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ABSTRACT: Pre-Authentication and Post-Connection (PAPC) plays a crucial role in realizing the Zero Trust security
model by ensuring that access to network resources is granted only after successful authentication. While earlier
approaches such as Port Knocking (PK) and Single Packet Authorization (SPA) introduced pre-authentication concepts,
they suffer from limitations including plaintext communication, protocol dependency, reliance on dedicated clients,
and inefficiency under modern network conditions. These constraints hinder their applicability in emerging distributed
and resource-constrained environments such as AIoT and browser-based systems. To address these challenges, this
study proposes a novel port-sequence-based PAPC scheme structured as a modular model comprising a client,
server, and ephemeral Key Management System (KMS). The system employs the Advanced Encryption Standard
(AES-128) to protect message confidentiality and uses a Hash-Based Message Authentication Code (HMAC-SHA256)
to ensure integrity. Authentication messages are securely fragmented and mapped to destination port numbers using a
signature-based avoidance algorithm, which prevents collisions with unsafe or reserved port ranges. The server observes
incoming port sequences, retrieves the necessary keys from the KMS, reconstructs and verifies the encrypted data,
and conditionally updates firewall policies. Unlike SPA, which requires decrypting all incoming payloads and imposes
server-side overhead, the proposed system verifies only port-derived fragments, significantly reducing computational
burden. Furthermore, it eliminates the need for raw socket access or custom clients, supporting browser-based
operation and enabling protocol-independent deployment. Through a functional web-based prototype and emulated
testing, the system achieved an F1-score exceeding 95% in detecting unauthorized access while maintaining low resource
overhead. Although port sequence generation introduces some client-side cost, it remains lightweight and scalable.
By tightly integrating lightweight cryptographic algorithms with a transport-layer communication model, this work
presents a conceptually validated architecture that contributes a novel direction for interoperable and scalable Zero
Trust enforcement in future network ecosystems.

KEYWORDS: Port knocking; single packet authorization; pre-authentication; zero trust; network security; HMAC;
authentication; AIoT security

1 Introduction
As digital transformation accelerates, the proliferation of cloud infrastructures, remote work environ-

ments, and BYOD (Bring Your Own Device) policies has blurred the traditional boundaries of enterprise
networks. This shift has exposed fundamental limitations in perimeter-based security models, which
implicitly trust users and devices within the internal network. In response, the Zero Trust security model has
emerged as a critical paradigm shift, enforcing the principle of “Never Trust, Always Verify” and requiring
continuous authentication regardless of network location.
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To implement Zero Trust, the Pre-Authentication and Post-Connection (PAPC) mechanism plays a vital
role. Unlike traditional authentication methods where authentication occurs after a connection is established,
PAPC ensures that only authenticated entities can initiate communication, thereby minimizing attack
surfaces. Two primary implementations of PAPC are Port Knocking (PK) and Single Packet Authorization
(SPA), both of which aim to conceal services and enforce access control at the network level.

Port Knocking (PK) allows clients to sequentially access a predefined series of ports as a form of
authentication. This method is lightweight and does not require dedicated client software, making it suitable
for resource-constrained environments. However, its lack of encryption exposes it to sniffing, spoofing, and
replay attacks, while its reliance on port order introduces latency and usability issues [1].

SPA improves upon PK by embedding encrypted authentication data into a single UDP packet, which
is verified by the server before allowing access. While SPA enhances security through encryption and Hash-
based Message Authentication Code (HMAC) validation, it presents several limitations. It requires raw
socket access to craft user datagram protocol (UDP) packets, making it incompatible with typical web clients
such as browsers.

Moreover, SPA imposes a high computational burden on servers that must analyze all incoming UDP
packets, making it unsuitable for bandwidth- and resource-constrained environments such as Artificial
Intelligence of Things (AIoT) devices [2]. SPA’s reliance on a dedicated client and limited protocol flexibility
further hinder its deployment in diverse or browser-centric scenarios.

1.1 Research Objectives and Contributions
To overcome the limitations of existing PAPC methods, we propose a novel port-based pre-

authentication and post-connection protocol that is protocol-independent and clientless. Our method
transmits encrypted authentication information using a sequence of port numbers, eliminating the need for
packet payloads or dedicated clients. This enables lightweight, secure authentication even in web and AIoT
environments, where raw socket access is restricted or infeasible.

The proposed method fragments authentication data, encrypts it using AES, applies HMAC for integrity,
and maps it to port numbers that are transmitted in a specific sequence. The server reconstructs the original
authentication message by observing port access attempts, and performs verification using pre-registered
keys retrieved from a Key Management System (KMS). Nonce and timestamp mechanisms are used to
prevent replay attacks. This approach supports browser-based environments and avoids unsafe/well-known
ports using a dynamic signature-based mapping algorithm.

The main contributions of this study are as follows. First, we present a protocol-independent and client-
less pre-authentication scheme that is compatible with both TCP/UDP environments and web browsers.

Second, we design a port-sequence based fragmentation and reconstruction mechanism incorporating
sequence numbers and signature verification to ensure both message integrity and correct delivery order.

Third, we integrate AES encryption and HMAC validation, along with replay protection mechanisms
using nonce and timestamp techniques.

Fourth, we propose a Key Management System (KMS)-based ephemeral key handling strategy, which
allows secure and temporary storage and delivery of cryptographic keys without relying on persistent storage.

Finally, we implement and validate a fully functional web-based prototype, demonstrating the practi-
cality and feasibility of the proposed approach under real-world constraints.

This paper is organized as follows. Section 2 surveys related work on Port Knocking (PK), Single Packet
Authorization (SPA), and Zero Trust-based authentication. Section 3 describes the proposed port-based
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Pre-Authentication and Post-Connection (PAPC) method. Section 4 presents the system implementation
and integration details. Section 5 reports experimental results and provides a security analysis. Section 6
discusses the applicability and limitations of the proposed method. Finally, Section 7 concludes the paper
and outlines future research directions.

2 Related Works

2.1 Relationship Between the Zero Trust Security Model and PAPC
With the rapid evolution of digital environments, network security threats have significantly increased.

The perimeter-based security model has traditionally operated by clearly distinguishing between internal
and external networks. However, the expansion of cloud computing, the rise of remote work environments,
and the increase in insider threats have revealed the limitations of this approach [3–5].

To address these challenges, John Kindervag of Forrester Research proposed the Zero Trust security
model in 2010 [6]. This model is based on the principle of “Never Trust, Always Verify”, which enhances
security policies by requiring continuous authentication and verification of all network activities [7]. Unlike
traditional security models that rely on network boundaries, Zero Trust eliminates implicit trust and
evaluates all access requests under the same stringent security criteria, regardless of user location.

Traditional network security methods clearly distinguish between internal and external users. However,
Zero Trust continuously verifies all users, including those who have already been authenticated, to maintain
security [8]. Even if a user is authenticated once, Zero Trust mandates continuous validation and restricts
access based on the principle of least privilege, ensuring that users can only access the resources strictly
necessary for their role [9–11].

The Zero Trust model differs from traditional security approaches through several core principles. First,
it enforces verification of all network traffic, meaning that no user–whether internal or external–is implicitly
trusted; all access requests must be verified in advance. Second, it applies the least privilege principle, whereby
users are granted access only to the resources necessary for their roles. Third, access control is policy-
based, allowing dynamic adjustment based on contextual policies and enabling continuous monitoring for
abnormal activities. Finally, Zero Trust promotes network segmentation, enforcing security policies at the
asset level to limit access to sensitive information and enhance data protection.

To implement these security principles, Zero Trust network architectures require the Pre-
Authentication and Post-Connection (PAPC) mechanism. Unlike traditional methods that allow users to
connect before authentication, PAPC enforces authentication before network access is granted. This approach
effectively eliminates unauthorized access attempts [12,13].

In a Zero Trust environment, PAPC prevents unauthorized users from connecting to the network,
allowing access only after authentication. By ensuring that even authenticated users undergo continuous
validation, Zero Trust mitigates security risks associated with perimeter-based models and enforces strict
access controls.

Furthermore, Zero Trust is designed around security policies that focus on endpoint-level protection
and data-centric security rather than network boundaries. Consequently, PAPC plays a crucial role in
minimizing attack surfaces and reducing unnecessary network exposure, thereby maximizing security effec-
tiveness.

2.2 PAPC Mechanism and Limitations of Existing Approaches
With the widespread adoption of the Zero Trust security model, the Connection Before Authentication

(CBA) approach has become increasingly vulnerable to security threats.
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In traditional network security models, the client first connects to the network before authentication is
performed. However, this approach is susceptible to various attacks, including port scanning, sniffing attacks,
and unauthorized access attempts leading to availability attacks such as DoS and DDoS.

To mitigate these vulnerabilities, the Pre-Authentication and Post-Connection (PAPC) mechanism has
been developed. Two representative implementations of this approach are Port Knocking (PK) and Single
Packet Authorization (SPA).

2.2.1 Port Knocking
Port Knocking (PK) was first introduced by Martin Krzywinski in 2003 as a pre-authentication and

post-connection technique that utilized a sequence of port accesses to stealthily authenticate clients without
exposing open ports [14].

His key contribution was the conceptualization of a firewall-triggered authentication method, allowing
closed systems to remain invisible until legitimate users completed the correct port sequence. However, PK
lacked payload encryption and was highly susceptible to sniffing, spoofing, and replay attacks, making it
vulnerable under modern threat landscapes.

The client attempts authentication by accessing a predefined sequence of ports in a specific order, and
the server (or firewall) determines whether to grant access based on this sequence.

For example, if a client accesses ports 80, 443, and 8080 in sequence, the server compares the incoming
sequence with a predefined pattern and grants authentication upon a match. Port Knocking is notable
for its simple structure, as it can be easily implemented in resource-constrained environments, operates
independently of TCP and UDP protocols, and does not require additional client-side software.

However, Port Knocking is vulnerable to sniffing and spoofing attacks, and its buffer used for sequence
validation can be exploited for DoS attacks, among other security concerns. As shown in Table 1, it has several
security weaknesses, and various methods have been studied to improve its robustness.

Table 1: Weaknesses of port-knocking on security and network performance

Weakness Effect
Plain text port sequence Vulnerability to traffic sniffing and scanning

Network Address Translate (NAT) Knock Service exposure to users sharing a public IP
Denial of Service (DoS) knocks attacks Knock sequence buffer overloading
Select the inappropriate range of port Narrow range susceptible to traffic capture, wide

range vulnerable to availability attacks
Out of order packet delivery Potential for system malfunction

Lack of association between authentication and
connection

Risk of additional transmission blocking and
connection hijacking by users

The host behind the firewall Authorized users may experience malfunctions
due to insufficient privileges

Note: The table summarizes the security and performance weaknesses of port-knocking.

Khan et al. classified port-knocking authentication methods into two categories: Static Knock Sequence
and Dynamic Knock Sequence techniques [1]. Their key contribution was to systematically formalize
port-knocking variants based on sequence generation mechanisms, distinguishing between fixed and
session-randomized approaches.
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Static sequences involve pre-defined, unchanging port orders, while dynamic sequences utilize random
number generators (RNGs) to assign new sequences for each session, enhancing resistance to replay attacks.

However, both techniques retained vulnerabilities such as susceptibility to packet sniffing (in static
sequences) and potential compatibility issues with NAT traversal (in dynamic sequences), limiting their
practical deployment in diverse network environments.

The static knock sequence method [14] predefines a port sequence for authentication, requiring the
client to access these ports in a fixed order.

In contrast, the dynamic knock sequence method proposed by Isabel [15] employs a random number
generator (RNG) on both the client and server sides to dynamically assign port sequence for each authen-
tication session. This dynamic assignment enhances security by mitigating the risk of replay attacks and
sequence sniffing, which are prevalent in static methods.

The key contribution of this approach lies in introducing session-specific randomness to the port
sequence, thereby significantly increasing the difficulty for attackers to predict valid authentication patterns.

However, the method still faces practical challenges, particularly regarding compatibility with Network
Address Translation (NAT) devices, where random ports may be remapped unpredictably, potentially
disrupting the authentication process.

To enhance the security of port-knocking mechanisms, Vasserman et al. [16] proposed incorporating
encryption into both static and dynamic knock sequences, leading to the development of Static Encrypted
Knock Sequence and Dynamic Encrypted Knock Sequence techniques.

Their key contribution was introducing payload confidentiality to knock sequences, thereby preventing
packet sniffing and spoofing attacks that plagued earlier plaintext implementations. By encrypting the
sequence, these methods also strengthened resistance against replay attacks by generating unique sequences
for each authentication session.

However, despite these improvements, encrypted knock sequences still faced limitations in environ-
ments with high packet loss or reordering, where maintaining correct decryption and sequence assembly
could become challenging, potentially impacting reliability in real-world deployments.

To further enhance the security of port-knocking mechanisms, researchers proposed integrating sup-
plementary authentication methods such as Short Message Service (SMS), One-Time Password (OTP) [17],
and Mutual Authentication [18].

These enhancements contributed by introducing multi-factor authentication capabilities, thereby
strengthening identity verification beyond mere possession of network credentials. Specifically, the use of
OTPs enabled dynamic, time-sensitive validation, while Mutual Authentication schemes ensured that both
client and server could verify each other’s legitimacy before granting access.

However, despite these advances, these approaches introduced new operational complexities, such as
dependency on external authentication servers (e.g., OTP servers) and potential availability concerns, which
could limit autonomous operation in resource-constrained or isolated network environments.

However, even these improved port-knocking approaches retain certain vulnerabilities. For instance,
static port sequence remain susceptible to sniffing attacks, while dynamic knock sequences may face
compatibility issues in Network Address Translation (NAT) environments.

Moreover, they lack robust protection against DoS attacks, and authentication may fail if packet
sequences arrive out of order. Notably, some authentication mechanisms rely on external authentication
systems (e.g., OTP servers), introducing third-party dependency and making standalone operation difficult.
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2.2.2 Authentication Information Transmission Using Port Space
In previous research on port-knocking mechanisms, deGraaf et al. [19] proposed an innovative approach

that utilizes 16-bit destination port numbers as a medium for transmitting authentication information.
Their key contribution was the conceptual shift from simple port sequence monitoring to active use of

the port number space as a covert data transmission channel, enabling servers to verify client authentication
without requiring payload analysis. This approach opened a new direction for pre-authentication by
leveraging the inherent properties of the transport layer, effectively addressing certain vulnerabilities of
traditional Connection Before Authentication (CBA) models, such as payload exposure risks.

However, the study did not provide a comprehensive strategy for avoiding well-known and unsafe ports,
raising concerns about potential conflicts with reserved services and susceptibility to security vulnerabilities,
which could limit its real-world applicability.

The study by deGraaf et al. did not propose a comprehensive strategy for avoiding the use of well-known
or unsafe ports, which could significantly limit the practical applicability of the approach. Well-known ports
are reserved by the Internet Assigned Numbers Authority (IANA) for essential services such as Hypertext
Transfer Protocol (HTTP, 80), File Transfer Protocol (FTP, 21), and Secure Shell (SSH, 22), and often require
elevated privileges for access, introducing potential security and accessibility concerns [20,21].

Furthermore, certain port ranges, such as those associated with Telnet (23) and Network Basic
Input/Output System (NetBIOS, 137–139), are known to facilitate malware propagation and expose systems
to vulnerabilities. Utilizing such ports for authentication transmission without restriction could undermine
the overall security model, highlighting an important limitation in the original design despite its conceptual
contribution to covert authentication techniques.

Previous studies did not address these port utilization issues and focused solely on restricting conflicting
port ranges. However, this constrained approach may hinder real-world applicability. To overcome these
limitations, this study introduces a port mapping technique that avoids well-known and unsafe ports, thereby
enhancing security.

Additionally, this method expands port numbers from being merely an authentication mechanism to
serving as a message transmission channel. Furthermore, by leveraging the protocol-independent nature of
port space-based authentication, this study addresses the limitations of previous research while improving
applicability across diverse network environments.

2.2.3 Single Packet Authorization
Single Packet Authorization (SPA) was introduced by Michael Rash in 2006 as an enhanced alternative

to Port Knocking (PK), aiming to resolve its inherent inefficiencies and security limitations [22].
Rash’s key contribution was the design of a mechanism that encapsulates encrypted authentication

data within a single, stateless UDP packet, thereby simplifying the authentication process and mitigating
risks such as sequence sniffing, replay attacks, and DoS buffer exploits associated with traditional PK. This
innovation significantly improved both the security and operational efficiency of pre-authentication.

However, SPA introduced its own limitations: it relies on the UDP protocol, which restricts compatibility
with TCP-based services, and requires access to raw sockets or privileged networking APIs, thus necessitating
dedicated client software and limiting its deployability in browser-based or constrained environments.

SPA simplifies the authentication process and enhances security by transmitting encrypted authenti-
cation information within a single UDP packet. It employs symmetric key encryption such as AES-128 to
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protect authentication data and utilizes HMAC (Hash-based Message Authentication Code) to verify data
integrity. This approach effectively prevents threats such as sniffing and replay attacks.

SPA plays a critical role in Zero Trust-based systems, particularly in Software-Defined Perimeter
(SDP) architectures. SDP conceals network resources and blocks unauthorized entities by using SPA as an
authentication mechanism. During the initial communication between the SDP controller and the host, SPA
verifies access requests, ensuring that unauthorized entities cannot connect to the network [23].

Additionally, the system does not respond to unauthorized requests, thereby minimizing the attack sur-
face. For example, controllers and hosts can mitigate threats such as DDoS attacks by dropping unauthorized
requests [24].

In SDP environments, SPA serves as a key mechanism for initial authentication between the Initi-
ating Host (IH) and the Accepting Host (AH). Upon receiving an SPA packet, the AH verifies it before
allowing connection requests, subsequently establishing mutual TLS (mTLS) for encrypted communica-
tion [25]. Throughout this process, unauthorized packets are entirely blocked, reinforcing network security
and stability.

SPA features a structured message format that includes multiple fields for secure data transmission.
According to the SDP specification, an SPA message consists of ClientID (identifying the user and device),
Nonce (preventing replay attacks), Timestamp (limiting validity duration), and HMAC (ensuring data
integrity). These elements ensure reliable and secure authentication across the network [26].

Despite its advantages, SPA has several limitations. First, SPA relies on the UDP protocol, making it
unsuitable for connection-oriented protocols such as TCP. Second, SPA requires access to raw sockets or
low-level network interfaces, necessitating a separate client application.

Additionally, it requires access to raw sockets or low-level networking APIs, which often demand
administrative privileges or custom client software depending on the operating system, thereby limiting
SPA’s ease of deployment in general environments. This dependency restricts its applicability across various
network environments and limits its flexibility.

Moreover, since SPA typically uses fixed port numbers, it becomes susceptible to observation-based
man-in-the-middle (MitM) attacks. This vulnerability has prompted related research to explore potential
mitigations and improvements to SPA’s security model [27].

Although PK and SPA have significantly contributed to pre-authentication mechanisms, both
approaches have inherent limitations. PK lacks encryption and is vulnerable to replay attacks, while SPA,
despite its security advantages, depends on UDP and requires a dedicated client application.

To address these issues, this study introduces a novel authentication mechanism that leverages
encrypted port sequence, eliminating client dependency and ensuring compatibility with diverse network
environments. Table 2 provides a comparative analysis of PK, SPA, and our proposed method, high-
lighting key differences in security, client dependency, resistance to DoS attacks, and applicability across
different environments.
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Table 2: Comparison of port knocking, SPA, and the proposed authentication method

Category Port knocking (2003) Single packet
authorization (2006)

This study

Security Low (plaintext
transmission)

High (encryption,
HMAC)

High (encryption and
randomized
sequences)

Client Dependency None Required None (works in web
environments)

Resistance to DoS
attacks

Weak Strong
(non-responsive

mechanism)

Strong (random
signatures and port

avoidance)
Shared public IP issue Present None None (signature-based

authentication)
Protocol dependency Low (works with

TCP/UDP)
UDP or Modified TCP

based
Low (utilizes port

sequence)
Authentication data

transmission
port sequence Single UDP packet Encrypted port

sequence
Applicable

environments
Servers and some
network devices

Secure authentication
between client and

server

Compatible with
client-server and web

environments

Note: The years in parentheses indicate the initial proposal of each technique. The comparison is based on known
features, security properties, and implementation requirements from prior literature and our analysis.

2.2.4 Recent Advances in Port-Space-Based Pre-Authentication
In response to the evolving landscape of pre-authentication mechanisms and Zero Trust network

architectures, several recent studies have explored innovative techniques utilizing port space and authenti-
cation obfuscation.

Xu et al. [28] proposed AHAC, a framework that integrates obfuscated Single Packet Authorization
(SPA) with Zero Trust principles to enhance stealth and resistance to traffic analysis. Although effective,
the approach introduces computational overhead and relies on custom client implementations, limiting its
deployment in lightweight or browser-based environments.

Junquera-Sánchez et al. [29] introduced C-Lock, a port-knocking system that leverages time-based
one-time passwords (TOTP) to generate time-variant authentication sequences, thereby improving security
against replay attacks. However, its reliance on accurate time synchronization between clients and servers
poses challenges in distributed or asynchronous systems.

Wang et al. [30] presented a dual-mode SPA framework designed for software-defined networks (SDNs),
introducing identity obfuscation and dynamic policy-based access control. While this significantly enhances
adaptability and anonymity in programmable networks, it requires SDN-specific infrastructure and entails
high configuration complexity, limiting its compatibility with traditional network environments.

These recent contributions collectively advance the field by addressing vulnerabilities inherent in
traditional Port Knocking (PK) and SPA methods. Importantly, studies such as AHAC and Dual-SPA not
only propose theoretical enhancements but also validate their approaches through empirical implementation
and evaluation, demonstrating a balanced progression from conceptual innovation to practical feasibility.
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This research aligns with and extends these efforts by proposing a novel protocol-independent, clientless
pre-authentication mechanism that enhances scalability, compatibility, and resilience against denial-of-
service (DoS) attacks in real-world distributed environments. Table 3 provides a comparative analysis of
recent studies, highlighting their key features, contributions, and limitations.

Table 3: Comparison of recent pre-authentication techniques and the proposed method

Category Dual-SPA (2022) AHAC (2024) C-Lock (2025) This study
Authentication

strategy
Dynamic

Policy-based SPA
Obfuscated SPA TOTP-based Port

Knocking
Encrypted port

sequence
Client

dependency
Required

(SDN-compatible
client)

Required (custom
client)

Required (TOTP
support)

None (browser-
compatible)

Protocol
dependency

UDP-based SPA
for SDN

UDP-based SPA TCP/UDP (Port
Knock)

Protocol-
independent

(Transport Layer)
Resistance to
replay attacks

Strong via dynamic
policies

Improved via
obfuscation

Improved via
time-variant

sequences

Strong via message
based port

sequence, nonce
and HMAC

Infrastructure
requirements

SDN Controllers Standard networks
with obfuscation

support

Local
synchronized

networks

None (standard
web environments)

Deployment
complexity

High (SDN
programming)

Moderate
(obfuscation

overhead)

Moderate (time
synchronization

needed)

Low (port
sequence

transmission)
Applicability

scope
SDN-based
networks

Private/enterprise
networks

Local networks Browser-based,
AIoT, cloud

environments

To ensure that this review reflects the current state of research, we incorporated recent studies
published between 2022 and 2025, capturing both theoretical advancements and empirical validations in
pre-authentication.

In contrast, our proposed method offers a protocol-independent, client-less, and browser-compatible
pre-authentication framework. By utilizing encrypted port sequence while avoiding reserved and unsafe
ports, our approach enhances compatibility and scalability, particularly for AIoT and web-based systems
where raw socket access is impractical.

3 Port-Based Pre-Authentication and Post-Connection: A Protocol-Independent Model

3.1 Design Objectives
Existing Port Knocking (PK) and Single Packet Authorization (SPA) methods often face limitations due

to their dependencies on specific network protocols and implementation constraints.
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PK is susceptible to sniffing and replay attacks, while SPA relies on dedicated client software and is
primarily designed for UDP-based authentication. To overcome these limitations, this study proposes a
protocol-independent port number-based Pre-Authentication and Post-Connection (PAPC) mechanism.

The proposed method is designed with four key objectives in mind. First, it achieves client independence
by eliminating the need for dedicated client software. Instead of transmitting authentication packets with
payloads, the system encodes authentication information into port sequence. This approach supports
seamless integration with web browsers, mobile applications, and AIoT environments without requiring
additional configurations or protocol adaptations.

Second, the method ensures protocol independence. While traditional SPA is limited to UDP, the
proposed mechanism operates at the Transport Layer without relying on any specific protocol such as TCP or
UDP. This broadens its applicability across diverse network environments, especially where certain protocols
may be restricted or blocked.

Third, the method enhances security by applying encryption and Hash-based Message Authentication
Code (HMAC) techniques. These safeguards protect the confidentiality and integrity of authentication
messages, defending against man-in-the-middle (MITM) attacks and preventing unauthorized message
tampering or replay attacks. Additionally, by aligning with the Zero Trust security model, the proposed
scheme maintains robust authentication even in environments unsuitable for conventional SPA.

Lastly, the system is designed for scalability. Because it uses only the port space for authentication, it
integrates easily into existing network infrastructures without requiring significant architectural changes.
This design ensures compatibility with a wide variety of devices and supports flexible deployment in
heterogeneous networks.

3.2 Methodology Overview
The proposed methodology utilizes the Transport Layer’s port number field as a covert and protocol-

independent channel to securely transmit encrypted authentication information. This approach enables
seamless pre-authentication without requiring custom client software or application-layer modifications,
thereby offering strong compatibility across AIoT environments.

Fig. 1 depicts the interaction between the core components: the Client, which initiates the authentica-
tion; the Server, which monitors, verifies, and authorizes access; and the Key Management System (KMS),
which securely stores and supplies cryptographic keys. This figure illustrates the architecture of the proposed
port-based pre-authentication framework, which consists of three primary functional blocks.

The Client Block is responsible for generating the authentication information. This information is
encrypted using AES-128 and authenticated using HMAC-SHA256 to ensure confidentiality and integrity
before transmission. The resulting encrypted payload is then fragmented into a sequence of destination port
numbers, which are transmitted to the server without requiring application-layer interaction. This design
minimizes client-side complexity by eliminating the need for custom communication protocols and enables
broad compatibility across diverse network environments, including browser-based systems.

The Server Block monitors the incoming port sequence data passively without initiating communi-
cation with clients. It reconstructs the received port sequence and verifies the message’s authenticity by
interacting with the KMS. Upon successful verification, it applies firewall rules to authorize access and
enforces timing and ordering constraints to ensure protocol integrity. This passive monitoring approach
is deliberately chosen to reduce the server’s exposure to active network scanning, enhancing stealth and
resilience against reconnaissance and DoS attacks.
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Figure 1: Overall architecture of the proposed PAPC system. The client generates encrypted authentication information
and transmits it via port sequence. The server reconstructs and verifies the data using keys temporarily stored in the
Key Management System (KMS), enforcing access control only after successful authentication

The Key Management System (KMS) Block handles the secure storage of cryptographic key pairs
registered by the client over a TLS-secured channel. The KMS maps these keys to the client’s IP address
and signature identifier, enabling secure and dynamic key retrieval by the server during the authentication
phase. This separation of key management from the authentication processing ensures scalability, facilitates
temporary key handling without long-term storage on the server, and enhances overall system modularity
and maintainability.

The system follows a seven-step operation procedure.
In the first step, the client encrypts the authentication data using AES-128, appends a nonce and

timestamp, and generates a signature with HMAC-SHA256. This encrypted and signed payload is then
fragmented and mapped to a sequence of destination port numbers.

In the second step, the encryption key and HMAC key are securely registered with the KMS via a TLS
connection. The KMS associates the key pair with the client’s IP address and the corresponding signature for
future reference.

In the third step, the client transmits a sequence of packets where each destination port represents a
fragment of the encrypted message. Sequence numbers are embedded to support reassembly even in the case
of out-of-order delivery, and redundancy is introduced to improve reliability.

In the fourth step, the server monitors incoming port access attempts, extracts valid sequences, and
identifies the embedded signature. It uses this signature to query the KMS for the associated crypto-
graphic keys.
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In the fifth step, upon receiving a valid signature query, the KMS verifies its authenticity and responds
with the corresponding keys. If the signature is invalid or expired, the system enforces countermeasures such
as buffering, blacklisting, or delaying the request.

In the sixth step, the server decrypts the message using AES-128 and verifies the integrity using HMAC-
SHA256. Replay protection is enforced through nonce validation and timestamp freshness checks. The
system supports ±5 s of time drift, with optional Network Time Protocol (NTP) based synchronization or
round-trip delay-based estimation.

Finally, if all verification steps succeed, the server updates the firewall policy to grant the authenticated
client access to the designated service or resource.

This authentication mechanism is designed to be lightweight and compatible with resource-constrained
AIoT devices. The modular structure allows for integration with existing security infrastructure and Zero
Trust Architecture.

The proposed method offers several key features. It provides robust resistance to replay attacks through
nonce and timestamp verification, ensures message integrity via HMAC-SHA256, and maintains confiden-
tiality through AES-128 encryption. Furthermore, it supports tolerance to packet reordering by embedding
sequence numbers, and facilitates dynamic key handling through the use of a Key Management System.
The clientless design additionally enhances interoperability across heterogeneous systems without requiring
protocol-specific modifications. These features collectively contribute to a scalable and secure authentication
mechanism suitable for a wide range of distributed and resource-constrained environments.

While the system demonstrates strong performance under controlled conditions, certain limitations
remain. The current prototype has been implemented and tested only within a virtualized environment.
Future work will involve evaluating the system in real-world network conditions characterized by high packet
loss, congestion, and dynamic routing. Additionally, scalability testing with large numbers of simultaneous
clients and long-term operational robustness under diverse threat scenarios will be explored to further
validate the practicality of the proposed approach.

3.3 Authentication Message Design
3.3.1 Authentication Message Structure and Generation

The authentication message contains essential information required for authentication and authoriza-
tion, which is transmitted via a port sequence. Unlike conventional PK, which lacks encryption and is
susceptible to replay attacks, the proposed method generates a structured authentication message and applies
security mechanisms such as encryption, HMAC, and replay attack prevention.

This approach is inspired by SPA’s secure message transmission framework. Table 4 presents the
attributes included in the authentication message.

Table 4: Authentication message attributes

Category Name Description

User-input
User_id Unique identifier of the authentication requestor (Key owner)
Nonce Random value to prevent replay attacks

Timestamp Message creation time, used for timeout validation

Combined Pub_ip Public IP address of the authentication requestor, auto-generated
for NAT handling

(Continued)
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Table 4 (continued)

Category Name Description

Auto-gen

Message_type Type of message (e.g., port opening, authentication request)
Message_string Raw authentication message containing user input or

system-generated data
HMAC Hash-based Message Authentication Code for message integrity

verification

The authentication message consists of seven attributes and can be transmitted to the server in various
formats. To minimize the overhead caused by excessive port requests, the message follows the format:

User_id: Nonce: Timestamp: Message_type: Message_string: HMAC;

Each attribute is separated by a colon (:). The HMAC is computed over the raw authentication message
before being appended. To ensure secure transmission, the authentication message is then encoded into a
hexadecimal format before being sent.

3.3.2 Authentication Message Generation Process
To generate the authentication message, the process begins with the creation of a raw message.

The user-input values–User_id, Nonce, Timestamp, Message_type, and Message_string–are
concatenated into a single string.

Next, a Hash-based Message Authentication Code (HMAC) is generated using the concatenated string
as input, thereby ensuring the integrity and authenticity of the message.

Once the HMAC is appended, the complete authentication message is encrypted using the AES
algorithm to guarantee confidentiality and protect it from unauthorized interception.

The resulting encrypted message is then encoded into a hexadecimal format to facilitate compatibility
with the port-based transmission mechanism.

Finally, the encoded message is fragmented into smaller segments, each mapped to specific destination
port numbers. These port-mapped fragments are then transmitted sequentially to the server.

This structured message generation process enhances the security of the overall system, prevents replay
attacks through unique nonce and timestamp usage, and ensures compatibility with protocol-independent
authentication mechanisms.

3.3.3 Authentication Message Verification
The verification of authentication messages is performed on the receiving side to ensure that the received

messages meet integrity and validity requirements.
This process is crucial for protecting the system from external threats and ensuring that only

authenticated users can access resources. Algorithm 1 illustrates the step-by-step authentication message
verification process.
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Algorithm 1: Authentication message verification algorithm.
Input: M = {User_id , Nonce , Timestamp, Pub_ip, Message_type ,
Message_string , HMAC},
secret_ke y: A shared or dynamically retrieved key,
nonce_store: Set of used Nonce values,
current_time: Current server timestamp,
time_threshold: Allowed time difference,
actual_ip: IP address from which message was received.
Output: Verification Result (Success or Failure)
generated_HMAC ← HMAC(secret_ke y, M .contents);
if generated_HMAC ≠ M .HMAC then

return Failure: HMAC Mismatch;
else if ∣current_time −M .Timestamp∣ > time_threshold then

return Failure: Timestamp Expired;
else if M .Nonce ∈ nonce_store then

return Failure: Nonce Reuse Detected;
else if M .Pub_ip ≠ actual_ip then

return Failure: IP Mismatch;
else

nonce_store ← nonce_store ∪ {M .Nonce};
return Success: Message Verified;

Step 1: HMAC Verification
The first step is verifying the HMAC value of the received message. The HMAC is computed using the

message contents and a pre-shared secret key and then compared with the received HMAC value.
This step ensures that the message has not been tampered with during transmission. If the received

HMAC does not match the locally generated HMAC, the message is deemed invalid and rejected. In
a Key Management System (KMS)-integrated system, the secret key can be dynamically retrieved for
validation purposes.
Step 2: Timestamp Validation

Timestamp validation is performed next. The timestamp in the message represents the time at which
the message was created and must fall within an acceptable time threshold set by the system.

This validation step prevents replay attacks by ensuring that messages are processed only within a valid
time frame. If the received timestamp exceeds the allowed time difference, the message is immediately dis-
carded.
Step 3: Nonce Verification

Nonce values play a crucial role in guaranteeing message uniqueness. The received Nonce is checked
against a Nonce store that maintains a record of previously received Nonce values. If the Nonce has already
been used, the message is identified as a replay attack attempt and is rejected. If the Nonce is unique, it is
added to the Nonce store for future reference.
Step 4: (Optional) IP Verification

Depending on the security policy, an additional layer of validation can be applied by verifying the
sender’s public IP address (Pub_ip). The received Pub_ip is compared with the actual IP address from
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which the request originated. If the IP addresses do not match, the message is considered unauthorized
and discarded.

For environments using NAT (Network Address Translation), this step may need additional configura-
tion to correctly map internal and external IPs. Failure to account for NAT behavior could lead to incorrect
rejection of legitimate authentication requests.
Step 5: Verification Result Processing

If all the above conditions are met, the message is successfully authenticated and processed accordingly.
If any validation step fails, the message is immediately rejected, and the failure reason is logged. The log data
is used for security auditing and system monitoring. If necessary, an alert is sent to the security management
system, and additional countermeasures, such as blocking the sender’s connection, can be taken.
Security Considerations

The multi-step validation process effectively mitigates risks associated with message tampering, replay
attacks, and unauthorized access attempts. It also aligns with the Zero Trust security model, ensuring
continuous authentication and integrity verification before granting resource access.

3.4 Port Sequence-Based Authentication Mechanism
Fig. 2 illustrates the proposed port sequence-based authentication mechanism. In this example, both the

sequence number and payload are assumed to be 8-bit in size. The client initiates the process by generating
an authentication message, which is then transmitted as a sequence of port numbers to the server. Upon
receiving the port sequence, the server reconstructs the original message and performs authentication.

The process begins with the construction of a raw authentication message, which combines user-
provided input with automatically generated system data. Following this, the client generates cryptographic
materials, including an AES encryption key, an initialization vector (IV), and an HMAC key. These
cryptographic materials are securely transmitted to the Key Management System (KMS) via a TLS-
secured connection.

Once the message and keys are prepared, the client appends the HMAC value to the authentica-
tion message and encrypts it using the AES algorithm. The resulting ciphertext is then fragmented into
predefined sizes.

Each fragment is assigned to a unique port number based on a signature value. This signature not only
forms an integral part of the transmitted port sequence but also ensures that unsafe or well-known ports
are avoided. Moreover, it assists the server in identifying the corresponding cryptographic keys stored in
the KMS.

The client combines each data fragment with a sequence number to form the final port sequence,
which is transmitted to the server in parallel or sequential order. Upon reception, the server observes
and reconstructs the original message from the received port sequence. The reconstructed message is then
subjected to a comprehensive verification process, which includes validation of the HMAC, timestamp,
nonce, and signature.

Once the message has been successfully authenticated, the firewall rules are dynamically updated to
grant access to the verified client, thereby completing the pre-authentication and post-connection procedure.
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Figure 2: Process of port sequence creation. Authentication data is encrypted, fragmented, and mapped to destination
ports while avoiding unsafe or reserved port ranges. Each fragment includes a sequence number and a signature prefix
to enable correct reconstruction and verification on the server

3.4.1 Signature
Encrypted authentication messages are fragmented before transmission, increasing the risk of duplicate

or ambiguous authentication attempts. To mitigate this issue, a unique signature is required to identify each
authentication request distinctly.

The signature serves as a key component that allows the server to retrieve decryption and HMAC
keys from the Key Management System (KMS), thereby ensuring the integrity and trustworthiness of
authentication messages.

The signature is generated by utilizing port spaces while avoiding well-known and unsafe ports. Well-
known ports are reserved for specific services, increasing the likelihood of conflicts, while unsafe ports are
associated with security vulnerabilities and are often blocked by firewalls or browsers (e.g., Google Chrome).

These ports can cause packet loss or authentication failures during the message transmission process.
The port avoidance mechanism is crucial in preventing such issues and ensuring a stable authentication pro-
cedure.
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Avoided Port Grouping
The signature generation begins by collecting a predefined list of avoided ports. Each port in this list is

grouped based on its upper n-bit values. Grouping is performed by extracting the upper n bits from each
port number, clustering ports with identical values into the same group. This method ensures that reserved
and restricted ports are systematically excluded from use.

Algorithm 2 details the grouping process while considering the sequence number size.

Algorithm 2: Avoid port grouping
Require: Port avoidance list Pavoid, Sequence number size n
Ensure: Grouped ports G = {G1 , G2, ..., Gk}

1: Initialize G ← {} {Initialize an empty set of groups}
2: for each port p ∈ Pavoid do
3: Extract sequence number seq ← upper_bits(p, n)
4: Extract payload payload ← lower_bits(p, n)
5: if seq ∉ G then
6: Initialize a new group Gseq ← {}
7: Add Gseq to G
8: end if
9: Add p to group Gseq

10: end for
11: return G

Signature Generation
After grouping, a pseudo-random value of (16 − n) bits is generated for each group. The final 16-bit

signature is constructed by concatenating the upper n-bit group value with the lower (16 − n)-bit pseudo-
random value. This approach maintains uniqueness and minimizes the risk of port conflicts or authentication
failures. Algorithm 3 outlines the signature generation procedure.

Algorithm 3: Signature generation algorithm
Require: Port avoidance list Pavoid, Sequence number size n (in bits), Random value generator rand(k)
Ensure: Set of 16-bit signature values S

1: Initialize S ← {}
2: Divide Pavoid into k groups G = {G1 , G2, ..., Gk} based on n
3: for each group Gi ∈ G do
4: group_value ← upper_bits(Gi , n)
5: r ← rand(16 − n)
6: si ← concat(group_value , r)
7: S ← S ∪ {si}
8: end for
9: return S

Example Case: Avoiding Reserved Ports
Consider an avoided port list Pavoid = {FFFF , FFFE , FFFD, FFFC}, where the upper-bit size is set to

n = 8. Extracting the upper 8 bits from each port results in a common group value of FF, forming a single
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group GFF . A pseudo-random 8-bit hexadecimal value (e.g., AB) is then generated. The final signature is
computed by concatenating the group value {FF} with the pseudo-random value {AB}, yielding {FFAB}.
The resulting set of signature values is S = {FFAB}.

The generated signature consistently maintains a 16-bit size, ensuring uniqueness and integrity by
combining group values with pseudo-random data. Ports within the same upper-bit group are always
assigned to the same category, preventing conflicts. This mechanism enables reliable authentication message
differentiation while avoiding packet loss and enhancing system efficiency.

3.4.2 Port Range Selection and Scalability
To ensure compatibility and scalability across diverse network environments, the proposed authentica-

tion framework carefully selects port ranges used for transmission. The 16-bit port space (0–65535) includes
reserved, unsafe, and user-defined ranges.

To avoid conflicts and transmission failures, well-known and unsafe ports are excluded from the
candidate set. These ports are grouped and filtered during the signature generation phase (as described in
Algorithm 2), ensuring that only safe and application-compatible ports are utilized.

The upper n-bit portion of each port is used to define logical groups, allowing the system to avoid
restricted ranges while still preserving a wide space for signature and payload encoding. This grouping
mechanism enhances scalability, enabling the system to adapt to network environments with varying firewall
and NAT configurations.

Furthermore, the system dynamically assigns safe, pseudo-random lower bits to ensure port uniqueness
while supporting multiple concurrent authentications. As a result, the proposed method is highly scalable
and suitable for deployment in large-scale environments such as AIoT, cloud, and edge computing systems.

3.4.3 Port Sequence Generation
The port sequence generation method proposed in this study plays a crucial role in implementing Pre-

authentication and Post-connection (PAPC) while ensuring protocol independence.
Unlike traditional Port Knocking (PK) mechanisms, which rely on sequential port hits without strong

security guarantees, the proposed method introduces a structured, encrypted, and verifiable port sequence
that ensures reliable authentication while maintaining high adaptability across different network environ-
ments.

To achieve robust and efficient authentication, the proposed method follows a multi-stage design.
Initially, the raw authentication message is generated, incorporating both user-provided and system-
generated data.

This ensures that each authentication attempt remains unique while maintaining integrity. Following
this, cryptographic materials, including AES encryption keys, initialization vectors (IVs), and HMAC keys,
are dynamically generated and securely stored within the Key Management System (KMS) to ensure secure
key distribution and management.

Once the authentication message is securely structured, encryption and fragmentation processes are
applied. The encryption phase utilizes AES-128 encryption, ensuring confidentiality while mitigating the risk
of unauthorized message interception.

The fragmented message is then structured into discrete port sequence, each carrying an encrypted
portion of the authentication message, thus preventing unauthorized access to the complete authentica-
tion payload.
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A key innovation of the proposed approach is the incorporation of sequence numbers and cryptographic
signatures. Unlike traditional PK-based methods, where port knocking sequences lack cryptographic
integrity, the proposed port sequence generation technique integrates a signature value derived from a well-
structured avoidance list. This ensures that the assigned port numbers remain within a safe range, avoiding
well-known ports and unsafe ports that could lead to conflicts or security vulnerabilities.

The system is further optimized for parallel transmission and loss resilience. Traditional PK mechanisms
suffer from strict sequential port knocking, which can be disrupted by packet loss or reordering.

The proposed method introduces sequence numbers that allow for out-of-order reception, enabling
efficient parallel authentication attempts while ensuring the correct message reconstruction at the server
side. Additionally, the protocol can be repeated or retransmitted as needed, greatly improving reliability in
lossy networks.

Algorithm 4 presents the detailed procedure for generating the port sequence, ensuring cryptographic
integrity and resilience against packet loss during authentication.

Algorithm 4: Port sequence generation algorithm
Require: Raw authentication message M, AES key K, Initialization vector IV, HMAC key Hk,

Fragment size f, Signature S
Ensure: Port sequence P

1: Generate raw authentication message M
2: Generate cryptographic materials: K, IV, Hk
3: Append HMAC value: M ← M∥HMAC(Hk , M)
4: Encrypt message: Menc ← AES(K , IV , M)
5: Fragment encrypted message: F ← {F1 , F2, ..., Fn}
6: Extract group value from S: G ← group_value(S)
7: Initialize sequence number: seq ← 0
8: for each fragment Fi ∈ F do
9: while seq = G do
10: seq ← seq + 1 Skip conflicting sequence numbers
11: end while
12: Pi ← concat(seq, Fi)
13: Append Pi to P
14: seq ← seq + 1
15: end for
16: Add S to the beginning of P: P ← {S} ∪ P
17: return P

The algorithm systematically transforms the raw authentication message into a structured port sequence
while avoiding potential port conflicts. It ensures that the server can reconstruct the message accurately, even
if packets arrive out of order, thereby improving authentication robustness.
Protocol Filtering Robustness

Unlike SPA, which relies on UDP packets for authentication, the proposed port-based mechanism trans-
mits authentication data through destination ports alone, without any payload. This enables compatibility in
restricted network environments where both TCP and UDP packets are filtered by firewalls.
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3.4.4 Port Sequence Verification
Port sequence verification is the process in which the server receives the port sequence generated by the

client, analyzes it, and reconstructs the authentication message. This step ensures that the transmitted port
sequence maintains integrity and validity, providing secure authentication message processing.

The primary objectives of port sequence verification are to validate the signature, prevent sequence
number conflicts, reconstruct messages, and verify integrity, thereby mitigating replay attacks and unautho-
rized modifications. The verification process follows Algorithm 5, ensuring systematic authentication.

Algorithm 5: Port sequence security validation algorithm
Require: Port sequence P, KMS keys K, Current timestamp Tcurrent, Sequence number bit size n
Ensure: Validation result (Success or Failure)

1: Extract Signature S and fragments {(seqi , Fi)} from P
2: Retrieve group value G from S
3: Verify Signature:
4: if G ∉ valid groups then
5: return Failure: Invalid Signature
6: end if
7: Sort fragments by sequence number
8: Initialize expected sequence number: ex pected_seq ← seq0
9: Initialize empty set seen_seqs ← {} {Track seen sequence numbers}

10: Compute valid sequence number range: seqmin ← 0, seqmax ← 2n − 1
11: for each fragment (seqi , Fi) ∈ P do
12: Verify sequence number:
13: if seqi = G then
14: return Failure: Sequence Conflict
15: end if
16: if seqi ≠ ex pected_seq then
17: return Failure: Sequence Discontinuity
18: end if
19: if seqi ∈ seen_seqs then
20: return Failure: Duplicate Sequence Number
21: end if
22: if seqi < seqmin or seqi > seqmax then
23: return Failure: Out-of-Range Sequence Number
24: end if
25: Add seqi to seen_seqs
26: ex pected_seq ← seqi + 1
27: Reassemble message: Menc ← Menc∥Fi
28: end for
29: Decrypt message: M ← AES-decrypt(K , Menc)
30: if M = ∅ then
31: return Failure: Decryption Failed
32: end if

(Continued)
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Algorithm 5 (continued)
33: Perform Authentication Message Validation using Algorithm 1
34: if Algorithm 1 fails then
35: return Failure: Message Validation Failed
36: end if
37: return Success: Message Validated

Timestamp Validation and Clock Drift Tolerance
To address potential issues with clock synchronization between the client and server, the system applies a

tolerance window of±5 s for timestamp verification. If Network Time Protocol (NTP) based synchronization
is unavailable, the server can estimate round-trip delay to validate time freshness. This design ensures robust
replay attack prevention without requiring perfect time alignment.

Initially, the server extracts the signature and fragmented data from the received port sequence. The
signature serves as an identifier to maintain the uniqueness of the port sequence, and the server verifies
whether the received sequence belongs to a valid group.

A valid group refers to a set of port sequence classified based on sequence number size within the port
avoidance list. This classification prevents conflicts by ensuring that sequences do not overlap with reserved
or unsafe ports.

Following signature validation, the server examines sequence numbers assigned to each data fragment.
The verification step ensures that sequence numbers do not conflict with the signature group value. If a
particular sequence number is found to be identical to the signature’s designated group value, it is considered
a conflict and is discarded.

Additionally, the sequence numbers are checked for order continuity, duplication, and compliance with
the predefined range. Only after successful validation is the sequence reassembled and decrypted.

Once the data fragment verification is completed, the server reconstructs the encrypted authentication
message in the correct sequence. The reconstructed message is decrypted using the cryptographic keys
retrieved from the Key Management System (KMS).

Following decryption, the authentication message undergoes integrity verification using HMAC, times-
tamp validation, and replay protection as described in Algorithm 1. If the message is successfully validated,
the authentication process is deemed successful, allowing secure access to the requested resources.

Port sequence verification is a fundamental security measure that ensures the safe processing of
authentication messages. By leveraging Signature and HMAC, it guarantees data integrity, while Timestamp
and Nonce enhance security by preventing message reuse and replay attacks. This verification mecha-
nism effectively blocks tampered or reused authentication attempts, reinforcing the trustworthiness of the
proposed authentication framework.

3.4.5 Security Enhancements
The proposed authentication mechanism incorporates multiple security enhancements to ensure secure

and reliable message transmission. To prevent port collisions, the system strategically avoids well-known and
unsafe ports, ensuring that port sequence do not interfere with reserved or restricted network services. This
enhances the stability of message transmission and reduces the risk of conflicts within the network.
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To mitigate the risks associated with Man-in-the-Middle (MITM) attacks, the authentication process
employs encryption and HMAC verification. These security measures ensure that transmitted messages
remain confidential and tamper-proof, preventing unauthorized modifications during transmission.

Furthermore, replay attack prevention mechanisms are integrated through the use of nonce values and
timestamp validation. Each authentication message includes a unique nonce, ensuring that messages cannot
be reused.

The timestamp validation mechanism ensures that messages remain valid only within a predefined time
window, effectively preventing unauthorized retransmission and replay attacks.

Compared to existing Port Knocking (PK) and Single Packet Authorization (SPA) methods, the
proposed approach demonstrates clear advantages in security, efficiency, and scalability.

Traditional PK methods lack inherent cryptographic protection, making them vulnerable to sniffing
and replay attacks, while SPA requires dedicated client software and primarily operates over UDP, limiting
its applicability in environments with strict firewall rules.

The proposed port sequence method overcomes these limitations by providing encryption, replay
protection, protocol independence, and robust key management integration.

By leveraging KMS-assisted authentication, cryptographic port sequencing, and parallel transmission
optimization, this approach not only enhances authentication security but also ensures high adaptability
across diverse network environments, thereby establishing a scalable and secure authentication framework
for modern networked systems.

3.5 Key Management System for Port-Based Authentication
3.5.1 Background and Motivation for KMS

Traditional authentication mechanisms typically rely on post-connection authentication, wherein
cryptographic protocols establish security through a handshake process before exchanging encryption keys.

However, the pre-authentication and post-connection (PAPC) approach proposed in this study fun-
damentally differs in that authentication must occur before any connection is established. This distinction
poses significant challenges in secure key exchange, necessitating an alternative key management strategy.

Historically, on-board key storage has been a common approach to handling pre-authentication
environments. In this method, clients and servers pre-share encryption and authentication keys, storing them
either physically or digitally for later use. While this approach ensures that authentication can occur without
prior connection, it introduces multiple security and operational risks.

One major issue is key exposure–if an attacker gains access to stored keys, they can compromise
the entire authentication process. Additionally, frequent key updates increase the operational complex-
ity and maintenance burden, making it impractical for dynamic environments with multiple users or
distributed systems.

To address these limitations, this study proposes the adoption of a Key Management System (KMS) to
facilitate secure, ephemeral key management. The proposed KMS securely stores cryptographic materials
generated by the client, including AES keys, Initialization Vectors (IVs), and HMAC keys.

Unlike traditional on-board storage, these keys are never permanently stored; instead, they are reg-
istered with the KMS upon generation and provided only to authenticated servers during the verification
process. Once the authentication sequence is complete, the keys are immediately purged, ensuring that no
persistent cryptographic material remains.
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This dynamic key management approach enhances security by eliminating long-term key storage risks
while reducing the operational overhead associated with key distribution and updates. Additionally, the
proposed system ensures that authentication remains independent of pre-distributed credentials, thereby
improving flexibility and scalability in dynamic network environments.

3.5.2 KMS-Based Encrypted Key Exchange Process
The Key Management System (KMS) ensures secure key management and ephemeral storage of

cryptographic materials during the authentication phase.
Operating independently from both client and server, the KMS supports secure key registration,

retrieval, and automatic deletion immediately after authentication is completed. Fig. 3 illustrates the step-
by-step process involved in this secure interaction.

Figure 3: KMS-based encrypted key exchange process. The client registers encryption and HMAC keys along with a
signature. The server uses this signature to securely retrieve the keys from KMS, validate the authentication message,
and delete keys post-verification

Initially, the client generates the cryptographic keys–namely, the AES key, initialization vector (IV),
and HMAC key–and securely registers them with the KMS. After key registration, the client transmits the
encrypted authentication message, encoded as a port sequence, to the server.

Upon receiving the port sequence, the server reconstructs the original message fragments and extracts
the embedded signature. This signature is then used, along with the client’s IP address, to request the
corresponding decryption keys from the KMS. If the validation is successful, the KMS returns the registered
cryptographic keys to the server through a secure TLS channel.

The server uses these keys to decrypt the authentication message and verify its integrity using HMAC, as
well as validate its freshness based on the timestamp. Once the authentication procedure has been completed
successfully, the KMS immediately deletes the associated cryptographic materials, ensuring that no long-
term storage of sensitive key data occurs.
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This ephemeral key lifecycle minimizes the risk of key leakage while preserving the confidentiality and
integrity of the authentication process.

By implementing ephemeral key storage and Zero Trust-based authentication, this process eliminates
the risks associated with persistent key storage and unauthorized key access, enhancing overall security.

3.5.3 KMS Operations
The Key Management System (KMS) plays a central role in managing the encryption keys, IVs, and

HMAC keys generated by clients while maintaining an independent operational environment separate from
both clients and servers.

Unlike conventional pre-shared key (PSK) methods that require storing long-term encryption keys, the
proposed KMS operates in a dynamic and temporary key management structure, ensuring that encryption
materials are available only during authentication and immediately discarded upon completion.

When a client generates the necessary cryptographic keys for encrypting authentication messages, these
keys are registered with the KMS. The KMS then associates these keys with the client’s unique identifiers, such
as IP addresses and signatures, enabling authenticated servers to request and retrieve the required keys during
the verification process. Upon completion of authentication, the stored encryption materials are immediately
deleted, thereby eliminating the risks associated with long-term key storage.

To prevent unauthorized access, the KMS employs pre-registered identity-based authentication mech-
anisms. The transmission of cryptographic data between clients, servers, and the KMS is protected using
Transport Layer Security (TLS), ensuring secure communication channels.

The KMS stores only temporary key-related information, including AES encryption keys, initialization
vectors (IVs), HMAC keys, and relevant client authentication attributes such as IP addresses, signatures, and
user IDs. This information is managed according to a structured three-phase key lifecycle.

In the transmission phase, the client registers its keys, and they are temporarily stored in the KMS. Dur-
ing the verification phase, these keys are made accessible to authenticated servers that request decryption
materials based on matching IP and signature values. Finally, in the deletion phase, once the authentication
is successfully completed or expired, the corresponding cryptographic keys are permanently deleted from
the KMS to eliminate the possibility of reuse or leakage.

Table 5 illustrates the fundamental database structure used for managing cryptographic keys within
the KMS.

Table 5: KMS database structure and example data

IP Address Signature User ID AES Key IV HMAC Key Status Expiration
192.168.1.10 ABC123DEF client_01 XXXXX... XXXXX XXXXX... Active 2024-02-10 12:30:00
192.168.1.11 XYZ789GHI client_02 XXXXX... XXXXX XXXXX... Expired 2024-02-10 12:05:00
192.168.1.12 LMN456JKL client_03 XXXXX... XXXXX XXXXX... Pending 2024-02-10 12:45:00

The KMS temporarily stores authentication keys registered by clients and allows servers to query them
during authentication. The primary key attributes–IP Address, Signature, and Client ID–uniquely identify
each client’s key entry.
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Once authentication is completed, the AES Key, IV, and HMAC Key are immediately deleted, ensuring
that no long-term cryptographic material remains stored. The Status field categorizes keys as Active,
Pending, or Expired, with the Expiration field tracking the validity period.

Unlike traditional methods that require pre-shared keys or external authentication devices such as OTPs
or security cards, this system enables authentication without prior key distribution.

The proposed KMS-based approach provides on-demand key management, ensuring that authen-
tication keys are valid only for a single session while significantly reducing operational overhead and
security risks.

4 System Implementation
To validate the feasibility of the proposed protocol-independent port number-based pre-authentication

and post-connection (PAPC) mechanism, we developed a fully functional system.
The system consists of three core components: Client-side, Server-side, and Key Management System

(KMS). Each component operates as an independent module through an API-based architecture, allowing
flexible integration into various network environments.

Unlike traditional authentication mechanisms that require dedicated client software, the proposed
system is designed to function in a web-based environment, enabling authentication through a standard
web browser. This approach eliminates the need for additional client software while maintaining security
and usability.

4.1 System Architecture and Key Components
The proposed system is designed to implement the protocol-independent port number-based Pre-

Authentication and Post-Connection (PAPC) mechanism in a real-world environment. The system consists
of three major components: Client, Server, and the Key Management System (KMS).

Each component is implemented as an independent module using an API-based architecture, ensuring
flexibility and scalability. To facilitate seamless authentication without requiring dedicated client software,
the system is designed to operate in a web-based environment, enabling authentication directly through a
web browser.

As illustrated in Fig. 4, the proposed system enables authentication and connection establishment
through a structured data flow among three key components: the Client, the Server, and the Key Management
System (KMS).

The Client initiates authentication requests through a web-based interface, eliminating the need for
additional software installation. This interface allows users to generate a port sequence based on input values,
ensuring both usability and security.

Upon initiating the authentication, the client generates encryption keys and initialization vectors (IVs),
registers them with the KMS, encrypts the port sequence using AES-128, applies HMAC for integrity
verification, and transmits the encrypted sequence through the network.

The Server continuously monitors incoming port sequence using a Port Sequence Receiver that captures
traffic in real time.

When an authentication request is detected, the server reconstructs the received port sequence, queries
the KMS to retrieve the corresponding encryption keys, decrypts the authentication message, and verifies its
integrity using HMAC. If the authentication is verified successfully, the server updates the firewall policies
dynamically via the Firewall Handler to allow the client access to the protected service.
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Figure 4: Overall system architecture and data flow among the client, server, and KMS. The client uses a web interface
for authentication, while the server and KMS handle secure key management, port monitoring, message verification,
and firewall updates

The Key Management System (KMS) manages encryption keys securely throughout the authentica-
tion process.

The client registers the AES key, IV, and HMAC key prior to authentication, and the server requests
these keys when needed during message verification. The KMS enforces TLS-based secure communication
for key exchange and only stores keys associated with active authentication sessions. After authentication
is completed, the KMS immediately deletes all stored cryptographic materials to ensure ephemeral key
management and prevent future misuse.

By integrating these components into a cohesive architecture, the proposed system achieves pre-
authentication prior to connection establishment. Unlike conventional mechanisms that expose services
before authentication, this approach ensures that no services are exposed until the authentication process is
securely completed.

Additionally, the system incorporates essential security features including Nonce, Timestamp, and
HMAC verification, which collectively ensure data integrity and robust protection against replay attacks.

4.2 Authentication and Connection Process
The authentication and connection process in the proposed system follows a structured approach to

ensure both security and efficiency. Unlike traditional authentication mechanisms that expose services before
verification, this system applies a Pre-Authentication & Post-Connection (PAPC) model, ensuring that no
services are accessible before authentication is successfully completed.
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4.2.1 Port Sequence Generation and Transmission
The user’s request for a web page to generate a port sequence is initiated through a web browser, and the

user input is used to generate an authentication message. Subsequently, the client generates cryptographic
material, including an AES encryption key, an initialization vector (IV), and an HMAC key.

Upon initiating authentication, the web browser utilizes the cryptographic material to encrypt the
authentication message and employs HMAC for integrity verification before transmitting it to the server.
The client then dynamically generates a port sequence based on the encrypted authentication message and
transmits it to the server.

4.2.2 Port Sequence Processing and Decryption
Upon receiving the encrypted port sequence, the server monitors the network interface in real time and

reconstructs the original authentication message. Since port sequence may arrive out of order, the system
employs a sequence alignment mechanism to correctly reorder fragments before processing.

The server then queries KMS to retrieve the associated cryptographic keys, decrypts the message, and
verifies its integrity using the HMAC. For instance, if port sequence arrive in an unordered manner due to
network conditions, the system reconstructs the correct order using sequence numbers before processing.

4.2.3 Authentication and Firewall Policy Update
Once the authentication message is validated, the server proceeds with user verification and authoriza-

tion. If authentication is successful, firewall policies are dynamically updated to grant the authenticated client
access to the designated target service. This step ensures that the service remains hidden from unauthorized
users until authentication is completed.

4.2.4 Security and Key Expiry Mechanism
To maintain security, KMS enforces an automatic key expiration mechanism. Once authentication is

completed, the cryptographic keys associated with the session are securely deleted after a predefined period.
This approach mitigates risks associated with long-term key storage while ensuring that authentication keys
cannot be reused for subsequent unauthorized attempts.

4.2.5 Security Enhancements
By transmitting authentication information through an encrypted port sequence, the system mitigates

the vulnerabilities of traditional Port Knocking methods. Additionally, it integrates critical security features
such as Nonce, Timestamp, and HMAC validation, effectively preventing replay attacks and ensuring
message integrity. This implementation significantly enhances authentication security, making it resilient to
known attack vectors.

The proposed authentication mechanism ensures that unauthorized users cannot gain access to services
prior to verification, thereby minimizing the attack surface. Furthermore, the integration of KMS for
dynamic key management reduces operational overhead while maintaining security, providing a scalable
and adaptable authentication solution for modern networked environments.

4.3 Security and Scalability Design
The proposed system employs a port sequence-based authentication method that does not rely on

specific network protocols or require custom packet formats. This approach ensures adaptability across
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diverse environments, eliminating constraints imposed by traditional authentication mechanisms that
depend on predefined communication protocols.

By implementing the encryption and authentication techniques described in Section 3, the system
effectively protects against data tampering and eavesdropping. Additionally, the integration of a Key
Management System (KMS) facilitates dynamic key handling, overcoming security vulnerabilities associated
with pre-shared key mechanisms.

Unlike conventional authentication frameworks, the system is designed with an API-driven modular
architecture, allowing for seamless integration into various network environments. The authentication mech-
anism is adaptable to cloud-based infrastructures, IoT devices, and other network services without requiring
specialized client software. The web-based implementation further enhances usability by enabling clients to
perform authentication directly through a browser, removing the need for additional software installation.

Furthermore, the system is engineered to maintain compatibility with both TCP and UDP-based
communications, ensuring reliable authentication even in network environments utilizing NAT (Network
Address Translation) or restrictive firewall policies. This flexibility broadens its applicability to real-world
deployments where protocol constraints often hinder secure authentication.

5 Experimental Evaluation and Performance Analysis
This section presents the experimental validation of the proposed authentication method conducted

within a controlled virtualized environment. The experiment was designed to evaluate the practical feasibility
of the proposed scheme and verify its functional correctness. In addition, a theoretical analysis is included
to provide mathematical support for the expected improvements in security and efficiency.

The experimental setup was implemented using VirtualBox 7.0, where two virtual machines (VMs) were
deployed. The first machine hosted the Key Management System (KMS) and the web-based authentication
interface, and the second machine operated as the Port Knocking Server along with the protected target
service. Both VMs ran on Ubuntu 24.04, were allocated 2 vCPUs and 8 GB of RAM, and operated in network
bridge mode to facilitate internal communication. The client, acting externally, accessed the system through
a standard web browser.

The authentication system was built using a Node.js-based web API. On the client side, authentication
was initiated via a browser (Google Chrome) without requiring additional client software. The client
generated cryptographic materials including an AES encryption key, an initialization vector (IV), and an
HMAC key, which were securely registered with the KMS. Subsequently, the client transmitted encrypted
authentication data encoded as a port sequence to the server.

To verify the system’s functionality, three key aspects were evaluated. First, the correctness of the overall
authentication procedure was confirmed, including key generation, port sequence transmission, and server-
side authentication handling.

Second, packet flow was monitored using Wireshark to ensure proper encoding and decoding of port
sequence during transmission and reception.

Lastly, dynamic firewall policy changes were verified through iptables logs, confirming that access
control rules were correctly applied based on authentication results. These findings validate the system’s
ability to perform secure and reliable authentication under realistic deployment conditions.

The experimental results demonstrated that the proposed authentication system functioned correctly
under various network conditions. Through port sequence capture, server-side verification, and dynamic
firewall updates, each step of the protocol was successfully validated. Table 6 summarizes the observed
outcomes from the authentication process.
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Table 6: Summary of experimental validation results

Validation step Expected outcome Result
Port sequence transmission (Client) port sequence transmitted over network Success

Port sequence detection (Server) Correct reassembly of fragmented messages Success
Signature verification Identification of registered session via signature Success

Key retrieval from KMS Correct decryption keys returned for valid signature Success
Message integrity check (HMAC) HMAC validation for tamper detection Success

Timestamp/Nonce validation Replay prevention mechanisms enforced Success
Firewall rule update Access allowed upon successful authentication Success

Unauthorized access handling No rule changes for invalid attempts Success

5.1 Performance and Resource Use of Client-Side Port Sequence Generation
To assess the feasibility of executing port sequence generation on lightweight client-side environments

such as browsers or IoT edge devices, we conducted an integrated performance evaluation. The experiment
measures both execution time and memory usage when generating all possible port sequence for increasing
sequence number bit sizes, ranging from 5 to 15 bits.

Fig. 5 presents the results. As the sequence bit size increases, the number of generated port entries grows
exponentially, leading to greater computational demands.

Figure 5: Performance analysis of client-side port sequence generation. Execution time and memory usage increase
with sequence bit size, but remain within acceptable limits, confirming suitability for lightweight environments

However, the total generation time remains under 3 s even in the worst case (15-bit sequence), while
memory consumption stays within 500 MB. This confirms the lightweight nature of the proposed method
and its viability for real-time authentication on client platforms.

The observed trends demonstrate a nonlinear increase in time and memory usage as sequence size
grows, particularly beyond 12 bits. Therefore, selecting an optimal sequence bit range (e.g., 6–11 bits)
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offers a good balance between performance, capacity, and deployment flexibility, especially for mobile or
embedded applications.

5.2 Unauthorized Request Detection Using Signature Filtering
To evaluate the system’s capability in blocking unauthorized access attempts, we conducted an exper-

iment focusing on signature-based filtering within the PAPC framework. The test was designed to assess
whether the system could correctly differentiate between valid and invalid authentication sequences prior
to decryption.

For the evaluation, the system was configured to operate with a 16-bit port encoding scheme, consisting
of an 8-bit sequence number and an 8-bit data payload. This configuration aligns with the design presented
in Section 3.4, enabling effective fragmentation and parallel transmission. However, for accuracy in detection
evaluation, this experiment was conducted exclusively under the 16-bit configuration.

A set of 200 authentication attempts was performed, including both legitimate requests (generated with
valid cryptographic keys and registered signatures) and unauthorized ones (crafted using invalid or reused
signatures). The server performed passive signature verification without engaging the decryption module
unless the signature matched a registered session in the Key Management System (KMS).

The results, summarized in the confusion matrix in Fig. 6, demonstrate that the signature-based
mechanism effectively filtered unauthorized access at an early stage.

Figure 6: Confusion matrix illustrating detection accuracy of unauthorized authentication attempts using signature
filtering. The proposed system achieved over 95% F1-score by rejecting invalid requests before full decryption, improv-
ing efficiency and reducing server load. Confusion matrix with intensity-based color highlighting and performance
metrics (16-bit, 8-bit seq/data)

Of 100 unauthorized requests, 97 were correctly blocked based on invalid signatures, while only 3
bypassed the initial check. For the 100 legitimate requests, 94 were accepted, while 6 were incorrectly blocked
due to signature collision or misclassifications. These results correspond to a precision of 94.0%, recall of
97.0%, and an F1 score of 95.5%, indicating the robustness of the early-stage filtering mechanism.

This result confirms that PAPC’s design not only ensures secure message authentication but also enables
pre-authentication threat mitigation at the network layer, significantly reducing unnecessary decryption
attempts and resource usage.
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5.3 Mathematical Security and Performance Analysis
While the experimental results confirm the system’s feasibility, a theoretical analysis is essential to

rigorously evaluate its security and efficiency.
Theorem 1: The probability of two authentication requests generating identical port sequence is minimized when
the Signature design is optimized.
Proof: The probability of port sequence collision, given P = 216 available ports andG Signature groups, with
N simultaneous requests, is:

Pcollision = 1 −
N−1
∏
i=0
(1 − i

P −G
) (1)

By optimizing the Signature allocation and avoiding reserved or unsafe ports, we ensure that the
probability remains negligibly low, as verified through combinatorial probability analysis.◻
Lemma 1: The probability of a replay attack occurring is negligible when using Nonce and Timestamp validation.
Proof: For a randomly generated b-bit Nonce, the probability of reusing the same Nonce is:

Preplay =
1

2b (2)

For a 128-bit Nonce, this results in Preplay = 2−128, which is practically zero. Additionally, incorporating
Timestamp validation:

Preplay,t = Preplay × Pvalid(T) (3)

where Pvalid(T) is the probability of an authentication request being valid within a predefined time window.
These combined mechanisms ensure near-zero replay attack probability.◻
Proposition 1: HMAC-based authentication prevents message tampering, ensuring resistance against Man-in-
the-Middle (MITM) attacks.
Proof: The probability of an attacker forging a valid HMAC is:

PHMAC-collision =
1

2n (4)

where n is the HMAC output length (e.g., for SHA-256, n = 256, so PHMAC-collision = 2−256). This ensures
computational infeasibility for an adversary to forge a valid authentication message.◻
Proposition 2: The proposed method significantly reduces server processing overhead compared to Single Packet
Authorization (SPA).
Proof: In SPA, all UDP packets must be processed, leading to an overhead of:

OSPA = Rtotal × Pcheck (5)

where Rtotal is the total received UDP packets per second, and Pcheck = 1 since all packets must be examined.
In contrast, the proposed Pre-Authentication and Post-Connection (PAPC) method selectively pro-

cesses only authentication sequences:

OPAPC = Rauth × Cport-seq (6)

where Rauth ≪ Rtotal, reducing server overhead significantly.◻
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Proposition 3: The proposed method reduces authentication latency compared to traditional Port Knocking
(PK) due to parallel transmission.
Proof: The latency of sequential Port Knocking (PK) is given by:

TPK = N × Tport (7)

whereN is the number of port sequence, and Tport is the time per request.
The proposed PAPC method enables parallel transmission, reducing latency to:

TPAPC =max(Tseq1 , Tseq2, ..., TseqN) (8)

Since the authentication sequence can be sent simultaneously rather than sequentially, authentication
time is minimized, improving overall efficiency.◻

6 Discussion
This section presents a structured discussion on the security posture and design evolution of port-based

authentication methods. To contextualize the proposed protocol-independent port-based pre-authentication
and post-connection (PAPC) scheme, we categorize the analysis into four parts: traditional Port Knocking
(PK), Single Packet Authorization (SPA), the advanced PAPC mechanisms, and the limitations of existing
approaches that PAPC seeks to overcome.

6.1 Port Knocking: Simplicity without Cryptographic Protection
Port Knocking (PK) is a legacy method that conceals services behind closed ports and opens them

only after a specific sequence of connection attempts. Despite its simplicity and low overhead, PK lacks
cryptographic protection, leaving it vulnerable to eavesdropping, spoofing, and replay attacks.

The static nature of knock sequences and the absence of integrity verification make it difficult to ensure
the authenticity of the sender or the freshness of the request. Additionally, port sequence are predictable, and
once discovered, can be reused by adversaries.

6.2 Single Packet Authorization: A Cryptographic Enhancement with Limitations
To address the lack of security in PK, Single Packet Authorization (SPA) introduces cryptographic

authentication using a single encrypted UDP packet. While SPA improves security through HMAC and
encryption, it relies on client-side software and UDP packet delivery, which presents compatibility issues in
restrictive firewalled or NAT environments.

Moreover, the single-packet design requires the entire authentication payload to be reconstructed at
once, increasing the risk of dropped or delayed packets and necessitating retransmission logic on the client
side. Server-side processing overhead also increases, as all incoming SPA packets must be decrypted and
verified in full.

6.3 Advanced PAPC Mechanisms: Protocol-Independent Cryptographic Port Sequence
The proposed PAPC scheme builds upon the lessons learned from PK and SPA by introducing a

lightweight, protocol-independent mechanism that distributes encrypted authentication messages across
a sequence of destination port numbers. This design removes the dependency on specific transport-layer
protocols, enabling operation in both TCP and UDP environments.
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Each port sequence fragment encodes part of an AES-128 encrypted message that includes a nonce,
timestamp, and HMAC-SHA256 signature, ensuring confidentiality, integrity, and replay protection.

PAPC improves scalability by passively monitoring port attempts without opening service ports or
requiring application-layer interactions. The randomness in port assignment, derived from a signature
component, further obfuscates the authentication message.

Unsafe ports are dynamically avoided to enhance robustness. Experimental findings confirm that PAPC
reduces overhead by requiring selective port sequence validation instead of full packet inspection, and
dynamically adjusts firewall policies only after successful authentication.

6.4 Gaps in Existing Approaches and PAPC’s Mitigations
Both PK and SPA fall short in meeting the demands of modern AIoT environments, which require

low-latency, lightweight, and flexible authentication mechanisms. PK suffers from a complete lack of
cryptographic integrity, making it inherently insecure in hostile network environments.

SPA, while more secure, depends heavily on dedicated client software and the transmission of UDP
packets, which limits its compatibility in NAT-constrained or protocol-restricted networks.

The proposed PAPC scheme addresses these shortcomings through a combination of protocol and client
independence, robust cryptographic integration, and operational efficiency. Specifically, PAPC’s protocol
independence enables its deployment across restrictive or hybrid network configurations without requiring
transport-layer modifications. Its client-independent design allows users to initiate authentication through
standard web or mobile interfaces, eliminating the need for special-purpose software.

Furthermore, the scheme leverages nonce-timestamp validation and HMAC to ensure strong resistance
against replay and man-in-the-middle (MITM) attacks. Unlike SPA, PAPC minimizes server overhead by
validating only targeted port sequence, rather than processing all incoming encrypted traffic.

These improvements collectively enable PAPC to offer a practical, secure, and scalable authentication
method that aligns with the dynamic requirements of AIoT ecosystems while preserving system performance
and network compatibility.

6.5 Comparative Security Analysis
Table 7 summarizes the comparative strengths of PAPC against PK and SPA in terms of cryptographic

robustness, replay and MITM resistance, and adaptability in NAT environments.

Table 7: Comparison of security features in PK, SPA, and PAPC

Security feature Port knocking (PK) Single packet
authorization (SPA)

Proposed PAPC

Cryptographic
protection

None HMAC + Encryption HMAC + AES-128
Encryption

Replay attack
prevention

Weak Strong Strong (Nonce +
Timestamp)

Resistance to MITM
attacks

Weak Moderate Strong
(HMAC-SHA256)

Port sequence
predictability

High Not applicable (Single
Packet)

Low (Randomized
Sequence + Signature)

(Continued)
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Table 7 (continued)

Security feature Port knocking (PK) Single packet
authorization (SPA)

Proposed PAPC

Server overhead Low High Moderate (Selective
Port Processing)

Applicability in NAT
environments

High Low High

6.6 Applicability in AIoT Environments
AIoT plays a critical role in realizing scalable services in next-generation living environments such as

smart cities, by enabling secure and efficient system designs including actuator-level monitoring and human-
centric architectures [31].

The PAPC scheme demonstrates notable adaptability for AIoT-based authentication, primarily due to
its lightweight design and protocol independence. In such AIoT environments, where devices are often
resource-constrained, authentication mechanisms must provide robust security while maintaining minimal
computational overhead.

The proposed scheme addresses this requirement by avoiding persistent connections and reducing
reliance on computationally intensive cryptographic operations, thereby ensuring low processing overhead.
Furthermore, the protocol independence of PAPC allows for seamless integration into a wide range of IoT
communication architectures without necessitating modifications to existing network protocols.

This flexibility enhances its applicability in diverse and constrained deployment scenarios typical of
AIoT systems.

6.7 Limitations and Future Research Directions
While the proposed scheme offers several security and efficiency improvements, certain limita-

tions remain.

6.7.1 Computational and Network Overhead
Despite the optimization of the proposed authentication process, certain levels of computational

and network overhead remain inevitable due to the cryptographic operations and the management of
port sequence.

These processes, although efficient, may still pose challenges in highly resource-constrained environ-
ments. Future research should focus on improving the efficiency of cryptographic key exchanges to reduce
overall processing time.

Additionally, a thorough evaluation of PAPC’s performance on low-power AIoT devices is necessary to
ensure the scheme’s suitability for deployment in such constrained systems.

6.7.2 Dynamic Threat Adaptation
As AI-driven cyberattacks become increasingly sophisticated, authentication mechanisms must evolve

to counter emerging threats in real time [32]. Future research directions include the integration of AI-based
anomaly detection techniques to identify suspicious or abnormal authentication behaviors [33,34].
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Moreover, dynamic reconfiguration of port sequence, based on real-time threat intelligence and
environmental factors [35], may further enhance the adaptability and resilience of the PAPC scheme against
evolving attack vectors.

6.7.3 Extended Real-World Testing
The current evaluation was conducted in a virtualized environment, which may not fully capture real-

world network variabilities such as packet loss, congestion, and dynamic routing changes. Further testing
under diverse network conditions is necessary to refine the proposed approach and validate its robustness.

6.8 Summary of Key Contributions
The proposed PAPC scheme offers several significant contributions to the field of secure authentication.

First, it enhances security by leveraging cryptographic port sequence, which effectively mitigate well-
known vulnerabilities associated with traditional Port Knocking (PK) and Single Packet Authorization
(SPA) techniques.

Second, it demonstrates improved adaptability by supporting deployment in a wide range of envi-
ronments, including AIoT and blockchain-based systems, where lightweight and flexible authentication
mechanisms are essential.

Lastly, the scheme exhibits strong scalability and protocol independence, enabling seamless integration
into existing network infrastructures without the need for modifications to underlying communication pro-
tocols.

These characteristics collectively position PAPC as a viable and efficient alternative to conventional
authentication methods in modern, heterogeneous network environments.

These findings reinforce the viability of PAPC as a robust alternative to existing authentication methods,
providing strong security while maintaining operational efficiency across various network environments.

7 Conclusion
Pre-Authentication and Post-Connection (PAPC) schemes are essential for enforcing the Zero Trust

security model by ensuring authentication before any exposure of network resources. This paper intro-
duced a novel PAPC mechanism that transmits encrypted authentication data through destination port
sequences, enabling protocol-independent, clientless authentication suitable for browser-based and AIoT
environments. By applying Advanced Encryption Standard (AES) encryption, Hash-Based Message Authen-
tication Code (HMAC) validation, and a nonce-based replay prevention mechanism, the proposed method
ensures confidentiality, integrity, and freshness of authentication data while minimizing server-side pro-
cessing burden. Compared to Port Knocking (PK) and Single Packet Authorization (SPA), this approach
enhances compatibility, avoids payload-based transmission, and reduces dependency on specific protocols
or privileged client configurations.

Through a functional web-based prototype, the proposed scheme demonstrated feasibility in
lightweight environments, showing potential for integration with machine learning-based anomaly detec-
tion. Its modular design allows flexible deployment across AIoT, edge, and decentralized networks, where
traditional authentication methods fall short. The PAPC mechanism’s lightweight, scalable, and extensible
design makes it a strong candidate for Zero Trust implementations in cloud-native and distributed systems.

Despite these strengths, some limitations remain. Future research should address performance opti-
mization of cryptographic operations and evaluate robustness under real-world conditions including packet
loss, congestion, and dynamic routing. Further work may also explore adaptive port sequence generation
and AI-driven threat detection to strengthen resilience against evolving cyberattacks. The proposed PAPC
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scheme lays a foundation for the next generation of authentication frameworks, offering a practical, secure,
and scalable alternative to existing solutions.
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AES Advanced Encryption Standard
AH Accepting Host
AIoT Artificial Intelligence of Things
CBA Connection Before Authentication
DDoS Distributed Denial of Service
DoS Denial of Service
HMAC Hash-based Message Authentication Code
IANA Internet Assigned Numbers Authority
IDS Intrusion Detection Systems
IH Initiating Host
IoT Internet of Things
IV Initialization Vector
KMS Key Management System
MITM Man-In-The-Middle
ML Machine Learning
mTLS Mutual TLS
NAT Network Address Translation
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PAPC Pre-Authentication and Post-Connection
PK Port Knocking
PSK Pre-Shared Key
RNG Random Number Generator
SMS Short Message Service
SPA Single Packet Authorization
TCP Transmission Control Protocol
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