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ABSTRACT: This research aims to address the challenges of fault detection and isolation (FDI) in digital grids, focusing
on improving the reliability and stability of power systems. Traditional fault detection techniques, such as rule-based
fuzzy systems and conventional FDI methods, often struggle with the dynamic nature of modern grids, resulting in
delays and inaccuracies in fault classification. To overcome these limitations, this study introduces a Hybrid Neuro-
Fuzzy Fault Detection Model that combines the adaptive learning capabilities of neural networks with the reasoning
strength of fuzzy logic. The model’s performance was evaluated through extensive simulations on the IEEE 33-bus test
system, considering various fault scenarios, including line-to-ground faults (LGF), three-phase short circuits (3PSC),
and harmonic distortions (HD). The quantitative results show that the model achieves 97.2% accuracy, a false negative
rate (FNR) of 1.9%, and a false positive rate (FPR) of 2.3%, demonstrating its high precision in fault diagnosis. The
qualitative analysis further highlights the model’s adaptability and its potential for seamless integration into smart grids,
micro grids, and renewable energy systems. By dynamically refining fuzzy inference rules, the model enhances fault
detection efficiency without compromising computational feasibility. These findings contribute to the development of
more resilient and adaptive fault management systems, paving the way for advanced smart grid technologies.

KEYWORDS: Fault detection and isolation (FDI); neuro-fuzzy systems; digital grids; smart grid resilience; power
system; artificial intelligence (AI)

1 Introduction
The integration of advanced technologies such as the Internet of Things (IoT), artificial intelligence

(AI), and renewable sources of energy is transforming power systems around the world at a lightning speed
into digital grids. Digital grids bring a huge enhancement to energy management, operational efficiency,
and system reliability. One key impact of digital grids is the ability to provide advanced monitoring and
control for predictive maintenance and real-time fault detection. However, as digital grids advance, they are
challenged with increasing complexities, particularly in fault detection and isolation (FDI) systems. Faults
such as transmission line outages, short circuits, and equipment failure have resulted in significant economic
loss and disruptions in power system stability [1]. Ensuring the reliability and resilience of digital grids
requires an efficient FDI system capable of adapting to dynamic operating conditions and uncertainties.

Traditional FDI methods like rule-based systems and statistical models do not support the dynamic
characteristics of today’s digital grids. These traditional methods rely on pre calculated rules, which become
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ineffective in new fault modes [2]. Additionally, these methods do not function well with real-world noisy and
incomplete data. Despite the development of machine learning (ML) techniques to improve fault detection
precision, ML techniques remain reliant on big data and big computation [3]. Moreover, most of the ML
models are black-box systems whose reasoning is difficult to understand, which poses difficulties for mission-
critical applications such as grid fault detection [4].

In this case, the emergence of neuro-fuzzy logic presents a possible solution by integrating the
advantages of fuzzy logic systems and ANNs. Fuzzy logic finds particular use in digital grid systems where
uncertainty and incomplete data issues are the main concern [5]. It mimics human reasoning, making
decisions based on linguistic variables that enable the detection of faults under varying operation conditions.
However, fuzzy logic on its own lacks the ability to learn and adjust its membership functions, thus
performing poorly in changing environments. However, ANNs possess strong learning capacities, enabling
them to recognize patterns and associations between data [6]. While neural networks are excellent pattern
recognizers, they need lots of data to train them, and they lack interpretability, making them inappropriate
for application in real-time fault detection systems.

Through the integration of fuzzy logic and neural networks, the neuro-fuzzy system overcomes these
drawbacks, combining the reasoning capability of fuzzy logic with the flexibility of ANNs. The integration
enables the system to learn from previous fault data and refine its detection capability through adaptive rea-
soning [7]. Unlike other machine learning architectures, neuro-fuzzy systems provide explainable outputs,
thus being more suitable for real-time decision-making in fault detection [8]. Though previous research has
confirmed the performance of neuro-fuzzy logic for individual components of power systems, most of the
research did not consider an integrated approach for digital grids at a large scale. Furthermore, the systems
were not tested over a wide scale of fault conditions, and their uses in actual smart grids are scary [9].

This research aims to bridge this gap by developing a comprehensive neuro-fuzzy logic framework
for digital grid fault detection and isolation. The proposed framework will combine the capabilities of
neural networks and fuzzy logic reasoning to enhance FDI. Simulations will be conducted under various
fault conditions, such as voltage sags, current spikes, and line outages, to assess the robust-ness of the
framework in real-world scenarios. A key objective of this work is to compare the performance of the
proposed framework with traditional rule-based and machine learning-based approaches, focusing on
detection accuracy, isolation precision, and response time. Additionally, the scalability of the framework will
be evaluated in terms of its applicability to large-scale digital grids [10].

Research has focused on AI-based fault detection techniques but none have established a complete
solution that includes real-time flexibility, interpretability, and scalability. Most solutions are specific to one
kind of fault only and do not offer a generalized solution that can be used for different grid layouts. In
addition, most techniques have not been tested in real-time operating environments and are therefore not
feasible for form-scale smart grids. This research bridges these gaps by conducting a thorough examination
of the neuro-fuzzy logic method under various grid conditions, offering a more flexible and scalable solution
to fault detection.

Traditional fault detection methods such as rule-based and machine learning technology fail with
dynamic properties of new digital grids and apply fixed thresholds that do not change according to real-
time situations. These methods are not adaptable in real time and cannot identify faults that are about to
happen or react to unexpected fault situations. Fault classification inadequacies cause misclassifications and
delayed responses, which also delay effective fault management. The classic methods require to have large,
high-quality sets of training data, which are not always available or readily accessible in on-line grid usage.
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The proposed model offers real-time adaptability, adjusting its parameters and detection rules based on
real-time data from the grid to ensure accurate fault detection even under changing conditions. It employs
dynamic learning, continuously improving its detection accuracy over time by incorporating new fault
data. The system provides explainable outputs, offering transparency and clarity, which enhances operator
trust and decision-making during fault management. The model improves fault classification accuracy by
combining neural network-based pattern recognition with fuzzy logic reasoning, reducing misclassifications
and improving system efficiency. The framework is scalable, computationally efficient, and capable of
performing both fault detection and isolation, preventing cascading failures and improving grid stability.

This paper is structured as follows: Section 1 clarified the problem statement, the need for fault
detection, and how the proposed neuro-fuzzy system addresses the gap in existing methods. Section 3
detailed explanation of the neuro-fuzzy logic model, including pre-training, real-time adaptation, and fault
detection strategy. Section 4 presented the fault detection results along with KPIs such as MAE, RMSE,
Precision, and Recall, followed by Density Analytics, Computational Complexity, Sensitivity Analysis, and
Feature Importance. Section 4.3 presented a detail comparison of the proposed model with existing methods,
highlighting its advantages and areas for improvement. Section 5 presented a summary of key findings,
limitations, and future directions for research.

2 Literature Review
Power systems fault detection and isolation has been widely studied and fuzzy logic and neuro fuzzy

approaches have been advanced. Digital grids have a requirement for adaptive, intelligent frameworks that
overcome uncertainties and the non-linearity of traditional fault detection techniques. Rule based fuzzy
controllers for solid state transfer switches have been developed by researchers to help in rapid and sensitive
fault detection in power grids [11]. Such controllers reduce the disturbances associated with load transfers
while improving the transition between operational states. Fuzzy logic also is incorporated into fault current
limiters for suppression of transient disturbances and increase in grid resilience [12]. These advancements
point out the importance of fuzzy based decision making in handling power quality problems.

In power systems, fuzzy control mechanisms have also been applied in the context of using renewable
energy sources. A better model for classifying faults in photovoltaic (PV) systems was made through ANFIS
which improved their reliability [13]. Fuzzy logic controllers were tested for improving the stability of a power
system under conditions where the load changed rapidly [14]. Similarly, using fuzzy logic in various multi-
agent strategies was examined for regulating the grid and fuzzy protection schemes have shown improvement
in managing PV power plant operations during faults [15,16]. The research reveals that using fuzzy logic is
becoming more relevant in renewable energy integration and managing local power grids.

Fuzzy decision-making models are also used for fault detection in high voltage transmission networks.
In this study researches designed fuzzy inference-based methodologies for determining how transmission
faults affect real time sensor data in order to determine the impact [17,18]. According to their findings,
fuzzy logic improves speed and accuracy of the fault isolation mechanism and decreases false alarms. Digital
grid fault diagnosis has been widely achieved with neuro-fuzzy hybrid models. In a hybrid neuro-fuzzy
system was proposed, using the expert fuzzy rules with its ability of adaptive learning for the detection of
both transient and permanent faults [19]. This framework was further extended to cyber-physical power
energy systems with improved accuracy in the detection of power anomalies over a range of operation
conditions [11,20].

Also investigated have been advanced computational techniques for the optimization of fuzzy-based
fault detection. In the combination of feature extraction and fuzzy inference was used to improve the
classification accuracy in grid fault detection [21]. Also, researchers introduced a genetic algorithm optimized
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fuzzy system that proved to be more precise in fault localization in distributed power networks [22].
In addition, studies have been done on the effectiveness of the fuzzy adaptive controllers in such Multi
Agent Systems during the presence of actuator faults and actual control challenges in the modern power
grids [23,24]. According to the findings, the efficiency of fault detection can be improved with the aid of
neuro-fuzzy models that adjust the inference rules based on real time conditions of the grid. Table 1 shows
the overall comparative table of previous studies.

Table 1: Comparative table of previous studies their limitations and strengths in fault classification in power systems

Reference Methodology Application Strengths Limitations
[11] Rule-based fuzzy

controller
Solid-state

transfer switch
fault detection

Rapid fault
detection,
minimizes

disturbances

Limited to
solid-state
switches,

scalability issues
[12] Fuzzy fault

current limiter
Fault suppression

in power grids
Improves grid

resilience,
suppresses

transient faults

May not be
effective under
extreme fault

conditions
[13] Adaptive

Neuro-Fuzzy
Inference System

(ANFIS)

PV system fault
classification

High
classification

accuracy,
enhances system

reliability

Requires
extensive training

data,
computationally

intensive
[14] Fuzzy control for

smart grids
Smart energy grid

fault tolerance
Enhances smart
grid operations,
improves fault

tolerance

Needs robust
implementation

for real-time
applications

[15] Multi-agent fuzzy
voltage control

Decentralized
voltage regulation

Reduces
vulnerabilities

from load
variations

Complex
implementation,

needs multi-agent
coordination

[16] Fuzzy-based
active protection

PV power plant
voltage

stabilization

Mitigates voltage
fluctuations,

improves system
stability

Dependent on PV
system

characteristics

[17] Fuzzy inference
for transmission
fault detection

High-voltage
transmission fault

detection

Fast and precise
fault isolation

May generate
false alarms under
certain conditions

[18] Fuzzy decision
model for fault

impact
assessment

Transmission
network fault

assessment

Enhances
real-time fault

impact prediction

Relies on
historical data,
requires tuning

(Continued)
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Table 1 (continued)

Reference Methodology Application Strengths Limitations
[19] Hybrid

neuro-fuzzy
system

Smart grid fault
diagnosis

Combines expert
rules with

adaptive learning

Training-
intensive, model

complexity
increases

[20] Neuro-fuzzy
framework for
cyber-physical

grids

Cyber-physical
energy system
fault detection

Improves
anomaly

detection in
cyber-physical

grids

High
computational
requirements,

integration
challenges

[11] Intelligent
neuro-fuzzy
system for
anomaly
detection

Power grid
anomaly
detection

Enhances fault
detection

accuracy in smart
grids

Requires
continuous

optimization for
varying

conditions
[21] Feature extraction

with fuzzy
inference

Grid fault
classification

accuracy
improvement

Optimizes
classification
accuracy with

feature extraction

Sensitive to data
quality and
extraction
methods

[22] Genetic
algorithm-

optimized fuzzy
system

Distributed power
network fault
localization

Achieves superior
precision in fault

localization

Needs proper
tuning for

different network
conditions

[23] Fuzzy adaptive
controller for
multi-agent

systems

Power grid
actuator fault
management

Improves actuator
fault detection

efficiency

Computationally
demanding,

requires adaptive
learning

[24] Neuro-fuzzy
adaptive actuator
fault management

Adaptive fault
management in

smart grids

Dynamically
adjusts inference

rules based on
grid conditions

Difficult to
implement in

highly dynamic
environments

New advances in fault detection algorithms have introduced new approaches, such as the IPORF
method, which combines a improved parrot optimizer (IPO) algorithm with random forest (RF) for
AUV fault detection. Though it achieves high classification performance, it is more concerned with fault
detection rather than fault isolation, hence limiting its application in grid systems. Additionally, like deep
learning algorithms, it requires large datasets, thereby making real-time applications challenging. One of
the other researches incorporates deep learning together with genetic algorithms but is lacking in real-
time adaptability as well as interpretability, employ its ability to learn in order to address unexpected
fault conditions [25]. The proposed neuro-fuzzy logic system, in contrast, fares better since it is capable
of detecting and isolating faults in real time. Unlike the prior models, it keeps adapting consistently with
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minimal upfront training and outputs explainable results, ensuring transparency and improving decision-
making. This combination of real-time flexibility, fault isolation, and explainability makes it a superior
solution for smart grid applications, where fault detection and isolation are critical for the stability of the grid.

Voltage stability monitoring (VSM) has arisen as a key focus with increased penetration of renewable
sources. Authors of this research highlight the ability of Artificial Neural Networks (ANNs) for real-time
VSM and indicate their superiority over traditional stability indices that are incapable of handling the
dynamic nature of modern grids [26]. Similarly, this research work in (2024) proposed a fault detection
algorithm using neural networks for renewable-energy-based power systems, which showed that ANNs
enhance fault-clearing in high-renewable-penetrated power systems, promoting reliability and real-time
localization [21].

Lastly, researchers in (2024) explored the adaptive neuro-fuzzy inference system (ANFIS) with the
help of the support vector machines (SVM) for transient stability assessment, highlighting the relevance
of merging machine learning into the traditional method for ensuring smart grid stability and fault
response [27].

The proposed neuro-fuzzy model is compared with baseline models like Conventional Fuzzy Logic,
ANFIS, and Type-2 Fuzzy Logic, all of which are widely used in fault detection and voltage stability
monitoring. While Conventional Fuzzy Logic is effective for handling uncertainty, it struggles with adapting
to dynamic grid behaviors, especially in systems with high renewable energy integration. ANFIS improves
adaptability, but still faces challenges in real-time adaptability and handling cyber-physical vulnerabilities.
Type-2 Fuzzy Logic extends fuzzy systems by addressing uncertainty in membership functions, but its
complexity can slow performance, and it also falls short in responding to cyber-physical threats.

These models are relevant for modern smart grids, which require fault detection systems that can handle
dynamic changes and cyber-physical threats like cyber-attacks. Traditional models fail to account for such
vulnerabilities, making them less effective in detecting faults caused by cyber disruptions. The neuro-fuzzy
model, however, is designed to dynamically adapt to evolving conditions, offering better fault detection and
isolation in the presence of cyber threats, thereby enhancing the resilience of modern power systems.

3 Material and Methods

3.1 Neuro-Fuzzy Logic
Neural network learning capacity is integrated with fuzzy logic’s reasoning characteristics by neuro-

fuzzy logic to control the uncertain dynamics of non-linear systems within complex digital power networks.
Fuzzy logic makes it possible to process uncertain information computationally in order to establish fuzzy
sets and membership functions to denote working conditions such as “High Voltage” and “Low Current.”
Expert-based rules of inference, for example, categorizing line-to-ground faults whenever high voltage
oscillations are simultaneous with low current spikes, can enhance power system decision-making. Neural
networks, which were able to learn from large data sets, enhance system performance by adjusting weights
and biases, hence being the optimal tools for extracting complex data relationships. The integration of neuro-
fuzzy systems enhances fault detection efficiency, as they dynamically refine fuzzy membership functions and
rules based on processed input data. This capability is very helpful in FDI for digital grids, where noisy and
fast-fluctuating data challenge traditional monitoring approaches. Real-time automation in voltage, current,
and harmonics processing improves the precision of detection; hence, fault isolation is effective, guaranteeing
reliable grid operations. The hybrid approach of neuro-fuzzy logic enhances grid resilience, hence providing
a robust framework for modern energy systems that require adaptability and precision in fault management.
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3.1.1 Model Training Elaboration
A pre-trained model is utilized in the proposed fault detection framework. Here, the system is using

historical fault data generated from simulated fault scenarios in the grid. This pre-training phase allows
the system to learn typical fault signatures and establish a knowledge base of fault patterns across various
grid configurations. Once the model is deployed in the field, it continues to learn and adapt to new fault
patterns. During deployment, the system uses the initial pre-trained parameters, while continually adjusting
the system parameters through real-time data updates. Before deployment, the system is trained on a
comprehensive dataset of faults such as line-to-ground faults, short circuits etc. This training process takes
place where the model learns from a variety of grid conditions, grid topologies, and fault types. During
operation, as new fault data comes in, the model uses a feedback mechanism to adjust its parameters in
real-time. This could involve: Incremental learning (as data comes in, the model updates its knowledge
base). Adaptive fuzzy rules that change based on new patterns identified in the real-time fault data. Real-
time validation that continuously checks if detected faults match the known fault scenarios learned during
pre-training.

3.1.2 System Architecture
The proposed system design implements real-time optimization techniques with an integrated neuro-

fuzzy framework to perform fault detection and isolation functions in digital grids. The system is designed
to be scalable with adaptability for fault diagnosis accuracy, considering nonlinear and dynamic behavior
in the modern grid. The proposed system consists of three major parts: a well-defined objective function
optimizes the mechanisms of data acquisition and the neuro-fuzzy inference system while controlling the
fault classification output. The model is pre-trained using a comprehensive dataset of fault scenarios and
operational conditions to optimize its performance before deployment. However, it also has the ability to
fine-tune in real-time based on new data, allowing it to adapt to dynamic grid conditions. This dual approach
ensures both high accuracy and adaptability during real-time fault detection.

3.1.3 Input Data Acquisition
The system starts with real-time capture through sensors in the grid regarding some operational

parameters that are critical for voltage deviations (Vd), abnormal grid conditions, current spikes (Is) resulting
from fault events, power quality (PQ) indices including harmonics, frequency deviations, and other metrics
of grid stability. The input data vector is structured as.

The input data vector is represented as:

X = [Vd , Is , PQ] (1)

This data is preprocessed to normalize values, reduce noise, and improve consistency:

Xnorm =
X − μ

σ
(2)

where μ and σ represent the mean and standard deviation of the dataset, respectively.

3.1.4 Neuro-Fuzzy Inference Engine
The system core integrates an inference engine that combines fuzzy logic interpretability with the

adaptability of neural networks. The fuzzy membership functions map input variables (such as Vd, Is, and
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PQ) to fuzzy sets. For instance, the fuzzy membership function for Vd is defined as:

μVd(x) = ex p(−(x − c)2

2σ 2 ) (3)

where c represents the center and σ is the spread of the membership function.
The fuzzy rule base incorporates expert knowledge and historical fault records. A sample rule might be:

IF Vd is High AND Is is MEDIUM, THEN Fault = LINE-TO-GROUND.
The fuzzy inference process integrates these rules to produce intermediate outputs. The system also

learns through the use of a neural network to dynamically adapt the membership function parameters (c,
σ) and rule weights, enabling it to learn from data. The output y is determined by the weighted sum of rule
outputs:

y =
n
∑
i=1

wi ⋅ fi (4)

where wi is the firing strength of rule i, and f i is the output of the rule.
The optimization of parameters is done using a genetic algorithm to minimize the Mean Squared Error

(MSE) between predicted (y) and actual (yac tual ) outputs:

E = 1
N

N
∑
i=1
(yi − yac tual , i)2 (5)

Additional constraints ensure the robustness of the system:

wi ∈ [0, 1], σ > 0, c ∈ Val id Range (6)

Finally, to balance accuracy and computational efficiency, a single objective optimization function is
defined as:

F = αE + βT (7)

where T represents computation time, and α, β are weights reflecting the priorities of accuracy and efficiency.
This equation defines a single-objective function that balances both accuracy and computational

efficiency based on the assigned weights α and β. The model seeks to optimize fault detection accuracy while
maintaining an efficient computation time, ensuring that both aspects are effectively prioritized according
to their respective weights.

3.1.5 Fault Classification Outputs
The final stage of the system produces fault classification and isolation results:

Y = [Ft , Fl ] (8)

where Ft : Fault type (e.g., line-to-ground, short circuit, harmonic distortion); Fl : Fault location (e.g., specific
line or node in the grid). The system outputs drive real-time correction procedures that improve power
network reliability.

This neuro fuzzy system architecture favors existing grid management by optimizing real-time objective
functions to deal with complex situations in the grid is shown in Fig. 1. The solution has worked reliably with
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fault detection features and adjustable operations based on changing circumstances. The applied solution
shall ensure high precision in order to work out as an applicable solution in a digital grid system. MF, R,
N, and D represent key components of the neuro-fuzzy model. MF refers to Membership Functions, which
map input variables to fuzzy sets, crucial for the fuzzification process. R stands for the Rule Base, a set of “if-
then” rules that guide the classification of faults. N indicates the Neural Network used for adaptive learning
to refine fuzzy rule parameters. D represents the defuzzification and the system’s final stage mention two
variables, such as fault classification Ft and fault location Fl. The model achieves an impressive accuracy
of 97.2%, surpassing traditional methods like FIS and ANFIS, due to its hybrid approach combining deep
learning with fuzzy logic.

Figure 1: Neuro fuzzy system architecture

3.2 Digital Grid Simulation
The neuro-fuzzy fault detection is simulated by extensive simulations carried out on a Python-based

platform, with implications of specifications from the IEEE 33-bus test system. The experiments were
conducted on a high-performance computing platform equipped with an Intel Core i7-10700K processor and
16 GB of RAM. The software environment included MATLAB R2022b and Python 3.8, utilizing packages
such as Tensor Flow, NumPy, and SciPy to facilitate the fault detection and isolation simulations. The
proposed method was compared with existing algorithms to evaluate its performance. The computational
configurations provided the necessary resources to run large-scale simulations efficiently, ensuring that the
experiments were conducted under optimal conditions to assess the model’s effectiveness and scalability.
The simulation framework has been designed in such a way that fault and normal operating data can be
made to evaluate the model’s performance in a grid abnormality situation with high precision. In this regard,
for an optimal trade-off between the computational efficiency and accuracy of transient fault detection, a
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time window of 200 ms was used for the simulations. It improves the responsiveness for real-time grid
monitoring applications by offering industrial benchmark standards for smart grid fault diagnosis. For
complete assurance of the quality of power in digital grids, various types of faults are simulated in this study.
A line-to-ground fault occurs when a single-phase conductor reaches the ground-the effect being voltage
reduction and increased fault current. A Line-to-Line Fault (LLF) results from an electrical breakdown
between two phases, leading to voltage imbalance and excessive current flow. A Three-Phase Short Circuit
(3PSC) is a severe disruption where all three phases short-circuit, generating dangerously high current surges
and system instability. Harmonic Distortion (HD) arises due to non-linear loads such as power electronics,
introducing high-frequency distortions that degrade power quality and affect sensitive grid components.
An Open Circuit Fault (OCF) causes a power flow interruption when a conductor is faulty, leading to
voltage instability and unbalanced load conditions. Transformer Faults (TF) occur due to winding fault or
insulation failure, leading to waveform distortion and reduction in efficiency. Renewable Energy System
Faults (REF) cover voltage variation from the photovoltaic and wind turbine sources due to environmental
variation, affecting grid stability. Steady-state operation without any disturbance condition reflects the
normal operating state. The IEEE 33-bus test system is utilized for evaluating fault detection and localization
by examining different transmission line positions and bus points. The hybrid Neuro-Fuzzy model enhances
fault classification accuracy and grid resilience.

3.2.1 IEEE 33-Bus Test System
For fault detection and isolation to be performed with accuracy, the model to be applied here is the

one that depends on an accurate measurement chain for data acquisition. The measurement chain of this
work is a series of major components like Phasor Measurement Units (PMUs), voltage sensors, and current
transformers (CTs) that continuously monitor and record significant electrical parameters in the power grid.
These sensors capture real-time measurements of voltage, current, frequency, and harmonics in the IEEE
33-bus system, such as high-resolution time-synchronized readings for effective fault detection.

The PMUs are used for precise measurement of voltage and current, and they take the correct phase
angle measurements across the grid. The voltage sensors and current transformers are utilized to measure
the voltage and current signals on various buses and lines in the system. Sensor data are fed to the central
processing unit, where they are processed and computed by the fault detection model. This measurement
chain allows the model to keep track of the electrical status of the grid and detect deviations typical of faults.

Test Faults at Buses with PV Systems: Assess how the system behaves when faults occur at buses where
PV systems (Bus 6, Bus 15, Bus 23, Bus 27, Bus 31) are connected. Wind Turbine Faults: Introduce faults at
wind turbine connected buses (Bus 9, Bus 18, Bus 25, Bus 29, Bus 33) to observe the impact of wind power
on fault detection. Battery Storage and Super capacitors: Check how battery storage (at Bus 11, Bus 16, Bus
24, Bus 30) and Super capacitors (at Bus 11, Bus 19) affect fault isolation.

3.2.2 Simulation Parameters
The simulation integrates real-time electrical parameters to ensure dataset accuracy carried out on a

Python-based platform. Voltage (V) is monitored at each bus before and after fault occurrence to assess
fault impact. Current (I) variations are analyzed at affected buses to detect abnormal fault-induced surges.
Frequency (f) deviations from the nominal 50 Hz indicate instability in the grid. Power Factor (PF),
the ratio of active power to apparent power, is tracked to observe changes due to system faults Total
Harmonic Distortion (THD) is measured to quantify waveform distortions caused by non-linear loads
and faults. Reactive Power (Q) evaluates imbalances from transient disturbances that affect grid stability.
Fault Resistance is simulated to represent the severity of high-impedance faults, which can alter detection
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and localization accuracy. Fault Occurrence Time is recorded to synchronize analysis with transient and
steady-state responses. A 200 ms simulation time is chosen to balance processing speed and accurate
short-lived fault detection. This duration captures the fault initiation, transient response, and steady-state
operations, ensuring reliable classification without unnecessary computational overhead. This approach
further strengthens the Neuro-Fuzzy model for fault diagnosis and predictive accuracy in digital grids.

3.2.3 Simulation Setup and Data Generation
Perform a simulation of the IEEE 33-bus system using Python-driven power system analysis tools, with

numerical solvers developed in SciPy. The flow of simulation regarding fault classification and localization is
carried out in an organized manner. The process begins with the development of the grid model, wherein the
IEEE 33-bus test system is set up with standard transmission lines, loads, and distributed generation units.
Thus, Fault Injection is carried out by introducing different fault types at multiple locations and with varying
severity for ensuring dataset diversity. Sensor Data Extraction is allowed by virtual PMUs and IEDs that
collect real-time voltage, current, and harmonic data. Before feeding the dataset into the Neuro-Fuzzy model,
this data is preprocessed using techniques such as noise filtering and normalization for better accuracy.
Then, 80% of the dataset is used for training and 20% for testing to optimize model generalization and fault
detection capability. This Python-based simulation framework will ensure that real-world fault scenarios
are tested strongly with computational efficiency. Real-time integration of grid parameters with optimized
simulation windows enhances the accuracy of fault classification and makes the approach resilient to multiple
operating conditions by ensuring precise fault localization. IEEE 33 bus testing system is shown in Fig. 2.

Figure 2: IEEE 33 bus testing system
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3.3 Data Flow for IEEE 33-Bus Digital Grid Operations
The neuro-fuzzy fault detection system takes in real-time input data to perform fuzzy inference in order

to detect and isolate faults within IEEE 33-bus digital grid operations. There are three main stages of the data
flow: input acquisition, neuro-fuzzy inference processing, and fault classification & isolation.

3.3.1 Input Acquisition
The power system continuously monitors critical electrical parameters, having placed virtual PMUs and

IEDs at strategic locations within the IEEE 33-bus network. These devices ensure fault detection and grid
stability assessment in real time by capturing the vital system variables. The key parameters include voltage
deviation (Vd), where sudden drops or spikes signal faults that impact bus stability. Current spike (Is) mea-
sures excessive current surges caused by short circuits or load imbalances. Total harmonic distortion (THD)
analyzes waveform distortions, which increase with nonlinear loads and fault conditions. These parameters
are essential for detecting faults and maintaining the stability of the power grid. Power factor is used to
identify abnormal system operation; low (PF) usually points to ineffective usage of power or system faults.
Reactive power (Q) fluctuations identify voltage instability due to transient or sustained faults. Frequency
deviation (f) is monitored because this measures grid health since perturbations easily lead to deviations
from the nominal value of 50 Hz, which directly impacts overall system performance. The information
collected, before fed into the neuro-fuzzy inference system, was preprocessed with normalization and noise
reduction techniques to improve the accuracy of fault classification and model performance optimization.

3.3.2 Neuro-Fuzzy Inference System (NFIS) Processing
Preprocessed data are then fed into the FIS for fault classification using fuzzy logic in combination

with neural network learning. Neuro-fuzzy inference system improves decision-making by embedding
expert knowledge through adaptive learning mechanisms. Firstly, fuzzification is done in which continuous
numerical inputs such as voltage deviation, current spike, and total harmonic distortion are converted into
linguistic variables using the membership function given in Eq. (3).

Fuzzy sets for voltage deviation (Vd), are defined as low, medium, and high to enable the system to
characterize the deviation with respect to nominal voltage levels. Current spike (Is), is also described as low,
medium, and high in order to define fault-induced surges in the current. The Total harmonic distortion is
categorized into normal, moderate, and severe, representing increased waveform distortions that degrade
the quality of the power. Rule-based inference engine: It makes a classification of the fault on a basis of
a previously developed fuzzy rule base. Deploy expert-defined logic in analyzing interrelations among the
system parameters. For example, if voltage deviation is high and current spike is medium, the system
identifies line-to-ground fault, while voltage deviation being low and current spike is high, the fault identified
is a line-to-line fault. Similarly, THD is severe combined with low power factor (PF); the type of fault
classified falls under harmonic distortion HD. The method works by mapping numerical values into fuzzy
sets, employing if-then rules and closely imitating the way humans think in a logical manner during fault
classification. With the implementation of a rule-based system through the fuzzified inputs, high-accuracy
results were achieved on power quality disturbance classification. This will provide an adaptive framework
for the neuro-fuzzy logic in fault diagnosis and localization with continuous improvement to enhance power
system reliability.

The neuro-fuzzy inference system (NFIS) follows a feed-forward neural network with the fuzzy
membership functions and weights of the rule, adjusted to enable the method to adapt easily with changing
conditions in the power grid. Therefore, this auto-improvement learning mechanism develops higher
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accuracy as well as high reliability in power system fault classification. By continuously updating the rule
base, the model improves its ability to detect and localize faults with greater precision. The firing strength of
each rule (wi) determines the degree to which a specific fault condition is activated. It is computed using the
minimum operator, ensuring that the rule’s strength is dictated by the weakest contributing parameter:

wi = min(μV d , μI s , μTHD) (9)

where μV d , μI s , and μTHD represent the membership values of voltage deviation, current spike, and
total harmonic distortion, respectively. This ensures that all contributing factors are considered before
determining the fault type.

The weighted average method is used to convert fuzzy results into a crisp numerical output:

y = ∑i wi ⋅ fi

∑i wi
(10)

where f i represents the fault severity index, and wi denotes the firing strength of each rule. This method
ensures that the final conclusion represents the weighted contribution of all active rules, leading to a more
accurate fault diagnosis. With the incorporation of feedforward neural networks for dynamic variation and
defuzzification for precise quantification of faults, NFIS model enhances fault classification, location, and
severity assessment. A combination that promises real-time adaptation and steady monitoring of the power
system, thereby promising better grid reliability and stability.

3.3.3 Fault Classification and Isolation (Output)
The final output of the Neuro-fuzzy fault detection system is two main outcomes that ensure efficiency

in detecting faults and their localization within the IEEE 33-bus grid. The first is an output known as fault
type (Ft), which tells the type of fault that is being experienced within the system. It is classified depending
on a fuzzy inference system and neural network-based learning to classify it accurately. The fault types which
can be potential are line to ground fault (LGF), line to line fault (LLF), three phase short circuit (3PSC),
harmonic distortion (HD), open circuit fault (OCF), transformer fault (TF), and renewable energy system
fault (REF). Each of these fault types has specific grid disturbances associated with it, ensuring that the model
will be able to distinguish between different power quality issues. The second output is fault location (Fl),
which is determined by mapping the real-time sensor data into the grid topology, showing which bus or
transmission line has been affected. Phasor measurement units (PMUs) and intelligent electronic devices
(IEDs) continuously monitor electrical parameters across the IEEE 33-bus network and feed in location
data. Voltage, current, harmonic distortion, and power factor anomalies are associated with the system buses
and transmission lines to precisely locate the fault. The response will be faster since fault classification and
localization are automated by the neuro-fuzzy fault detection System; hence, it contributes to lesser downtime
and better grid stability. Real-time sensor data integration, fuzzy logic-based decision-making and machine
learning optimization enhance adaptability and precision, thus making the system robust and scalable for
dynamic power grid conditions. Data flow diagram of Neuro Fuzzy logic is shown in Fig. 3.
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Figure 3: System model diagram of proposed model

3.4 Training Neuro-Fuzzy System
An adaptive neuro-fuzzy system (ANFIS) classification system performs under a supervised learning

process. Faults are identified within an IEEE 33-bus test system, taking care of chassis pattern separation.
Model development covers creating the dataset, activating the fuzzy inference system, training of the model,
optimization with necessary validation of such a procedure. Design methods take sequences in a way that
these provide the model with dynamic adaptation potential with regards to changes within a power grid.

3.4.1 Data Collection
The dataset used for training and testing the proposed model. These scenarios were carefully selected to

include a diverse range of fault types, representative of various real-world conditions. The collected features
include voltage, current, frequency, and harmonics, which are critical for accurately detecting and isolating
faults in the grid. The dataset is divided into 5 categories based on the type and severity of the faults. This data
set is generated from the simulated power grid data that is obtained using the IEEE 33-bus test system. Fault
and normal operating conditions are taken into consideration for a balanced training da-ta-set. This data set
consists of electrical parameters which specify fault detection and classification. Sudden deviation implies
the possibility of faults, voltage (V) are the most important parameters in this data set. Current (I) monitoring
peaks in it may be because of an abnormal load or short circuit. Total Harmonic Distortion (THD) is
recorded as increased levels signify waveform distortions caused by faults. Monitoring THD helps detect
potential issues, ensuring the power grid operates efficiently and reliably. Power factor (PF) variations reflect
power quality and load stability, and frequency (f) deviations indicate grid instability due to disturbances. In
order to ensure the Neuro-fuzzy based fault detection model learns the characteristics of the fault effectively
and its testing on unseen scenarios for evaluation, the data is split into 80% training data and 20% testing
data. Normalization is done to scale values between 0 and 1, increasing the stability during training and
enhancing the convergence of the model. Preprocessing normalizes parameters, ensuring efficient learning
and preventing any feature from dominating the model. Using simulated IEEE 33-bus test system data
provides comprehensive, realistic training, enhancing fault classification accuracy. This approach optimizes
the model’s performance, ensuring effective operation and fault detection in real-world grid environments.
This dataset in Table 2 provides a comprehensive range of fault scenarios that allow the model to learn and
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generalize across different grid conditions. The dataset’s features voltage, current, frequency, and harmonics
are selected for their relevance in real-time fault detection and isolation in power systems.

Table 2: Dataset features

Fault category Features
collected

Number of
samples

Training
samples (80%)

Testing (20%)

Line-to-ground
fault (LGF)

V, I, THD, f 1200 960 240

Three-phase
short circuit

(3PSC)

V, I, THD, f 1100 880 220

Harmonic
distortion (HD)

V, I, THD, f 950 760 190

Open circuit
fault (OCF)

V, I, THD, f 800 640 160

Renewable
energy fault

(REF)

V, I, THD, f 850 680 170

Normal
operation (No

Fault)

V, I, THD, f 1100 880 220

Total – 6000 4800 1200

3.4.2 Fuzzy Inference System Initialization
Before the training, the fuzzy inference system (FIS) is initialized so that the fuzzy classifier learns

effectively. In general, the initialization involves three essential steps that structure the fuzzy logic-based
decision-making framework. First, grid partitioning of the input space into distinguishable fuzzy regions
allows the establishment of mappings of numeric values into linguistic meaningful terms. This step is
crucial for defining boundaries for key parameters like voltage deviation, current spikes, and total harmonic
distortion. Membership Function Initialization: assigns the initial values to the Gaussian, triangular, or
trapezoidal membership functions, depending on how the input parameters have to be fuzzified. Such
functions define the degree of membership for each data point in low, medium, and high categories for both
voltage deviation and current spikes. These functions need to be suitably initialized so that the system could
adapt well in the training process. Finally, the rule base formation develops the initial rule base of IF-THEN
rules related to fault classification. These IF-THEN rules guide the decision-making by the inference engine
with input conditions and relate them to fault types that could happen. A typical rule would read, “IF voltage
deviation is high and current spike is medium, THEN the fault type is line to ground fault (LGF)”. It provides
a logical structure for fault identification. As training progresses, these rules get refined through learning
in neural networks and enhance classification accuracy. Therefore, initialization of neuro-fuzzy with well-
structured partitions, membership functions, and rule sets forms the correct ground for more efficient and
adaptive fault detection on the IEEE 33-bus grid system.
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3.4.3 Training Process: Backpropagation & Least-Squares Estimation (LSE)
Two main procedures are therefore characterized in the process of training for adaptive neuro-

fuzzy inference system (ANFIS): a forward pass and a backward pass, ensuring the optimization of fault
classification. First is the forward pass, which starts with firing strength calculation comprising processes
such as the input parameters needed, voltage deviation, current spike, total harmonic distortion, their
fuzzification that will eventually translate these numeric values into linguistic variables, and further mapping
to an output based on predefined rules, which a fuzzy rule base carries out. The firing strength of each rule
(wi) is determined using the minimum operator given in Eq. (10).

To compute the predicted fault classification, the least-squares estimation (LSE) method is applied,
optimizing the fault type prediction based on input conditions.

In the backward pass (Membership function tuning), if the predicted fault classification does not match
the actual fault, error signals are generated. The backpropagation algorithm is used to update the membership
function parameters and rule weights, refining the system’s adaptability. The mean squared error (MSE) is
calculated as:

MSE = 1
N

N
∑
i=1
(yi − ŷi)2 (11)

where yi represents the actual fault type, ŷi is the predicted fault type, and N is the total number of samples
used for training. This iterative process minimizes classification errors and improves the fault detection
accuracy over time. By integrating forward and backward learning phases, ANFIS ensures adaptive rule
learning and precise fault classification, making it highly effective in power system fault detection.

3.4.4 Optimization: Gradient Descent & Hybrid Learning
In order to minimize the error rate, the adaptive neuro-fuzzy inference system (ANFIS) applies the

gradient descent algorithm to learn iteratively membership functions and rule parameters with the objective
of enhancing fault classification accuracy. Optimization in this approach makes the model better and well at
its decision-making relative to experiences of grid conditions. The gradient descent algorithm is defined as:

θnew = θold − η ⋅ ∂MSE
∂θ

(12)

where θ represents the parameter being updated (membership function parameters or rule weights); η is the
learning rate, controlling the step size of each update and ∂MSE/∂θ is the gradient of the mean squared error
(MSE) concerning the parameter θ, determining the direction of adjustment.

3.4.5 Testing & Validation
Once the ANFIS-based fault detection model is trained, it is tested on 20% unseen test data to identify

the generalization capability. The performance metric ensures that the model possesses the capability to
classify faults accurately with minimal error so that it can be used for real-time power system applications.
The accuracy (%) metric computes the percentage of faults classified correctly, reflecting the effectiveness of
the overall model:

Accurac y = Correct Predictions
Total Test Sampl es

× 100 (13)
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where true predictions consist of both true positives (properly predicted faults) and true negatives (properly
predicted normal conditions). Precision and recall of the model also measure classification performance.
Precision calculates the proportion of correctly classified faults out of all predicted fault cases.

Precision = True Positives
True Positives + False Positives

(14)

A higher precision value indicates fewer false alarms. Recall, on the other hand, measures how well the
model detects actual faults

Recal l = True Positives
True Positives + False Negatives

(15)

Higher recall value causes less actual faults to go undetected and makes the system more fault-tolerant
for grid fault detection. False alarm rate (FAR) indicates the proportion of correct identification of normal
conditions as faults, an important measure in preventing too many interventions.

FAR = False Positives
Total Predictions

× 100 (16)

A lower FAR ensures that normal grid conditions are not unnecessarily flagged as faults, improving
operational efficiency. The integration of fuzzy logic, neural networks, and optimization algorithms in ANFIS
training can enable the system to learn from historical fault data and dynamic variations that occur in
real time within the grid. This embodies high fault classification accuracy with reduced false alarms, hence
making the system highly efficient for smart grid fault detection and management. In addition to Precision
and Recall, several other evaluation metrics were considered to provide a more comprehensive assessment
of the proposed model’s performance. These include:

F1-Score: The F1-score is the harmonic mean of Precision and Recall and is used to measure the balance
between them. It is particularly useful when the data is imbalanced, as it takes both false positives and false
negatives into account. A high F1-score indicates that the model is performing well in detecting faults without
excessively missing any or generating false alarms.

False Positive Rate (FPR): The FPR is the proportion of non-fault instances that are incorrectly classified
as faults. It is calculated as:

FPR = FP
FP = TN

(17)

where FP is the number of false positives and TN is the number of true negatives. The FPR helps assess how
often the model falsely labels a non-fault condition as a fault, which is crucial for minimizing unnecessary
corrective actions in real-world applications.

False Negative Rate (FNR): The FNR measures the proportion of actual faults that are missed by the
model. It is given by:

FNR = FP
FP = TN

(18)

where FN is the number of false negatives and TP is the number of true positives. A low FNR is critical
to ensure that faults are detected in a timely manner, preventing undetected faults that could lead to
grid instability.
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4 Results
The application of a neuro-fuzzy fault detection system on the IEEE 33-bus test system receives analysis

through simulation setup and case studies using performance comparison and evaluation metrics. The results
indicate how accurately the system detects faults and show the duration of fault identification alongside both
true and false detection rates when compared to standard approaches.

4.1 Case Studies (Simulated Fault Scenarios)
The performance evaluation of this neuro-fuzzy fault detection system takes place across different fault

scenarios. Performance assessment is conducted through the System by applying numerical injections at
different points between buses and transmission lines.

4.1.1 Case Study for Line-to-Ground Fault (LGF)
Faults in power distribution networks, particularly line-to-ground faults (LGFs), are a common chal-

lenge that can cause significant operational disturbances. In the case of an electric ground connection during
a fault, one phase conductor loses its existing contact, which causes voltage unbalance and discrepancies
in current. This kind of fault needs to be detected as quickly and precisely as possible to avoid damage to
electrical equipment and minimize power outages. A simulated LGF was introduced at Bus 10 in the IEEE
33-bus test system to evaluate system response and fault detection effectiveness. Results indicate that the fault
has caused a 32% voltage drop that seriously deteriorates the stability of power, while an overcurrent surge of
40% is experienced due to the increase in fault current flow. Additionally, THD values moderately increased,
referring to waveform disturbances within the post-fault system, which also confirms other related studies
that have identified harmonic implications in fault conditions. In this view, a neuro-fuzzy fault detection
model has been deployed that performed well at real time, detecting and classifying the faults within 38 ms, so
as to establish dynamic efficiency with respect to practical applications of the system. Moreover, the proposed
model resulted in an accuracy rate of 96.5% in differentiating normal operations from LGF events with very
negligible false alarm rates, evidencing the findings on intelligent fault detection methods presented earlier.
These results are one more confirmation of the applicability of neuro-fuzzy techniques in fault detection
for power distribution systems. Their contribution of providing an accurate and fast identification of faults
could improve grid reliability, reduce downtime, and thus turn out to be indispensable for modern power
infrastructure. The Fig. 4 shows how detection accuracy improved for line-to-ground faults (LGF) during
10 distinct fault conditions. The neuro-fuzzy model began with 92.1% initial accuracy but evolved into a
performance level of 96.5% as it learned and improved fault detection methods through time. The upward
data trend verifies that the implemented learning method successfully minimizes detection errors.

To provide a comprehensive evaluation of the proposed fault detection model, we conducted simula-
tions using various fault scenarios with different fault parameters. These parameters were carefully selected to
represent a wide range of real-world fault conditions that a power grid might encounter. In particular, line-to-
ground faults (LGF) were simulated using varying fault resistances and fault locations. The fault resistances
for the line-to-ground faults were varied between 0.1 and 100 Ω to simulate different fault severities, ranging
from low-resistance faults (which are easier to detect and isolate) to high-resistance faults (which are more
challenging for fault detection models). The fault locations were distributed across the grid, with faults
occurring at different buses and lines, affecting different parts of the system. This variation in fault parameters
helps assess the robustness of the model across diverse fault scenarios and varying grid conditions. In
addition to fault resistance and location, the tests included 10 distinct fault conditions, each characterized by
different combinations of fault parameters. These distinct fault conditions were used to evaluate the model’s
ability to detect faults with varying characteristics. Each condition introduces different challenges for fault
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detection, particularly in terms of detection accuracy and fault isolation, as higher fault resistances generally
lead to lower fault currents, making fault detection more difficult.

Figure 4: Fault detection accuracy in first case

Fig. 5 shows the simulation in which the fault is introduced at Bus 10 at 100 ms, causing Phase B voltage
to drop to zero, while Phases A and C remain unaffected. This type of fault is common in distribution
networks and can result in unbalanced voltage conditions, requiring fast detection and isolation to prevent
further disturbances.

Figure 5: Voltage waveform for line-to-ground fault (LGF) at bus 10
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4.1.2 Case Study for Three-Phase Short Circuit (3PSC)
A Three-Phase Short Circuit (3PSC) is one of the most severe faults in power systems, where all three-

phase conductors come into direct contact with the ground. Such faults lead to extreme voltage drops,
excessive fault currents, and severe harmonic distortion, endangering system stability and causing significant
equipment damage. Rapid and precise fault detection is essential to prevent cascading failures and ensure
grid reliability. In this study, a 3PSC fault was simulated at Bus 22 within the IEEE 33-bus test system. The
fault induced a dramatic 70% power reduction in the affected network area. Additionally, fault currents
surged to 180% of normal operating levels, underscoring the need for immediate fault isolation to prevent
widespread system failure. Furthermore, Total Harmonic Distortion (THD) rose sharply, signifying severe
waveform degradation and potential threats to power quality standards, consistent with prior research on
system harmonic disturbances caused by high-current faults. To handle this challenge, a Neuro-Fuzzy fault
detection system was applied, which showed outstanding performance in real time. Using this model, the
classification of 3PSC faults was reported within 29 ms, setting a new frontier of performance for high-
severity faults detection techniques, with an accuracy of 98.1% in detecting the 3PSC fault from other grid
anomalies, which increases grid protection and reliability. These results confirm that Neuro-Fuzzy-based
fault detection frameworks offer a robust and fast solution toward mitigating severe power disturbances. It
enhances fault isolation and cascade failure prevention capabilities, which make them an important element
in any modern strategy for the protection of power systems. The neuro-fuzzy model demonstrates, from
the graphical representation, a step-by-step precision enhancement in fault identification for 3PSCs through
multiple test cases. The initial model accuracy of 94.5% increased to 98.1% due to the adaptive learning
mechanism improving the reliability of fault detection. Repeated training in Fig. 6 shows the potential of
this model to give more and more precise predictions with its adaptive learning system while sustaining a
direction upward.

Figure 6: Fault detection accuracy in second case

Fig. 7 shows the case, when a 3PSC fault is introduced at Bus 22 at 100 ms, resulting in a 70% drop in
voltage for all three phases. Such faults can lead to equipment damage and grid instability, necessitating rapid
fault detection and mitigation.
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Figure 7: Voltage waveform for three-phase short circuit (3PSC) at bus 22

4.1.3 Case Study for Harmonic Distortion (HD) Due to Nonlinear Load
Among several power quality problems, the harmonic distortion issue has taken one of the topmost

places in recent times in the modern power system. It arises due to nonlinear loads, including VFDs,
power electronic devices, and rectifiers that generate waveforms other than pure sine waves. Nonlinear
loads result in an increase in Total Harmonic Distortion, which leads to voltage fluctuations, inefficiency
in power transmission, and system instability. In this research, a nonlinear load was simulated at Bus 7
within the IEEE 33-bus test system. This simulation led to a 12% increase in voltage distortion and a 20%
rise in current distortion, highlighting the impact of nonlinear loads on grid stability and the need for
effective monitoring and mitigation strategies. These disturbances significantly degraded power quality,
consistent with previous research highlighting the impact of harmonics on voltage stability and equipment
performance. High THD signifies serious waveform disturbances that result in overheating of equipment and
increased losses and reduced efficiency at motors. Neuro-fuzzy fault detection was done to reduce all these
issues and showed a quick detection of harmonic distortion in as little as 45 ms. The harmonic distortion
detection accuracy from the model used was 92.7%, hence with minimized false detections. However, HD
was difficult to segregate from transient disturbances, just like when considering earlier studies of intelligent
power quality monitoring. These findings confirm that AI-based fault detection frameworks, such as neuro-
fuzzy models, provide an efficient solution for identifying and mitigating harmonic-related power quality
issues. The fault detection speed of 45 ms was observed during the detection of harmonic distortion in the
system. The research also notes that for the harmonic distortion case, the detection accuracy started at 88.5%
and increased to 92.7% over successive fault events. This performance was accomplished through adaptive
learning mechanisms embedded within the neuro-fuzzy system, which refines its detection capability as it
encounters more faults. Regarding the 12% and 20% data points mentioned, these represent the changes in
voltage and current distortion observed during the simulation when a nonlinear load was introduced at Bus 7
in the IEEE 33-bus system. The 12% increase in voltage distortion and the 20% increase in current distortion
were the result of this fault. These values reflect the magnitude of distortion caused by the fault, which helps
the system detect faults more accurately is shown in Fig. 8.
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Figure 8: Fault detection accuracy in third case

Fig. 9 shows the simulation, in which harmonic distortion is introduced at Bus 7 at 100 ms, where higher-
order harmonics (5th harmonic at 250 Hz) are superimposed onto the fundamental waveform. This results
in waveform distortion in all three phases, which can degrade power quality and lead to increased losses and
overheating in electrical components.

Figure 9: Voltage waveform for harmonic distortion (HD) at bus 7

4.2 Performance Metrics
4.2.1 Key Performance Indicators (KPIs) Evaluation

To comprehensively evaluate the performance of the proposed fault detection model, several Key
Performance Indicators (KPIs) were considered. These metrics provide detailed insight into the model’s
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accuracy, robustness, and efficiency in detecting faults in real-time grid operations. The KPIs used in this
study include:

• Mean Absolute Error (MAE): This metric assesses the average magnitude of errors in the predictions,
without considering their direction. MAE is particularly useful to measure the accuracy of the fault
detection system in real-time operations.

• Root Mean Squared Error (RMSE): RMSE provides a measure of the average magnitude of the errors,
giving more weight to larger errors. It helps to understand how much the detected fault deviates from
the actual values.

• Mean Absolute Percentage Error (MAPE): MAPE expresses the error as a percentage, making it easier
to understand the magnitude of the prediction errors relative to the actual data.

• Root Mean Squared Percentage Error (RMSPE): This metric is similar to RMSE but gives a percentage
error measure, useful in identifying model performance in detecting faults on different buses with
varying power capacities.

• Root Mean Squared Relative Error (RMSRE): This measures the relative error between predicted and
actual fault detection outputs, which is important for assessing detection ac-curacy under fluctuating
grid conditions.

• Mean Squared Relative Error (MSRE): MSRE evaluates the squared relative errors, providing a deeper
understanding of the model’s reliability in identifying faults.

• Precision: This metric indicates the proportion of true positive detections (correctly identified faults)
out of all predicted faults, showing how reliable the model is in minimizing false positives.

• Recall: Recall assesses the proportion of true positive detections out of all actual faults, helping evaluate
how well the model performs in identifying all fault scenarios.

To comprehensively evaluate the effectiveness of the proposed Neuro-Fuzzy Fault Detection
Model, a comparative analysis was conducted against four baseline fuzzy-based models,
including Conventional Fuzzy Logic (FIS), Adaptive Neuro-Fuzzy Inference System (ANFIS),
Type-2 Fuzzy Logic System (IT2-FLS), and Hybrid Fuzzy-Genetic Algorithm Model is shown in Table 3.
The evaluation criteria included fault detection accuracy, response time, false positive rate (FPR), and false
negative rate (FNR). The proposed Neuro-Fuzzy model outperforms the other models in most metrics,
including precision (97.2%) and recall (98.1%). Conventional Fuzzy Logic (FIS) has the highest MAE and
RMSE, which reflects its lower accuracy compared to the other models. While ANFIS and Type-2 Fuzzy
Logic (IT2-FLS) show better performance than FIS, they still fall short when compared to the proposed
Neuro-Fuzzy model, particularly in terms of precision and recall. The Hybrid Fuzzy-Genetic Algorithm
model also improves upon traditional FIS but does not match the effectiveness of the proposed model.

Table 3: A comparative analysis was conducted against four baseline fuzzy-based models

Model MAE (%) RMSE (%) MAPE (%) RMSPE (%) RMSRE (%) MSRE (%) Precision (%) Recall (%)
Proposed

neuro-fuzzy model
2.8 3.1 3.6 3.4 3.3 4 97.2 98.1

Conventional fuzzy
logic (FIS)

7.5 8.3 9.2 8.7 9.3 10.5 89.5 92.4

ANFIS 5.2 6 6.5 6.1 6.8 7.4 92.8 94.3
Type-2 fuzzy logic

(IT2-FLS)
4.7 5.1 5.9 5.5 5.8 6.2 93.4 94.8

Hybrid
fuzzy-genetic

algorithm

4 4.5 5 4.8 5 5.5 94.2 95.3



2942 Comput Model Eng Sci. 2025;143(3)

4.2.2 Density Analytics
To measure the scalability and robustness of the proposed model in handling large power grids, density

analytics were performed. Density refers to the fault or disturbance concentration in a particular area of the
power grid, which is crucial in establishing the performance of the model in dense networks.

The model was executed on various grid topologies with varying fault densities, and performance was
evaluated in terms of fault detection capability in high-density scenarios where faults occur more intensely.
By simulated fault conditions under varying fault densities on buses, the fault sensitivity of the model was
verified. The performance results showed that the developed neuro-fuzzy logic system was effective on dense
fault data with no appreciable loss of fault detection capability even in regions of high-density grids.

4.2.3 Computational Complexity and Sensitivity Analytics
Apart from accuracy in fault detection, assessment of the computational complexity of the proposed

model is critical. Computational complexity is measured through the amount of resources a model requires
to process, especially with the system as it becomes larger with increasing numbers of components and buses
in the grid. The computational complexity was evaluated through the running time and model’s utilization
of memory during different grid sizes and fault configurations. The model proved good performance, with
appropriate processing times suitable for real-time applications in digital grids. The scalability of the model
was also tested, to guarantee that it is able to handle larger test systems with additional buses and renewable
energy sources, without rise in computational cost.

Sensitivity analysis was carried out to examine the model’s performance in response to input variable
fluctuations such as current and voltage measurements from PMUs. The sensitivity analysis gives an idea
about how the model’s output varies due to fluctuations in input parameters. It was seen that the system
yielded consistent fault detection performance even if slight variations in input data occurred, which shows
the robustness of the model for real-time implementation.

Feature Importance Analysis was used to find out the contribution of various input features, such as
voltage deviations, current spikes, and frequency measurements, to fault detection. From feature importance
techniques, the analysis revealed that current and voltage measurements were most important in fault
detection accuracy, and frequency and harmonics were less but still important. This analysis informs future
development in feature selection for enhancing the detection capability of the system.

4.2.4 Accuracy (%)
Accuracy is a fundamental metric in fault detection systems, as it quantifies the proportion

of correctly identified faults and normal conditions. A higher accuracy percentage indicates
a more reliable model that minimizes misclassifications. The accuracy of the proposed
Neuro-Fuzzy Fault Detection Model is compared against four baseline fuzzy-based models,
namely Conventional Fuzzy Logic (FIS), Adaptive Neuro-Fuzzy Inference System (ANFIS),
Type-2 Fuzzy Logic System (IT2-FLS), and the Hybrid Fuzzy-Genetic Algorithm Model. The results of this
comparison are presented in Table 4, demonstrating the effectiveness of the proposed approach in achieving
superior classification accuracy.
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Table 4: Accuracy comparison between proposed and baseline models

Model Accuracy (%)
Proposed neuro-

fuzzy model
97.2%

Conventional fuzzy logic
(FIS)

89.5%

ANFIS 92.8%
Type-2 fuzzy logic

(IT2-FLS)
93.4%

Hybrid fuzzy-genetic
model

94.2%

The results in Table 4 indicate that the proposed Neuro-Fuzzy Model achieves the highest accuracy
of 97.2%, significantly outperforming the baseline models. The improved accuracy is attributed to the
hybrid nature of the model, which integrates fuzzy logic with deep learning to optimize fault classification
dynamically. Unlike Conventional Fuzzy Logic (FIS), which has the lowest accuracy (89.5%) due to its
reliance on static rule sets, the proposed model is capable of adapting to changing grid conditions. The
ANFIS model achieves an accuracy of 92.8%, benefiting from adaptive learning, yet it remains limited by its
constrained rule-updating mechanism. The Type-2 Fuzzy Logic System (93.4%) shows slight improvements
over ANFIS due to its enhanced ability to handle uncertainty in fault scenarios, but it lacks real-time
adaptability. The Hybrid Fuzzy-Genetic Algorithm Model, with an accuracy of 94.2%, optimizes fuzzy rule
sets using genetic algorithms; however, its performance remains slightly lower than the proposed model as
it does not integrate advanced learning mechanisms for continuous improvement.

The bar chart in Fig. 10 compares the performance of five fault detection models Neuro-Fuzzy, FIS,
ANFIS, IT2-FLS, and Hybrid Fuzzy-Genetic in terms of Precision and Recall. The proposed Neuro-Fuzzy
model outperforms all others, achieving the highest Precision (97.2%) and Recall (98.1%), indicating its
superior ability to correctly detect and classify faults with minimal false alarms. While the Hybrid Fuzzy-
Genetic and IT2-FLS models also show competitive results with Recall above 94%, the FIS model lags behind
with the lowest Precision (89.5%) and Recall (92.4%), reflecting its limitations in dynamic and complex
grid environments. This comparison clearly demonstrates the effectiveness of the Neuro-Fuzzy approach in
delivering accurate and reliable fault detection and isolation in smart grid systems.
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Figure 10: Recall and F1 comparison

The Fig. 11 shows high accuracy of the proposed model demonstrates its robustness and reliability in
fault detection. The results indicate that the combination of deep learning with fuzzy logic significantly
enhances the adaptability and precision of fault classification in smart grids. The ability of the proposed
approach to dynamically adjust fuzzy rules based on real-time data contributes to its superior accuracy com-
pared to baseline models. These findings highlight the effectiveness of the Neuro-Fuzzy approach in reducing
misclassifications, ensuring a more stable and efficient fault detection system for smart grid applications.

Figure 11: Representation of accuracy comparison
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4.2.5 Fault Detection Time (ms)
Fault detection time is one of the most important performance indicators of power system fault

diagnosis as it has a direct impact on how fast the protection measures can be put in place to lessen potential
damages. Even though the paper mainly deals with fault detection techniques, an understanding of the
significant contribution the fault isolation plays an important role in the reliability and resilience assurance of
modern power systems. Fault detection identifies the occurrence of a fault, but fault isolation plays a crucial
role in minimizing the impact of the fault on the overall system by quickly identifying the location of the
fault and preventing further disruption.

In the proposed model, a hybrid neuro-fuzzy logic system is utilized to execute fault detection and
fault isolation in an integrated system. Fault detection is the initial task, where the system monitors various
parameters such as voltage, current, and frequency via Phasor Measurement Units (PMUs) to observe any
irregular deviation from the normal operating state. Once the fault is identified, the next important step is
to isolate the faulted area or component so that its effect on the rest of the grid is minimized.

The fault isolation technique in the proposed model works by examining system parameters, such
as voltage sags, current spikes, and harmonics, to determine the precise location and nature of the fault.
During the process, it isolates the faulty components from the grid to prevent further damage and allow safe
operation of the non-faulty sections. This separation is accomplished by using a combination of adaptive
fuzzy rules and the learning ability of the neural network, which is capable of automatically adjusting its rules
and thresholds from real-time data.

Aside from isolation and fault detection, the hybrid neuro-fuzzy system can also prioritize the buses
or components to be isolated first based on their criticality to the grid. The performance of the pro-posed
model for fault detection and isolation has been validated through simulations and real tests, with significant
improvement in fault localization accuracy, isolation time, and grid stability. The integrated approach of real-
time fault detection and isolation allows the system to not only detect faults early but also take immediate
remedial actions to minimize their impact on the grid.

In summary, while fault detection identifies the occurrence of faults, the incorporation of fault isolation
within the proposed neuro-fuzzy logic framework enhances the system’s overall reliability, ensuring that
faults are not only detected but also efficiently isolated to maintain grid stability, reduce operational
costs, and enhance safety. A lower detection time ensures rapid fault isolation and enhances overall grid
stability. The proposed Neuro-Fuzzy Fault Detection Model is compared against four baseline fuzzy-based
models, namely Conventional Fuzzy Logic (FIS), Adaptive Neuro-Fuzzy Inference System (ANFIS), Type-
2 Fuzzy Logic System (IT2-FLS), and the Hybrid Fuzzy-Genetic Algorithm Model. The results of this
comparison are presented in Table 5, demonstrating the efficiency of the proposed approach in reducing fault
detection latency.

Table 5: Fault detection time comparison between proposed and baseline models

Model Fault detection time (ms)
Proposed neuro-fuzzy model 35 ms

Conventional fuzzy logic (FIS) 65 ms
ANFIS 50 ms

Type-2 fuzzy logic (IT2-FLS) 55 ms
Hybrid fuzzy-genetic model 47 ms
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The results in Table 3 indicate that the proposed Neuro-Fuzzy Model achieves the lowest fault detection
time of 35 ms, significantly outperforming all baseline models. The reduced detection time is attributed to the
parallel processing of fuzzy rules combined with deep learning-based adaptive classification, which allows
for real-time fault identification. The Conventional Fuzzy Logic Model (FIS) exhibits the highest detection
latency of 65 ms, primarily due to its reliance on a sequential rule-based decision-making process. The ANFIS
model reduces detection time to 50 ms, benefiting from its ability to tune fuzzy parameters dynamically;
however, it still operates in a structured rule-based manner, limiting its processing speed. The Type-2 Fuzzy
Logic Model (55 ms) shows marginal improvement over ANFIS by incorporating uncertainty handling,
yet its computational complexity adds to the overall delay. The Hybrid Fuzzy-Genetic Algorithm Model
demonstrates an improved detection time of 47 ms, owing to its optimized rule-selection process, but it lacks
real-time adaptability, which restricts further enhancements in speed.

In Fig. 12, lower fault detection time of the proposed model underscores its advantage in real-time
smart grid applications. The ability to detect faults within 35 ms allows for rapid isolation and mitigation,
thereby enhancing grid reliability and reducing the risk of cascading failures. The results confirm that
the proposed Neuro-Fuzzy approach outperforms conventional fuzzy-based techniques, making it a more
effective solution for real-time fault detection in modern power systems.

Figure 12: Graphical representation of detection time comparison

4.2.6 False Positive Rate (FPR)
The False Positive Rate (FPR) is a critical performance metric in fault detection systems, representing the

proportion of normal grid conditions that are incorrectly classified as faults. A high FPR leads to unnecessary
interventions, such as false alarms and unnecessary circuit breaker tripping, which can disrupt the stability
and reliability of the power system. Reducing FPR is essential to ensure that fault detection models only
trigger alerts when actual faults occur. The proposed Neuro-Fuzzy Fault Detection Model is compared
against four baseline fuzzy-based models, namely Conventional Fuzzy Logic (FIS), Adaptive Neuro-Fuzzy
Inference System (ANFIS), Type-2 Fuzzy Logic System (IT2-FLS), and the Hybrid Fuzzy-Genetic Algorithm
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Model. The results of this comparison are presented in Table 6, demonstrating the effectiveness of the
proposed model in minimizing false alarms.

Table 6: False positive rate (FPR) comparison between proposed and baseline models

Model False positive rate (FPR, %)
Proposed neuro-fuzzy model 2.3%

Conventional fuzzy logic (FIS) 7.2%
ANFIS 5.6%

Type-2 fuzzy logic (IT2-FLS) 4.9%
Hybrid fuzzy-genetic model 4.1%

The results in Table 4 indicate that the proposed Neuro-Fuzzy Model achieves the lowest FPR of 2.3%,
significantly reducing the number of false alarms compared to baseline models. The Conventional Fuzzy
Logic Model (FIS) exhibits the highest FPR at 7.2%, as it relies on static rule-based decision-making, which
lacks adaptability to evolving grid conditions, leading to frequent misclassifications. The ANFIS model
reduces FPR to 5.6% by incorporating adaptive learning, but it still struggles with real-time generalization.
The Type-2 Fuzzy Logic Model achieves a moderate FPR of 4.9%, benefiting from uncertainty handling but
still experiencing misclassification in complex fault conditions. The Hybrid Fuzzy-Genetic Algorithm Model
improves FPR to 4.1% by optimizing fuzzy rule sets, but it remains higher than the proposed approach due
to its dependence on pre-defined evolutionary parameters. In Fig. 13, lower FPR of the proposed model
highlights its robustness in differentiating between actual faults and normal fluctuations in the power system.

Figure 13: Graphical representation of false positive rate comparison

By integrating deep learning with fuzzy logic, the proposed approach enhances classification precision,
minimizing unnecessary alerts while ensuring reliable fault detection in smart grids. The results confirm
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that the proposed model outperforms traditional fuzzy-based methods in terms of reducing false positives,
making it a more efficient and stable fault detection solution.

4.2.7 False Negative Rate (FNR)
False Negative Rate (FNR) is an important performance metric in fault detection systems that represents

the rate of real faults that are undetected. High FNR is not desirable because it allows faults to persist in
the power system without triggering protective action, which results in extreme equipment malfunction
and system instability. FNR must be minimized to ensure that the fault detection model detects all fault
situations effectively without omitting dangerous anomalies. The proposed Neuro-Fuzzy Fault Detection
Model is compared against four baseline fuzzy-based models, namely Conventional Fuzzy Logic (FIS),
Adaptive Neuro-Fuzzy Inference System (ANFIS), Type-2 Fuzzy Logic System (IT2-FLS), and the Hybrid
Fuzzy-Genetic Algorithm Model. The results of this comparison are presented in Table 7, demonstrating the
effectiveness of the proposed approach in minimizing undetected faults.

Table 7: Comparison of false negative rate (FNR) between proposed and baseline models

Model False negative rate (FNR, %)
Proposed neuro-fuzzy model 1.9%

Conventional fuzzy logic (FIS) 6.1%
ANFIS 4.3%

Type-2 fuzzy logic (IT2-FLS) 3.7%
Hybrid fuzzy-genetic model 3.2%

The results in Table 7 indicate that the proposed Neuro-Fuzzy Model achieves the lowest FNR of
1.9%, significantly outperforming all baseline models. The Conventional Fuzzy Logic Model (FIS) exhibits
the highest FNR at 6.1%, which is due to its reliance on fixed rule sets that lack adaptability, causing
frequent failures in detecting complex and evolving fault conditions. The ANFIS model reduces FNR to
4.3% by incorporating an adaptive learning mechanism, but it is still limited by its constrained ability to
handle nonlinearity in fault patterns. The Type-2 Fuzzy Logic System (3.7%) improves upon ANFIS due
to its enhanced uncertainty management, but it does not fully eliminate undetected faults. The Hybrid
Fuzzy-Genetic Algorithm Model achieves an FNR of 3.2%, showing a reduction in missed faults through
optimized rule selection, but it remains less effective than the proposed model due to its lack of real-time
adaptive learning.

In Fig. 14, lower FNR of the proposed model underscores its reliability in ensuring comprehensive
fault detection. By integrating deep learning with fuzzy logic, the proposed approach dynamically adjusts
fuzzy rules, enhancing its ability to detect complex and transient faults in smart grid environments. The
results confirm that the proposed model outperforms traditional fuzzy-based methods in minimizing false
negatives, making it a more effective and secure fault detection solution.

Our model testing under diverse conditions involved adding extra components to the IEEE system
including PV panels along with wind turbines and battery storage and supercapacitors. The expanded system
network made the grid both more complex and variable which enhanced the data collection for the proposed
neuro-fuzzy model. The model achieved enhanced accuracy of 98.4% while precision increased to 98.5%
and recall reached 99.1% because of its superior performance detecting and isolating faults in dynamic
operational conditions. The proposed model achieved important error metric improvements with MAE
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at 2.1% and RMSE at 2.7% and MAPE at 2.8% and RMSPE at 2.6% and RMSRE at 2.5% and MSRE at
3.2%. These results demonstrate improved diagnostic reliability through reduced misclassifications. The
enhanced adaptation and generalization across fault scenarios became possible because the neuro-fuzzy
system received more diverse and denser operational signals. The updated system outperformed FIS and
ANFIS and IT2-FLS baseline models across all performance parameters. A summary of the metric-wise
system improvements appears in Fig. 15 following the update of the IEEE 33-bus system.

Figure 14: Graphical representation of false negative rate comparison

Figure 15: System performance after adding component in IEEE system
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4.3 Discussion
The integration of interpretive fuzzy logic with the flexibility of neural networks enables the proposed

Neuro-Fuzzy Fault Detection Model to offer improved performance compared to conventional fault detec-
tion methods. Unlike conventional machine learning approaches, which rely on large-scale labeled training
data sets, the neuro-fuzzy approach is very capable of handling nonlinear system behavior, power grid
dynamics, and real-time fault states. By combining fuzzy logic-based inference with neural network learning,
the model learns adaptively to optimize its fuzzy rules, leading to enhanced classification performance and
decreased fault detection times. This capability is crucial in today’s smart grids, where fast fault isolation and
adaptive response strategies are essential for maintaining grid reliability and stability.

The proposed system is 97.2% accurate to detect faults, which is better than traditional fuzzy logic-based
approaches. Notably, it detects faults in 35 ms, allowing real-time response to evolving system disturbances.
Finding a balance among high accuracy and low false alarm rates is one of the biggest challenges of fault
detection since excessive false alarms can result in unwanted power shutdowns, and the faults that escape
detection can result in severe equipment damage. The model suggested in this work overcomes this challenge
well by having a low False Positive Rate (FPR) of 2.3% and a False Negative Rate (FNR) of 1.9%, guaranteeing
accurate fault detection while reducing misclassification errors. These are the results of ongoing fuzzy rule
adaptation, with the neural network part learning from real-time operational data, improving decision
boundaries and minimizing fault classification uncertainty.

Conventional fuzzy inference systems (FIS) suffer from static rule bases that make them incapable of
learning under dynamic fault situations. ANFIS and Type-2 Fuzzy Logic (IT2-FLS) models offer adaptive
learning, but data dependency and higher computational complexity make them less than perfect for power
grids at a large scale. The Hybrid Fuzzy-Genetic approach improves rule-based fault detection through.
genetic optimization, but lacks real-time adaptive properties for digital grid applications. On the other hand,
the proposed neuro-fuzzy model addresses these constraints using self-learning functions that enable the
system to automatically adjust its decision-making process adaptively according to changing grid conditions.
To further clarify the key difference between the proposed model and the baseline models, a comparative
summary of model parameters is presented in the Table 8 below.

Table 8: Comparison summary of model parameters

Parameter Proposed
neuro-fuzzy

model

Conventional
FIS

ANFIS Type-2 FLS Hybrid
fuzzy-GA

Pre-training Yes No Yes No No
Adaptive
learning

Yes (Real-time) No Yes Limited Limited

Membership
function type

Gaussian Triangular Gaussian Interval
type-2

Triangular

Fault-types
covered

LGF, 3PSC, HD,
OCF, REF

Limited (LGF,
LLF)

LGF, LLF,
OCF

LGF, 3PSC LGF, LLF

Explainability High (Fuzzy
Rules +

Learning)

Moderate Moderate Low Low

(Continued)
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Table 8 (continued)

Parameter Proposed
neuro-fuzzy

model

Conventional
FIS

ANFIS Type-2 FLS Hybrid
fuzzy-GA

Computation
complexity

Medium
(optimized)

Low Medium High Medium

Handling-of
uncertainty

Moderate Low Moderate High Moderate

Dataset
requirement

Medium
(pre-trained)

Low High High Medium

Scalability to
large grids

High Low Moderate Moderate Moderate

Parameter Proposed
neuro-fuzzy

model

Conventional
FIS

ANFIS Type-2 FLS Hybrid
fuzzy-GA

Another key advantage of the proposed model is its robustness against detection of a wide range of fault
types, including Harmonic Distortion (HD), Open Circuit Faults (OCF), and Three-Phase Short Circuits
(3PSC). The majority of traditional fault detection methods do not simplify across different fault conditions,
which leads to high false alarms or undetected faults. The neuro-fuzzy approach efficiently addresses this
issue by employing rule-based reasoning with adaptive learning such that even minor voltage, frequency,
and power quality variations are accurately classified. The model is also well-suited for high penetration of
renewable energy in smart grids, where fluctuating power generation can lead to other system instabilities.

From a practical perspective, the proposed neuro-fuzzy model presents significant benefits for real-time
fault detection in digital grids. As power systems transition toward decentralized energy generation, adaptive
fault detection frameworks become increasingly necessary to maintain system integrity. The proposed model
can be integrated with IoT-based real-time monitoring systems, enabling continuous data input from voltage,
current, and power quality sensors. This real-time data stream allows the model to detect faults instantly,
reducing downtime and improving overall grid resilience. Furthermore, the ability to differentiate actual
faults from transient disturbances ensures that unnecessary power outages are minimized, enhancing overall
grid system stability, cost savings, and operational efficiency.

Despite these strengths, there are a few limitations to the neuro-fuzzy approach. One limitation is its
computational demand in highly dynamic environments where the system continuously adapts to real-time
data. While the model demonstrates significant accuracy in fault detection, particularly in fast-changing
grid conditions, there could be potential computational bottlenecks when applied to large-scale grids with
massive data streams from numerous sensors. Future research could focus on optimizing the computational
efficiency of the model to handle high-frequency data without compromising performance. Furthermore,
while the model performs well under diverse fault scenarios, further validation across a broader set of
fault conditions and grid configurations is necessary to evaluate its robustness in highly complex systems,
especially in power grids with more integrated renewable energy sources.

Additionally, it would be valuable to explore the algorithm’s performance across different types of faults
in greater detail. While the neuro-fuzzy model has shown promise in detecting a range of faults such as
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Harmonic Distortion (HD), Open Circuit Faults (OCF), and Three-Phase Short Circuits (3PSC), more in-
depth comparisons of fault detection accuracy, response time, and false alarm rates for various fault types
would help assess the model’s strengths and weaknesses in different scenarios. It is crucial to understand how
the algorithm performs under diverse conditions, such as varying fault severities, fault durations, and types
of disturbances. This could provide a clearer picture of the model’s real-world applicability and guide further
optimization efforts.

In terms of future research, one promising direction is the integration of the neuro-fuzzy model with
advanced predictive analytics for proactive fault management. This could involve integrating historical data
and real-time sensor inputs to not only detect faults but also predict potential failures before they occur.
Another important avenue for future exploration is the incorporation of machine learning techniques,
such as reinforcement learning, to further enhance the model’s decision-making capabilities. Reinforcement
learning could allow the system to continuously learn and improve its fault detection accuracy based on
feedback from the operational environment, providing even greater adaptability to evolving grid conditions.
Future research should focus on further optimizing the model for large-scale deployment, particularly in
multi-area smart grids with complex fault scenarios. One potential enhancement involves integrating the
neuro-fuzzy model with block chain-based security frameworks, ensuring secure data transmission and
tamper-proof fault records. As cybersecurity threats become more prevalent in power networks, a secure
and intelligent fault detection system will be critical for protecting digital grid infrastructures from malicious
attacks. Additionally, further work is needed to reduce the computational overhead of the model, making it
more suitable for low-latency, real-time applications in large power networks.

The proposed neuro-fuzzy logic model performs well for small-sized grid networks, i.e., the IEEE 33-
bus system, but scaling to larger and more complex grids is a significant problem. With increases in the
buses, lines, and fault conditions, the computational complexity of the model increases as well, with the
processing time and memory requirements being extended. For larger grids, the model would need to process
a very high volume of real-time data, which could lead to delays in fault detection and isolation. To bypass
these challenges, parallel processing, distributed computing, and multi-threading concepts can be employed
to speed up the detection process and make the model capable of handling large-scale grids. Additionally,
the greater complexity would necessitate the inclusion of more advanced fault models in order to capture a
greater diversity of faults, which are appropriate to occur in larger systems. These additions would make the
model more adaptable to grid configurations and to fault scenarios.

Although the proposed neuro-fuzzy model has demonstrated strong performance through simulation,
further validation using real-world grid data is essential to confirm its practical applicability. Real-time grid
environments often involve unpredictable conditions, data noise, communication delays, and cyber-physical
interactions that cannot be fully captured in simulated test benches. To bridge this gap, future work will focus
on collaborating with utility companies or smart grid pilot programs to deploy and test the model in live
operational settings. By integrating the model with actual grid infrastructure and monitoring its response to
real-time events, we can evaluate its effectiveness under realistic constraints.

The findings of this study highlight the superiority of the neuro-fuzzy approach in fault detection,
offering higher accuracy, faster detection times, and lower misclassification rates compared to conventional
techniques. By combining expert-driven fuzzy logic with adaptive neural network learning, the proposed
model provides a scalable, intelligent, and efficient solution for smart grid fault management. The results
reinforce that adaptive learning-based fault detection will play a crucial role in the next generation of power
systems, ensuring greater grid stability, reliability, and resilience in the face of evolving challenges.

The proposed neuro-fuzzy fault detection model demonstrates a significant improvement in identifying
and managing faults in modern power grids, particularly in digital and smart grid environments. Through
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the integration of fuzzy logic with neural networks, this model is capable of adapting to real-time conditions,
making it more effective than traditional methods such as rule-based fuzzy logic systems (FIS) and other
machine learning approaches like ANFIS or Type-2 Fuzzy Logic (IT2-FLS). The model’s ability to refine fuzzy
rules based on data from the grid enables dynamic fault detection, ensuring that it can handle complex and
evolving fault scenarios more efficiently.

5 Conclusion
The results of this study confirm that the proposed neuro-fuzzy model significantly outperforms

conventional methods in key performance metrics, particularly in terms of detection time and false positive
rate (FPR). These improvements are crucial for modern digitally connected smart grids, where timely and
accurate fault detection directly influences system reliability and stability. A faster detection response helps
prevent cascading failures and reduces the duration of outages, while a low FPR minimizes false alarms
and unnecessary operational interventions, thereby preserving system integrity and operator trust. The
practical implications of these results extend to operational efficiency and economic benefits for utility
providers. By reducing downtime and improving the precision of fault identification, the proposed model
can help lower maintenance costs, optimize resource allocation, and enhance the overall performance of
grid management systems. Moreover, its adaptability makes it well-suited for future power systems with
high levels of renewable integration and complex grid topologies. Therefore, this model has the potential
to support the long-term goals of resilient, cost-effective, and intelligent power system operation. The
proposed Neuro-Fuzzy Fault Detection Model integrates fuzzy logic with neural network-based adaptive
learning, enabling real-time, high-accuracy fault classification in smart grids. Unlike traditional approaches
such as FIS, ANFIS, IT2-FLS, and Hybrid Fuzzy-Genetic Models, which struggle with scalability, computa-
tional overhead, and adaptability, the proposed model dynamically updates fuzzy rules based on real-time
data, achieving 97.2% accuracy, a 35-ms fault detection time, a False Positive Rate (FPR) of 2.3%, and
a False Negative Rate (FNR) of 1.9%. By refining its inference rules continuously, the model ensures
highly precise fault classification, even under evolving grid conditions. It effectively detects multiple fault
types, including Harmonic Distortion (HD), Open Circuit Faults (OCF), and Three-Phase Short Circuits
(3PSC), demonstrating robust handling of nonlinear system behavior and transient disturbances. As power
grids transition toward decentralized, renewable-based architectures, intelligent fault detection mechanisms
become essential for handling dynamic load variations and complex fault interactions. The proposed model
offers scalability and adaptability, and its integration with IoT-based monitoring systems further enhances
real-time fault detection accuracy by processing continuous sensor data. Future research should focus on
optimizing computational efficiency, integrating block chain-based security for tamper-proof fault detection,
and extending deployment to large-scale smart grids. The findings confirm that the proposed model
surpasses conventional fault detection methods, establishing itself as a highly reliable and intelligent solution
for modern power grid fault monitoring. The use of simulated data and a controlled IEEE 33-bus system is
what keeps the study from being broader. Putting these techniques into action across large and mixed grids
may bring new issues, for example, the delays involved in communication and the instability between cyber
and physical parts. In the future, the framework will be built for hybrid AC-DC networks and cybersecurity
concerns will be included.
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Nomenclature
Parameters Abbreviation
Vd Voltage deviation
Is Current spike
PQ Power quality
THD Total harmonic distortion
PF Power factor
Q Reactive power
FPR False positive rate
MSE Mean squared error
ANFIS Adaptive Neuro-Fuzzy Inference System
FIS Fuzzy Inference System
LLF Line-to-line fault
LGF Line-to-ground fault
3PSC Three-phase short circuit
OCF Open circuit fault
TF Transformer fault
REF Renewable energy system fault
Voltage (V) Monitored for deviations indicating faults
Current (I) Monitored for spikes due to short circuits or load imbalances
Frequency (f) Monitored for deviations due to disturbances
Power Factor (PF) Indicates grid stability and system health
Harmonics Distortions in the waveform, measured by THD
Accuracy (%) The proportion of correctly identified faults
Response Time Time taken to detect faults
False Alarm Rate (FAR) Percentage of normal conditions misclassified as faults
wi Firing strength of a rule in the fuzzy inference system
μVd Membership function value for voltage deviation
μIs Membership function value for current spike
μTHF Membership function value for total harmonic distortion
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