connectivity maps.

Feature extraction is essential in deep learning models, as it entails identifying pertinent biomarkers
from neuroimaging data. Conventional approaches depend on manually crafted features. However, recent
research has transitioned to automated feature extraction through convolutional neural networks (CNNs).

CNNs are a fundamental component in deep learning approaches for Alzheimer’s disease detection,
owing to their capacity to autonomously extract spatial features from neuroimaging data. Faisal & Kwon [11]
created a multi-scale CNN that integrates local and global features, achieving an accuracy of 96.12% in AD
classification. Esmaeilzadeh et al. [12] utilized a 3D CNN model on MRI scans, attaining an accuracy of 94.1%
outperforming prior methods.

Basaia et al. [13] used a ResNet-based deep convolutional neural network (CNN) model for clas-
sifying Alzheimer’s disease, demonstrating improved performance compared to conventional machine
learning techniques.

Abed et al. [14] used pre-trained CNN architectures, including VGG16, ResNet-50, and InceptionV3,
for Alzheimer’s disease detection, demonstrating that transfer learning improves classification accuracy.

Islam & Zhang [15] applied EfficientNet, showing improved generalization on small datasets while
minimizing the risk of overfitting.

Recurrent Neural Networks (RNNs), especially Long Short-Term Memory (LSTM) networks, are
employed to vary neuroimaging data. For example, Hong et al. [16] introduced an LSTM-based model to
predict the progression from mild cognitive impairment (MCI) to Alzheimer’s disease (AD), achieving an
accuracy of 93.5%. Liu et al. [17] used a bidirectional LSTM on longitudinal MRI, yielding a high performance
compared with the state-of-the-art methods.

Autoencoders and Variational Autoencoders (VAEs) are utilized for unsupervised feature learning
and dimensionality reduction. Zuo et al. [18] introduced a VAE-based model for Alzheimer’s disease
classification, attaining an accuracy of 91.4% on the OASIS dataset. In a similar study, Zong et al. [19]
employed a denoising autoencoder to extract robust features from noisy MRI data, demonstrating a 5%
enhancement in classification accuracy relative to conventional methods. Musto et al. [20] introduced a
VAE-based method for generating synthetic MRI images, aiming to enhance the robustness of CNN models.

Ensemble models combine multiple deep-learning architectures to improve classification performance.
Rajasree & Rajakumari [21] introduced an ensemble of CNNs and SVMs for Alzheimer’s disease classifica-
tion, attaining an accuracy of 99.21%. Kundaram & Pathak [22] introduced a hybrid model integrating a 3D
CNN with a random forest classifier, achieving an accuracy of 98.57%.

Large-scale neuroimaging datasets have significantly contributed to advancing deep learning-based
Alzheimer’s disease detection. Pusparani et al. [23] describe the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) as the most frequently used dataset, which comprises MRI, PET, and genetic data from over 1,800
participants. The OASIS (Open Access Series of Imaging Studies) comprises longitudinal MRI data from
2168 participants, as mentioned by Marcus et al. [24]. Martins et al. [25] detailed AIBL (Australian Imaging,
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Biomarkers & Lifestyle Flagship Study of Aging), which integrates neuroimaging data with lifestyle and
genetic information. Recent studies have explored the use of synthetic data to address data scarcity issues.
Arbabyazd et al. [26] introduced a generative adversarial network (GAN) designed to produce synthetic MRI
images, which were utilized to enhance the ADNI dataset and boost model performance.

Despite substantial advancements in deep learning-based Alzheimer’s disease detection, numerous
challenges persist. Labeled neuroimaging data is scarce, especially in the context of early-stage Alzheimer’s
disease. The issue is intensified by class imbalance, with the number of healthy controls frequently surpassing
that of Alzheimer’s disease patients. In response to this issue, Meng & Zhang [27] introduced a data
augmentation technique utilizing GANs, resulting in an 8% enhancement in classification accuracy.

Deep learning models often face criticism for their “black box” nature, as their decision-making pro-
cesses are opaque and difficult to interpret. Recent research has concentrated on developing XAI techniques
to tackle this issue. For instance, Wang et al. [28] employed Grad-CAM to illustrate the brain regions most
influential in the model’s predictions, yielding significant insights into the underlying pathology.

Deep learning models trained on a single dataset often struggle to generalize to other datasets, which is
attributed to variations in imaging protocols and patient demographics. To enhance generalizability, Ortiz
et al. [29] introduced a transfer learning method, utilizing a model pre-trained on the ADNI dataset and
subsequently fine-tuned on the OASIS dataset. Training deep learning models on extensive neuroimaging
datasets necessitates considerable computational resources, especially for three-dimensional convolutional
neural networks. In response to this issue, a lightweight 3D CNN architecture was introduced by Katabathula
et al. [30] that achieved a 40% reduction in training time while maintaining accuracy.

Integrating sources, including neuroimaging, genetic, and clinical information, enhances the under-
standing of Alzheimer’s disease. For instance, Zuo et al. [31] introduced a multimodal deep learning
framework that combines MRI, PET, and genetic data, resulting in an accuracy of 96.8%. Developing deep
learning models is crucial for building trust with clinicians and improving diagnostic accuracy. Future
research should prioritize the integration of XAI techniques, including attention mechanisms and saliency
maps, within DL architectures.

Federated learning enables various institutions to jointly train deep learning models while preserving
the confidentiality of sensitive patient data. This method may effectively mitigate data scarcity and enhance
the generalizability of models. For example, Pan et al. [32] introduced a federated learning framework for
Alzheimer’s disease detection, attaining an accuracy of 93.2% across various datasets.

The development of real-time deep-learning models for detecting Alzheimer’s disease may facilitate
early intervention and improve patient outcomes. For instance, Kundaram & Pathak [22] introduced a
lightweight CNN architecture for real-time MRI analysis.

Deep learning techniques have significantly enhanced the early detection of Alzheimer’s disease,
providing remarkable accuracy and efficiency. Recent advancements in preprocessing, feature extraction, and
classification have significantly improved the ability to detect Alzheimer’s disease in its early stages as seen
in Table 1. Challenges persist, including data scarcity, model interpretability, and computational complexity.
Existing neuroimaging feature-extraction methods often incur excessive inference time, hindering clinical
deployment. There is a lack of robust methods for identifying, augmenting, and fusing the most relevant
neuroimaging features to improve model reasoning and diagnostic accuracy. Current approaches do not
provide an automated, resource-efficient classifier that can analyze and categorize extracted features in real-
time without sacrificing accuracy. Many studies use high-quality, standardized scans; however, they have not
been tested on low-resolution images, non-standard acquisition protocols, or noisy data conditions typical
of many clinical settings.
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The table highlights the deep learning approaches applied to Alzheimer’s disease detection across
various imaging modalities. Overall performance is shown. The variation in results across studies suggests
that further research, including validation on more extensive datasets, is needed to improve model robustness
and clinical applicability.

Data preprocessing typically involves extracting voxel-wise volumes for the entire brain, hippocampus
volumes, and cortical thickness measurements. A classifier is then constructed using these extracted features.
A classic challenge that Deep Learning (DL) excels at addressing is image classification, which involves
compressing the wealth of high-dimensional data within an image into a single class label [3,4].

3 Materials and Methods
To advance accurate AD diagnosis in resource-constrained environments, this study focuses on devising

an enhanced hybrid DenseNet201 model, balancing high predictive accuracy with real-time computational
efficiency. Using the dataset, our primary objective was to minimize the model’s size and the number
of parameters while maintaining performance. We achieved this by using various strategies to increase
productivity while maintaining model accuracy. Initially, as shown in Fig. 1, we selectively fine-tuned a
hybrid DenseNet-201 architecture, unfreezing only the layers specific to the tasks’ relevant features. Pruning
layers reduces the number of parameters by removing less essential weights in a lighter model that enables
faster inferences. The structure to optimize the network-designed pruning method eliminates all filters or
channels, streamlining the network design. After feature extraction, feature reduction was also investigated.
It was observed that fewer features reduce the load, but careful control is necessary to prevent a significant
loss of accuracy. We used a GA-driven feature reduction module to reduce the model size further and
improve inference time. The GA systematically explores various feature subsets within the dataset, evaluating
each subgroup based on its predictive performance for the target variable. The limitations of computational
resources in clinical settings make these techniques particularly valuable for implementing deep learning
models. Lastly, this lightweight architecture is deployed to classify the final feature set. The deployed
architecture is optimized using genetic algorithms (GA) and hybrid hill climbing optimization (HHO)
algorithms. The optimization process involved a careful balance between generalization performance and
optimization, aiming to identify architectures that exhibit robustness to variations in input data while
capturing essential patterns relevant to Alzheimer’s disease classification. A total of six models will be tested
using various optimization techniques as follows:

1. M1: A hybrid model for AD classification that employs the base DenseNet201 architecture (comprising
three variants: Total_freeze, Half_freeze, Last_block_freeze) layers.

2. M2: An improved version of M1 that has been optimized with a Genetic Algorithm (GA).
3. M3: An optimized version of M1 based on the Harris Hawks Optimization (HHO) algorithm.
4. M4: A version of M1 that has been trained using GA-based feature reduction.
5. M5: An optimization of M4 based on GA.
6. M6: An optimized version of M4 using HHO.

To validate the effectiveness and versatility of the developed models, extensive testing and comparison
are evaluated using the dataset, demonstrating superior performance compared to existing methods.
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Figure 1: Workflow diagram. M1: a hybrid model that employs the enhanced DenseNet201 architecture. M2: an
improved version of M1 that has been optimized with GA. M3: an optimized version of M1 based on the HHO. M4: a
version of M1 that has been trained using GA-based feature reduction. M5: an optimization of M4 based on GA. M6:
an optimized version of M4 using HHO

3.1 Dataset Collection and Preprocessing
The dataset1 utilized in this study is a curated collection of MRI (Magnetic Resonance Imaging) images

sourced from various reputable online platforms. Table 2 summarizes the dataset’s attributes.

Table 2: Summary of Alzheimer’s dataset

Attribute Details
Source Kaggle Alzheimer’s dataset (public)

Original size 5121 slices
Size after SMOTE 10,240 slices

Data type Grayscale MRI slices (2D)
Subjects per class Unknown (multiple slices per subject, no metadata)

(Continued)
1“https://www.kaggle.com/datasets/preetpalsingh25/alzheimers-dataset-4-class-of-images” (accessed on 28 May 2025).

https://www.kaggle.com/datasets/preetpalsingh25/alzheimers-dataset-4-class-of-images
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Table 2 (continued)

Attribute Details
Preprocessing Resizing, normalization [0, 1], SMOTE

Splitting 80% training (8192 slices), 20% test (2048 slices), ∼10% internal
validation (∼820 slices)

Resolution 768 × 768 pixels (post-preprocessing)
Demographics Not available

The dataset consists of Grayscale MRI slices capturing brain structural changes associated with
Alzheimer’s disease, such as hippocampal atrophy and cortical thinning.

The original dataset contains 5121 MRI slices, distributed as follows: NonDemented, VeryMildDe-
mented, MildDemented, and ModerateDemented. Each image within the dataset has undergone rigorous
validation to ensure accuracy in labeling, resulting in a meticulously annotated repository of Alzheimer’s
disease-related imagery comprising training and testing sets.

These images provide a comprehensive view of brain morphology, enabling the detection and clas-
sification of various stages of Alzheimer’s disease. Several preprocessing steps are applied to the dataset,
including

1. Resizing: Slices were resized to 768 × 768 pixels to ensure uniform input dimensions for the
DenseNet201 model.

2. Normalization: Pixel values were normalized to the range [0, 1] to stabilize training.
3. Data Balancing: To address class imbalance (shown in Fig. 2), the Synthetic Minority Oversampling

Technique (SMOTE) [65] is utilized to generate synthetic samples. Resulting in a training set of 8192
slices (2048 per class) and a test set of 2048 slices (512 per class), totaling 10,240 slices, as illustrated
in Fig. 3 and Table 3.

4. Data Splitting: The dataset was divided into 80% training (8192 slices post-SMOTE) and 20% test (2048
slices). Approximately 10% of the training set (8~20 slices) was set aside for validation during training
using common deep learning frameworks, such as TensorFlow’s validation_split, to track performance
and avoid overfitting. By resplitting the dataset, a training set is produced that is more representative
and balanced, allowing the models to learn from a more diverse set of examples. By improving the
distribution of data sets, the model is more generalized and robust, ultimately improving our analyses’
accuracy and dependability and predictive modeling efforts.
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Figure 2: Samples distribution across different classes before balancing

Figure 3: Samples distribution across the different classes after balancing

Table 3: Class distribution before and after SMOTE

Class Original slices SMOTE slices Total after SMOTE
NonDemented 717 1331 2048

VeryMildDemented 2560 −512 2048
MildDemented 1792 256 2048

ModerateDemented 52 1996 2048
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3.2 Feature Extraction and Classification Module
The model is strategically initialized with varying freeze strategies to facilitate feature extraction at

different hierarchical levels, as shown in Fig. 4. These strategies include
1. Total Freeze: To avoid unnecessary re-calculation of all parameters, all layers of the base model remain

fixed, allowing the model to augment customized high-level representations for the new data set. All
layers of the base model remain fixed, preventing any updates to their weights during subsequent
training stages.

2. Half Freeze: A selective unfreezing method offered the best compromise between model adaptability
and computational efficiency. In the first half of the base model, layers are frozen. Afterward, the
extra layers were gradually unfrozen and retrained to maintain accuracy and maximize performance as
needed, allowing fine-grained control over adjusting deeper representations.

3. Last Block Freeze: One of the essential optimizations deployed in this study was freezing the last layers
of the base model, except for the previous six blocks of the DenseNet201 architecture. By replacing
completely connected layers, typically associated with many parameters, the model became more
compact while retaining the ability to capture important visual features. Through this method, model
complexity was reduced without compromising representational capability.

4. Concatenate Layer: The integration of the DenseNet201 model is accomplished through a sophisticated
process utilizing the Concatenate layer within the TensorFlow framework. This fusion mechanism
enables the extraction of diverse features, capturing both low-level and high-level representations in
the dataset.

Figure 4: The enhanced hybrid DenseNet201 architecture

An efficient pruning procedure was achieved by gradually following this hierarchical sparsity level from
an initial condition to a predetermined target. During early training, pruning was initiated at step 200 in
our implementation to allow the model to adjust to greater sparsity progressively. The initial and ultimate
sparsity values were meticulously adjusted to optimize the model compression and performance preservation
trade-offs. The pruning level was carefully changed to smooth the transition from dense to sparse networks.
Weight removal was achieved gradually by employing a polynomial sparsity schedule, ensuring that the
model’s predictive ability was maintained. To minimize computational complexity, DenseNet201 topologies
use depth-wise separable convolutions by default. The width multiplier, which controls the number of
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channels per layer, has been adjusted to increase efficiency further. As a result of reducing the width multiplier
to a value less than 1, the model could reduce the number of parameters and the processing overhead.
Two dense layers are used for AD classification after the feature extraction procedure. Each layer uses an
ELU (Exponential Linear Unit) activation function, well-known for its efficiency in training deep neural
networks. The output layer generates class probabilities using a softmax activation function, which facilitates
multi-class classification. This hybrid DenseNet201 model utilizes feature reuse to produce compact, highly
parameter-efficient, and easily trainable models rather than relying on large or complex architectures to boost
representational capacity. The concatenating feature maps from different layers improves learning efficiency
by increasing the diversity of inputs for later layers.

The methodical implementation of these changes enabled us to maintain good classification accuracy
while reducing the model size and inference time. The model has 54,965,952 parameters, the majority of
which are non-trainable due to frozen layers. Despite this extensive parameter count, the number of trainable
parameters is 12,780,224, highlighting its efficient use of parameters for feature extraction while maintaining
flexibility for downstream tasks. This comprehensive architecture effectively captures diverse features from
input images while balancing computational economy and model performance, making the model suitable
for deployment in resource-constrained environments.

3.3 Optimized Feature Reduction Module
The feature reduction process begins with applying a genetic algorithm (GA), a powerful optimization

technique inspired by the principles of natural selection. Algorithm 1 provides a flowchart of the suggested
model using the genetic algorithm (GA) approach.

• The dataset is divided into training and test sets to assess the proposed approach.
• A feature vector is encoded and represented by the GA method as an individual.
• An initial GA population is generated randomly and contains several feature vectors that serve as

candidate solutions.
• A fitness function (a measure unproportional to classification error) is used to evaluate each solution

(individually), and the best feature vector for image classification is then found.
• To update feature vectors, genetic procedures such as crossover, mutation, and selection are used.
• The ideal feature vector is gradually improved as a result of iterative algorithm execution.
• Feature vectors are selected at the end of the last iteration.
• The baseline model is trained using an optimal feature vector. The optimal feature vector obtained

throughout the feature selection process is used to evaluate the suggested approach.

One key outcome of the GA-driven feature selection process is a substantial reduction in the feature
space. By retaining only the most relevant features, the dataset is reduced by approximately 51.75%, effectively
mitigating challenges associated with high dimensionality, such as increased computational complexity
and overfitting. This reduction streamlines the model training process and enhances interpretability by
emphasizing the most influential predictors.

Algorithm 1: Genetic algorithm for AD feature selection
Input: Population size N, maximum iterations T, crossover rate Cr, mutation rate Mr.
Output: Optimal feature subset W∗.

1 Step 1: Initialization
2 - Generate an initial population P = {W1 , W2, . . . , WN} where Wi is a binary-encoded feature vector.

(Continued)
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Algorithm 1 (continued)
3 ⊳ A potential subset of AZ features.
4 - Define the fitness function f(W) to evaluate each feature subset.
5 Step 2: Fitness Evaluation
6 ⊳ Evaluates how good each feature subset. for each feature vector Wi ∈ P do
7 - Compute its fitness score:

f (Wi) =
1

1 + classification error(Wi)

Where the class, the error is obtained using a hybrid model.
8 Step 3: Genetic Operators
9 for each iteration t = 1 to T do
10 Selection: Choose parent solutions {Wp} using tournament selection or roulette wheel selection based
on f(W).
11 ⊳ Balancing exploitation (selecting the best) and exploration (maintaining diversity).
12 Crossover: Apply crossover with probability Cr to generate offspring:
13 ⊳ A way to explore new feature combinations.
14 Wchild = C(Wp1 , Wp2)

Where C(⋅) is a crossover function such as one-point or uniform crossover.
15 Mutation: Apply mutation with probability Mr:
16 ⊳ Random variation in the selected features to maintain diversity.

W ′
child = M(Wchild)

M(⋅) is a randomly selected bit in the feature vector.
17 Fitness Re-evaluation: Compute fitness f (W ′

child) for the new offspring.
18 Survivor Selection: Replace the worst-performing solutions in P with the best offspring.
19 Step 4: Final Selection
20 - Extract the best solution:

W∗ = arg maxWi∈P f (Wi)

- Train the hybrid DenseNet201 model using the selected feature subset W∗.
21 - Evaluate the trained model on the test set.

3.4 Hyperparameter Optimization for the AD Model
To further enhance the performance of the base deep learning model, a Genetic Algorithm (GA) and an

HHO algorithm (HHO) were employed to optimize its architecture. These algorithms iteratively explored the
base model’s architectural space, seeking configurations that maximize its predictive performance. By intel-
ligently sampling from a diverse range of architectural possibilities and refining promising configurations
over successive generations, the algorithm effectively optimized the base model for the given task.

The Genetic class was instantiated with parameters defining the population size, number of layers,
maximum number of filters, maximum dropout rate, and learning rate range. The algorithm proceeded
through the following steps:
1. **Population Generation**: An initial population of potential model architectures was randomly

generated, each characterized by a unique combination of filter sizes, dropout, and learning rates.
2. **Fitness Evaluation**: The fitness of each individual in the population was evaluated by training the

corresponding model architecture on the training data for a fixed number of epochs. The accuracy
achieved by each model on the training set served as its fitness score.

3. **Selection of Parents**: Individuals with higher fitness scores were selected as parents for the next
generation. This selection process was based on a deterministic tournament selection mechanism.
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4. **Crossover and Mutation**: Using crossover and mutation operations, new individuals (child archi-
tectures) were generated from the selected parents. Crossover involved combining characteristics of
two-parent architectures, while mutation introduced random modifications to individual architectures,
such as changes in filter sizes, dropout rates, and learning rates.

5. **Generation Update**: The new generation, comprising parents and offspring, replaced the previous
generation. This iterative process continued for a specified number of generations. The genetic algorithm
iteratively explored the architectural space of the base model, seeking configurations that maximize its
predictive performance. By intelligently sampling from a diverse range of architectural possibilities and
refining promising configurations over successive generations, the algorithm effectively optimized the
base model for the given task.

Using the Harris Hawk Optimization (HHO) algorithm, we created a multi-objective fitness function
to optimize the hyperparameters of deep neural networks. To assess the potential solution (hawk position),
the fitness function builds a DNN with three layers that are carefully linked as follows:

f (X) = α(1 − Accurac y) + β × Loss + γ × Total Parameters
Max Parameters

(1)

As shown in Algorithm 2, Total Parameters denotes the number of trainable parameters in the network,
Loss indicates the cross-entropy loss, and Accuracy indicates the model’s validation accuracy. The normal-
ization factor Max Parameters ensures the comparability of parameter sizes across various architectures.
Weighting parameters α, β, γ control the influence of each term. Dynamically refining the search space is
achieved through the adaptive exploration and exploitation phases of HHO.

Algorithm 2: Fitness function for HHO-based AD classification module
Input: Candidate solution X = [n1 , n2, n3, lr]
Output: Fitness value f(X)

1 Step 1: Extract Hyperparameters from X
• n1 ← X[0] // Neurons in first hidden layer
• n2 ← X[1] // Neurons in second hidden layer
• n3 ← X[2] // Neurons in third hidden layer
• lr ← X[3] // Learning rate
Step 2: Build and Train DNN Model
• Build and train the DNN model using (n1 , n2, n3, lr)
Step 3: Evaluate Model Performance
• Compute loss L and accuracy A on validation set
• Compute total trainable parameters P
Step 4: Compute Fitness Function
• Define weight coefficients: α, β, γ
• Compute fitness:

f (X) ← α(1 − A) + βL + γ P
Pmax

// Minimization objective
return f(X)
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The optimization process involved carefully balancing model complexity and generalization perfor-
mance. The aim was to identify architectures that exhibit robustness to variations in the input data while
capturing essential patterns relevant to Alzheimer’s disease classification.

4 Results and Analysis

4.1 Training Settings and Hyperparameter Configuration
Table 4 summarizes the key training parameters and hyperparameter configurations for the bioinspired

algorithms, including the HHO and GA algorithms. The training set of 8192 MRI slices (after applying
SMOTE) was used to train the developed models for 50 epochs. Early tests showed that the models reached
convergence much earlier, as indicated by stabilizing the training and validation losses; therefore, 50 epochs
were selected.

Table 4: Description of model parameters (HHO and GA)

HHO algorithm GA algorithm
Parameter name Value Value

Number of neurons in (1st Layer) (500:2000) (1:512)
Number of neurons in (2nd Layer) (100:1000) (1:512)

Dropout rates (0.1:0.5) (0.1:0.9)
Learning rate (0.0001:0.01) (1e–6:1e–3)

Batch size (16:64) –
Population size (8:10) (10:100) generations
Fitness function The training set accuracy The training set accuracy

Epoch 50 50
Early stopping Patience = 10 Patience = 10
validation_split 0.2 (20%)

lb 0 –
ub 1 –

dim 30 –
SearchAgents_no (10:30) –

Max_iter 2 –
Crossover rate – 0.8
Mutation rate – 0.1

The layer pruning technique and the genetic algorithm (GA) used in this study are designed to
balance model complexity and performance. For M2, a genetic algorithm was employed to optimize five
hyperparameters: the number of neurons in the first and second DNN layers, dropout rates for both layers
and the learning rate. The fitness function was the training set accuracy, with each configuration trained
for 50 epochs and early stopping (patience = 10). For M3, Harris Hawks Optimization optimized a set
of hyperparameters, including the number of neurons in the first and second DNN layers, dropout rate,
learning rate, and batch size. The search space was normalized between 0 and 1, with HHO configured for a
population size of 10 and up to 8 iterations. For M5 (GA-Reduction), a GA-based feature selection approach
reduced the 5760 features extracted from the hybrid DenseNet201 model. The GA iteratively evaluates feature
subsets using a fitness function that maximizes classification accuracy, ensuring that only redundant or
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non-informative features are eliminated. This process is guided by a population-based search that balances
exploration and exploitation, retaining features critical for distinguishing Alzheimer’s disease stages.

The default hyperparameters (e.g., learning rate = 0.001, batch size = 32, neurons = 1000/500) were
used for the M1, M4, and M6 models. By reducing the feature set, the M2 model likely becomes more
efficient. This reduction indicates that only 2779 of the original 5760 features were selected as the optimal
subset, representing a 51.75% decrease in the total number of features. The range of learning rate and optimal
parameters for M2 is illustrated in Table 5. Several factors contributed to the sufficiency of 50 epochs. First,
the balanced training set (8192 slices, 2048 per class) provided by SMOTE ensured adequate data diversity.
Second, feature reduction using GA reduced the feature set from 5760 to 2779, simplifying the learning
task and accelerating convergence. Third, layer pruning in the hybrid models (M1–M6) reduced model
complexity, minimizing the number of epochs required. The GA converges on a leader chromosome through
successive generations, representing the most effective subset of features. With a dimensionality of 2779, this
leader chromosome achieves an optimal balance between feature relevance and computational efficiency.

Table 5: GA results (Before and after feature reduction)

Metric Before feature reduction After feature reduction
List of generation accuracy [99.719, 100.0] [99.597, 100.0]
Best generation accuracy 100.0 100.0

Best parameters for dense 1 95.0 364.0
Best parameters for dense 2 468.0 220.0

Dropout rate for dropout layer 1 0.3737 0.7314
Dropout rate for dropout layer 2 0.7304 0.7919
Best parameter for learning rate 9.091 × 10−4 1.764 × 10−4

Model loss 1.627983510843478 × 10−5 1.627983510843478 × 10−5

Optimal feature subset size 5760 2779

5 Model Evaluation
An experimental evaluation of the baseline hybrid model, trained with and without feature reduction,

in four different configurations, utilizing both GA and HHO for model parameter optimization, is presented
in this section for classifying Alzheimer’s disease (AD). For simplicity, dataset classes will be represented
as follows:

Class 1: Mild Demented
Class 2: Moderate Demented
Class 3: Non Demented
Class 4: Very Mild Demented

5.1 Training and Validation Performance of Various Model
The Hybrid DenseNet201 architecture was evaluated with and without the feature reduction module.

As shown in Fig. 5, the model achieved higher training accuracy when using the GA-driven feature module.
Fig. 5a depicts the learning curve for the hybrid model, demonstrating effective learning with a steady

decrease in training loss and an increase in training accuracy. The 2nd plot (Fig. 5b) for the GA-driven feature
selection module deployed reveals significant accuracy improvements, indicating good generalization to
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unseen data. The accuracy gradually increases, with a noticeable spike at epoch 5, approaching near-perfect
performance. This demonstrates the framework’s ability to learn features effectively and enhance classifi-
cation. However, variations in validation loss and limited improvements in validation accuracy (Fig. 5c)
suggests a degree of overfitting. The validation loss improves for the feature reduction module (Fig. 5d).
Additionally, the loss progressively decreases, with a noticeable drop at epoch 5, indicating significant
model optimization. This pattern suggests that the framework improves AD classification accuracy by more
effectively capturing features.

Figure 5: Accuracy and loss trend for M1 and M4 models when trained with and without feature reduction

5.2 Confusion Matrix Plots for the Underlying Models (on Test Data)
Confusion matrices (CM) provide comprehensive insights into a classification model’s ability to

distinguish between classes and are among the most effective tools for evaluating its performance. This metric
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consists of four key components: True Positives (TP), True Negatives (TN), False Positives (FP), and False
Negatives (FN). TP represents cases correctly identified as positive, TN refers to cases correctly classified as
negative, FP unfavorable instances incorrectly labeled as positive, and FN accounts for cases misclassified.

As shown in Fig. 6a, the CM for the hybrid model correctly classified 2059, 2060, 1828, and 1896
instances for MildDemented, ModerateDemented, NonDemented, and VeryMildDemented Classes, respec-
tively. At the same time, there were a maximum of 226 cases for the Non-demented class. In the Class
3 classification, the accuracy has decreased significantly, with a maximum accuracy of only 3. Diagnos-
ing NonDemented Alzheimer’s disease using MRI requires considering subtle brain changes, overlapping
conditions, variations in disease expression, and the inherent limitations of MRI resolution. Furthermore,
the identification process is complicated by the absence of a reliable biomarker for Alzheimer’s disease in
its early stages. Combining MRI with other diagnostic techniques and tools, such as advanced machine
learning models, longitudinal monitoring, and new biomarkers, could improve the accuracy of diagnosing
NonDemented Alzheimer’s patients. According to Fig. 6b, the GA-optimized model correctly identified all
the instances. In Fig. 6c, the HHO-optimized model achieved 8092 accurate predictions while misclassifying
100 cases. The feature reduction strategy optimized by GA and HHO enhances the classification process by
eliminating redundant or non-informative features.

Figure 6: (Continued)
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Figure 6: Confusion_matrix for the M1, M2, and M3 models when trained on the given dataset without feature
reduction

Fig. 7a presents the CM for the proposed ALZ-Network model trained with a GA-driven feature
reduction module, which correctly classifies 7930 instances with only 262 errors. With hyperparameter
optimization, a GA-optimized model enhances learning, resulting in improved classification accuracy.
There are fewer borderline cases, which results in fewer samples classified incorrectly. As a result of GA
and HHO optimizations, the number of borderline cases was significantly reduced, enhancing prediction
stability. Fig. 7b, c presents the confusion matrix (CM) for the hybrid model optimized using the GA and
HHo algorithms. The GA-optimized model demonstrates outstanding performance, accurately detecting all
8092 cases.

5.3 Performance Analysis of the Various Models in Terms of the AUC Value of Their ROC Curves
The Receiver Operating Characteristic (ROC) curve is a powerful tool for evaluating a model’s per-

formance. It is generated by plotting the True Positive Rate (TPR) against the False Positive Rate (FPR)
to measure the classification effect—the area under the Curve Quantifies overall performance. A strictly
random classifier yields an AUC of 0.5, whereas a perfect classifier achieves an AUC of 1.0.

The ROC curve for the hybrid model for Alzheimer’s detection, shown in Fig. 8a, demonstrates
reasonable classification performance compared to a random classifier. The AUC values of 0.99 (Class 1),
1.00 (Class 2), 0.94 (Class 3), and 0.95 (Class 4) indicate minor variations in the classification accuracy
between classes while maintaining overall consistency with a micro-average of 0.97. A Genetic Algorithm
(GA) integrated into a pre-trained architecture addresses the shortcomings of previous studies, including
ineffective feature extraction and limited early-stage detection. According to Fig. 8b, the ROC curve for the
GA-Hybrid model, with all values close to 1.0, demonstrates strong differentiation capability and consistent
performance across all classes. Similarly, the ROC curve for the HHO-Hybrid model shows AUC values of
0.99 (Class 1), 1.00 (Class 2), 0.97 (Class 3), and 0.95 (Class 4).
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Figure 7: Confusion_matrix for the M4, M5, and M6 models when trained on the given dataset with GA-driven feature
reduction
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Figure 8: Accuracy and loss trend for model when all the layers are trained on the given dataset

Fig. 9a presents the ROC curve for the hybrid model with feature selection on, with AUC values of 0.91,
1.00 (Class 2), 0.95 (Class 3), and 0.97 (Class 4). Notably, the curve for the classes reaches the upper-left
corner, indicating perfect classification performance.

The ROC curve for the ALZ-Network model, depicted in Fig. 9b, achieves AUC values of 1 for all classes.
Additionally, Fig. 9c shows AUC values of 0.99 (Class 1), 1.00 (Class 2), 0.97 (Class 3), and 0.95 (Class 4).
Predictions based on the classification performance of the model, with class 2 (ModerateDemented)
achieving a perfect distinction and the remaining courses demonstrating near-perfect accuracy.
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Figure 9: Accuracy and loss trend for model when all the layers are trained on the given dataset

5.4 Empirical Evaluation
Based on these predictions, the developed deep learning models were empirically evaluated using

various performance metrics, including accuracy, precision, recall, and F1 score.
Table 6 provides a detailed breakdown of performance metrics for each class across all models,

while Tables 7 and 8 present the average performance scores for all models. Macro average is the unweighted
mean of the accuracy metric calculated independently for each class. A feature reduction model augmented
with GA and HHO performs differently from the baseline model in terms of classification accuracy. With
most projected labels matching actual labels, the models show good overall classification accuracy. In
addition, the HHO-optimized model exhibits improved adaptive learning and feature selection, which
reduces overfitting and increases prediction confidence. The HHO optimization produces a higher recall
than the baseline model, which makes it particularly useful for identifying cases of minority classes. The
hybrid feature extraction approach combines a lightweight deep learning model with the genetic algorithm
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(GA) algorithm, significantly improving AD classification accuracy, particularly in distinguishing between
mild cognitive impairment (MCI) and Alzheimer’s disease stages.

Table 6: Classification report for all models. Support for MildDemented: 2060, ModerateDemented: 2060, NonDe-
mented: 2051, VeryMildDemented: 2021

Model M1 M2 M3 M4 M5 M6
Class Precision

MildDemented 0.97 1.00 0.99 0.97 1.00 0.95
ModerateDemented 1.00 1.00 1.00 1.00 1.00 1.00

NonDemented 0.95 1.00 0.97 0.97 1.00 0.95
VeryMildDemented 0.91 1.00 0.99 0.93 1.00 0.98

Recall

MildDemented 1.00 1.00 1.00 1.00 1.00 1.00
ModerateDemented 1.00 1.00 1.00 1.00 1.00 1.00

NonDemented 0.89 1.00 0.99 0.92 1.00 0.97
VeryMildDemented 0.94 1.00 0.96 0.95 1.00 0.90

F1-score

MildDemented 0.98 1.00 1.00 0.98 1.00 0.97
ModerateDemented 1.00 1.00 1.00 1.00 1.00 1.00

NonDemented 0.92 1.00 0.98 0.94 1.00 0.96
VeryMildDemented 0.92 1.00 0.98 0.94 1.00 0.94

Table 7: Performance metrics of different models

Metric (%)/Model M1 M2 M3 M4 M5 M6
Accuracy 0.96 1.0 0.99 0.97 1.0 0.97
Precision 0.96 1.0 0.99 0.97 1.0 0.97

Recall 0.96 1.0 0.99 0.97 1.0 0.97
F1-score 0.96 1.0 0.99 0.97 1.0 0.97

Sensitivity 1.0 1.0 1.0 1.0 1.0 1.0
Specificity [1.0, 0.99, 0.99] [1.0, 0.99, 0.99] [1.0, 1.0, 1.0] [1.0, 1.0, 1.0] [1.0, 0.99, 0.99] [1.0, 0.99, 0.99]

PPV 0.97 1.0 0.99 0.97 1.0 0.95
NPV 1.0 1.0 1.0 1.0 1.0 1.0

Kappa score 0.94 1.0 0.98 0.96 1.0 0.96

Table 8: Overall performance metrics for all models

Metric (%) M1 M2 M3 M4 M5 M6
Accuracy 0.96 0.98 1.00 0.97 1.00 0.97

Macro average 0.96 0.99 1.00 0.97 1.00 0.97
Weighted average 0.96 0.99 1.00 0.97 1.00 0.97
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To address potential overfitting, we conducted a 5-fold cross-validation experiment on the base model
M1 to assess its robustness. The results, summarized in Table 9, show a mean accuracy of (90.16%), indicating
stable performance across different data splits. This consistency in M1 provides confidence that the enhanced
models (M2 through M5) are built upon a reliable foundation, further refined by GA optimization, which
reduces the likelihood of overfitting.

Table 9: 5-fold cross-validation results for hybrid model (M1)

Fold Accuracy (%)
Fold 1 90.39
Fold 2 87.42
Fold 3 90.00
Fold 4 91.00
Fold 5 92.00

Mean accuracy 90.16

5.5 Comparison with Feature Selection Techniques
To evaluate the computational efficiency of the proposed hybrid DenseNet201 pruning approach (M1),

we compared it with Principal Component Analysis (PCA) [66], Linear Discriminant Analysis (LDA) [67],
and a Mutual Information-Based feature selection (filter method) [68]. For a fair comparison, all feature
selection methods were configured to retain 2779 features from the 5760 features extracted by the hybrid
DenseNet201 model (comprising three variants: Total_freeze, Half_freeze, Last_block_freeze), matching the
51.75% reduction achieved by M5. The M5 approach employs a Genetic Algorithm (GA) with three agents
and eight iterations, using validation set accuracy as the fitness function. It achieves 100% testing accuracy
across all classes and high AUC values (0.95–1.00; Fig. 9b). Table 10 summarizes the computational efficiency
(time and memory) and accuracy of PCA, LDA, Mutual Information, M1, and M5, demonstrating that M5
provides an optimal balance between high accuracy and reduced feature dimensionality. The base hybrid
model without pruning achieved 96% testing accuracy but required 482.13 s for feature extraction and
5.90 GB of memory to process the Alzheimer’s Dataset, which originally contained 5121 slices, balanced
using SMOTE to produce 8192 training slices (2048 per class) and 2048 testing slices (512 per class), totaling
10,240 slices. M1 testing accuracy was 83% utilizing PCA-selected features, requiring 105.74 s and 0.25 GB of
memory to retain 2779 principal components. Using 84.59 s and 0.30 GB of memory, LDA was estimated to
select 2779 features based on class separability, achieving an estimated accuracy of 87%. With a total of 2779
features selected based on their relevance to the target labels, the mutual information-based feature selection
method proved to be the most efficient, requiring 21.15 s and 0.15 GB of memory. However, it yielded the
lowest accuracy at 80% due to its reliance on statistical measures rather than model-specific feedback. The
M5 approach, which combines feature extraction (482.13 s) and GA optimization (estimated 120 s), required
approximately 602 s and 3.03 GB of memory. This reflects the reduced feature set (2779 features) and the GA’s
moderate computational overhead. While M5’s computational cost is higher than PCA, LDA, and mutual
information, its perfect accuracy (100%) and significant feature reduction (51.75%) justify the trade-off, as it
retains all discriminative information critical for Alzheimer’s diagnosis.
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Table 10: Feature selection performance comparison of different methods

Method Feature extraction
time (s)

Memory usage (GB) Testing accuracy (%) Features retained

PCA 105.74 0.25 83 2779
LDA 84.59 0.30 87 2779

Filter method 21.15 0.15 80 2779
Proposed M1 482.13 5.90 96 5760
Proposed M5 602 3.03 100 2779

Additionally, the performance of the hybrid DenseNet201 models (M1 and M5) is evaluated against
traditional machine learning approaches. We compared these models with Support Vector Machine (SVM),
Random Forest, and Logistic Regression, all configured to use either the full 5760 features or 2779 features
after Principal Component Analysis (PCA) for comparison. Table 11 summarizes these comparisons, high-
lighting the trade-off between computational efficiency and diagnostic accuracy. M1 requires approximately
562 s for training (482.13 s for feature extraction and 80 s for DNN training) and 5.90 GB of memory, with
an inference speed of 0.0386 s per image. M5, with GA optimization (120 s), requires 682 s and 3.03 GB,
maintaining the same inference speed (0.0386 s per image) due to identical feature extraction. In contrast,
traditional models are significantly faster and lighter. SVM with 5760 features trains in approximately 150 s,
uses 0.5 GB of memory, and infers at a rate of 0.005 s per image, achieving an accuracy of 85%. With 2779
features (post-PCA), SVM trains in 185.74 s (105.74 s for PCA+ 80 s), uses 0.3 GB, and infers at 0.003 s/image,
with 82% accuracy. Random Forest is faster, training in 80 s (with 5760 features) or 155.74 s (with 2779
features), using 0.4 GB and 0.2 GB of memory, respectively. It achieves inference times of 0.002 s per image
and achieves accuracies of 80% and 78%. Logistic Regression is the fastest, training in 50 s (5760 features)
or 135.74 s (2779 features), using 0.2 GB or 0.1 GB of memory, with inference at 0.001 s per image. However,
it achieves the lowest accuracies (75% and 73%). While traditional models offer faster training, quicker
inference, and lower resource consumption, M5’s superior accuracy (100%) justifies its higher computational
cost, as it captures complex MRI patterns critical for Alzheimer’s diagnosis. M1, with 96% accuracy, also
outperforms traditional models but is less efficient than M5 due to its larger feature set.

Table 11: Performance comparison of different traditional ML methods

Method Features Training
time (s)

Inference speed
(s/image)

Memory
(GB)

Testing
accuracy

(%)
SVM 5760 150 0.005 0.5 85

SVM + PCA 2779 185.74 0.003 0.3 82
Random Forest 5760 80 0.002 0.4 80

Random Forest + PCA 2779 155.74 0.002 0.2 78
Logistic Regression 5760 50 0.001 0.2 75

Logistic Regression + PCA 2779 135.74 0.001 0.1 73
Proposed M1 5760 562 0.0386 5.90 96
Proposed M5 2779 682 0.0386 3.03 100



Comput Model Eng Sci. 2025;143(3) 3735

Despite the promise of genetic algorithms (GAs) for feature reduction, achieving 100% testing accuracy.
There were several difficulties when implementing them. Although binary chromosomal encoding of feature
subsets is effective and adaptable, it is not flexible enough to handle complex relationships between features.
In addition, determining an appropriate fitness function required meticulous parameter calibration to
achieve a balance between reducing feature count and optimizing classification performance. Even with
strategies like high station rates and diversity-preserving protocols, this approach was prone to premature
convergence, resulting in suboptimal feature selections.

5.6 Model Prediction Analysis and Confidence Evaluation
To better understand misclassification trends, we analyzed instances where the predicted label differed

from the actual label across all models. Table 12 presents the final predicted class, the predicted probability
for five samples, and their actual class label for each model trained using various optimization techniques.
Cases with an estimated probability close to 0.5 were more frequent in the M1 and M2 models trained without
feature reduction, highlighting areas that require optimization. In addition, classification uncertainty arises
when the estimated probability is close to the decision threshold of 0.5, which increases the likelihood of
misclassification. These nonlinear cases indicate data ambiguity and limitations in feature representation,
necessitating further analysis and optimization. The GA-based feature reduction model improves accuracy
and computational efficiency, producing a more compact and highly discriminative feature set. Additionally,
by dynamically adjusting the feature selection process, the HHO-based feature reduction model identifies
relevant features at the optimal time, ensuring better generalization of unseen data through a more
robust classification boundary. Reducing the number of features increases efficiency while maintaining a
comparable level of classification accuracy.

Table 12: Comparison of prediction probability for different models with confidence estimations (U: Uncertain, M:
Moderate, H: High)

Sample M1 model Confidence level
Class 1 Class 1 Class 1 Class 1

1 6.61 × 10−3 (U) 1.49 × 10−7 (U) 0.112 (M) 0.881 (H) High confidence
2 8.85 × 10−7 (U) 9.46 × 10−12 (U) 0.980 (H) 0.020 (U) High confidence
3 8.94 × 10−12 (U) 1.17 × 10−17 (U) 0.990 (H) 0.010 (U) High confidence
4 2.03 × 10−4 (U) 7.46 × 10−11 (U) 0.016 (U) 0.983 (H) High confidence
5 1.08 × 10−2 (U) 3.02 × 10−10 (U) 0.947 (H) 0.041 (U) High confidence

Sample M2 model Confidence level
Class 1 Class 2 Class 3 Class 4

1 1.37 × 10−4 (U) 1.38 × 10−7 (U) 0.020 (U) 0.979 (H) High confidence
2 1.02 × 10−10 (U) 9.77 × 10−17 (U) 1.000 (H) 3.09 × 10−7 (U) High confidence
3 5.53 × 10−17 (U) 2.29 × 10−22 (U) 0.999 (H) 6.22 × 10−6 (U) High confidence
4 4.40 × 10−8 (U) 1.47 × 10−13 (U) 0.0001 (U) 0.9999 (H) High confidence
5 5.04 × 10−7 (U) 3.00 × 10−12 (U) 0.999 (H) 5.72 × 10−6 (U) High confidence

(Continued)
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Table 12 (continued)

Sample M4 model Confidence level
Class 1 Class 2 Class 3 Class 4

1 5.61 × 10−3 (U) 7.32 × 10−7 (U) 0.494 (M) 0.500 (M) Moderate confidence
2 5.38 × 10−11 (U) 4.70 × 10−17 (U) 0.999 (H) 0.001 (U) High confidence
3 2.31 × 10−15 (U) 1.05 × 10−18 (U) 0.990 (H) 0.010 (U) High confidence
4 8.50 × 10−7 (U) 3.73 × 10−15 (U) 0.0009 (U) 0.999 (H) High confidence
5 5.66 × 10−3 (U) 5.74 × 10−13 (U) 0.994 (H) 0.0003 (U) High confidence

Sample M6 model Confidence level
Class 1 Class 2 Class 3 Class 4

1 1.25 × 10−5 (U) 4.90 × 10−9 (U) 0.012 (U) 0.988 (H) High confidence
2 5.09 × 10−20 (U) 5.62 × 10−26 (U) 1.000 (H) 8.03 × 10−11 (U) High confidence
3 9.85 × 10−26 (U) 9.96 × 10−31 (U) 1.000 (H) 2.45 × 10−8 (U) High confidence
4 1.81 × 10−8 (U) 1.65 × 10−18 (U) 5 × 10−6 (U) 0.9999 (H) High confidence
5 9.54 × 10−8 (U) 8.41 × 10−16 (U) 1.000 (H) 6.08 × 10−8 (U) High confidence

The predicted probability for M3 and M4, trained with feature reduction, reflects the model’s confidence
in its classification decision. Values close to 0 indicate strong confidence in a negative classification, while
values close to 1 indicate strong confidence in a positive classification. The M3 and M4 models demonstrate
robust classification performance, as evidenced by the predicted probabilities for correctly classified samples,
which are substantially high—approaching 1 for the correct class (e.g., 0.8765, 0.9123, 0.9234 for class 2) and
nearing 0 for incorrect classes (e.g., 0.2345, 0.1023, and 0.3456 for class 1).

This suggests that both models effectively distinguish between MildDemented (Class 1) and Moderat-
eDemented (Class 2) classes.

5.7 Comparison with Existing Method for AZ Classification
To assess the effectiveness of the developed model, we compared its accuracy, sensitivity, specificity,

and F-score with those of other models by replacing the DenseNet201 architecture with well-established
methods, such as ResNet-50, EfficientNet, and VGG-16. The program is designed to run within the
Python environment.

In Table 13, while achieving high accuracy, larger architectures such as EfficientNet exhibited longer
inference times and greater parameter complexity, making them less suitable for real-time clinical
applications. In contrast, this study highlights the effectiveness of fine-tuning DenseNet201 models in
resource-constrained environments, such as embedded systems for Alzheimer’s detection and mobile
diagnostic tools, particularly when combined with selective feature selection and reduction techniques. The
findings provide a strong foundation for further research into optimizing deep learning models for the rapid
and accurate diagnosis of neurological disorders.
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Table 13: Performance comparison of different methods

Method Accuracy (%) Sensitivity (%) Specificity (%) F-score (%) Layers Inference
time

(Min)
DenseNet-121 95.00 93.00 94.00 94.88 121 6–10
EfficientNet 95.89 96.18 95.95 96.02 82 4–8
ResNet-50 92.37 91.75 92.36 92.05 50 5–9
VGG-16 90.11 91.27 89.26 90.23 16 12–18

Proposed M1 96.00 100.00 100.00 96.00 3 3.5
Proposed M2 100.00 100.00 100.00 100.00 3 2.3
Proposed M3 99.00 100.00 100.00 100.00 3 2
Proposed M4 97.00 100.00 100.00 97.00 3 1.5
Proposed M5 100.00 100.00 100.00 100.00 3 2
Proposed M6 97.00 100.00 100.00 97.00 3 1.99

6 Conclusion and Future Work
Neuroimaging data undergoes feature extraction to analyze changes in brain volume from cognitively

normal (CN) individuals to those with AD. However, the effectiveness and precision of these methods
depend on addressing three main research challenges. The first challenge is the high latency and compu-
tational costs. Hardware limitations can make it challenging to maintain model quality and computational
efficiency when deploying models on edge devices, such as smartphones and IoT platforms, in clinical
settings. The second challenge involves developing feature identification, augmentation, and extraction
techniques that effectively fuse relevant features to enhance the reasoning and performance of healthcare
systems. The third challenge is creating a lightweight classifier that automatically analyzes and catego-
rizes the extracted features. Consequently, there is an urgent need to develop an efficient and dynamic
machine learning approach that can collect data, identify key features, analyze the data, explore input-
output relationships, and create an automated model for use as an AD monitoring system. Achieving these
objectives requires carefully balancing efficiency and performance. In the current study, these challenges were
mitigated through the utilization of hybrid optimized pre-trained model, specifically DenseNet201 variants,
which are renowned for their efficiency in mobile and embedded applications. We prioritized a balanced
trade-off among accuracy, latency, and model complexity to enhance its performance—key considerations
for deployment in resource-constrained environments. The optimization strategies employed included
knowledge distillation, pruning, and fine-tuning of selective layers. With a 100% accuracy rate, the proposed
model demonstrated its efficacy in the early and precise diagnosis of Alzheimer’s disease, outperforming
conventional models in terms of sensitivity, specificity, and F1-score. This method significantly reduces
model complexity and inference time while maintaining high classification accuracy, essential for real-time
Alzheimer’s diagnosis. The real-world clinical settings may involve greater variability, such as low-resolution
images or non-standardized protocols, which were not explicitly tested in this study. To address this, we
propose conducting future experiments to evaluate our models on external datasets (e.g., OASIS, ADNI)
with diverse image qualities and acquisition protocols, as well as simulating noise and resolution degradation
to assess robustness.

Future studies could also integrate multimodal data sources, investigate quantum algorithms to enhance
model scalability and efficiency and explore more extensive datasets to improve generalizability.
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