Computer Modeling in & Tech Science Press
Engineering & Sciences ]

Doi:10.32604/cmes.2025.065318

ARTICLE Check for

updates

A Robust Hybrid Solution for Pull-in Instability of FG Nano Electro-Mechanical
Switches Based on Surface Elasticity Theory

Vafa Mirzaei, Mohammad Bameri, Peyman Moradweysi and Mohammad Mohammadi Aghdam*

Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran, 158754413,
Iran

*Corresponding Author: Mohammad Mohammadi Aghdam. Email: aghdam@aut.ac.ir
Received: 10 March 2025; Accepted: 16 May 2025; Published: 30 June 2025

ABSTRACT: The precise computation of nanoelectromechanical switches’ (NEMS) multi-physical interactions
requires advanced numerical models and is a crucial part of the development of micro- and nano-systems. This
paper presents a novel compound numerical method to study the instability of a functionally graded (FG) beam-type
NEMS, considering surface elasticity effects as stated by Gurtin-Murdoch theory in an Euler-Bernoulli beam. The
presented method is based on a combination of the Method of Adjoints (MoA) together with the Bézier-based multi-
step technique. By utilizing the MoA, a boundary value problem (BVP) is turned into an initial value problem (IVP).
The resulting IVP is then solved by employing a cost-efficient multi-step process. It is demonstrated that the mentioned
method can arrive at a high level of accuracy. Furthermore, it is revealed that the stability of the presented methodology
is far better than that of other common multi-step methods, such as Adams-Bashforth, particularly at higher step sizes.
Finally, the effects of axially functionally graded (FG) properties on the pull-in phenomenon and the main design
parameters of NEMS, including the detachment length, are inspected. It was shown that the main parameter of design
is the modulus of elasticity of the material, as Silver (Ag), which had better mechanical properties, showed almost a 6%
improvement compared to aluminum (Al). However, by applying the correct amount of material with sturdier surface
parameters, such as Aluminum (Al), at certain points, the nanobeams’ functionality can be improved even further by
around 1.5%.

KEYWORDS: Nano electro-mechanical switches; pull-in instability; surface elasticity theory; method of Adjoints;
Bezier multi-step method

1 Introduction

Nanoelectromechanical switches (NEMS) are a class of switches that leverage the mechanical motion
of a structure at the nanoscale to control the electrical current. NEMS has notable characteristics, including
its diminutive size, high resonance frequencies, and relatively low volume [1,2]. They have the potential
to serve as replacements for typical semiconductor switches [3], facilitate the setting up of high-speed
data transmission links, and enable the development of novel sensor technologies for measuring physical
properties. They provide advantages compared to regular semiconductor switches, including reduced power
consumption and an increased on-off current ratio [4]. NEMS has immense potential to bring about
significant changes across several fields, providing opportunities to improve various sectors substantially [5-
7]. The aforementioned features of these instruments make them very suitable for a diverse range of
applications, including biomedical [8] and chemical [9] sensors, automotive sensors and actuators [10], oscil-

lators [11,12], integrated circuits [13], high-speed data transmission [14], low-power digital computing [15],
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logic and memory applications [16,17] and high-frequency applications [18]. However, utilizing this category
of switches necessitates a highly detailed design.

The main approaches employed for the numerical investigation of mechanical characteristics in nano-
materials and nanostructures include quantum mechanics [19], atomistic simulations [20], and enriched
continuum mechanics. The field of quantum mechanics is employed to examine nanomaterial structures
and calculate mechanical parameters, including thermal characteristics and natural frequencies. Atomic
modeling methodologies, such as molecular dynamics, are used to predict accurate physical characteristics.
Atomistic simulation techniques are limited in their ability to investigate the mechanical characteristics
of complex systems, and they have high calculation costs, including the behaviors of nanosystems and
nanostructures [21-23]. However, the continuum model does not have the limitations mentioned in the
previous methods, and a wider range of dimensions can be analyzed with it, along with less computational
cost. Therefore, scholars have employed continuum modeling to investigate NEMS behaviors.

In contrast to their macroscopic counterparts, nanoscale materials and structures mainly display
substantial size-dependent behavior. The behavior of materials is significantly influenced by surface elasticity
at small scales. The surface area to volume ratio of a material increases considerably from the macroscopic to
the nanoscale, where the surface elasticity acts markedly stronger [24]. Numerous theories, such as nonlocal
elastic [25], coupled stress [26], strain gradient elastic [27], and surface elasticity [28] theories, are utilized
to clarify the difference between nanoscale beam behavior and macroscale [29,30]. A stress-driven nonlocal
model was introduced and applied to nanostructured beams [31]. It was later extended into the surface
stress-driven model to study the coupling between long-range interactions and surface effects [32], offering
improved accuracy. This modified formulation has since been the subject of recent studies investigating its
effects on the mechanical behavior of nanostructured beams [33,34]. In a previous study, the NEMS beam
was calculated by utilizing the non-local theory [35]. As this mechanical theory is still under scientific doubt
for how the coeflicients should be calculated, there is a need for the NEMS beam to be determined with
a different mechanical theory. Gurtin-Murdoch surface elasticity theory [28,36] is one of the most well-
known and applied theories for predicting NEMS behavior [37,38]. As a result, accurate modeling of NEMS
is crucial for many of the applications mentioned and even high-frequency logic circuits and biomedical
sensors, where material gradation and surface effects dominate performance. Therefore, this paper aims to
utilize this surface elasticity theory as the foundation for NEMS modeling.

Currently, there is a significant interest in the study of functionally graded (FG) structures. FG beams are
structural elements made from materials whose mechanical and thermal properties vary along their length
or height, such as Young’s modulus, thermal conductivity, and coefficient of thermal expansion. Functional
gradient materials can be fabricated using a great range of materials, including metals [39], ceramics [40],
and polymers [41]. The current manufacturing methodologies for FG materials are powder metallurgy [42],
chemical vapor deposition [43], laser cladding [44], and additive manufacturing [45]. FG beams possess
several advantages over traditional beams, such as enhanced strength and stiffness, reduced weight, and
improved thermal and electrical properties [46,47]. To provide an example [48], a fiber-reinforced composite
material utilized in a thermal protection system for a spacecraft may exhibit a significantly high Young’s
modulus in the area exposed to high temperatures to withstand deformation efficiently. In the other direction,
in the area subjected to lower temperatures, the material may have a reduced coeflicient of thermal expansion,
therefore decreasing the onset of thermal stresses. A multitude of studies have investigated the integration
of functionally graded materials with NEMS to construct an improved structure for switches [49-51]. The
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analysis of functionally graded NEMS is carried out using advanced numerical techniques because of their
complex behavior.

The conversion of a boundary value problem (BVP) into an initial value problem (IVP) is typically
preferred due to the relatively lower computational cost for solving an IVP compared to a BVP. One
commonly used approach involves making educated guesses for the missing initial values and employing an
iterative strategy to refine these initial values until the correct terminal boundaries are achieved. However,
this strategy becomes inefficient when more than two initial values are unknown. This makes room for the
utilization of the “Method of Adjoints,” also known as the Goodman & Lance method, which offers a more
efficient alternative for determining missing initial values based on terminal values. In the case of non-linear
BVPs, an iterative technique can be employed to determine the missing initial values, while linear BVPs do
not necessitate iteration. This iterative approach can significantly reduce computation time by enhancing the
convergence rate while maintaining a suitable accuracy [52,53].

Named after their innovator, Pierre Bézier, Bézier curves have been widely used in the structural design
of automobiles since the 1960s. Aghdam et al. [54] first proposed a multi-step method based on Bézier
curves to solve the initial value problems. They proved that a more stable and exact solution can be found
by applying Bézier curves to several well-known nonlinear initial value problems. This method has proved
useful in many mechanical systems [55-57]. In this paper, the Bézier curves-based multi-step technique is
employed to compute the boundary conditions, which are used to update the MoA initial conditions. Then,
common techniques such as Adams-Bashforth, Taylor, and Runge-Kutta are used to evaluate the supplied
Bezier solution.

The objective of this study is to investigate the behavior of a cantilever axially functionally graded beam
within NEMS by incorporating the Casimir intermolecular force. This will be achieved by applying a unique
hybrid numerical approach to calculate the structural properties of the nanobeam. This numerical method
is a combination of MoA and Bézier-based multi-step. More specifically, the base NEMS model is developed
so that the effect of surface elasticity and FG formulations can be incorporated into the model. Then, the
solution method is explained, giving details on the way MoA, along with the Bézier-based multi-step method,
is implemented. The aforementioned model equations are then solved using the Bézier-based multi-step,
Adams-Bashforth, Taylor, and Runge-Kutta methods and then validated. Moreover, the compatibility with
the MoA of the Adams-Bashforth method is compared to the Bézier-based multi-step method. The effects
of geometrical and surface elasticity parameters on the NEMS instability are investigated. Then, the FG
properties of a nanobeam made of two materials are integrated into the instability analysis. Finally, the critical
parameter for designing a beam-type NEMS actuator, known as the detachment length, is calculated.

2 Modelling and Formulations

Currently, our focus is on creating a model for beam-type NEMS actuators and applying the necessary
forces and boundary conditions to the system. Subsequently, the surface effects will be incorporated into the
equations. Then, the material properties are considered with an FG behavior.

2.1 NEMS Modelling

The illustration in Fig. 1 depicts a traditional cantilever NEMS comprising two conducting electrodes
that are positioned apart by a dielectric such as air or vacuum. One of the electrodes is fixed to the ground,
while the other is attached to a beam that can be moved. When an electrical potential difference is imposed
across the two electrodes of the switch, it generates an electrostatic force acting upon the nanobeam. Once
the voltage surpasses a critical threshold, the electrostatic force experiences a proportional increase in
the restoring force, leading to instability and collapse of the nanobeam towards the ground position. The
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phenomenon under consideration is commonly referred to as pull-in instability, and the specific electrical
potential at which it occurs can also be referred to as the pull-in voltage.

Figure 1: Schematic of a cantilever-type NEMS

According to Fig. 1, a cantilever-type NEMS characterized by dimensions L, b, and t is considered.
The variable gy denotes the initial gap separating the movable and fixed electrodes. There are two distinct
intermolecular forces, namely the van der Waals force and the Casimir force. When the distance between
the electrodes, denoted as gy, is much smaller than 20 nm, the main force is the van der Waals force, while
the Casimir force becomes more noticeable [58]. Due to the large scale of this study, the parameter g, is
considered with a special focus on the Casimir effect.

The investigation primarily focuses on the static deflection of a narrow beam by utilizing the Euler-
Bernoulli theory to examine the pull-in factors of NEMS.

Cases where £ < 1occurs, the elongation of the mid-plane beam can be disregarded, and a geometrically
linear beam model is deemed sufficient for simulating the deflection of NEMS [59]. The governing equation
for a nanobeam exhibiting geometric linearity is:

d*w(x
(EI)eff%AI):Felec‘*'Fc"'Fs ey

In the given context, the symbol w denotes the deflection of the nanobeam, x refers to the position along
the nanobeam axis and (EI). sy is the effective bending rigidity of the nanobeam, taking into account the
effects of surface elasticity. The electrostatic and the Casimir forces per unit length are shown by Feje. and
F,, respectively, while the dispersed force resulting from surface effects is F;. When considering the first-
order adjustment for the fringing field, the electrostatic force per unit length of the nanobeam is determined
using [60,61]:

1 ¢ V% go — w(x)
E—[go W ()] (1 + O.65—b ) (2)

Felec =
The dielectric permittivity of vacuum is o= 8.854 x 1072 C>* N™'m~2. The variable V denotes the
applied voltage between the nanobeam and the fixed electrode [62]. The Casimir force is a phenomenon
characterized by attraction between atoms, which remains independent of the material’s properties. The
Casimir force is a physical force that affects the boundaries of a small space in quantum field theory. It is
caused by the quantum fluctuations of a field. The Casimir force per unit length of a nanobeam is [63]:

1 m*heb

Fe= 240 Tg - wn) '

(3)
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where #i = 1.055 x 107* J s is Planck’s constant divided by 27 and ¢ = 2.998 x 10® ms™" is the speed of light.

2.2 Surface Effects

The utilization of a surface-layer-based model, namely a nanostructure composed of both bulk and
surface components, as depicted in Fig. 2, serves as the fundamental approach for the continuous modeling
of nanostructures, taking into account surface effects.

——- Undeformed Beam
I Bulk material
Surface Layer (E,, T°)

Electrostatic
Force

Figure 2: Schematic of a bending NEMS with surface effects

Surface effects are represented by a thin layer, denoted as ¢, which is located immediately beneath the
surface and has a negligible thickness. The surface of atoms exhibits distinct characteristics from the bulk
because of different local conditions, leading to a fundamental equation that deviates from that of the bulk.
It should be noted that the left and right surfaces do not contribute a distributed force on the nanobeam.
The relationship between the surface stress 7 and the axial strain € for the bending of the nanobeam can be
expressed as:

=1+ E; ¢ (4)
The symbol 7° represents the residual surface stress along the length of the nanobeam while E; denotes

the surface elastic modulus [28]. In this theory, the effective bending rigidity (EI), s s for a rectangular cross-
sectional nanobeam can be determined using [64]:

1
(EI)esf = EI+ EEsbtz (5)

inwhichI = ﬁ bt3. In the case of a nanobeam with small deformation, the second derivative of the nanobeam
deflection can be considered as an approximation of the beam’s curvature. Eq. (5) represents the stress
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increase resulting in a distributed load F; along the axial direction of the rectangular as [65]:

d2w(2x) ()
X

F, =27%

According to the information presented in Fig. 2, it can be observed that Eq. (6) demonstrates the
influence of residual surface stress when the nanobeam is subjected to bending with a curvature that is not
equal to zero. The distributed force applied during the bending process of NEMS can either increase or
decrease their stiftness, depending on the sign of the remaining surface stress.

Considering equations for various forces as explained above, Eq. (1) can be rewritten in a more
descriptive format showing the governing parameters over the nano beam as:

4 2 2 -
(ED), ) Wix) P ng) _ L mheb el eV b . [1+0.65—g0 W(x)] 7)
dx dx*  240[go—w (x)]" 2[go-w(x)] b
The boundary conditions for cantilever NEMS are given at the initial and final positions as:
w=0 d*w/dx* =0
x=0—> , x=L— (8)
dw/dx =0 d*w/dx® =0

2.3 Axially Functionally Graded Materials

In this study, it is assumed that the axially functionally graded (AFG) nanobeam material properties
change continuously in the axial direction as a function of the component volume fractions. The functional
material properties p can be described using the rule of mixture as [66]:

[Pl =[Pl Vi +[plr V& )

where [p];, [p] are the nanobeam’s effective material properties at the left and right ends of the nanobeam,
respectively, and V; and Vi are the constituents’ volume fractions, and they are related by:

Vi+Vr=1 (10)

Different material volume fractions are distributed along the axis (x) of the Euler-Bernoulli AFG
nanobeam, which is made of Silver and Silicon. As a function of length, the mechanical characteristics are:

(°]

Z) 5[°] = P, Py orP, (1)

1) = [l + ([ele - [p1,) (5)

where L is the length of the nanobeam, P,,, P;, and P, stand for the power-law indexes relevant to the
differences made in the mechanical properties of the bulk, those of the surface layer, and of the nanobeam,
respectively. In this study, Eq. (12) was taken into consideration to analyze the optimal manufacturing of the
nanobeam. The materials utilized are Aluminum (Al) and Silver (Ag).

[p1(x) = [plag + ([P — [plg) * 5" (12)
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3 Solution Method
3.1 Method of Adjoints

Initial value problems (IVPs) are generally faster to solve than boundary value problems (BVPs). One
common approach is to make estimations for missing initial values and refine them using an iterative process.
However, this method is less efficient, especially when multiple initial values are omitted. The “Method of
Adjoints” by Goodman and Lance is highly efficient for determining unknown initial values using known
terminal values. Iterative approaches can be more efficient for non-linear BVPs, while linear BVPs do not
require iterative processes [53].

The initial stage of addressing the issue involves solving n* order ordinary differential equations by
converting the equation into a system of # first-order differential equations. The objective of this study is to
utilize the Method of Adjoints (MoA) to control the non-dimensional equation of the NEMS. As previously
indicated, the initial step involves transforming Eq. (2) into a set of first-order differential equations. This
is done by reestablishing the first-order differentiation of the parameter y as a new parameter, thus, the
first-order differentiation of this parameter will be our second-order differentiation of y. By continuing this
process, we can arrive at a system of 4 first-order differential equations shown in matrix form in Eq. (13):

(0 % 5 o]
ayz
nl o o % o ||
y=A-y |22 = S | b (13)
% o o o B
Va4 ays | Lya
[ dyy  dy, dys 0ysl

where the functions g are as follows:

y=g1(y2) =y (14)

¥, =8(y3) =3 (15)

V3 =83(ya) = ya (16)
(1 mhcb 1 e v2b go —w(x) 0, d*w (x)

g4 (V1 ¥2> ¥35 1) = (240 o w ()T + 2w [1+O.65—b ]+21 b—dx2 ) (17)

The remaining zeros in Eq. (13) are the result of turning a fourth order equation into a system of first-
order equations. Considering Eq. (13), one may define a system of first-order ordinary differential equations
as:

Y, =8 (VYo ymt), i=12,3,...,n (18)
with the initial conditions as:

yi(to) =ci» i=12,3,...,r (19)
and the terminal conditions as:

yim(tf)zcim, m=1,2,3,....n—r (20)
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where r and m refer to the number of initial and terminal conditions, respectively, and according to Eq. (13),
both are equal to 2. If y; (¢t),i=1,2,...,mtg <t < tr, is the solution of Eq. (18), we can examine a nearby
solution, y; + 8y;,i=1,2,...,n, in which the term &y; is known as variation of y;. This variation can be
interpreted as a first-order correction to the y; (t). Within the framework of the analysis, the variable y; (o)
may be construed as the solutions that match with the predicted outcomes of the missing initial conditions.
The implementation of these solutions is crucial to accurately determining the solution to the boundary
value problem.

In the MoA, the set of first-order governing differential equations is accompanied by a set of equations
known as adjoint equations:

z=-A"z (21)

where z is the adjoint variable vector, a 4 x 1 vector with components z,(t),z3(t), ..., x4(t), and AT is the
transpose of the matrix A defined in Eq. (13).

Therefore, g—i‘_, i,j=1,...,4 can be written as the following matrix:
J
0 1 0 0
0 0 1 0
A=| 0 0 0 1 (22)

98¢ J8t 98 O
8)/1 Byz 8)/3 ay4

Using the set of initial conditions, we find the numerical value of this matrix at the initial point & = 0.

0 1 0 0
0 0 1 0
Ay = 0 0 0 1 (23)

8g4 8g4 8g4 8g4
—(0) =—/—(0) —(0) —(0
0 20 20 Eo)

Then, a system of adjoint equations is introduced as:

— a -
00 0 28
ayl
2 100 % 2
2=-AyTz, ||+ 72 1% =0 (24)
Z3 ogs ||z
. 01 0 2
Z4 8)/3 Z4
1o 1 %8
L 8)/4 |

in which z stands for the vector of adjoint variables and the coefficient matrix is the negative transpose of
that of the original system.

The boundary conditions of adjoint equations are defined according to the boundary conditions of the
original problem. For a cantilever nanobeam, two of the first initial conditions y;(0) and y,(0) are known,
but the other two initial conditions (y3(0) and y4(0)) must be determined. Then:

m=1i=3 z01)=0, V1=0, zM01)=1, zMa)=o,
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m=2i=4 zP1)=0, @0 =0, @0 =0, z@1)=1 (25)

From the solution of Eq. (24) with respect to boundary conditions (25), the following matrix can be
computed:

‘- [Zs(” (0) 2" (0)]

P (0) 2. (0) (26)

The solution for a cantilever nanobeam may be expressed as:

8y (0)] [0 (0) 2D (0)][6y" (1)
8y (0)] @ (0) 2@ ][8yF (1)

The solution for a doubly clamped nanobeam can be mathematically represented as:

8y (0] [2M0) 2D )]sy (1)
8y (0)] @ (0) 2 (0)][ 8y (1)

For the following iteration of the procedure, new initial conditions are determined based on:

(27)

(28)

Y (1) = yi(to) =iy i=1,2...r
YD (1) =y (80) + 0y (1), i=r+1,2,...,nm (29)
The initial-value problem can be solved by employing the Bézier-based multistep method, which

involves utilizing both predicted and known initial conditions. Additionally, the terminal boundary values
at £ =1 can be computed.

3.2 Bézier-Based Multistep Method

A unique approach for solving ordinary differential equations was developed by Aghdam et al. [54]
utilizing Bézier curves. Table 1is a comprehensive compilation of the different formulations that result from
each order of Bézier curves.

Table 1: Bézier method formula in some orders

Bézier method formula Order
h
Ykt = Ykt 5 (3fk = fr-1) 2
h
Ykt =Ykt (19fk = 8fk-1 + fr-2) 3

h
Vet = Yk + 100 (175 fi — 81 fk—1 + 15fk—2 — fr—3) 4

Note: f refers to the function on the right side of the differential
equation y = f(y).
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The mathematical representation of the mth order the Bernstein polynomial, which is used to
interpolate m + 1 control points designated as My, M, ..., M,,, is generally expressed as [54]:

B(u):i(r?)(l—u)m_iuiMi, ue[0,1], i=0,1,...,m (30)
i=0

Using the Eq. (30), we can now drive different orders of the Bézier method formula. The second to
fourth order can be found in Table 1.

The work presented in this paper extends the Bézier-based multistep method to solve a system of initial-
boundary value problems by utilizing Bernstein polynomial basis functions. This technique is known for
its robustness and effectiveness. To utilize the MoA, it is essential to generate arbitrary yet logical guesses
for the absent initial conditions. While the exact value that was missing has been calculated during each
iteration of the MoA, the subsequent step involves using the Bézier-based multistep approach to achieve the
intended outcomes.

Therefore, to solve the Eq. (13) using the 4th order of the Bézier formula, we can drive the multistep
equations:

yi(i+1) =y (i) + %(175)'2(1') = 8lys (i — 1) +15y2(i - 2) —y2(i - 3)) (31)
ya (1) = ys (i) + % (1755 (i) - 8lys (i — 1) + 15ys (i — 2) - ys (i - 3)) (32)
(i +1) = y5(0) + - (1754() ~ Bly(i = 1) + 15y, ~2) - ya(i - 3)) (33)
Yali+1) = ya(i) + 0 (17584(5) ~ 81ga(i =) + 15ga(i ~2) ~ 2a(i - ) (34)

4 Results and Discussion

This paper focuses mainly on the instability phenomenon of an axially beam-type FG NEMS made from
silver (Ag) and aluminum (Al). MoA carried out the calculation framework as explained previously. The
results below have been achieved by following the formulation of the surface elasticity theory developed for
NEMS. At first, a NEMS made of silver (Ag) was verified with the results achieved by the finite difference
method (FDM) and the Homotopy perturbation method (HPM) methods [59]. Then, the mentioned
hybrid method is compared to 3 other multi-step methods. The methods were then relatively compared
in accordance with MoA. The effect of the elasticity and geometry parameters underwent inspection. The
analysis of the FG nanobeam was then carried out, which showed room for improvement.

4.1 Verification and Method Comparison

As a case study, a cantilever silver (Ag) beam has nanobeam analyzed in this section. The mechanical
properties of the NEMS are as follows: t = 50 nm,b =5 * t,L = 1um, gy = 50 nm, E = 76 GPa, 7° = 0.89N/m,
Es = 1.22N/m (the parameter were introduced in the Section 2.1) [59]. First, the initial values need to be
calculated using a multi-step method. After seeing the accuracy of the results of the Taylor multi-step method
with MoA, it was used to acquire the initial values for all methods.

While applying the constant voltage of 1V, the displacement of the nanobeam was calculated. This
calculation was carried out by utilizing Runge-Kutta-4 as well as the 4-step formulation of Adams-Bashforth,
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Taylor series, and Bezier-based methods. Then, the results achieved by these methods were compared
with FDM and HPM done in a previous study [59]. Table 2 demonstrates the accuracy of the methods

comparatively. However, we still have to consider their stability and calculation cost.

Table 2: The displacement results of the nanobeam using various numerical methods

Deflection
Height (nm) Ma etal. [59] Present paper
HPM FDM  Runge-Kutta Taylor Adams-Bashforth Bézier-based
50 0.00829  0.00799 0.00797 0.00798 0.00792 0.00797
60 0.00439  0.00437 0.00428 0.00429 0.00425 0.00428
70 0.00267 0.00267 0.00259 0.00259 0.00257 0.00259
80 0.00176  0.00176 0.00169 0.00169 0.00168 0.00169
90 0.00122  0.00123 0.00117 0.00117 0.00116 0.00117
100 0.00089  0.00089 0.00084 0.00084 0.00083 0.00084

The four-step Adams-Bashforth predictor-corrector method is an implicit method, while the other three
are explicit methods. While being an explicit method, the Runge-Kutta-4 is computationally more expensive
than all the methods in the present study. The Bézier-based method, which was previously explained, shows
the highest stability between these methods. This matter will be discussed in more detail further in the paper.

The Adams-Bashforth method is on par with the Bézier-based method in small step sizes, while the
former is a partially implicit method with a higher computation cost. It is observed that in the large
step sizes, the Bézier-based method holds its stability at much larger step sizes than the Adams-Bashforth
method. Table 3 shows the relative difference of tip displacement at 1 V achieved by the Adams-Bashforth
and Bézier-based methods, with the average result arrived at in the FDM and HPM methods [59]. It can be
said that the Bézier-based method is still accurate even in only 20 steps, while Adams-Bashforth shows large

errors in less than 200 steps.

Table 3: Difference of tip displacement for various step sizes compared to the average of FDM and HPM

Step-size Bézier-based Adams-Bashforth
difference % difference %

0.00005 2.06917 2.05455
0.0001 2.06266 2.03354
0.0005 2.01106 1.86509
0.001 1.94668 1.65426
0.005 1.43519 0.04571
0.01 0.80464 2.20396
0.05 3.92518 20.89397
0.1 9.40349 48.46664
Average 2.95726 9.90221
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Other than stability at different step sizes, the compatibility of each method with the MoA is a
crucial parameter to study. All four multi-step methods under investigation in this study were utilized
with 2000 steps and 10 MoA cycles to arrive at calculate the missing initial condition. The parameter of
compatibility was defined as the difference between the predicted initial condition y; after five cycles with
the amount arrived at by the ten cycles. The average amount of y; initial condition was calculated as
-1.8351E-17. Fig. 3 illustrates the compatibility of the two methods at different step sizes.
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=
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=
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-0.00002
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Figure 3: Showing MoA compatibility for each method at different step sizes

In the end, the displacements (shown w in Sections 2 and 3) were calculated using a 0.005 step size when
subjected to a 1 V. The displacement plot for the introduced nanobeam can be seen in Fig. 4. The nanobeam
bends because of the forces applied to it, and this displacement is similarly displayed by all four methods.
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Figure 4: Comparison of displacement of the nanobeam in different methods

4.2 Instability Analysis and Geometric Effects

As seen in the NEMS analysis, there will be a voltage at which the nanobeam will become unstable; this
voltage is called the pull-in voltage [10]. The pull-in voltage is the most important parameter for inspecting
NEMS. This voltage can be seen in a tip displacement (shown by w;;,) to the voltage plot of a NEMS as
the displacement suddenly rises at a rapid pace. Fig. 5 displays the aforementioned plot for the previously
introduced nanobeam.
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Figure 5: Displacement of NEMS tip under different voltages till the instability voltage

The first noticeable point is that the instability process usually takes place when the non-dimensional
tip displacement (shown by wi;,/gp) is greater than 0.41, based on the results yielded in Fig. 5. The instability
voltage is a parameter that follows the nanobeam properties and initial values. As a result, the pull-in voltage
(shown by Vyu1.in) is influenced by changing the geometric properties of a nanobeam. This is illustrated
by giving different beam heights as well as initial gaps. Fig. 6a shows how changing height can affect the

instability voltage.
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Figure 6: Instability Vi, changes due to various (a) normalized gap sizes and (b) height

It can be seen in Fig. 6b that there is a direct, almost linear reaction on the instability voltage side as
the height changes. This can be explained by the fact that as the height increases, the nanobeam strengthens,
resulting in more nanobeam stability and a higher Vyuj1.in. Also, the effect of the gap change can be seen
in Fig. 6a. This relationship is an even more linear one showing that the voltage of instability has an expected
linear relationship.

4.3 Surface Elasticity Effects

Another aspect that can be analyzed is the effect of the surface elasticity parameters. While the difference
they make in the Vyyy1.i, may seem small, it should be noted that it is essential for the functionality of NEMS.
The residual stress 7° is a part of surface elasticity theory, and as it increases, the instability voltage decreases,
whilst the surface elasticity E; has a direct relationship with stability. Both parameters have semi-linear
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behavior towards Vyui.in, yet the significance of changes in 7° are greatly more effective. These effects can all
be seen in Fig. 7.

Vpull—in

10

Figure 7: Density plot of the effect of surface elasticity parameters on the instability voltage

4.4 Axially Functionally Graded Surface Elastic Nanobeam

The parameters of the nanobeam under analysis have now been those of a silver nanobeam. While
keeping the same parameters of geometry, a new nanobeam material was analyzed. The material properties of
aluminum (Al) are: t° = 0.91N/m, E = 68.5 Gpa, Es = 6.09 N/m [38]. Having these parameters, the instability
voltage of 5.09 V was for the nanobeam. The aluminum (Al) beam has a lower modulus than silver (Ag);
however, it has a higher surface elastic parameter. The amount of the whole beam that is constructed of
the silver (Ag) material compared to the whole beam will be called the silver (Ag) ratio, if defined out of a
hundred, will be referred to as silver (Ag) percentage. Now, if a beam takes the axially graded function, a
nanobeam that starts with full silver (Ag) and ends in aluminum (Al) can be expressed by the Eq. (12), in
which the changes in the k parameter will result in more silver (Ag) percentage. In this paper, the parameter
k was given 1 to 10 and from 0.1 to 1. The same could be done for nanobeam starting with silver (Ag) as well
as aluminum (Al). This resulted in 38 different nanobeams being analyzed, as well as two nanobeams with
pure silver (Ag) and aluminum (Al).

Table 4 gives a visualization of 4 nanobeams, with respectively 100%, 91%, 50%, and 9% amounts of
silver (Ag) and aluminum (Al) at their base. Fig. 8 shows the percentage of silver (Ag) in all 19 different
nanobeams under analysis that start with silver (Ag) at the base.

The instability voltage diagram of the nanobeams has been analyzed and compared, and it has been
illustrated for better understanding in Fig. 9.
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Table 4: The FG beam shape shown by the k constant and the K parameter effect on the silver (Ag) ratio effect

Ag Ratio
Ag ratio Reference Silver (Ag) Nanobeam
1.0
| |
Nanobeam1 — k=1/10
0.6
04 Nanobeam2 — k=1
0.2
0 Nanobeam3 — k=10
100
80 |5
)
]
60 |8
5
9
40 |z
<
20 | B
2 Py °.
@ k parameter °
0 p

(=}

2 3 4 5 6 7 8 9 10 11
—e—k powerd by 1to 10 —e—1/k powered by 1 to 10

Figure 8: The silver (Ag) percentage for different amounts of the k parameter

5.5

5.45
5.4
5.35
53

5.25

Vpull-in

5.2

515 silver (Ag) percentage

0 10 20 30 40 50 60 70 80 90 100
Base Aluminum [Al] Base silver [Ag]

Figure 9: V,yj1.i, of analyzed FG nanobeams using either Ag or Al at the base
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By comparing the FG nanobeams with the fully aluminum (Al) and silver (Ag) nanobeam’s deformation
at the instability voltage, it can be noted that 9%, 50%, and 91% (all in silver (Ag) amount) nanobeam
starting with silver (Ag) will have respectively 5.19, 5.26, 5.41 V as their instability voltage. The same values
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for nanobeams starting with aluminum (Al) can be calculated as 5.25, 5.4, and 5.47 V. To understand the
effect of FG nanobeams, it should be mentioned that purely silver (Ag) and aluminum (Al) had improved
instability voltages of 5.39 and 5.09 V. As Fig. 9 illustrates, using an axially functionally graded nanobeam can
improve our stability considerably. It is necessary to keep in mind that the nanobeam purely made of silver
(Ag) reached instability at 5.39 V, which can be improved by 0.08 V by using less than 10% aluminum (Al) at
the base of the nanobeam. That is a 1.5% increase while using material with a lower Young modulus, with a
specific setting in the beam construction. Overall, it could be simplified to higher silver (Ag) ratios enhance
stiffness at the beam enhancing the pull-in instability, while the aluminum (Al) rich regions improve the
surface stress distribution.

Ultimately, the amount of deformation of an FG nanobeam can be even more significant than that of a
nanobeam made of each isotropic material, which yields better results. This is due to the nature of surface
elasticity parameters, as their effect is not distributed evenly through the nanobeam, and specific points-
namely the importance of surface effect at the base of the nanobeam and the importance of Young modulus
at the tip-in the construction of the nanobeam hold greater value than others.

4.5 Detachment Length

Another characteristic that is necessary to consider is the detachment length of a NEMS beam. It is a
primary parameter for the construction and design of the NEMS. The detachment length is defined as the
maximum length at which the nanobeam does not collapse on itself with no electrostatic force and only the
intermolecular forces [5].

The detachment length of the silver nanobeam previously under analysis with different heights
calculated by the Bézier-based method is shown in Fig. 10a.
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Figure 10: The detachment length of all Ag nanobeams at different (a) heights and (b) gap widths
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This figure demonstrates the effect of heights on the statical stability of the NEMS beam. There is an
almost linear relation between the two parameters. Another geometry parameter of the NEMS is the gap
length. The changes in the detachment length in the 50 nm height beam made of silver (Ag) are shown
in Fig. 10b.

This effect of a constructive parameter, such as the height, is more clearly shown in Fig. 11 with a
comparative view of this parameter with the two methods mentioned throughout the paper.
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Figure 11: All Ag nanobeam detachment lengths using both numerical methods

Asitislike the effect of gap width on instability voltage, by increasing the gap width of the nanobeam, the
detachment length increases in an almost linear behavior. The detachment length of these nanobeams was
also analyzed for the better-performing FG nanobeams (91%) under different heights, which are illustrated
in Table 5.

Table 5: Effect of FG nanobeam on the detachment length at different heights

Detachment length (um)
Height (nm) All Al nanobeam All Ag nanobeam 91% Ag nanobeam 91% Ag nanobeam
Al at the tip Al at the base
50 2.76 2.85 2.47 2.8
60 33 3.42 3.07 3.35
70 3.83 3.96 3.65 3.89
80 4.34 4.49 4.2 4.41
90 4.84 5 4.74 4.91
100 5.33 5.51 5.25 54

The way we construct the nanobeam has a significant effect on the result. However, while under
electrostatic force, the instability pull-in voltage was improved, and the same cannot be said about the
detachment length. This is compatible with our assumption since the detachment length is less affected by
the surface effects than the pull-in phenomenon.

5 Conclusion

In the presented study, the equations of a NEMS beam underwent adjustments to be compatible with
MoA. Focus was put on the comparison between Adams Bashforth and the method introduced. Both
methods were thoroughly validated in comparison with recent papers and methods. Over the course of this
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study, it was shown the clear advantage of our mentioned method in both stability and accuracy, being more
highlighted at higher step sizes.

At first, the pull-in voltage was calculated for the case of a silver (Ag) nanobeam. Moreover, the effect of
the nanobeam geometrical parameters, such as gap size and nanobeam height, was compared. It was observed
that these parameters have a significant impact on the instability voltage, as it increased linearly. Later, the
effect of the two properties relevant to surface elasticity-namely, residual surface stress and surface elastic
modulus-was considered, and the difference this theory makes in having a more accurate analysis was shown,
as it can make a 7.8% increase in Vjyy1.in. Moreover, the study delved into the effect of using axially FG
nanobeam through rigorous analysis of a nanobeam of silver (Ag) and aluminum (Al). The FG nanobeam
with 89% and higher silver (Ag) present with silver (Ag) at the base of the nanobeam, and the nanobeams
with 50% silver (Ag) with aluminum (Al) at the base were stable at higher voltages than the original ones.
Highlighting that the nanobeam with 91% silver (Ag) with aluminum (Al) at the base was more stable by
1.5% in comparison to the purely silver (Ag) nanobeam.

This result shows potential for studies into finding optimal materials and FG nanobeams, also consider-
ing different and adjustable beam geometries such as tapered or curved nanobeams, allowing construction
and modeling with even more engineerable properties. Nevertheless, for more accurate results, the study
can be moved on to more detailed models, such as the non-local model, which assumes that non-local
interactions are not negligible.

This research has been limited to a simple Euler-Bernoulli beam model. Yet it can open the path for
deeper studies into NEMS with more advanced mechanical models such as Strain Gradient Theory or
the Stress-Driven Model. Moreover, the order of accuracy of the multi-step method, unlike most others,
does not decrease with using higher-order predictions, and only the stability would improve in such
situations. Additionally, like many of the state-of-the-art studies in the nano field, the practical, accurate, and
experimental data are lacking, resulting in an inability to verify the numerical data with non-theoretical data.
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