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ABSTRACT: Detecting faces under occlusion remains a significant challenge in computer vision due to variations
caused by masks, sunglasses, and other obstructions. Addressing this issue is crucial for applications such as surveil-
lance, biometric authentication, and human-computer interaction. This paper provides a comprehensive review of
face detection techniques developed to handle occluded faces. Studies are categorized into four main approaches:
feature-based, machine learning-based, deep learning-based, and hybrid methods. We analyzed state-of-the-art studies
within each category, examining their methodologies, strengths, and limitations based on widely used benchmark
datasets, highlighting their adaptability to partial and severe occlusions. The review also identifies key challenges,
including dataset diversity, model generalization, and computational efficiency. Our findings reveal that deep learning
methods dominate recent studies, benefiting from their ability to extract hierarchical features and handle complex
occlusion patterns. More recently, researchers have increasingly explored Transformer-based architectures, such as
Vision Transformer (ViT) and Swin Transformer, to further improve detection robustness under challenging occlusion
scenarios. In addition, hybrid approaches, which aim to combine traditional and modern techniques, are emerging as a
promising direction for improving robustness. This review provides valuable insights for researchers aiming to develop
more robust face detection systems and for practitioners seeking to deploy reliable solutions in real-world, occlusion-
prone environments. Further improvements and the proposal of broader datasets are required to develop more scalable,
robust, and efficient models that can handle complex occlusions in real-world scenarios.

KEYWORDS: Occluded face detection; feature-based; deep learning; machine learning; hybrid approaches; datasets

1 Introduction

1.1 Background and Motivation
Face detection is one of the most popular, fundamental, and practical tasks in computer vision. It

involves detecting human faces in images and returning their spatial locations through bounding boxes [1],
serving as a critical foundation for various advanced vision-based applications [2]. As a vital first step in
facial analysis systems, face detection enables subsequent activities such as face alignment, recognition,
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verification, parsing, emotion detection, and biometric authentication. Its primary purpose is to determine
the presence of faces in an image and, if detected, provide their location and extent for further analysis [3–6].
This preprocessing step reduces the amount of data to process and improves the accuracy of the next stages by
concentrating on a smaller, relevant portion of the image. It is particularly helpful when dealing with images
that have different backgrounds, lighting, and orientations [5]. By removing non-face data, face detection
boosts both the speed and accuracy of recognition, making it ideal for large-scale, real-world applications.

Historically, the effectiveness of face recognition technologies has relied on improvements in face
detection [7,8]. Early models, such as Viola-Jones [9], used basic features and simple classifiers, while today’s
deep learning methods utilize advanced convolutional neural networks (CNNs) to achieve greater accuracy.
This evolution highlights how progress in detection enhances the overall field of facial analysis. Fig. 1 provides
representative examples of typical challenges encountered in face detection tasks. These diverse challenges
include variations in scale, atypical poses, occlusions, exaggerated expressions, and extreme illumination.
These challenges highlight the need for robust face detection models that can perform accurately in real-
world, unconstrained environments. Accurate face detection in such unpredictable environments ensures
high-quality images, allowing for enhanced feature extraction and better matching accuracy. This capability
is crucial in high-security applications–such as surveillance, biometric identification, law enforcement,
airport security, and access control systems–where reducing false positives and improving reliability are
paramount [10].

Figure 1: Illustrative examples of face detection challenges including simple cases, variations in scale, atypical poses,
occlusions, exaggerated expressions, and extreme illumination. These images, sourced from [1] (WIDER FACE dataset),
are provided for illustration purposes and are not linked to any specific models reviewed in this paper

Face detection technology has improved a lot, but it still faces challenges in complex and unpredictable
environments [11]. This is why ongoing research is so important to make it more reliable and valuable in
practical use. Finding obscured faces is more challenging since important facial traits are sometimes obscure
and difficult to identify. The difficulty is to identify faces without depending on clear landmarks, deal with
differences in appearance, and even estimate missing elements of the face [12]. One main problem is that
occlusions can obscure vital face traits as the lips, nose, or eyes. External objects, body parts, or ambient
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elements including clothes, hands, sunglasses, or masks [13] can all cause these obstructions (as illustrated
in Fig. 2).

Figure 2: Example of occluded face images from the MAFA dataset [14]

Usually, depending on the evaluation of the complete face or particular landmarks, standard face
detection techniques fail when these features are obscured, resulting in missed detections or large false
positives [15]. For real-time applications like surveillance and security, where failing to identify obstructed
faces can lead to major mistakes, this is particularly problematic. Accordingly, more advanced methods are
required that can identify and infer facial features even in cases when significant portions of the face are
covered in order to enhance occluded face detection.

Another big challenge in face detection is the way occlusions change a face’s appearance. In specific, the
size, shape, and texture of an occlusion can be different even when it covers the same part of the face [13,16].
This makes it harder for traditional face detection systems, which expect faces to look consistent. Occlusions
also cause confusion by altering the usual relationships between facial features. Deep learning models,
especially CNNs, have been very effective in handling these challenges by learning patterns in both clear
and occluded faces [17,18]. These models require large datasets of faces with different levels of occlusion
for training, but there is one major problem: there is a lack of well-annotated datasets. As for the models,
they fail to detect the occlusions from different angles and other conditions due to the insufficient variety of
examples [6].

Furthermore, a crucial part in the case of an occluded input is to preserve the balance between
the detection of the visible features and the comprehension of the entire face. Traditional methods are
based on the recognition of the complete facial structures, and, in case of partial obfuscation, the models
learn to complete the sequence based on the available information. Recent techniques such as attention
mechanisms and region-based detection are applied to focus on the regions of interest and context to infer
missing regions [19,20]. However, such approaches are computationally expensive and therefore infeasible
for real-time applications [21].

These challenges highlight the unique difficulties of detecting occluded faces compared to regular face
detection. Continued research in this area is essential for developing more robust face detection systems
capable of handling diverse and unpredictable real-world conditions. The emphasis on occluded face detec-
tion has gained importance in the AI and computer vision domain due to the rising need for reliable detection
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in practical applications. Facial analysis technology, integrated into fields like healthcare, security, retail,
and social media, must function effectively in unregulated environments where occlusions are common.
The COVID-19 pandemic, with widespread mask usage, underscored the need for algorithms capable of
efficient detection under partial visibility [22–24]. In security and surveillance, detecting occluded faces is
critical, as individuals often obscure their faces with items like hats, scarves, sunglasses, or masks, whether
intentionally or not [25,26]. Improved occluded face detection can enhance AI’s effectiveness in such critical
applications [27]. In healthcare, occlusions from medical devices or environmental factors can obstruct
critical facial regions, complicating tasks like emotion detection, gaze tracking, and diagnosing neurological
disorders. Advances in AI-based facial analysis are contributing to more reliable telemedicine and assistive
technologies, supporting consistent and accurate assessments even in challenging visual conditions [28].
Similarly, in social media, marketing, and retail, occluded face detection is vital for analyzing expressions,
demographics, and engagement in dynamic situations. Retail environments often involve occlusions due to
product displays or interactions, while social media platforms must detect faces obstructed by accessories or
filters. Enhancing detection in these scenarios ensures AI systems perform accurately and fairly and improve
their effectiveness across diverse use cases. These advancements are vital for addressing the challenges
outlined across diverse applications, particularly in hidden face detection.

1.2 Objectives and Contributions of the Review
As highlighted earlier, the past few years have seen significant growth in research on face detection under

occlusions. This increase reflects a growing demand to review and assess the impact of advancements in this
field. The analogous challenges and notable progress in occluded face detection have motivated us to conduct
this review study. The main objective of this study is to provide a comprehensive resource for researchers
and practitioners interested in this topic. Face detection under occlusion remains critical for improving the
reliability of real-world applications, such as surveillance, biometric authentication, and access control, where
partial facial visibility is common. By providing an organized analysis of current methods, challenges, and
datasets, this review aims to guide future research efforts and support practitioners in developing more robust
face detection systems. To achieve this objective, we make the following key contributions:

1. We comprehensively review recent state-of-the-art approaches in the domain of occluded face detection,
categorized into traditional feature-based methods, machine-learning-based approaches, advanced
deep learning techniques, and hybrid methodologies.

2. We highlight key advancements, persistent challenges, and gaps in the field of occluded face detection,
providing valuable insights into utilizing emerging technologies for diverse research directions.

3. We summarize and compare the reviewed approaches under varying conditions, offering a clear
understanding of their strengths and limitations.

4. We analyze and compare benchmarking datasets commonly used to evaluate the performance of face
detection systems under occlusions, emphasizing their characteristics and applicability.

5. We outline current challenges and promising research directions, inspiring further innovation and
progress in this important area.

This paper focuses exclusively on face detection techniques, distinguishing them from face recognition
methods. Specifically, it addresses the unique challenges and methodologies associated with detecting
faces under occlusions. By narrowing the scope to this critical task, the review offers an in-depth analysis
of improved detection approaches, contributing to the broader domain of face analysis. A specialized
review paper on detecting occluded faces is essential, as most existing review studies on face detection
and recognition approaches overlook the challenges posed by occlusions. Current review articles primarily
concentrate on general face detection techniques or face recognition methodologies, with few explicitly



Comput Model Eng Sci. 2025;143(3) 2619

addressing obstructed faces. For instance, some research examines face recognition algorithms in the context
of occlusion [14,29–32], but their main focus is on identity verification rather than the foundational task
of identifying the existence and location of occluded faces. Reviews on general face detection, such as
[5,12,33–35], often assume full facial visibility and inadequately address the unique challenges of partial
visibility or feature masking caused by occlusions. Our review paper, as a recent contribution to the field,
addresses this gap by examining both past and recent studies on occluded face detection. It provides a focused
resource delivering insights into detection strategies designed to solve diverse occlusion difficulties, offering
a timely and essential reference for advancing this critical area of research. To sum up, the main contributions
of this timely study are as follows.

1.3 Paper Structure
The rest of this paper is organized as follows: Section 2 explains the detection of faces under occlusion,

focusing on the source, type, and level of occlusions. Section 3 presents the structured methodology used
to prepare this review study. Section 4 analyzes, categorizes and compares state-of-the-art methods for the
detection of occluded faces. Section 5 lists and compares the benchmark datasets used for occluded face
detection. The challenges and future directions in the detection of occluded faces are highlighted in Sections 6
and 7, respectively. Finally, Section 8 concludes the study.

2 Background and Foundations of Occluded Face Detection
Before presenting a detailed review of detection techniques, it is important to first establish the

necessary background and terminology that will be used throughout the rest of the paper. Section 2.1 clarifies
the differences between face detection and face recognition. Section 2.2 discusses the various sources of
occlusions, and Section 2.3 presents the types and levels of occlusions. Understanding these sources, types,
and severity levels is crucial for accurately assessing and comparing face detection methods.

2.1 Face Detection vs. Face Recognition
Face detection and face recognition are two distinct but interrelated activities within the realm of

computer vision. Face detection is the process of recognizing and localizing faces in an image or video
frame, typically preceding additional facial analysis [7]. Detection systems focus on precisely identifying the
facial region, regardless of identity, pose, or expression, and are essential for applications such as security
monitoring, photo tagging, and human-computer interaction [15,36]. Face detection can be represented as a
function. Given an input image x, the function f (x , θ) generates an output vector that indicates the location
of a detected face. This vector (x , y, w , h) specifies the coordinates of the top left corner (x , y) and the
width and height (w , h) of the bounding box around the face [37]. The parameter θ includes factors such
as thresholds, settings, or contextual information that guide the detection process. The function may also
return a confidence score that indicates the likelihood that the detected region contains a face.

In contrast, face recognition involves the identification or verification of the identity of a recognized
face. Recognition jobs often depend on extracting robust features from the identified face to compare it with
established identities in a database [38]. Although face recognition is based on detection, its objectives and
challenges are significantly different. Recognition systems emphasize feature extraction and comparison,
frequently utilizing methods such as feature embedding [39], while detection systems concentrate on
rapid localization and generalization under diverse situations, including variations in illumination and
occlusions. Fig. 3 illustrates the general face analysis pipeline, highlighting the steps of detection, feature
extraction, and recognition. To clarify the difference between face detection and recognition, Table 1 presents
a comprehensive comparison of the two tasks across various aspects.
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Figure 3: General pipeline illustrating the difference between face detection and face recognition [27]

Table 1: Comparison between face detection and face recognition

Aspect Face detection Face recognition
Definition Identifying and locating faces in an

image or video frame.
Identifying or verifying the identity

of detected faces.
Purpose Acts as a preprocessing step for

further facial analysis.
Determines or confirms the

identity of individuals.
Input

requirements
Raw images or video frames. Face regions detected from a face

detection process.
Output Bounding boxes or coordinates of

detected faces.
Identity labels or verification

scores.
Key challenges Variations in illumination,

occlusions, pose, and background
clutter.

Feature similarity among
individuals, occlusions, and

spoofing attacks.
Techniques

used
Haar cascades, HOG, CNNs,

YOLO, Faster R-CNN.
Embedding-based methods (e.g.,

FaceNet, DeepFace), Siamese
networks.

Applications Security surveillance,
human-computer interaction,

photo tagging.

Biometric authentication, access
control, identity verification.

2.2 Sources of Occlusions
Occlusions in face detection arise from a variety of sources, each introducing unique challenges for

detection algorithms [14]. To organize these challenges, occlusions can be broadly categorized based on
their source and context. These categories reflect whether the obstruction arises from personal accessories,
physical objects, environmental conditions, artificially created elements, or severe real-world challenges such
as disguises or crowding. These sources, summarized in Table 2, are detailed as follows:

Table 2: Sources of occlusions and their characteristics

Category Examples Challenges
Facial accessories Sunglasses, eyeglasses, hats,

scarves, helmets
Obscures key facial landmarks;
static but variable across users

(Continued)
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Table 2 (continued)

Category Examples Challenges
Objects (External) Books, mobile phones,

microphones
Partial/full blockage;

unpredictable sizes and
locations

Objects (Self-Imposed) Hands, arms, gestures (e.g.,
covering mouth, shielding eyes)

Dynamic occlusions; frequent
and hard to predict

Environmental
(Shadows)

Uneven lighting casting
shadows on the face

Mimics occlusions, causing
misclassification

Environmental
(Reflections)

Glare from glasses or shiny
surfaces

Obscures details in certain
regions

Environmental (Lighting) Backlighting, poor visibility,
sudden lighting changes

Distorts facial features, reducing
accuracy

Artificial occlusions Digital masks, stickers,
graphical elements

Adds complexity for training
and real-world applications

Severe occlusions
(Crowding)

Faces blocked by other people
in crowds

Partially hidden faces; common
in crowded places

Severe occlusions
(Disguises)

Masks, wigs, veils to conceal
identity

Deliberate concealment
challenges detection

Severe occlusions
(Privacy)

Cultural or personal face
coverings for privacy

Highly occluded faces

1. Facial accessories: Everyday accessories such as sunglasses, eyeglasses, hats, scarves, and helmets often
block important facial features. For instance, sunglasses obscure the eyes, while masks cover the nose
and mouth, disrupting algorithms that depend on these features for detection [40,41]. Although these
occlusions are typically static, their variety across individuals makes them challenging to handle.

2. Objects: Occlusions caused by objects can be divided into two types:
• External objects: Items like books, phones, or microphones can partially or fully block the face,

especially during activities like reading or speaking [12,42].
• Self-imposed obstructions: Hands, arms, or gestures, such as covering the mouth or shielding the

eyes, create dynamic occlusions. These vary in size, shape, and location, making them particularly
hard to predict and handle [16].

3. Environmental factors: The environment can create occlusions that interfere with detection systems in
various ways:
• Shadows: Uneven lighting can cast shadows on the face, making it appear partially occluded [34].
• Reflections: Glare from glasses or shiny surfaces can hide important facial details [43].
• Lighting variations: Sudden changes in lighting, such as backlighting or low visibility, can distort

facial features and lower detection accuracy [35].
4. Artificial occlusions: These are intentionally created occlusions, often used to test algorithms or ensure

privacy. Examples include digital masks, stickers, or other graphical overlays on faces [14]. While useful
for training models, artificial occlusions can make real-world detection more challenging.

5. Severe occlusions in specialized scenarios: Some occlusions are more extreme and deliberate, particu-
larly in real-world contexts like security or surveillance [44]. These include:
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• Crowding: Faces may be partially blocked by other people in crowded places like public transport
or events.

• Disguises: Deliberate obstructions such as masks, wigs, or veils are often used to conceal identity.
• Privacy measures: Cultural or personal practices, such as wearing face coverings for religious or

privacy reasons, can make detection systems less effective [45].

To better illustrate the different sources and forms of occlusions, Fig. 4 presents a range of occluded
face examples, including real-world occlusions (e.g., sunglasses, scarves), synthetic occlusions (e.g., digital
masks), and unrelated obstructing objects.

Figure 4: Examples of occlusion types commonly encountered in face detection tasks, including real-world occlusions,
synthetic occlusions, partial faces, and unrelated occluding objects. Adapted from [14]

2.3 Face Occlusion Types and Levels
Handling occlusion in face detection requires a comprehensive understanding of the different types and

degrees of occlusion. These elements directly affect the design and effectiveness of detection algorithms. This
section examines the basic types of occlusion, their characteristics, and their consequences for detection
methodologies, with reference to current literature. Occlusion can be categorized from two complementary
perspectives: the overall level of coverage (partial and high occlusion) and the areas that are most impacted
(spatial occlusion). Together, these classifications provide a comprehensive and practical foundation for
addressing the various issues posed by occlusion.

2.3.1 Partial and High Occlusion
Occlusion can be categorized based on the degree of coverage into partial and high occlusion. For

example, studies like [4,46] classify faces into three groups: non-occluded, partially occluded, and heavily
occluded, depending on the percentage of the face area covered. Partial occlusion is defined as 1% to
30% coverage, while heavy occlusion exceeds 30%. Although this method offers a clear framework for
classification, it may fail to account for extreme cases, such as fully obscured faces where 100% of the face
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is covered. Another study by [13] divides the face into four main regions: eyes, nose, mouth, and chin. They
categorized occlusion levels based on how many regions are covered. Faces with one or two covered regions
are classified as weakly occluded, three regions as medium occlusion, and all four as heavily occluded. While
this approach adds more detail, it struggles to distinguish between different degrees of heavy occlusion, such
as 70% vs. 100% coverage. To address this, reference [37] refines the classification by dividing the face into
five regions: the forehead, two eyes, nose, mouth, and chin. This finer division helps differentiate between
heavily occluded and fully occluded faces, which is particularly useful in scenarios like faces covered with
niqabs (a cultural or religious head covering worn by some Muslim women [6]). By accounting for occlusion
levels from 70% to 100%, this method provides a more detailed understanding of high occlusion.

According to the aforementioned studies, occlusions can be classified into partial occlusion and high
occlusion, with additional distinctions based on the extent of covered and certain facial parts that are
obscured.

• Partial occlusion arises when a segment of the face is obstructed, for instance, when the eyes are
concealed by glasses or the mouth is obscured by a hand [47]. Partial occlusion disturbs the symmetry
of face landmarks, upon which numerous algorithms depend for precise detection. Traditional feature-
based approaches, such as Haar cascades and HOG, frequently struggle to generalize effectively under
partial occlusions due to their reliance on the total visibility of essential face features.

• High occlusion denotes instances in which over 50% of the face is concealed. Typical instances encom-
pass faces obscured by masks, scarves, or environmental obstacles such as foliage [13]. High occlusion
is a considerable obstacle for conventional techniques and certain deep learning methodologies, as the
visible areas may lack adequate information for dependable detection. Recent advancements in deep
learning, including attention mechanisms and occlusion-aware models, have demonstrated the potential
to tackle these scenarios.

2.3.2 Spatial Occlusion
In addition to the overall degree of coverage, occlusion can also be categorized based on the specific

regions of the face that are obstructed. Spatial occlusion examines how particular areas of the face are
obscured, which can have distinct impacts on detection algorithms. For example:

• Upper Occlusion: Obstructions of the forehead and eyebrows, such as those caused by hats or hair, can
interfere with alignment algorithms that rely on these features.

• Lower Occlusion: Covering the mouth and chin, as with masks or scarves, poses challenges for
recognition tasks that depend on these regions.

2.3.3 Levels of Occlusion
To better understand the impact of occlusion, it is essential to categorize it into levels:

• Low Occlusion: Less than 25% of the face is obscured. Examples include glasses or slight shadows.
• Medium Occlusion: Between 25% and 50% of the face is obscured. Examples include medical masks or

objects partially blocking the face.
• High Occlusion: More than 50% of the face is obscured, further subdivided into:

– Heavily Occluded: 50% to 70% of the face is covered, such as by scarves or environmental barriers.
– Fully Occluded: 70% to 100% of the face is covered, as in cases like niqabs or full veils.

Fig. 5 illustrates examples of faces with varying degrees of occlusion, ranging from no occlusion to fully
occluded faces. Occlusion levels in Fig. 5 are based on the approximate percentage of the facial area covered
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by occluding objects (e.g., hands, masks, glasses). High occlusion is defined as more than 50% of the face
being obscured by objects such as masks, hands, or other barriers. The visualization highlights the progressive
challenges introduced as occlusion levels increase, demonstrating the necessity for robust algorithms capable
of handling each scenario effectively.

Figure 5: Examples illustrating different levels of occlusion, ranging from no occlusion to full occlusion. The images
are sourced from publicly available benchmark datasets [6,13]. Low occlusion covers less than 25% of the face, medium
occlusion covers 25%–50%, heavily occluded faces have 50%–70% coverage, and fully occluded faces exceed 70%. The
images highlight the increasing challenge for face detection as occlusion levels rise

3 Review Scope and Methodology
This section describes the methodology used to choose and evaluate the existing literature on face

detection under occlusion. It also includes a summary and gap analysis of previously published review studies
in this domain. This helps justify the need for the present review and clarify its distinct contributions. This
review study followed a structured methodology to ensure a comprehensive evaluation of face detection
techniques for occluded faces. The methodology was divided into several stages, as shown in Fig. 6, which
illustrates the process from the literature search to classification and summarization of results.

Start

Literature Search

Identify Review & Survey Studies

Search for Primary Studies

Apply Inclusion and Exclusion
Criteria

Include
Study?

End

No

Analyze Included Studies

yes

Categorize Methods

Ignore

Evaluate Key Aspects Features-based

Machine Learning-
Approaches

Deep Learning
Approaches

Hybrid Approches

Figure 6: Structured methodology for evaluating face detection techniques under occlusion
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3.1 Search Strategy and Inclusion Criteria
To ensure comprehensive coverage, our review was conducted in two phases. In the first phase,

we focused on identifying and analyzing existing review and survey studies related to face detection
and recognition. After identifying gaps in previous surveys, we proceeded to the second phase, where a
systematic search was conducted across multiple academic databases, including IEEE Xplore, SpringerLink,
ScienceDirect, ACM Digital Library, and Google Scholar. Keywords used during the search included “face
detection,” “face recognition,” “occlusion,” “occluded face detection,” “partially occluded faces,” “masked face
detection,” “face detection with masks,” “face detection under unconstrained environments,” “survey,” and
“review paper.” For the second phase, the scope included both partial and heavy occlusions to cover a wide
range of scenarios. We applied specific criteria to include or exclude studies in our review. Studies published
between 2010 and 2024 were considered. In addition, the inclusion criteria focused on studies that address
face detection techniques under occlusion, papers proposing novel algorithms, frameworks, or datasets,
and studies providing experimental evaluations using standard benchmarks or self-customized datasets. In
contrast, the exclusion criteria eliminated studies that focused entirely on face detection or face recognition
rather than handling occlusion scenarios. Studies focusing purely on face recognition or identity verification
under occlusion were excluded unless they included detection components.

3.2 Categorization and Evaluation of Methods
Based on the analysis of the retrieved studies, the selected papers were grouped into four primary

categories: feature-based approaches, traditional machine learning approaches, advanced deep learning-
based approaches, and hybrid approaches. Each category was further divided into subcategories to capture
the specific methodologies employed. These subcategories allowed us to highlight key differences in tech-
niques, such as handcrafted feature extraction, statistical modeling, ensemble learning methods, CNNs,
recent advancements based on attention mechanisms, transformer architectures, and Generative Adversarial
Networks (GANs), and combinations of traditional and modern approaches.

To evaluate and compare the reviewed methods, we analyzed several key aspects across all studies.
Firstly, we captured the proposed approaches and methodologies employed in each study. This involved
identifying whether the methods relied on handcrafted features, machine learning algorithms, deep learning
frameworks, or hybrid techniques. After that, we examined the validation datasets, including standard
benchmarks and custom datasets designed for occlusion scenarios. Then, the occlusion levels that were
considered in each study were evaluated in order to determine the adaptability of the proposed methods.
The evaluation metrics used in the studies were also summarized, including precision, recall, mean average
precision (mAP), F1 scores, and intersection over union (IoU). Finally, the advantages and disadvantages of
each approach were evaluated, and its strengths were noted in a specific context, such as computational cost,
generalization ability, and sensitivity to variations in occlusion type or severity. This methodology allowed
us to determine the gaps and trends, especially in the complex scenarios of detecting covered faces. It also
allowed us to distinguish the open problems, propose directions for detecting faces under partial and severe
occlusions. It also enabled us to assess the potential of the reviewed techniques for real-time applications and
challenging unconstrained environments.

3.3 Summary of Existing Review and Survey Studies
This section examines and classifies existing review articles and surveys related to face detection,

particularly those that have systematically examined progress in this field. Based on our analysis of the
existing literature, review studies can be classified into three main groups: face detection, face recognition,
and a combination of the two approaches. Table 3 presents a detailed summary of previously published review
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and survey studies related to face detection and recognition. It highlights each study’s focus area, specificity
to occlusion challenges, dataset coverage, evaluation metrics, open challenges, and comparative results. This
table helps to clearly identify the gaps in existing surveys, reinforcing the motivation for a focused and
dedicated review of occluded face detection.

Table 3: Summary of previously published survey and review studies on face detection and recognition

Study Focus area Specific to
occlusion

Key limitation
regarding occluded

face detection

Dataset
coverage

Evaluation
metrics

Open challenges
& future

directions

Comparative
results

Sharifara
et al. [48] 2014

Face
detection

No Primarily addresses fully visible
faces without occlusion

Limited Yes No No

Kumari and
Kaur [34] 2023

Face
detection

No Limited focus on occlusion,
centered on visible faces

Yes Yes Yes Yes

Hire and
Satone [49]

2018

Face
detection

No Discusses techniques only for
visible faces, no occlusion

handling

Yes Yes Yes Yes

Thazheena
and Aswathy

Devi [50] 2017

Face
detection

Yes Limited to accessory-induced
occlusions, does not consider

advanced CNN techniques

Yes Yes Yes No

Rao et al. [31]
2015

Face
recognition

Yes Primarily focused on identity
verification, limited exploration

of detection aspects

Yes Yes Yes Yes

Jafri and
Arabnia [8]

2009

Face
recognition

No No occlusion-specific focus Yes Yes Yes Yes

Zafeiriou
et al. [12] 2015

Face
detection

No Focus on detection in
unconstrained environments,

minimal occlusion focus

Yes Yes Yes Yes

Zeng et al. [14]
2021

Mixed Yes Emphasizes recognition, limited
focus on recent advancements in

detection

Yes Yes Yes Yes

Zhang and
Zhang [5] 2010

Face
detection

No Limited to pre-2010 techniques,
does not cover modern deep

learning approaches or
occlusion handling

Yes Yes Yes Yes

Wang
et al. [43] 2021

Face
recognition

Minimal Primarily focuses on deep
learning for recognition,

minimal occlusion handling in
detection

Yes Yes Yes Yes

Deep
Learning-

based
Occluded

Person Re-ID

Face
recognition

Yes Focuses on Re-ID
post-detection, limited

discussion on occluded face
detection

Yes Yes Yes Yes

Ruvinga
et al. [35] 2019

Face
detection

Minimal Limited coverage on occlusion
and lacks recent deep learning

advancements for occlusion

Yes Yes Yes Yes

Budiarsa
et al. [30] 2023

Face
recognition

Yes Focuses on recognition under
occlusion with limited

discussion on detection
techniques

Yes Yes Yes No

Zhang et al.
(2018) [32]

2018

Facial
expression

analysis

Yes Focused on FEA rather than face
detection or broad recognition

techniques

Yes Yes Yes No

[51] 2021 Face
detection

Minimal Focuses on deep learning
advancements for detection,

limited occlusion-specific
handling

Yes Yes Yes Yes

Alzu’bi
et al. [33] 2021

Face
recognition

Yes Primarily focuses on masked
face recognition, limited

exploration of other occlusion
types

Yes Yes Yes Yes

Mondal
et al. [52] 2020

Face
detection

Minimal Focuses on traditional
techniques, lacks extensive

occlusion handling, does not list
prior studies per approach

Yes Yes Yes Yes

(Continued)
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Table 3 (continued)

Study Focus area Specific to
occlusion

Key limitation
regarding occluded

face detection

Dataset
coverage

Evaluation
metrics

Open challenges
& future

directions

Comparative
results

Dagnes
et al. [53] 2018

Face
recognition

Yes Limited to 3D face recognition,
no focus on general face

detection methods

Yes Yes Yes Yes

Hasan
et al. [54] 2021

Face
detection

No Primarily focuses on traditional
and early deep learning

methods, lacks
occlusion-specific

advancements

Yes Yes Yes Yes

Kortli
et al. [27] 2020

Face
recognition

Minimal Limited analysis on
occlusion-resilient techniques,
focuses on general recognition

Yes Yes Yes Yes

Singh
et al. [44] 2024

Face
recognition

Yes Emphasizes challenges in
disguise and crowd scenarios,

limited detection focus

Yes Yes Yes Yes

Zhang
et al. [29] 2021

Mixed Yes Primarily focused on
recognition with limited
detection strategies for

occlusion

Yes Yes Yes Yes

As summarized in Table 3 and highlighted in Fig. 7, most existing reviews do not specifically focus
on occlusion-related techniques or provide only minimal insights. This highlights the need for a dedicated
review of face detection under occlusion. Reviews such as those of [34,48,49], focus primarily on challenges
such as pose, lighting, and background clutter, assuming full facial visibility. These studies offer limited
insight into scenarios where occlusions significantly reduce detection accuracy. On the other hand, face
recognition reviews, such as those of [30,31], focus on managing occlusions during identity verification.
While these studies explore feature extraction and reconstruction techniques to mitigate occlusion effects,
they do not address the critical challenge of detecting occluded faces. Similarly, mixed approaches, as shown
by [14,29], touch on detection methods but lack an in-depth analysis of techniques specifically tailored
to occluded face detection. In addition, many studies fail to adequately address data sets and evaluation
metrics for occluded face detection. Furthermore, challenges such as reducing false positives caused by
occlusion patterns, creating generalizable detection models, and handling different occlusion levels remain
underexplored. Therefore, this review aims to address these gaps by providing a focused analysis of occluded
face detection techniques, datasets, challenges, and future directions.

After defining the scope of existing review studies and confirming the necessity of dedicated occluded
face detection analysis, the following section presents a thorough examination of current methodologies.
The analysis groups detection methods according to their fundamental approaches, which range from
traditional feature-based models to deep learning and hybrid strategies, including recent Transformer and
GAN-based techniques.

4 Review of Detection Methods for Occluded Faces
In this part, the current studies in detecting occluded faces are systematically and comprehensively

reviewed. It analyses and groups several strategies according to their basic approaches. Separate subsections
in the section are arranged such that each one corresponds with a main category of techniques. Based on
the reviewed literature, methods are categorized into three main groups: (1) classical techniques, including
handcrafted feature-based and traditional machine learning-based models; (2) advanced deep learning-
based methods, further divided into CNN-based, attention-driven, transformer-based, and GAN-based
models; and (3) hybrid methods that integrate traditional and modern strategies. Based on their approaches,
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applications, degrees of occlusion handled, used datasets, advantages, constraints, and evaluation criteria, a
thorough review of the relevant studies is offered for every category. Each section ends with a summary table
methodically demonstrating outcomes to enable simple, easy comparisons of approaches. Visualizations are
given to highlight important trends and developments in the area, including the publication distribution
over time, the relative popularity of every method category, and comparative performance measures across
common datasets.

Figure 7: Distribution of review and survey studies on face detection and recognition techniques for occluded faces.
The data is based on the studies summarized in Table 3 which are collected through manual database searches using
relevant keywords

4.1 Classical Approaches for Occluded Face Detection
Before the advance of deep learning, face detection relied primarily on hand-crafted features and

traditional machine learning [12,55,56]. These traditional methods were able to detect faces despite partial
occlusion, but they struggled in complex real-world situations. This section briefly reviews the main types
of these methods, including feature-based techniques and early learning models. Tables 4 and 5 present a
comparative summary of the reviewed methods. It is worth mentioning that for traditional methods, the
evaluation metrics are presented as reported in the original studies, whereas standardized benchmarks such
as mAP are used where available for recent methods.

4.1.1 Traditional Feature-Based methods
Early approaches to face detection, such as those based on Haar-like features [9], Local Binary Patterns

(LBP) [57], Histogram of Oriented Gradients (HOG) [58], edge-based techniques (e.g., Canny and Sobel
filters) [59,60], and statistical models like Active Shape Models (ASM) [61] and Active Appearance Models
(AAM) [62], relied heavily on manually designed features to extract facial patterns such as edges, textures,
and geometric relationships [54]. These techniques are particularly helpful in cases when computational
efficiency is more crucial, since they focus on identifying fundamental face components and apply prede-
termined descriptors to help in detection. Although computationally efficient and easy to implement [63],
their performance significantly deteriorates in the presence of partial occlusions, lighting changes, and
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complex backgrounds. Some solutions attempted to enhance robustness through part-based or occlusion-
aware models. For instance, Guo et al. [64] introduced an AdaBoost cascade classifier that utilized Haar-like
features and facial proportion rules to detect occluded faces on the MAFA dataset. Similarly, Bade and
Sivaraja [65] proposed enhancements to the Viola-Jones framework using heuristic boosting and decision
tree tuning, showing improved results on partially occluded faces from WIDER FACE. On the other hand,
Ganguly et al. [66] developed two geometric feature-based methods that employed 3D depth information
to localize occlusions, achieving strong detection results on the Bosphorus database. Despite these efforts,
traditional methods remain limited in flexibility and robustness, especially when handling transparent or
irregular occlusion patterns, and have largely been surpassed by deep learning models. Table 4 presents a
detailed summary of the reviewed feature-based methods for occluded face detection.

Table 4: Summary of reviewed feature-based methods for occluded face detection

Year Paper Category Methodology Datasets Occlusion
level

Evaluation
metrics

Key results Advantages Limitations

2015 Ganguly
et al. [66]

Geometric
feature-based

Threshold-
Based and

Block-Based
depth

analysis

Bosphorus
Database

Partial,
transparent
occlusions

Detection
Accuracy

Threshold:
91.79%;

Block-Based
(5 × 5):
99.71%

Effective in
detecting

occlusions
and localizing

regions

Struggles
with

transparent
occlusions

(e.g., glasses);
fixed block

sizes
2018 Guo

et al. [64]
Haar-Like
Feature-

Based

Adaboost
cascade

classifier with
Haar-like

features and
facial

physiology
relationships

MAFA Partial, High Detection
Rate, false

positive rate

Detection
rate: 57.3%;

False positive
rate: 4.7%

Utilizes
physiological
heuristics for

occlusion
robustness

Limited
precision;

Higher false
positive rates;

ineffective
when eyes
and mouth

are occluded;
lacks general-

ization for
complex

occlusions
2020 Bade &

Sivaraja [65]
Haar-Like
Feature-

Based

Enhanced
Haar cascade
with heuristic
boosting and

optimized
CART depth

WIDER
FACE

Partial Accuracy, F1
Score

65.25%
accuracy;
77.17% F1

score; 23.66%
better than

Haar-
frontalface-default

Improved
accuracy and
F1 score for

partially
occluded

faces; compu-
tational

efficiency
through

grayscale
preprocessing

Struggles
with extreme

occlusions
and profile

faces; limited
robustness
for diverse
occlusion
patterns

4.1.2 Traditional Machine Learning-Driven Methods
This section reviews traditional machine learning-based approaches used for occluded face detection.

These approaches typically rely on predefined features extracted from facial images, followed by the
application of classical machine learning algorithms to classify regions as faces or non-faces. Unlike feature-
based methods, which depend solely on handcrafted features, machine learning-based methods combine
feature extraction with learning algorithms to improve adaptability and accuracy. The studies in this category
focus on techniques that learn patterns from labeled training data to detect occlusions and distinguish them
from normal facial structures. These methods are particularly effective when paired with dimensionality
reduction techniques, such as Principal Component Analysis (PCA). In this paper, the reviewed techniques
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are categorized into three main groups: (1) statistical and clustering models, (2) ensemble and boosting
methods, and (3) Support Vector Machine (SVM)-based methods.

Statistical and clustering models, such as the method by Jabbar and Hadi [67], use fuzzy clustering, pixel
similarities, or probabilistic analysis to segment occluded regions and reconstruct missing parts. Although
this method was an early effort in addressing occluded face recovery, it is now considered outdated and is not
applicable to modern real-time face detection systems. Ensemble and boosting methods, including the works
of Gul and Farooq [68], Arunnehru et al. [69], and Liao et al. [70], improve detection by combining multiple
weak classifiers using AdaBoost or decision tree ensembles to focus on hard-to-detect samples and manage
occlusion and background complexity. Over time, researchers increasingly explored SVM-based techniques
due to their strong discriminative power and ability to handle partial occlusions. These methods, such as
those proposed by Hotta [71], Priya and Banu [72], SuvarnaKumar et al. [73], Zohra et al. [74], and Yang
et al. [75], apply discriminative learning using handcrafted features, local descriptors, or depth-based cues to
classify occluded regions. While these machine learning approaches showed improved detection over earlier
basic feature-based methods, they still face challenges in handling diverse occlusion types and adapting to
complex real-world settings due to their reliance on static feature representations. Table 5 summarizes the
key characteristics of the reviewed machine learning-based techniques.

Table 5: Summary of reviewed machine learning-driven approaches

Year Paper Methodology Datasets Occlusion
level

Evaluation
metrics

Key results Advantages Limitations

2007 Hotta [71] SVM with
local

summation
kernel and

Gabor filters

HOIP,
MIT+CMU,

PIE

Partial
occlusion

(sunglasses,
scarves,

shadows)

TPR, FPR High accuracy in
occluded settings;

outperformed
global-kernel-based

SVMs

Robust to
partial

occlusion;
effective use

of local
features

High com-
putational
cost due to

multiple
local kernels

2010 Jabbar &
Hadi [67]

Skin seg-
mentation,

eye template
matching,

Fuzzy
C-Means
clustering

Custom
dataset

Partial Detection
accuracy,
recovery
quality

93% detection
accuracy (clean

background), 73%
recovery quality for

40% occlusion

Effective for
symmetric
occlusions;
novel use of

fuzzy
clustering for

segmenta-
tion

Struggles
with

non-frontal
views;
limited

database size
for

asymmetric
recovery

2012 Kumar
et al. [73]

Circular
Hough

Transform,
SVM for
occlusion
detection,

HSPCA for
recognition

Custom
dataset

Partial Accuracy Achieved 94%
accuracy in controlled

environments

Effective for
controlled
environ-
ments;

robust to
skin-tone

background
challenges

Limited
scalability;

low
adaptability
to uncon-
strained
environ-

ments; small
dataset size

2012 Priya
et al. [72]

MBWM
feature

extraction
with SVM

MIT Face
Database

Partial
occlusion

Classification
accuracy

98.75% accuracy with
overlapping RBF

SVM on two
segments

Outperformed
LBP and
SLBM;

effective in
detecting

partial
occlusions

Relies on
handcrafted
features; seg-

mentation
limited to

fixed regions

(Continued)
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Table 5 (continued)

Year Paper Methodology Datasets Occlusion
level

Evaluation
metrics

Key results Advantages Limitations

2015 Gul
et al. [68]

AdaBoost
with free

rectangular
features, skin

color
detection

FDDB Partial
occlusion

TPR, FPR TPR: 33% at 19% FPR;
improved accuracy

over traditional
Viola-Jones in

detecting occluded
faces

reduced false
positives

through skin
color

detection

Struggles
with blurred

or
small-scale

faces in
distant or

low-
resolution

regions
2015 Arunnehru

et al. [69]
SFTA with
tree-based
classifiers
(Random

Forest,
Decision

Tree)

PNNL
Parking Lot

Partial, full
occlusion

Accuracy,
precision,

recall

Random Forest:
98.3% (SET-1), 98.2%

(SET-2), 83.7%
(SET-3); highest

among tested
classifiers

Effective in
surveillance

settings;
robust to

partial
occlusion

Limited to
handcrafted

features;
struggles

with extreme
occlusions

2016 Liao
et al. [70]

NPD
features with
soft-cascade

AdaBoost

FDDB,
GENKI,

CMU-MIT

Arbitrary
occlusions,

poses

TPR, false
positives

Improved detection
rate; 6x faster than

Viola-Jones

Fast and
efficient;
robust to

illumination
and

occlusions

Limited
adaptability
to complex

datasets;
struggles

with severe
occlusions
and non-

standard face
appearances

2016 Zohra
et al. [74]

LBP for
feature

extraction
with SVM

EURECOM
Kinect Face

Dataset

Partial
occlusion

Classification
accuracy

Achieved 98.50%
accuracy for occluded
vs. non-occluded face

detection

Effective in
detecting

and
localizing

occlusions in
depth images

Struggles
with

low-quality
depth data;
limited in
handling
glasses-
induced

occlusion
2016 Yang

et al. [75]
SVM-based
FP classifier
with GIST,
HoG, and

other
features

AFLW,
FDDB, IJB-A

Various Precision,
recall, ROC

Improved precision
from 67.60% to

71.75% (NPD-FDDB)
and 55.36% to 61.26%

(NPD-IJBA)

Reduced
false

positives
significantly,

improved
precision of

existing
detectors

Slight
reduction in

recall,
dependency

on
pre-trained
detectors,
computa-
tional cost
for feature
extraction

2019 Qezavati
et al.,

2019 [25]

Haar
Cascade,

LBPH, SVM
with

skin-tone
histogram

Custom
surveillance

dataset

Partial
(headscarf,

poses)

Precision,
recall

Improved precision
over standalone Haar

Cascade or LBPH
methods; effective in
detecting headscarf

occlusions

Improved
precision via

skin-tone
histogram;
works on

low-
resolution

videos

Limited
adaptability
to dynamic
occlusions;

lower
accuracy for

side-view
faces
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4.2 Advanced Deep Learning-Based Methods
This section reviews advanced deep learning methods for face detection under occlusion. It focuses on

approaches that use CNNs and other deep learning architectures. Unlike traditional methods that depend
on handcrafted features, deep learning techniques automatically learn patterns and representations from
data, which makes them more flexible in handling complex occlusions, lighting variations, and pose changes.
These methods have demonstrated strong performance, particularly in detecting occluded faces under
unconstrained conditions. Many of the reviewed methods leverage pretrained networks like VGG16, ResNet,
and YOLO, while others introduce custom architectures optimized specifically for occlusion scenarios.
Several approaches incorporate enhancements such as attention mechanisms, multi-task learning, multi-
scale learning, and context-aware processing to further improve accuracy and generalization across datasets.
In addition to these enhancements, recent works have introduced Transformer-based and GAN-based
models as distinct subcategories. These emerging directions expand the capabilities of deep learning methods
in handling complex occlusion scenarios. To highlight key advancements, the studies in this section are
categorized based on their architectures and methodologies as presented in Table 6. Meanwhile, Tables 7
and 8 present a detailed summary and comparison of reviewed advanced deep learning based studies.

Table 6: Summary of subcategories and their focus in advanced deep learning approaches

Category Primary focus Key features
Attention mechanism-based

approaches
Prioritizes visible facial regions
and suppresses irrelevant areas

using attention modules.

Enhances feature representation
and localization using modules
like CBAM, SENet, and SEAM

for better robustness against
occlusions and noise.

Multi-task learning
approaches

Handles multiple tasks, such as
face detection and occlusion

classification, simultaneously to
improve performance.

Uses shared learning across
tasks, making them effective for

detecting and classifying
occlusions or mask compliance.

Multi-scale learning
approaches

Focuses on detecting faces at
varying scales and resolutions
to handle small and large faces

effectively.

Uses feature pyramids,
scale-specific detectors, or
multi-branch networks to

process different scales and
occlusion levels.

Single-stage detection
approaches

Performs detection in a single
forward pass for faster

processing without requiring
multiple processing stages.

Prioritizes real-time
performance while integrating

modules like context refinement
and receptive field

enhancements to boost
accuracy.

Multi-stage approaches Divides detection into multiple
steps, such as region proposals

and refinement, for higher
accuracy.

Employs separate modules for
proposals, classification, and
refinement, often achieving

better accuracy at the expense
of higher computation.

(Continued)
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Table 6 (continued)

Category Primary focus Key features
Context-aware approaches Utilizes surrounding contextual

information, such as head pose,
body orientation, or spatial

relationships, to assist detection.

Complements direct facial
feature extraction by integrating
spatial reasoning or contextual

labeling to handle heavily
occluded faces.

Other studies Covers methods that propose
unique loss functions,

optimization techniques, or
custom architectures that do not

fit into the other categories.

Introduces novel algorithms,
loss designs, and experimental
approaches that contribute to

enhancing occluded face
detection.

4.2.1 Attention Mechanism-Based Approaches
Wang et al. [21] introduced the Face Attention Network (FAN), a single-stage face detector designed to

handle occlusion challenges in face detection. FAN used an anchor-level attention mechanism to enhance
features from facial regions while reducing focus on irrelevant areas, thus minimizing false positives. The
model was built on the RetinaNet architecture and included a Feature Pyramid Network (FPN) to preserve
both spatial resolution and semantic information which enables it to detect faces at different scales. Extensive
data augmentation, including random cropping, was applied during training to simulate occluded faces.
For evaluation, FAN was applied to WiderFace and MAFA datasets. It got 88.8% Average Precision (AP)
on the hard subset of WiderFace, and 88.3% mean Average Precision (mAP) on MAFA, outperforming
methods like Locally Linear Embedding Convolutional Neural Networks (LLE-CNNs) and Adversarial
Occlusion-aware Face Detection (AOFD). The results showed that FAN effectively detects occluded faces
while maintaining computational efficiency. However, its reliance on anchor-based methods could limit
performance with complex occlusions in real-world scenarios. In 2022, Zhang et al. [20] proposed an
improved RetinaNet model for detecting occluded faces by incorporating a Universal and Recognition-
friendly Image Enhancement (URIE) module as a pre-network, along with an attention mechanism. The
URIE network enhanced input images by highlighting visible facial regions and reducing distortions. The
attention mechanism, meanwhile, boosted important features while keeping contextual information. The
model was tested on the WiderFace and MAFA datasets. On MAFA, it attained a mAP of 89.7% surpassing
techniques including FAN and LLE-CNNs. Strong performance was also shown across weak (84.5%),
medium (75.8%), and moderate occlusion (26.1%). Although the technique maintained computing efficiency
and handled occlusions well, problems with heavily occluded faces and large-scale variances were recognized
as issues for further development. In another study, Qi et al. [76] suggested a modified form of YOLOv5 to
identify mask-occluded faces in real-time applications. To highlight important facial features while reducing
attention on irrelevant areas, the improvements included installing a Convolutional Block Attention Module
(CBAM) to the backbone and neck of YOLOv5s. Moreover, focal Loss took the role of the binary cross-
entropy loss function to solve sample imbalance and enhance identification in challenging scenarios. The
model was investigated on the WIDER Face and AIZOO datasets. On Wider Face, it obtained a mAP50
of 95.9% and an F1-score of 92.8%; on AIZOO, it obtained a mAP50 of 96.5% and an F1-score of 94.3%
surpassing the baseline YOLOv5s and other advanced approaches. The model also displayed enhanced
sensitivity to finely occluded faces at small scales. Though it had advantages, the technique suffered with
severe occlusions and needed further work on environmental conditions and changeable lighting.
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Wang et al. [77] also presented EfficientFace, another attention-based model. EfficientFace is a
lightweight deep-learning framework designed with a focus on occlusion handling, imbalanced aspect ratios,
and feature representation difficulties. Three improvements were introduced: a Receptive Field Enhancement
(RFE) module to handle facial aspect ratio variances, a Symmetrically Bi-directional Feature Pyramid
Network (SBiFPN) to improve spatial accuracy and feature fusion, and an Attention Mechanism (AM) to
concentrate on important areas for identifying occluded faces. Using only one-sixth of the computational
resources compared to models like Dual Shot Face Detector (DSFD) and MogFace, EfficientFace achieved
mAP scores of 95.1% (Easy), 94.0% (Medium), and 90.1% (Hard) evaluated on datasets including AFW, Pascal
Face, FDDB, and WIDER Face. It also outperformed many state-of- the-art detectors. It highlighted areas for
future development even with its great performance since it struggled with highly obscured faces and dense
clusters in crowded settings.

Zhao et al. [78] proposed an attention-enhanced YOLOv4 framework to improve face mask detection
under challenging conditions, such as occlusions and lighting variations. The approach incorporated three
attention mechanisms: Convolutional Block Attention Module (CBAM), Squeeze-and-Excitation Networks
(SENet), and Coordinate Attention Networks (CANet) into the feature fusion and detection layers. The
best version, YOLOv4-CBAM-A, integrated CBAM modules at key points in the network, achieved a
93.56% mAP on the MAFA and WIDER FACE datasets with a 4.66% improvement over the baseline
YOLOv4. The CBAM modules enhanced feature extraction by focusing on relevant regions while suppressing
irrelevant features, particularly for small or occluded faces. While the model showed higher accuracy, it faced
limitations in real-time processing speed due to the computational overhead introduced by the attention
mechanisms. To improve face detection and recognition under occlusions, Yuan [3] introduced a visual
attention guided model. The model used a visual attention mechanism for concentrating on the visible facial
components and excluding the cluttered background. It employed a feature extraction network of ResNet50
size with a spatial and channel attention module for enhanced feature representation. The model treated
face detection as a high-level semantic feature detection task and used activation maps for localizing the
face and its scale. It was evaluated on datasets including LFW, CMUFD, and UCFI and was found to be
more accurate and efficient than the existing methods. In the case of severely occluded faces, it achieved a
detection rate of 59.78%, which is better than several deep learning-based methods. Although the model has
some good properties, it had a higher computational complexity of the attention modules that increased the
training time.

4.2.2 Multi-Task Learning Approaches
Xia et al. (2016) [17] presented an end-to-end framework for facial occlusion detection to enhance ATM

security systems. The framework followed a coarse-to-fine strategy by employing two CNN models: one for
head detection from upper-body images and another for categorizing occlusions in face parts (e.g., eyes,
nose, and mouth). EdgeBoxes was used to create candidate areas; CNNs then were used for feature extraction
and classification. Training on a bespoke face occlusion dataset, it was tested on extensively used datasets
like LFW and AR. On the custom dataset, the framework attained high detection accuracy of 85.61%; on AR,
97.58%; and 100% for head detection with IoU > 0.5. It reported 94.55%, 98.58%, and 95.41%, respectively, for
occlusion classification. However, the method struggled with illumination variations, complicated occlusion
patterns, and head variability in real-world circumstances even if it was strong against many degrees
of occlusion.

Ge et al. [13] proposed LLE-CNNs (Locally Linear Embedding CNNs), a deep learning framework for
detecting masked faces. The authors addressed challenges like the lack of datasets and loss of facial cues
caused by occlusions by introducing the MAFA dataset, which includes 30,811 images and 35,806 masked
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faces with varying orientations, occlusion levels, and mask types. The framework combined three main
components. A proposal module first identified candidate facial regions using pre-trained CNNs. Next, an
embedding module applied Locally Linear Embedding (LLE) to reconstruct missing facial cues and reduce
occlusion noise. Finally, a verification module performed classification and regression to refine detections.
Tested on the MAFA dataset, LLE-CNNs achieved an average precision (AP) of 76.4%, outperforming
methods like Multi-task Cascaded Convolutional Neural Network (MTCNN) and Speeded Up Robust
Features (SURF) Cascade by 15.6% or more. However, it struggled with extreme occlusions and side poses,
achieving only 22.5% and 17.2% AP, respectively. The study demonstrated the value of combining feature
refinement and contextual reasoning for occluded face detection and established the groundwork for future
improvements in masked face detection.

Combining adversarial learning with segmentation, Chen et al. [79] presented a multi-task framework
called AOFD to detect faces under significant occlusion. During training, the adversarial masking technique
was applied to create occluded face features and push the detector to concentrate on visible facial areas. It also
incorporated a segmentation branch to forecast blocked spots, which treated them as supplemental informa-
tion rather than obstacles therefore enhancing feature extraction and detection accuracy. Outperformance
of the model over FAN and LLE-CNNs was achieved with an 81.3% AP on MAFA. On FDDB at 1000 false
positives, it attained a 97.89% recall rate, proving its robustness in identifying partially and highly occluded
faces, even with low evident landmarks. Nevertheless, the approach depended on a limited manually labeled
segmentation dataset (SFS), which restricts its scalability, and needed expensive CPU resources because of
its segmentation technique. AOFD demonstrated in spite of these constraints the efficiency of adversarial
learning and occlusion segmentation in enhancing occluded face detection.

In 2020, Deng et al. proposed RetinaFace [80], a single-stage, multi-task face detection framework that
jointly predicts face bounding boxes, 2D landmarks, and 3D facial vertices. The overall architecture and
multi-task design of RetinaFace are shown in Fig. 8. It introduces a unified regression target and enhances
training with additional manual and semi-automatic annotations on datasets like WIDER FACE, AFLW,
and FDDB. By combining these tasks into one inference process, RetinaFace improves detection robustness
under occlusion, pose variations, and scale changes, while maintaining high efficiency.

Figure 8: Architecture of the RetinaFace model, including the feature pyramid network (left), cascade context head
module (middle), and multi-task loss design (right), as proposed by Deng et al. [80]

Using a two-stage pipeline comprising face detection and classification to evaluate appropriate mask
usage, Batagelj et al. [22] explored face-mask detection for COVID-19 compliance. To enable their investiga-
tions, the writers presented the Face-Mask Label Dataset (FMLD), constructed from the MAFA and Wider
Face datasets. While the classification stage examined whether masks were worn correctly or incorrectly
using CNN models, the detection stage concentrated on face identification and evaluation of mask effects on
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detection performance. Modern detectors struggled with masked faces, according to results; performance
dropped by approximately 15% when compared to unmasked faces. RetinaFace emerged as the most
robust detector, while ResNet-152 achieved the highest classification accuracy (over 98%) for identifying
compliant and non-compliant mask placements. The combined pipeline achieved mAP values above 90%,
outperforming baseline methods. Despite its effectiveness, the study faced limitations, including coarse
dataset annotations that failed to capture varying occlusion levels, reliance on pre-trained models instead of
custom architectures, and computational complexity, making real-time application challenging.

4.2.3 Multi-Scale Learning Approaches
To address the challenges of detecting faces with large variations in scale, pose, and occlusion, DSFD

(Dual Shot Face Detector) was proposed by Li et al. [81] as an extension of the single-shot detectors (SSD)
architecture. They introduced a Feature Enhance Module (FEM) and Progressive Anchor Loss (PAL) to
improve multi-scale feature learning. An Improved Anchor Matching (IAM) method is also used for better
training. Experiments on WIDER FACE and FDDB demonstrated that DSFD outperforms earlier methods
like PyramidBox, especially under occlusion.

Jiang et al. [82] introduced 4AC-YOLOv5, an improved version of the YOLOv5 framework designed to
detect small and occluded faces. The model featured three enhancements: a small target detection layer to
capture low-level features for better detection of small faces, an Adaptive Feature Pyramid Network (AFPN)
to dynamically adjust feature importance during multi-scale fusion, and a multi-scale residual module
(C3_MultiRes) to improve multi-scale learning while maintaining efficiency. Tested on the WIDER Face
and FDDB datasets, the model outperformed YOLOv5 and other methods, achieving mAP scores of 94.54%
(Easy), 93.08% (Medium), and 84.98% (Hard) on WIDER Face, and a TPR of 0.99 at 1000 false positives on
FDDB. While effective for occluded and small-scale faces, the model struggled with heavily occluded faces
in dense scenes and required a balance between efficiency and accuracy. Jin et al. [83] proposed FSG-FD
(Feature-Selective Generation for Face Detection), a deep learning model designed to detect occluded faces
by combining multi-scale feature extraction and contextual information. The model introduced SG-net, a
specialized feature-enhancement module that focuses on unoccluded regions while suppressing noise from
occlusions. It then merges these enhanced features with high-level convolution outputs for classification
and regression tasks. The model was evaluated on the WIDER Face dataset and a self-labeled surveillance
dataset, achieving an average precision (AP) of 77.6% on WIDER Face, outperforming Faster R-CNN and
other models. In real-world surveillance videos, it achieved a precision of 85.1% and a recall of 76.7%,
demonstrating practical applicability. While the model showed effectiveness in multi-scale feature fusion and
occlusion handling, its reliance on predefined feature generation limits adaptability to extreme occlusions
and highly cluttered backgrounds.

Hu and Ramanan [84] proposed a face detection framework designed to handle small faces in com-
plex environments. The method combined multi-scale representations, contextual reasoning, and a foveal
descriptor that captured both local high-resolution features and global low-resolution context to improve
detection accuracy. The framework used a multi-task model with scale-specific detectors trained on a coarse
image pyramid, which enables it to detect faces across different scales. It leveraged large receptive fields
to incorporate contextual information, which enhances performance for tiny faces as well as larger faces.
Evaluated on the WIDER FACE and FDDB datasets, the method achieved state-of-the-art performance, with
an AP of 81% on the WIDER FACE “hard” subset, outperforming earlier methods (29%–64% AP). It also
showed robustness with respect to the scale, pose, and environmental conditions. Although the approach was
effective, it had some drawbacks in terms of computational complexity and performance in crowded scenes,
which point to further improvements for real-time applications. Tang et al. [85] proposed PyramidBox, a
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framework for detecting small, blurred, and partially occluded faces in complex scenarios. It enhanced the
feature context by using pyramid anchors to include contextual information such as head and body contexts,
which did not need any extra labels. The model incorporated Low-Level Feature Pyramid Networks (LFPN)
to fuse the spatial detail information at different scales as coarse-level features and the semantic information
as fine-level features to enhance the detection performance, especially for small faces. It also incorporated a
Context Sensitive Prediction Module (CPM) to enhance the localization and classification performance. To
enhance the training diversity and robustness, the authors proposed Data Anchor Sampling that involved face
samples resizing and reshaping. The framework got the best results on the WIDER FACE and FDDB datasets,
with mAP of 96.1% (easy), 95.0% (medium), and 88.9% (hard). However, there were some drawbacks to the
method because it was costly and used semi-supervised anchor labeling.

To overcome the challenges of scale variation, occlusion, and imbalanced samples in training data, Yu
et al. suggested an improved face detection algorithm based on YOLOv5 [86]. In this study, the model made
several changes to boost the accuracy and robustness. The framework was also incorporated with a Receptive
Field Enhancement (RFE) module that employed multi-branch dilated convolutions to deal with the multi-
scale detection problem. To this end, it employed a Separated and Enhancement Attention Module (SEAM)
to highlight the features in the occluded regions and a Repulsion Loss function to prevent the overlapping
bounding boxes from affecting the detection performance in the case of occlusion. To address the sample
imbalance, a Slide Loss was used to learn to dynamically rank hard samples; then, Normalized Wasserstein
Distance (NWD) Loss was incorporated to improve the detection of small faces. The effectiveness of the
model was validated by the experiments on the WIDER FACE dataset, and the mAP values of 98.7% (easy),
97.2% (medium), and 87.7% (hard) were achieved. However, the model proposed in this paper relied on
anchor-based designs and had high computational costs, which may limit its applicability in environments
with scarce resources.

Garg et al. [87] proposed a single-stage deep CNN for detecting partially occluded faces in video
sequences. The approach used multi-scale anchor boxes to help capture the shapes and sizes of the facial
regions. The approach reduced the computational costs by restricting the number of scales and the number
of anchor boxes without sacrificing the accuracy. The network was designed to improve the detection
performance in the occluded regions by using five max pooling layers for feature extraction and 22
convolutional layers for anchor-based identification of partially occluded faces. In this paper, the researchers
have suggested a different Intersection-IoU threshold of 0.4 to eliminate the bounding boxes that are not
relevant. The model was evaluated on the FDDB dataset and the results show that the model has an accuracy
of 94.8%, precision of 98.7%, and F1-score of 98.25% at the frame rate of 21 fps. Its anchor-based approach,
however, may limit the generality to non-standard face shapes or other datasets.

To enhance the accuracy and recall of face detection especially under occlusion, blurring, and at small
scales, Mamieva et al. [88] presented a face detection method based on deep learning using the RetinaNet
framework. The model design had a two-part architecture that consisted of a region-offering network (RON)
to propose potential facial regions and a prediction network to further refine and classify these regions.
To this end, the method adopted multi-scale features for robustness by employing a high and low feature
generation pyramid that improves the ability to detect faces at different scales. The model was trained on the
WIDER FACE dataset and fine-tuned on FDDB. It has an AP of 41.0 (single-scale) and 44.2 (multi-scale) and
a detection accuracy of 95.6%. Though the method is powerful, it has a high computational cost, especially
in multi-scale inference, which may be unfeasible in resource-constrained environments.

To improve the regression and classification performance in face detection from challenging poses and
small sizes, Zhang et al. proposed a single-shot face detector [89]. Introducing five specialized modules;
Selective Two-step Regression (STR) and Selective Two-step Classification (STC) to enhance bounding box



2638 Comput Model Eng Sci. 2025;143(3)

localization and recall efficiency, Scale-aware Margin Loss (SML) to improve the scale, Feature Supervision
Module (FSM) to improve feature alignment, and Receptive Field Enhancement (RFE) to increase the context
for detection of faces at different scales. On WIDER FACE, MAFA, FDDB, AFW, and PASCAL Face datasets,
the model achieved state-of-the-art results. At Video Graphics Array (VGA) resolution, using ResNet-18 as
backbone, the detection rate and speed were very good with frame rate of 37.3 FPS. The model had some
limitations, like reliance on anchor boxes and relatively high computational complexity due to extra modules,
but it performed strongly.

In another interesting study, Tsai et al. [90] proposed a system based on SSH and feature extraction using
VGG16 to detect and recognize partially-occluded faces. The SSH network had three detection branches, M1,
M2, and M3, to detect small, medium, and large faces, respectively. It also incorporated a context module to
improve feature maps by increasing the receptive field and feature pyramids for improved detection accuracy
at low computational cost. The system was tested on the WIDER FACE and MS1M-ArcFace datasets and
had very good accuracy for different levels of occlusion. However, it relied on VGG16, which might fail in
extreme occlusion cases. Nevertheless, the method could process frames in real time with high precision for
partially occluded faces.

4.2.4 Single-Stage Detection Approaches
Najibi et al. [91] proposed the SSH face detector, a single-stage, completely convolutional network

for effective and accurate face detection. SSH was better than two-stage methods that rely on region
proposals and classification because it performed classification and regression in a single pass, which reduces
computational overhead while maintaining high precision. The model was able to work on all sizes and
could find small, medium, and large faces by using many convolutional layers with different steps. It had a
context module that, without an image pyramid, increased the receptive field to effectively capture contextual
information. To increase robustness during training, SSH also employed online hard example mining
(OHEM). Demonstration of modern performance on WIDER FACE, FDDB, and Pascal-Faces datasets. On
Wider Face, it had mAP rates of 91.9% (easy), 90.7% (mid), and 81.4% (hard). It also increased mAP by
4% when coupled with an input pyramid. The model was also quite efficient, processing images GPU at 50
frames per second. However, there were some disadvantages: SSH was dependent on pre-trained backbones
like VGG-16, which limited the ability to more recent architectures.

In 2020, Alashbi et al. [45] proposed the Niqab-Face-Detection model which is a deep learning
framework for detecting mostly niqab-covered, highly occluded faces. The proposed framework, namely
MobileNet-SSD, combines MobileNet for effective feature extraction and Single Shot Multiboxin Detector
(SSD) for real-time detection. The approach of context-based labeling which pays attention to the context
around the face rather than just the part of the face that is actually visible improves the detection accu-
racy. To improve performance, especially in challenging conditions, focus loss, and hard sample mining
were employed. It was evident from the evaluation findings that current models including MTCNN, and
MobileNet were outperformed by the proposed model with a precision of 99.6% and recall of 59.9%. The
model however had a poor recall rate attributed to the small dataset and the high level of occlusion, which
suggested the need for more data and optimization.

To improve the detection of partially-occluded faces, Zhao et al. [92] proposed an enhanced YOLOv5
framework. The method aimed at increasing the detection accuracy through changes in the loss function
to replace the standard one with Distance Intersection over Union (DIoU) for faster convergence and
better localization. In addition, it also applied data augmentation strategies such as flipping, scaling and
brightness changes, and label smoothing to improve robustness. The model was trained on a large dataset
which was collected from the MAFA dataset and web-sourced images, and it had six classes of occlusions:
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masks, collars, hands, scarves, objects, and no occlusions. The enhanced YOLOv5 had an accuracy of
70.3%, which is better than the initial YOLOv5 accuracy of 64.1%. Nonetheless, the model had some
difficulties with severe occlusion and irregular objects which are the areas for further optimization in terms
of datasets and sophisticated loss functions. Nadhum et al. [93] proposed Ghost-YOLOv5, an improved
version of the YOLOv5 deep learning algorithm for real-time detection of faces with and without masks.
The model enhanced efficiency and effectiveness through the application of Ghost Convolution instead of
the conventional convolution to enhance computation time and performance. A self-collected dataset of 219
images of masked and unmasked faces was used to train and test the model. The model achieved a mean
Average Precision (mAP) of 96.6% which is higher than the baseline YOLOv5 model that achieved 89.11%.
The model also has a fast inference time which makes it suitable for real time applications. But the study has
some limitations like inability to detect faces with uncommon masks and in low light conditions, and the
authors thus recommended dataset enhancement and architectural improvement for future work as well.

Kurniawan et al. assessed the performance of the YOLOv5 model for detecting masked and unmasked
faces across different image resolutions [94]. For this purpose, the study employed three datasets: the M
dataset which has real-world masked faces, the S dataset which has synthetic faces with masks, and the G
dataset which is a combination of the M and S datasets. The performances were evaluated at 320 pixels and
640 pixels to determine the costs and benefits of increasing the size of the input image during training.
The results indicated that the image resolution (pixels) affected the accuracy of the detection and that high
resolution (640 pixels) provided better results at the expense of increased training time. In addition to
achieving detection rates of 99.2%, 98.9%, and 98.5% on the G, M, and S datasets, respectively, the model
also had some constraints in detecting small objects and in poor illumination. The study concluded that to
enhance the detection accuracy, it is essential to employ an appropriate dataset and optimal image resolution.
YOLOv5 is suggested for application in public health surveillance.

4.2.5 Multi-Stage Approaches
Li et al. [95] proposed a face detection model for handling the occlusions with the help of a double-

channel network architecture. The framework entailed an occlusion perceptron network that learned the
features from unoccluded regions and a residual network to learn the features from the entire face for a
more complete representation. The output of both the networks were combined using a weighted scheme
to improve the feature learning of the occluded faces. In order to address the problems of data scarcity
and overfitting, the model employed transfer learning to pre-train convolutional layers. It was evaluated
on the AR dataset (sunglasses and scarves’ occlusions) and the MAFA dataset (diverse occlusions). On the
AR dataset the model achieved 99.46% accuracy for sunglasses and 99.73% accuracy for scarves and on the
MAFA dataset it achieved 80.2% accuracy with a frame rate of 39 FPS. But there were some issues e.g., high
computational costs in training and the need to manually tune parameters for occlusion thresholds because
they were not learned from the data.

4.2.6 Other Studies
In their paper, Alafif et al. [96] presented LSDL, a CNN based method for face detection in uncon-

strained environments with partial occlusions and pose variations, using a single CNN trained on a large
scale dataset of occluded, posed and illuminated faces. First, it employs a sliding window approach for face
localization and then uses a confidence score threshold and Non-Maximal Suppression (NMS) to further
localize the detected faces. For training, the authors used four novel datasets (LSLF, LSLNF, CrowdFaces, and
CrowdNonFaces) and used AFW and FDDB datasets for evaluation. The precision of AFW was 97.4% and
it had a fairly good performance on FDDB. Nevertheless, LSDL was quite robust in detection but had some
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constraints such as slow inference time due to the sliding window and sensitivity to confidence thresholds
that failed to detect in some instances.

Iqbal et al. [97] carried out a comparative analysis of the effectiveness of CNN-based face detection
models for the detection of covered faces during the COVID-19 pandemic. The study established that most
of the previous models that were trained on unmasked datasets were inefficient in detecting masked faces.
The authors classified face detection models into two categories: Anchor-based vs. Anchor free and Single
Stage vs. Two Stage architectures. Several models, RetinaFace, CenterFace, FaceBoxes, Extremely Tiny Face
Detector (EXTD), TinyFaces, Light and Fast Face Detector (LFFD), and Multitask Cascaded Convolutional
Networks (MTCCN) were evaluated for a modified WIDER Face dataset, in which the lower halves of
the faces were erased to mimic masks. Of the evaluated models, it was observed that RetinaFace had the
best performance at the Easy (84%) and Medium (80%) levels, while EXTD was the best at the Hard
level (59%). The study also revealed that while the present models are appropriate for easy sets of data,
their efficiency decreases when they are applied to difficult conditions, e.g., small, partially occluded, or
complex images. Consequently, there is a requirement for new specific masked face datasets and models for
occlusion scenarios.

To improve face detection under partial occlusion, Opitz et al. [98] proposed a grid loss function for
CNNs. The method cuts the last convolutional layer’s feature map into spatial blocks and uses a hinge loss for
each block, to ensure that even partially visible regions remain discriminative. The approach was tested on
FDDB, AFW, and PASCAL Faces datasets. It achieved a TPR of 86.7% at 0.1 FPPI on FDDB, outperforming
traditional CNNs. Also reduced overfitting, improved mid-level feature learning, and was efficient with
smaller datasets. The model supported real-time detection, processing at 20 frames per second. However,
the method had some difficulties with extreme occlusions and cluttered backgrounds.

Table 7: Summary of reviewed deep learning approaches for occluded face detection (Part 1)

Year Paper Methodology Datasets Occlusion
level

Evaluation
metrics

Key results Advantages Limitations

2016 Opitz
et al. [98]

Grid loss:
Dividing CNN
feature maps

into blocks with
independent

hinge loss

FDDB, AFW,
PASCAL

Faces

Partial TPR, FPPI TPR: 86.7% at
0.1 FPPI on

FDDB

Robust under
occlusions;

reduced
overfitting;
real-time

performance

Challenges
with extreme

occlusions
and

cluttered
backgrounds

2016 Xia
et al. [17]

Two-stage CNN:
Head detection
and occlusion
classification

using EdgeBoxes
and multi-task

learning

Custom face
occlusion

dataset, AR
Face, LFW

Partial,
High

Accuracy
(Head

Detection,
IoU > 0.5),
Accuracy

(Occlusion
Classifica-

tion)

85.61%–100%
(Head Detection

IoU > 0.5);
94.55%-98.58%

(Occlusion
Classification)

Robust against
various

occlusions;
end-to-end

design

Sensitive to
illumination
and complex
textures in
real-world
scenarios

2017 Najibi
et al. [91]

Single-stage,
headless CNN
with context

module, OHEM

WIDER
FACE, FDDB,
Pascal-Faces

Partial,
High

mAP (Easy,
Medium,

Hard)

Achieved 91.9%,
90.7%, 81.4%

mAP on WIDER
FACE subsets.

FDDB:
Improved

precision-recall
curve

High efficiency
(50 FPS),

state-of-the-art
performance,

scale-invariant

Limited to
older

pre-trained
backbones

like VGG-16;
dependency
on specific

architectures

(Continued)
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Table 7 (continued)

Year Paper Methodology Datasets Occlusion
level

Evaluation
metrics

Key results Advantages Limitations

2017 Alafif
et al. [96]

Single CNN
model (LSDL)

with sliding
window and

NMS; trained on
a large-scale

dataset

AFW, FDDB,
LSLF,

CrowdFaces

Partial Precision,
ROC Curve

97.4% precision
on AFW;

competitive
results on FDDB

Robust to
occlusions,
poses; no

hand-crafted
features
required

Slower
inference

due to
sliding

window;
sensitive to
confidence
thresholds

2017 Hu and
Ramanan [84]

Multi-task
scale-specific
detectors with

contextual
foveal

descriptors

WIDER
FACE, FDDB

Partial,
High

AP, Recall-
Precision

AP: 81%
(WIDER FACE,

“Hard”);
Significant

improvement
over prior
methods

Robust for small
faces; effective
use of context

and multi-scale
features

Computationally
intensive;

struggles in
crowded

scenes

2017 Ge
et al. [13]

LLE-CNNs:
Feature

embedding via
dictionaries of

masked and
normal faces

MAFA Partial,
High

AP AP: 76.4%
(MAFA);

Significant
improvement

over 6 baselines

Effective for
partial

occlusion;
innovative
embedding

module

Limited
performance
on extreme
occlusions

and side
poses

2017 Wang
et al. [21]

FAN:
Single-stage

detector with
anchor-level
attention and

data
augmentation

WiderFace,
MAFA

Partial,
High

AP, mAP 88.8% AP
(WiderFace

Hard), 88.3%
mAP (MAFA)

Robust feature
enhancement
for occlusions

Relies on
anchor-

based
design

2018 Tang
et al. [85]

Pyramid
Anchors, LFPN,

CPM, Data
Anchor

Sampling

WIDER
FACE, FDDB

Partial,
High

mAP (Easy,
Medium,

Hard)

Achieved 96.1%,
95.0%, 88.9%

mAP on WIDER
FACE

Superior
performance

under
occlusions and

small faces;
innovative use
of contextual
information

High com-
putational
cost; semi-
supervised

anchor
labeling
process

2018 Chen
et al. [79]

AOFD:
Multi-task
model with
adversarial

masking and
segmentation

MAFA,
FDDB, SFS

Partial,
High

AP, Recall 81.3% AP
(MAFA), 97.88%

recall (FDDB)

Robust
occlusion
handling;
integrates

adversarial
learning and
segmentation

Small seg-
mentation

dataset;
computa-
tionally

intensive

2020 Yuan [3] Visual
attention-

guided model
with ResNet50
and attention
mechanisms

LFW,
CMUFD,

UCFI

Partial,
severe
occlu-
sions

Accuracy,
MR, FPS

Achieved
59.78% accuracy

on severely
occluded faces,

better than
other deep

learning models.

Robust to
occlusions;
integrates
semantic
features;

suppresses
background
interference

Sensitive to
parameter

tuning;
higher com-
putational
complexity

2020 Alashbi
et al. [37]

Context-aware
labeling and
training with
Niqab-Face

dataset

Niqab-Face High Accuracy,
Precision,

Recall

TinyFace: 46.5%
accuracy,

YOLOv3: 33.6%
accuracy

Highlights
importance of

contextual
labeling for
occlusion

Poor gener-
alization of

current
detectors on

heavily
occluded

faces
2020 Jin

et al. [83]
FSG-FD: Region
generation with

SG-net for
feature

enhancement

WIDER Face,
Self-labeled
monitoring

Partial,
High

AP, Precision,
Recall

AP: 77.6%
(WIDER Face);

Precision: 85.1%,
Recall: 76.7%
(real-world

dataset)

Robust feature
enhancement
for occluded

regions;
practical

applicability

Limited
adaptability
to extreme
occlusions

and
cluttered

backgrounds

(Continued)
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Table 7 (continued)

Year Paper Methodology Datasets Occlusion
level

Evaluation
metrics

Key results Advantages Limitations

2021 Zhang
et al. [89]

Single-shot
detector

enhanced with
STR, STC, SML,
FSM, and RFE

WIDER
FACE,
MAFA,

FDDB, AFW,
PASCAL Face

Extreme
poses,

tiny
faces

Precision,
Recall

State-of-the-art
performance on
WIDER FACE
(Easy: 97.2%,

Medium: 96.2%,
Hard: 92.0%)

and other
datasets with

significant
improvements
in AP scores

Effective
regression and
classification

modules; robust
against extreme

poses and
occlusions;

achieves
state-of-the-art

results

Dependency
on anchor

boxes;
relatively

high compu-
tational cost
due to added

modules

2021 Zhao
et al. [92]

Enhanced
YOLOv5 with
DIoU and data
augmentation

MAFA,
custom

web-based
dataset

Partial Accuracy,
Recall,

Precision

Improved
accuracy from

64.1% to 70.3%;
Faster

convergence
with DIoU

Robust against
diverse

occlusions;
faster training
convergence

Limited
performance
on extreme
occlusions
and uncon-

ventional
occluders

Table 8: Summary of reviewed deep learning approaches for occluded face detection (Part 2)

Year Paper Methodology Datasets Occlusion
level

Evaluation
metrics

Key results Advantages Limitations

2021 Wang
et al. [77]

EfficientFace:
Lightweight

framework with
SBiFPN, RFE, and

Attention Mechanism

AFW, Pascal
Face, FDDB,
WIDER Face

Partial,
High

mAP, AP mAP: 95.1% (Easy),
94.0% (Medium),

90.1% (Hard)

Real-time
performance;
robust against
occlusion and

unbalanced
aspect ratios

Struggles in extreme
occlusion and dense

cluttered scenes

2021 Tsai
et al. [90]

Integrated SSH
network with VGG16

feature extraction;
feature pyramids for

scale invariance

WIDER FACE,
MS1M-ArcFace

Partial mAP, Precision-
Recall

High precision;
robust for small and

medium faces

Real-time
detection;

effective scale
invariance

Dependent on
VGG16 for extreme
occlusions, limited

adaptability to
extreme occlusions

2022 Alashbi
et al. [45]

MobileNet-SSD with
context-based

labeling

Niqab-Face
dataset

Heavy
occlusion
(niqabs,
masks)

Precision,
Recall

Precision: 99.6%,
Recall: 59.9%;
outperformed
MTCNN and

Mobilenet on heavily
occluded datasets

Efficient
real-time
detection;
superior

precision for
occluded faces

Limited training
dataset; lower recall

due to extreme
occlusion

2022 Garg
et al. [86]

Multi-scale anchor
boxes with IoU

adjustment

FDDB Partial Accuracy,
Precision, F1

Score

94.8% accuracy,
98.7% precision,

98.25 F1 score; 21 FPS

High precision
and speed;

robust
occlusion
detection;

tailored anchor
box strategy

Dependency on
anchor-based design;
limited evaluation on

other datasets

2022 Zhang
et al. [20]

Enhanced RetinaNet
with attention

mechanism and
URIE pre-network

MAFA,
WiderFace

Weak,
Medium,

Heavy

mAP, AP mAP 89.7% (MAFA);
AP 84.5% (Weak),
75.8% (Medium),

26.1% (Heavy)

Enhanced
visible regions;

robust
occlusion
handling

Limited performance
for high occlusion;

large-scale variations

2023 Mamieva
et al. [88]

RetinaNet with RON
and multi-scale

feature pyramids

WIDER FACE,
FDDB

partial AP, Precision,
Recall, FPS

AP: 41.0
(single-scale), 44.2

(multi-scale);
Accuracy: 95.6%

High accuracy;
robust to

occlusion and
small scales;
competitive

speed

High computational
cost for multi-scale
inference strategies

2023 Zhao
et al. [78]

YOLO-v4 with
CBAM, SENet, and

CANet attention
mechanisms

MAFA, WIDER
FACE

Partial,
High

mAP, FPS mAP: 93.56%
(YOLOv4-CBAM-A);
4.66% improvement

over baseline

Enhanced
feature

extraction;
robust against

occlusions

Increased
computational cost;
reduced real-time

performance

2023 Kurniawan
et al. [94]

YOLO-v5 with
dataset variation and
resolution assessment

M dataset, S
dataset, G

dataset

Partial Detection Rate,
mAP

G dataset (640px):
99.2%; M dataset
(640px): 98.9%; S
dataset (640px):

98.5%

High accuracy
with diverse

datasets;
resolution-

aware
detection

Struggles with small
objects and extreme
lighting conditions

(Continued)
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Table 8 (continued)

Year Paper Methodology Datasets Occlusion
level

Evaluation
metrics

Key results Advantages Limitations

2023 Nadhum
[93]

Ghost-YOLOv5:
Lightweight

convolution for
efficient detection

Custom dataset
(219 images)

Partial mAP Improved mAP:
96.6% vs. baseline
YOLOv5 (89.11%)

Lightweight;
real-time

performance;
robust detection

Struggles with
unconventional

masks and low-light
scenarios

2023 Iqbal
et al. [97]

Comparative
evaluation of

state-of-the-art face
detection models on

masked faces
(RetinaFace, EXTD,

etc.)

WIDER Face
(blacked-out

masked dataset)

Partial,
High

Accuracy 84% (Easy), 80%
(Medium), 59%

(Hard)

Highlighted
performance

variations
across models

Limited by lack of
diverse masked

datasets

2024 Yu
et al. [86]

YOLOv5-based
detector with RFE,
SEAM, Slide Loss,

and NWD Loss

WIDER FACE Partial,
High

mAP (Easy,
Medium, Hard)

Achieved 98.7%,
97.2%, 87.7% mAP on

WIDER FACE
subsets

Robust
occlusion
handling;
effective

multi-scale
detection;

state-of-the-art
performance

High computational
cost; dependency on

anchor-based designs

2024 Jiang
et al. [82]

4AC-YOLOv5:
Improved YOLOv5

with small target
detection layer,

AFPN, and
C3_MultiRes

WIDER Face,
FDDB

Partial,
High

mAP, TPR mAP 94.54% (Easy),
93.08% (Medium),

84.98% (Hard); TPR
0.99 (FDDB)

Effective for
small faces;

robust feature
fusion; reduced
computational

overhead

Struggles with heavy
occlusion in dense

scenes

2024 Qi
et al. [76]

Enhanced YOLOv5
with CBAM and

Focal Loss

WIDER Face,
AIZOO

Partial,
High

mAP50, F1 mAP50: 95.9%
(WIDER Face),

96.5% (AIZOO); F1:
92.8%, 94.3%

Real-time
performance;

improved
detection of

occluded faces

Limited in extreme
occlusion and

varying lighting

2025 Alashbi
et al. [18]

Darknet-53 with
contextual features

Niqab-Face High Precision,
Recall, F1, AP

Precision: 73.70%,
Recall: 42.63%, AP:

50.34%

Effective in
highly occluded

scenarios

High false positives;
limited

generalizability to
other occlusion

types; environmental
factors untested

4.2.7 Context-Aware Approaches
By using contextual information around occluded areas, Alashbi et al. [37] proposed a CNN-based

method to identify highly occluded faces. The Niqab-Face dataset, which comprises 10,000 images with high
levels of facial occlusion (i.e., faces covered by niqabs) was first introduced by the authors. This dataset
was specifically annotated to enable CNN models to train on the visible facial parts and their surroundings
to improve detection. The work was evaluated on the Niqab-Face dataset against MTCNN, MobileNet,
TinyFace, and YOLOv3. Among the models, TinyFace gave the best accuracy of 46.5%, YOLOv3 followed
with 33.6% accuracy while MTCNN and MobileNet had a low accuracy of 18% and 20%, respectively. These
results showed that existing detectors have a challenge with extreme forms of occlusion. The authors argued
that context-aware labeling is necessary to improve the detection but also that there is a need for better
models that are specifically meant for highly occluded faces.

Recently, Alashbi et al. [18] proposed an Occlusion-Aware Face Detector (OFD) to localize covered
faces with high levels of occlusion such as niqab covers. To enhance the feature learning process, the model
utilized contextual information such as head pose and shoulders, and body aspects. The authors enhanced
the Darknet-53 backbone architecture to include more layers to enhance the feature learning of occluded
faces. The OFD model outperformed other models including YOLO-v3, Mobilenet-SSD, and TinyFace with
a precision of 73.70%, recall of 42.63%, and F-measure of 54.02%. It also offered a 50.34% average precision
(AP). However, the model had low generalization capacity to non-niqab occlusions and had high rates of false
positives, particularly in complex settings. It also did not really solve the problems of cluttered environments
and poor illumination. Furthermore, it did not solve challenges like small dataset size, imbalanced dataset,
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overfitting, computational expense, and inaccurate detections. These problems are likely to hinder the
adoption of this model in real-world applications.

4.3 Transformer-Based Models for Occluded Face Detection
In recent years, transformer architectures [99] and generative adversarial networks (GANs) [79] have

gained substantial attention in computer vision because of their impressive ability to capture long-range
dependencies and generate realistic imagery. Notably, when addressing occluded face detection, these models
effectively manage complex spatial relationships and reconstruct plausible facial structures in areas that are
partially obscured, thereby enhancing overall detection performance. Transformer-based models, such as
Vision Transformer (ViT) [100–102], Swin Transformer [103–105], and Detection Transformer (DETR) [106],
have been widely explored for face-related tasks. For example, SwinFace [107] employs a Swin Transformer
backbone to address various face analysis tasks such as face recognition, facial expression recognition,
age estimation, and attribute prediction. Similarly, DETR introduces a fully end-to-end transformer-based
framework for object detection, which has been adapted in recent studies to improve face detection
performance, particularly in challenging scenarios involving occlusions. These approaches highlight the
capability of transformer-based models to extract comprehensive facial features and spatial relationships,
even under difficult real-world conditions. A summary of the Transformer-based models discussed in this
subsection is presented in Table 9.

Several recent works have leveraged the Swin Transformer to improve face detection and recognition
robustness. For instance, Mao et al. [108] utilized a Swin Transformer backbone to enhance masked face
detection performance. Their model, optimized through hyperparameter tuning, demonstrated superior
results over classical CNN models but required higher computational resources. The workflow of their
proposed model is illustrated in Fig. 9. Building upon YOLOv5, Yuan et al. [109] integrated Swin Transformer
layers within a customized detection head, resulting in the DSH-YOLOv5 model, which achieved strong
performance on WIDER FACE, FDDB, and PASCAL FACE datasets while maintaining practical efficiency. In
another line of work, Zhou [110] designed YOLO-M, embedding Swin Transformer prediction heads within
the detection framework to better address local occlusion challenges, achieving noticeable improvements on
the WIDER FACE dataset. Furthermore, Zhao et al. [111] addressed masked face recognition by proposing
the Masked Face Transformer (MFT). Their approach introduced Masked Face-compatible Attention (MFA)
and a ClassFormer module to enlarge attention range and enhance intra-class consistency, outperforming
prior methods on masked datasets.

Figure 9: Schematic diagram of the Swin Transformer-based mask detection model [108]

Parallel to Swin Transformer research, other studies have investigated Vision Transformer (ViT)
backbones. Pandya et al. [112] explored the use of ViT for face mask classification, achieving 86% accuracy
on a small custom dataset. Their analysis highlighted that smaller patch sizes preserved finer facial details,
enhancing classification robustness. Despite the promising results, the study acknowledged that the limited
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dataset size posed challenges to generalization and scalability. In the context of facial expression recognition,
Li et al. [113] developed the Mask Vision Transformer (MVT), introducing a mask generation network and a
dynamic relabeling strategy to explicitly filter occluded or irrelevant regions, leading to improved robustness
on RAF-DB, FERPlus, and AffectNet datasets. However, MVT’s reliance on masking and relabeling strategies
may limit its direct applicability to domains beyond expression recognition. In another application, Lee
et al. [114] proposed Latent-OFER, a ViT-driven method for occluded Facial Expression Recognition (FER).
By detecting and reconstructing occluded regions and extracting latent features via ViT and CNN hybrids,
Latent-OFER achieved state-of-the-art results on occluded FER benchmarks. However, the authors noted
that while the method showed strong performance, scalability across highly diverse datasets might require
multi-dataset training strategies.

Detection Transformer (DETR) and its variants have also been adapted to handle occlusion challenges.
Al-Sarrar and Al-Baity [115] combined a DETR face detector with an AlexNet-based mask classifier. Extensive
experimental evaluations demonstrated that the proposed hybrid model surpassed previous CNN-based
approaches. However, the model’s execution speed, while acceptable for real-time applications, remains
slower than lightweight CNN-only models. Beyond application, Zhao et al. [116] systematically analyzed
DETR’s behavior under occlusions and adversarial attacks. Their findings revealed DETR’s strong resilience
to moderate occlusion but exposed performance degradation under severe occlusion and heavy corruption
due to a “main query” imbalance in attention. For real-time detection, Li et al. [117] developed DDR-DETR
by optimizing RT-DETR with modules such as StarNet and CGRLFPN. Their model achieved improved
mAP50-95 in classroom settings, offering an efficient solution for detecting faces under blur and occlusion.

Some studies specifically targeted occlusion-handling architectures beyond standard vision backbones.
Chiang et al. [118] introduced ORFormer, an occlusion-robust transformer for facial landmark detection.
By employing messenger tokens and dissimilarity evaluation, ORFormer selectively recovers non-occluded
features, achieving strong performance on WFLW and COFW datasets. However, the authors noted that
while the method showed strong performance, scalability across highly diverse datasets might require multi-
dataset training strategies.

Hybrid architectures combining CNNs with Transformers have also shown promise. Zhang et al. [119]
introduced E-CT Face, a lightweight face detector that fused CNNs for local detail preservation with ViT
blocks for capturing global context. Their model maintained competitive performance on WIDER FACE
and FDDB while using significantly fewer parameters than traditional heavyweight detectors. However, the
method still fell slightly behind heavyweight detectors on extremely challenging conditions and complex
datasets. Similarly, the Latent-OFER model by Lee et al. [114], although focused on facial expression recog-
nition, employed a hybrid CNN-ViT design to handle occlusion recovery and feature extraction effectively.

Overall, the Transformer-based models show great potential in solving face detection and recognition
problems under occlusion through their Swin Transformers, Vision Transformers, and Detection Trans-
former variants. These models surpass traditional CNN-based approaches because they use long-range
dependencies to improve feature representation, which leads to better robustness and accuracy. The recent
development of ORFormer and Latent-OFER demonstrates the increasing interest in designing systems that
recover valuable information from partially hidden faces. Despite their promising performance, challenges
such as computational complexity, generalization to various types of occlusion, and real-time applicability
remain active areas for further research.
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Table 9: Summary of reviewed transformer-based methods for occluded face detection

Year Study Methodology Dataset Occlusion
level

Evaluation
metrics

Key results Advantages Limitations

2024 [108] Swin
Transformer
for face mask
detection with
model tuning

RMFRD,
SMFRD,
Moxa3K

Partial
occlusion

(mask)

Accuracy,
Precision,

Recall,
Specificity,
F1-score,
Kappa,
MCC

Swin
Transformer
outperforms

baselines

Superior
feature

extraction,
handles

occlusion
better

Higher
computa-

tional
complexity
compared

to
lightweight

models
2024 [118] ORFormer:

Transformer
with messenger

tokens for
occlusion

detection and
feature

recovery in
FLD

WFLW,
COFW,
300W

Partial
occlusion
(occluded

facial
landmarks)

NME, FR,
AUC

Outperformed
baselines under

occlusions

Explicit
occlusion

detection and
feature

recovery;
improved
landmark

detection in
challenging
conditions

Heavy
reliance on

a well-
trained

quantized
heatmap
generator

2021 [113] MVT: Pure
transformer-

based FER with
mask

generation and
dynamic

relabeling

RAF-DB,
FERPlus,

AffectNet-
7/8,

Occlusion-
RAF-DB,

Pose-RAF-
DB

General
occlusion

(back-
grounds,
masks,
pose)

Accuracy Achieved
88.62%

(RAF-DB),
89.22%

(FERPlus),
64.57%

(AffectNet-7);

Explicitly
filters

occlusions
and

background;
robust to

real-world
FER

challenges

May be
limited to
expression
recognition
tasks due to

task-
specific
masking

2024 [119] E-CT Face:
Bi-Stream
CNN and

Transformer
hybrid

backbone with
feature

enhancement
and multiscale

aggregation

WIDER
FACE,
FDDB

General
occlusion
(blur, pose
variation,

small faces,
crowded
scenes)

AP 95.30% (easy),
94.20%

(medium),
87.56% (hard)

on WIDER
FACE; strong
performance

with only 3.8M
parameters

Combines
local and

global
features;

lightweight
and fast

Still slightly
behind
heavy-
weight

models on
very

difficult
conditions

2023 [115] Hybrid DETR
+ AlexNet

model for face
mask detection

AIZOO
FMD +
MMD

Partial
occlusion

(face
masks)

AP,
Execution

Time

Achieved
89.4% AP and
2.8 s execution

time; better
than

YOLOv2+ResNet50
and LLE-CNNs

Combines
Transformer

detection
strength with

CNN
classification
speed; robust

against
masked faces

Slower
execution
compared

to pure
CNN

lightweight
models

(Continued)
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Table 9 (continued)

Year Study Methodology Dataset Occlusion
level

Evaluation
metrics

Key results Advantages Limitations

2023 [116] Robustness
study of DETR
on occluded,

adversarial, and
corrupted

images

COCO128
(custom

occlusion &
corruption
scenarios)

Random
occlusion,

salient
occlusion

mAP,
mAP50

DETR
outperformed
Faster-RCNN
and YOLOv5
on moderate
occlusions;

showed
resilience

against sticker
attacks

Superior
performance

on partial
occlusion;

good
adversarial
robustness

Weaker
perfor-
mance
under
heavy

corruption;
slow con-
vergence

due to
dominant
query phe-
nomenon

2024 [117] DDR-DETR:
Lightweight

real-time
DETR variant
for classroom
face detection

Custom
classroom

dataset

General
occlusion

(blur,
low-res
faces,
partial

occlusions)

mAP50-95 Improved
mAP50-95;

efficient
real-time
detection

Optimized
real-time

Transformer
detection

under
occlusion

not
validated

on broader
public

datasets

2023 [114] Latent-OFER:
ViT-SVDD
occlusion

detection +
hybrid

reconstruction
+ latent feature

extraction

RAF-DB,
AffectNet,
FED-RO,

Occlusion-
RAF-DB,

Occlusion-
AffectNet

Random
real-world
occlusions

Accuracy Outperformed
SOTA methods

on occluded
FER

benchmarks

Full occlusion
handling
pipeline;

strong FER
boost

May
require
multi-
dataset

training for
broader

scalability

2024 [109] DSH-YOLOv5:
YOLOv5 with

Swin
Transformer
and attention

modules

WIDER
FACE,
FDDB,

PASCAL
FACE

Pose,
occlusion,
extreme

light
conditions,

masks

AP Achieved
SOTA on
results;

competitive
speed

Integrates
Transformer
attention and
strong feature
enhancement;

practical
extensions

(mask,
gender)

May
introduce

complexity
compared

to standard
YOLOv5

2023 [112] ViT for face
mask

recognition
with patch size

analysis

Custom
small

dataset
(<1,000
images)

Partial
occlusion

(face
masks)

Accuracy 86% accuracy;
showed finer

patches
improve
detection

Introduced
ViT to face

mask
recognition

Limited by
small

dataset;
generaliza-

tion
challenges

2024 [110] YOLO-M:
YOLOv5-based
occluded face
detector with

Swin
Transformer
Prediction

Head (STPH)
and I-PANet

WIDER
FACE

Complex
local

occlusion
(lighting,
obstruc-

tion,
pose)

AP Improved face
detection

accuracy under
occlusion

Enhanced
multi-scale
fusion and

global context
modeling

Only
evaluated

on WIDER
FACE; gen-
eralization

to other
datasets not
discussed

(Continued)
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Table 9 (continued)

Year Study Methodology Dataset Occlusion
level

Evaluation
metrics

Key results Advantages Limitations

2023 [111] MFT: Masked
Face

Transformer
with MFA and
ClassFormer

Simulated
and real
masked

face
datasets

Mask
occlusion

– Outperformed
SOTA masked
FR methods

Enlarged
attention

range;
intra-class

enhancement

Designed
mainly for

masked
face

recognition

4.4 GAN-Based Methods
Although this review focuses mainly on direct face detection under occlusion, several GAN-based

methods have also been proposed to indirectly support this task. GANs contribute by reconstructing missing
facial regions, restoring occluded faces, and augmenting datasets to improve the robustness of detection
models. This subsection briefly highlights notable GAN-based approaches relevant to occlusion handling
and face detection.

Restoring missing or occluded parts of the face has been a major focus of early GAN-based methods.
Authors in [120] proposed a Deep Convolutional GAN (DCGAN) that restores blocked regions in facial
images by learning from both occluded and unoccluded samples. Their model showed promising restoration
capabilities for images with up to 50% occlusion. In a related approach, Lee and Han [121] introduced a
three-stage GAN framework where occluded parts are first recognized and separated, then removed, and
finally reconstructed, using dual discriminators to refine the restored regions. Their model demonstrated
competitive results measured by FID, SSIM, and PSNR on the CelebA and FFHQ datasets. Similarly, Nelson
et al. [122] combined feature extraction with an SR-SSA optimized GAN for occluded face recognition. By
integrating Search and Rescue Optimization into a GAN training pipeline, they achieved a notable 95.6%
accuracy rate on occlusion-affected datasets.

Moving beyond simple restoration, some studies integrated occlusion handling with other face-related
tasks. For example, Duan et al. [123] proposed TSGAN, a two-stage GAN architecture that simultaneously
performs face de-occlusion and frontalization. Their model utilized an occlusion mask-guided attention
mechanism and dual triplet losses to preserve identity features throughout the recovery process. Evaluations
on both constrained and unconstrained datasets confirmed TSGAN’s effectiveness in synthesizing frontal,
occlusion-free face images. Given the computational demands of traditional GANs, lightweight alternatives
have emerged. For example, a Lightweight DCGAN (LW-DCGAN) was proposed by Lv et al. [124]. The
suggested model aimed to reconstruct partially occluded faces with fewer parameters and faster inference
times to baance speed with visual quality. Another work by Zhou and Lu [125] introduced a Masked Face
Restoration Model based on a lightweight GAN, specifically targeting the challenge of restoring masked or
obstructed facial images with minimal computational overhead.

Face inpainting has also been explored through GANs to deal with occlusion. The FD-StackGAN model
introduced by Jabbar et al. [126] focused on generating complete face images by stacking multiple GAN
stages to progressively refine the missing areas. Meanwhile, in the “Look Through Masks” study [127], a
GAN model was trained to de-occlude masked faces, removing occlusion artifacts and recovering underlying
facial textures while preserving identity information. Furthermore, Man and Cho [128] proposed T-GANs,
a novel face restoration framework combining a Transformer module with GANs to improve occluded face
inpainting, as illustrated in Fig. 10. Rather than focusing solely on restoration, some methods leveraged
GANs to improve training data diversity. Qiu et al. [129] introduced a novel approach called FROM,
where dynamically learned occlusion masks are applied to deep features during training to clean corrupted
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representations. Additionally, other studies [130] explored using GANs for face dataset augmentation,
generating a variety of occluded and clean faces to enhance detector robustness.

Figure 10: The architecture of the T-GANs framework proposed in [128], combining a Transformer module with GAN
components for occluded face restoration

In general, GAN-based methods have substantially improved face detection and recognition under
occlusion by providing solutions for restoration, frontalization, and data enhancement. Traditional GANs
produced high-quality restorations, but recent works have focused on lightweight architectures and task-
specific adaptations to better support real-world occluded face detection scenarios.

4.5 Hybrid Methods
This subsection discusses techniques that combine traditional feature-based approaches with modern

deep learning techniques, leveraging the strengths of both methodologies to enhance robustness against
occlusion. Some methods are combining traditional machine learning with deep learning, or using multiple
techniques (for example, feature extraction + CNN). A detailed comparison of hybrid methods is presented
in Table 10.

To improve the detection of faces in challenging conditions such as heavy occlusions, extreme poses,
poor lighting, and low resolutions, Zhu et al. [131] proposed CMS-RCNN, a deep learning-based model. The
model also learned multi-scale features and performed contextual reasoning by using both facial and body
contexts for better detection results. It also incorporates a Multi-Scale Region Proposal Network (MS-RPN)
which is responsible for producing likely face regions and a Contextual Multi-Scale CNN (CMS-CNN) for
further processing of these regions, including facial and body context. The use of body features was also
inspired by the concept of using body features to confirm the presence of faces or the absence of them
in occluded or low-resolution images. The CMS-RCNN model was evaluated on WIDER Face and FDDB
datasets. It achieved high accuracy and outperformed baseline models. On the WIDER Face dataset, it
achieved AP of 90.2% (Easy), 87.4% (Medium), and 64.3% (Hard). It also had good recall rates on the FDDB
dataset. However, it had some problems including the detection of faces in densely crowded scenes and
the need for a large number of computational resources owing to the use of multiple feature streams and
region proposals.
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In a different hybrid approach, Zhang et al. proposed a face occlusion detection algorithm for ATM
surveillance scenarios in [26]. The method addressed challenges such as restricted views, harsh lighting
conditions, and severe occlusions due to masks, hats, or sunglasses. It combines techniques for head
localization, tracking, and occlusion verification. The head localization was performed using the Omega
shape which is the shape formed by the head and shoulders and the potential energy function was used
to model it to detect heads even when the facial features are fully occluded. The detection framework
was integrated with gradient and shape cues into a Bayesian tracking algorithm to improve computational
efficiency. The system also uses a cascaded classifier for occlusion verification, which combines skin color
analysis and face template matching, trained with the AdaBoost algorithm. The performance of the system
was evaluated on a custom dataset of 120 video sequences and the head detection accuracy was 98.64% and
the occlusion detection accuracy was 98.56% with the frame rate of 12 fps. However, it has some restrictions
in dynamic lighting and complex occlusions, which are outside the omega-shaped region.
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The study by Shin and Kim [132] proposed a hybrid approach that combined discriminative and
generative methods to improve facial feature detection and tracking, especially under occlusions and
pose variations. Discriminative techniques ensured accurate feature localization using local constraints,
while generative methods minimized global appearance errors. The method worked in two stages. First, it
estimated facial pose and initialized parameters using a multi-view face detector and the RANSAC method.
Then, it refined the parameters by combining local shape errors and global appearance errors through
iterative optimization. To handle occlusions, a shape-weighting matrix excluded occluded features from
optimization. It also extended the framework for facial feature tracking by ensuring temporal continuity
across video frames. Evaluations on datasets like AR Face Database (AR), Labeled Face Parts-in-the-Wild
(LFPW), and Talking Face Video showed that the approach achieved lower error rates than existing methods,
particularly under heavy occlusions, reducing errors by about 10% on the AR dataset. However, the process
required more computation time due to the combined optimization. Another hybrid approach for detecting
partially visible and occluded faces captured by mobile cameras was proposed by Mahbub et al. [47]. The
study introduced two approaches: proposal-based detection and end-to-end regression-based detection. The
proposal-based methods, including FSFD, SegFace, and DeepSegFace, generated facial segment proposals
and classified them using SVMs or CNNs, but they were computationally intensive. To address this,
the authors developed DRUID (Deep Regression-based User Image Detector), which bypassed proposal
generation and directly predicted face and segment bounding boxes using a regression loss function. DRUID
also utilized data augmentation and regularization to handle variations in visibility, scale, and lighting. Tests
on UMDAA-02-FD and AA-01-FD datasets showed that DRUID outperformed other methods, achieving a
True Acceptance Rate (TAR) of 91.65%. However, the model was limited to single-face detection and required
diverse datasets for better generalization across different occlusion patterns. To protect drivers from dazzling
light, the study by Liu and Graeser [133] introduced methods for detecting faces with eye occlusions caused by
shadows, such as those created by systems like ShadeVision. To enhance the detection accuracy and to reduce
the false positives the authors have suggested several strategies. One of the approaches, Partially Masked
Training (PMT)–trained the model on shadowed images which helped the model to generalize better in the
presence of occlusions. Another method Consecutive Sub-block Training (CST)–splits training images into
sequential blocks to enhance the robustness to occlusions. Based on CST, Overlapped Sub-block Training
(OST) was also introduced to enhance the performance by using overlapping image regions for better facial
landmark coverage. OST detected the faces with 91.3% accuracy using four sub-blocks and 97.9% accuracy
using six sub-blocks with false positive rates as low as 0.2%. Nevertheless, the methods had some problems
with computational complexity, especially when using more sub-blocks, and PMT had a problem with the
invariance to the shadow intensity, which limited its generality.

El-Barkouky et al. [134] presented a framework for detecting partially occluded faces in difficult
conditions. It proposed the Selective Parts Model (SPM) as an enhancement of the Deformable Parts Model
(DPM) that aimed at comparing only those parts of the face that are not covered by an occlusion, instead
of using the entire face. The SPM-based face detection used small parts of the face and assigned confidence
values to each part according to its visibility and combined these values into a single global detection score
that gave higher weights to the visible parts. The results of the experiments on FDDB and WIDER FACE
datasets were 87% of TPR for partially occluded faces, which is better than that of the standard DPMs for
extreme occlusion and complicated backgrounds. Nevertheless, the method had some limitations, namely,
it could not work effectively with the most severe occlusions (less than 30% of the visibility) and had a high
computational complexity due to the description of the multiple parts, which prevents real-time operation.
In the study conducted by [135], a technique was introduced to detect partially obscured faces using pivotal
point analysis. Some random important facial features were picked from the list, including the eye pupils,
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nose tip, and mouth center (referred to as pivotal points), and then used to find out the extent of the occlusion.
It applied the Viola-Jones algorithm for the feature extraction and used the PCA for the dimensionality
reduction to improve the computational complexity. An SVM-based binary classifier was implemented to
distinguish between an occluded and a non-occluded face based on the availability of the pivotal points.
The method was tested on the AR Face Database and real-time images with 97% accuracy. Its robustness
was shown by such metrics as TPR and FPR. However, the system had some drawbacks, including the
sensitivity to low light, and the presence of unwanted faces with a tilted posture, which sometimes led to
incorrect decisions. In 2019, reference [25] introduced a method for detecting partially uncovered faces
in low-resolution surveillance videos, with a specific emphasis on Central Asian clothing, such as head
coverings. The approach used Haar Cascade and Locally Binary Patterns Histogram (LBPH) to find features
and SVM for classification. To improve the sensitivity, color histogram analysis was performed to enhance the
probability of detecting skin color regions. A new dataset was also employed; this consisted of surveillance
videos with more than 10,000 face images of people in a crowd in office environments with all poses and
partial coverage. It was found that the use of the proposed method enhanced the precision of the detection
as compared to the use of Haar Cascade or LBPH alone. However, the method had some limitations, such as
sensitivity to dynamic occlusions and low accuracy in detecting side-view faces in low-resolution videos.

4.6 Summary of Reviewed Studies
This section presents a visual summary of the research studies to give a general view of the trends,

preferred methodologies, and dataset choices in the reviewed studies.
Fig. 11 shows a noticeable increase in research interest, particularly after 2015. This reflects the growing

relevance of this topic due to advances in deep learning and the increasing demand for robust face detection
systems in challenging scenarios.

Figure 11: Number of publications per year that focused on face detection under occlusion

The pie chart in Fig. 12 shows that deep learning-based methods are the most popular (69.9%), while
hybrid approaches that combine traditional and modern techniques are also widely used, indicating the
attempt to combine different strategies for better occlusion handling.
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Figure 12: Percentage of research publications across categories

Fig. 13 highlights the predominance of WIDER Face, FDDB, and MAFA datasets, confirming their role
as benchmarks. Other datasets, such as AFW, and PASCAL Face, also show notable usage, which indicates
their relevance in specific research scenarios. It is important to note that the remaining 38% of the datasets
were used only once. These datasets are often custom-made, designed for specific domains, or are not publicly
available, which may limit their widespread adoption in face detection research. However, the appearance of
specialized datasets like Niqab-Face suggests increasing attention to diverse and severe occlusion scenarios.

Figure 13: Common datasets used more than twice in the reviewed publications, representing 62% of all analyzed
datasets

5 Benchmark Datasets for Occluded Face Detection
Having discussed the primary detection methodologies, we now review the benchmark datasets

commonly used to train and evaluate occluded face detection models. Benchmark datasets play a crucial
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role in the development and evaluation of face detection algorithms, providing standardized benchmarks to
compare the performance of various methods under diverse conditions. These datasets often encompass a
wide range of variations, including changes in pose, illumination, expressions, and occlusions. The inclusion
of such variation factors ensures that face detection models are robust and adaptable to real-world scenarios.
Among the many datasets, not all of them are used for the same purpose; some are used for general face
detection, such as the Face Detection Dataset and Benchmark (FDDB) [136], PASCAL Face [137], Annotated
Faces in the Wild (AFW) [10], IARPA Janus Benchmark A (IJB-A) [138], Wider Face [4], and Masked Faces
(MAFA) [13], which present images with various constraints and challenges. However, since occlusion is still
a major problem in face detection, not all of these datasets have been designed to include only images that
meet specific occlusion-level constraints, but some of them have, such as the Masked Face Detection Dataset
(MFDD) [139], Niqab Dataset [6], Headscarf Partially Covered Face Dataset [25] and Face-Mask Label
Dataset (FMLD) [22]. There are a few datasets which are particularly developed to evaluate the performance
of occlusion detection algorithms, and these include the FaceOcc Dataset [140], and FSG-FD Dataset [83]
with images having annotated occlusion types and levels.

This section presents an overview of the commonly used datasets for face detection benchmarking,
with a particular emphasis on those that support the task of detecting occluded faces. A detailed comparison
of these datasets is provided, which includes attributes such as size, image quality, levels of occlusion,
types of occlusion, and other factors that are relevant when evaluating face detection systems in occluded
conditions. Tables 11 and 12 offer a structured comparison across multiple dimensions, covering the dataset
source, the number of images and labeled faces, the types and severity of occlusion, variation factors (e.g.,
pose, lighting, expression), annotation details, intended primary use (e.g., detection or recognition), and
suitability for occlusion-aware face detection models. The table also contains information on whether the
datasets are easily retrievable and accessed by researchers for their projects. Where applicable, “N/A” in the
table means that the particular feature is not specifically discussed in the referred literature.
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This comprehensive comparison aims to assist researchers in understanding the strengths, limitations,
and suitability of each dataset for various occlusion scenarios. In addition to the comparison, Fig. 14 below
shows examples of images together with their descriptions from some of the common datasets. These
visualizations show the variety of occlusions in terms of their type, severity and surrounding environment
present in the datasets.

Figure 14: Sample images from benchmark datasets, including WIDER FACE, MAFA, Niqab Dataset, AR Face
Database, ROF, and UFDD

5.1 Key Observations from Dataset Comparison
From the detailed comparison in Tables 11 and 12, several key observations can be made:

1. Dataset Primary Use: While some datasets, such as the AR Face Database and Real-world Masked Face
Recognition (RMFRD), are primarily designed for face recognition, they can also be utilized for face
detection tasks. This is possible because the annotation details (e.g., bounding boxes and identity labels)
support face localization, which is a prerequisite for detection models.

2. Levels and Types of Occlusion: Most datasets provide partial occlusions, such as masks, sunglasses,
hands, and scarves. However, datasets like Niqab Dataset and MAFA explicitly focus on heavy occlu-
sions, making them particularly suitable for benchmarking models designed for challenging scenarios.

3. Variation Factors: The majority of datasets include multiple variation factors, such as pose, lighting
conditions, and occlusion types, enhancing their utility for training robust models.

4. Suitability for Occlusion Detection: Datasets like WIDER FACE, MAFA, and Dazzling Avoidance
Occluded Face Dataset are highly suitable for evaluating face detection under occluded conditions due
to their diverse annotations and focus on occlusion-handling capabilities.

5. Accessibility: While many datasets are publicly available (e.g., WIDER FACE, UFDD, and FaceOcc
Dataset), others are restricted or require requests for research purposes, which may limit their
accessibility.

6. Recent Surge in Dataset Availability: There is a noticeable trend of increased interest in creating datasets
for occluded face detection in recent years, particularly between 2019 and 2023. This surge reflects the
growing importance of occlusion-aware face detection, especially with real-world demands such as
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masked face detection due to the COVID-19 pandemic. Examples include the Masked Face Detection
Dataset (MFDD), Face-Mask Label Dataset (FMLD), and the Headscarf Partially Covered Face Dataset.

5.2 Additional Observations: Diversity, Environment, and Realism
Alongside the structured comparison in Tables 11 and 12, there are several additional factors that

affect how suitable and fair occluded face detection datasets are. These include demographic diversity, the
range of environments, and image resolution; factors that standard evaluation metrics often overlook. For
example, the WIDER FACE dataset contains images from 60 different event categories, showing a wide
range of poses, scales, facial expressions, appearances, and levels of occlusion. It also features both indoor
and outdoor scenes, making it a strong reflection of real-world conditions. However, it does not provide
detailed demographic information such as gender or ethnicity, which makes it harder to assess fairness in
detection performance.

Demographic diversity-such as gender, ethnicity, and age-is often either limited or not consistently
recorded in many datasets. Some datasets, like LSLF, RMFRD, FaceOcc, and FMLD, include a range of
participants or provide demographic labels, which allows for more comprehensive evaluations. On the other
hand, datasets like AR Face, FDDB, and Niqab do not include clear demographic information, making it
harder to evaluate how well models perform for different groups. This lack of demographic data can result
in detection systems that are biased and less accurate for underrepresented communities.

The environment where images are collected, whether indoors, outdoors, or a mix of both, also
influences how well models generalize. Datasets like WIDER FACE, FDDB, and UFDD include a variety of
conditions, covering both indoor and outdoor scenes, which makes them more suitable for real-world appli-
cations. In contrast, datasets such as AR Face and the Dazzling Avoidance Occluded Face Dataset are gathered
in controlled settings, which can limit their effectiveness in more dynamic or unpredictable environments.

Image resolution plays an important role in face detection. Some datasets, like LSLF and the Custom
Covered Face Dataset, provide high-resolution images that keep facial details clear, which helps in identifying
subtle occlusions. On the other hand, older datasets such as AR Face and AFW contain lower-resolution
images, which can reduce detection accuracy, especially when using advanced deep learning models.

These challenges reveal potential biases that may impact the robustness, fairness, and generalizability of
face detection models. To create more effective and inclusive systems, future datasets should include a wider
range of demographics, diverse environmental conditions, and more consistent annotations for different
types of occlusions.

6 Challenges and Limitations in Occluded Face Detection
Despite recent advancements, the development of reliable occluded face detection models faces multiple

ongoing challenges. This section identifies the main limitations and open problems that limit current
methods while highlighting specific areas that need additional innovation. These challenges arise due to
partial or full occlusion of facial regions, loss of critical features, and generalization issues across different
occlusion types. This section categorizes the major challenges into algorithmic challenges, dataset challenges,
and performance and generalization issues.

6.1 Algorithmic Challenges
Algorithmic challenges involve the technical limitations faced by detection models when handling

occluded faces:
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6.1.1 Loss of Critical Feature Information
Occluded faces often lack visible key features (e.g., eyes, nose, mouth), making it difficult for both tradi-

tional methods (e.g., Haar cascades, HOG) and deep learning models to extract discriminative information.
This significantly affects detection accuracy, especially under heavy occlusion.

6.1.2 High Rate of False Positives
Some models are wrongly triggered by occlusions resembling facial features (e.g., shadows, hands,

patterned clothing), leading to high false positive rates. Traditional methods struggle due to limited feature
discrimination, while deep learning models also fail if occlusion diversity is lacking in training data.
Developing robust algorithms to filter out such non-face occlusions remains a key challenge.

6.1.3 Diversity and Complexity of Occlusions
Occlusions vary greatly in type, size, and location, arising from masks, sunglasses, hands, scarves,

or environmental obstructions. Models trained on one type often generalize poorly to others, causing
performance drops in unseen scenarios. Handling this complexity requires datasets and models that cover a
wide range of occlusion variations.

6.1.4 Method-Specific Challenges
Different face detection methods face unique challenges with occlusion. Traditional feature-based

approaches rely on handcrafted features and symmetry, but become ineffective when key features are hidden.
Machine learning methods like SVMs struggle with complex occlusions and large datasets. Deep learning
methods are more powerful but often overfit on small or occlusion-specific data and are computationally
expensive. Their performance also drops with increased occlusion. Hybrid methods improve accuracy but
add complexity, making real-time use more difficult.

6.2 Datasets Challenges
Robust datasets are crucial for training and evaluating occluded face detection models. However, several

limitations persist:

1. Annotation challenges: Annotating occluded datasets requires precise labeling of occlusion regions
and degrees. Manual annotations are labor-intensive, and inconsistencies across datasets hinder
comparative evaluation.

2. Lack of diversity: Existing datasets often lack sufficient diversity in occlusion types, levels, and
environments. For example, some datasets focus on masked faces (MAFA, RMFRD) while neglecting
other occlusions like headscarves or hands.

3. Imbalanced coverage of occlusion levels: Heavily occluded faces (over 70%) remain underrepresented,
leading to poor model generalization for extreme scenarios.

4. Temporal and environmental constraints: Most datasets are static images; real-world video streams
with occlusions caused by motion blur or lighting variations remain underexplored.

6.3 Performance and Generalization Issues
1. Performance drop with increasing occlusion: As occlusion levels increase (e.g., from partial to

heavy), detection accuracy drops significantly, especially in deep-learning models that rely on global
visual features.



2664 Comput Model Eng Sci. 2025;143(3)

2. Overfitting to specific occlusion types: Models trained on specific occlusion types (e.g., masks) struggle
to generalize to unseen occlusions like scarves or environmental barriers. Generalization across datasets
remains a major challenge.

3. Domain and real-world adaptation: Many methods perform well in controlled environments but fail
in unconstrained settings where occlusions occur unpredictably. Techniques such as transfer learning
or domain adaptation are essential to address this gap.

7 Future Research Directions
Building upon the identified challenges, this section explores promising future research directions and

emerging trends aimed at improving the robustness, efficiency, and scalability of occluded face detection
systems. Although there has been great improvement in the detection of occluded faces, there are open
issues that still need to be handled to find effective solutions. These issues will be discussed in this paper
as future work. This final section focuses on the remaining issues, namely, algorithmic limitations, dataset
shortcomings, and deployment challenges.

7.1 Robust and Efficient Deep Learning Models
Enhancing the robustness and efficiency of deep learning-based methods remains a key challenge in

occluded face detection. Occlusions introduce variations that can severely degrade model performance,
leading to false positives or missed detections. Addressing these challenges requires a multi-faceted approach
as follows:

1. Designing occlusion-aware Architectures: Develop networks that explicitly handle occluded regions,
such as dual-path or attention-based models that separate visible and occluded features.

2. Developing occlusion-invariant features: Design robust feature extraction techniques that work well
independent of the level or type of the occlusion to improve the generalization across the various
occlusion scenarios.

3. Involving optimization techniques: Employ hyperparameter tuning methods (e.g., Bayesian opti-
mization) and metaheuristic algorithms (e.g., genetic algorithms) to improve model performance
and generalization.

4. Ensuring lightweight and real-time models: To enable real-time deployment on edge devices, design
computationally efficient architectures using model compression techniques such as pruning, quanti-
zation, and knowledge distillation.

Furthermore, emerging techniques from related fields, such as graph-based learning for human pose
estimation and multi-view feature fusion for occlusion handling [146–148], may offer promising strate-
gies for improving the robustness and adaptability of occluded face detection models. Exploring such
cross-domain approaches could inspire the development of more effective architectures for challenging
real-world scenarios.

7.2 Ensuring Development of Diverse and Annotated Datasets
The creation of robust datasets is essential to train and evaluate models under diverse occlusion

scenarios:

1. Diverse occlusion types and levels: Build datasets with a variety of occlusion types (e.g., masks, hands,
scarves) and granular annotations for partial and heavy occlusions.

2. Synthetic data generation: Use generative adversarial networks (GANs) and synthetic augmentation to
simulate realistic occlusions, improving dataset size and balance.
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3. Temporal and environmental variability: Incorporate video-based datasets and real-world scenarios
with dynamic occlusions caused by lighting, motion blur, or environmental obstructions.

7.3 Hybrid and Multi-Scale Approaches
Combining the strengths of various methods can further improve occluded face detection:

1. Feature fusion: Merge handcrafted and deep-learning-based features to improve detection accuracy
under varying occlusions.

2. Multi-scale analysis: Integrate multi-scale methods to enhance detection performance for small or
partially visible faces.

3. Contextual information: Leverage auxiliary cues, such as body posture and environmental context, to
infer occluded regions.

7.4 Application-Specific Solutions
Future work should address the unique requirements of real-world applications:

1. Surveillance systems: Develop models for detecting occluded faces in crowded, dynamic environments
with low-resolution inputs.

2. Masked face detection: Enhance performance for masked face detection, a significant post-pandemic
challenge in healthcare and security.

3. Cultural occlusions: Improve detection for culturally specific occlusions, such as niqabs and head-
scarves, which remain underrepresented in datasets.

8 Conclusion
This review provided a comprehensive analysis of face detection methods under occlusion and sys-

tematically categorized them into traditional feature-based, machine learning, deep learning, and hybrid
approaches. The reviewed studies demosntrated that early occluded face detection methods, such as
feature-based and traditional machine learning methods, provided important foundations by focusing on
handcrafted features and statistical models. However, their limited ability to handle complex occlusions and
variations led to the adoption of CNNs as a more powerful alternative. While CNN-based models improved
detection robustness by learning hierarchical features, they still struggled with severe occlusions and
generalization to unseen scenarios. Modern advances in deep learning models achieve better management
of complex occlusion patterns through the implementation of multi-scale feature extraction and attention
mechanisms. Traditional and learned features can be combined through hybrid feature fusion strategies to
show potential in closing performance gaps when faces are partially occluded. The field has moved toward
Transformer-based architectures, including Vision Transformer (ViT) and Swin Transformer, as well as
GAN-based models, which provide new capabilities for context modeling and face restoration and occlusion-
aware feature learning. Despite the progress made in detecting occluded faces, challenges such as high
false positive rates, limited dataset diversity, and poor generalization to unseen occlusions remain. Many
state-of-the-art models still struggle to achieve real-time performance and computational efficiency, limiting
their deployment in resource-constrained environments. Future research should focus on the following
directions: (1) Developing large-scale, occlusion-specific datasets with real-world diversity; (2) Developing
lightweight, adaptive models that can balance detection accuracy with real-time efficiency; (3) Developing
occlusion-aware learning frameworks, including partial feature modeling and face reconstruction networks;
(4) Developing standardized benchmarks for evaluating occluded face detection performance; and (5)
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Using synthetic data generation methods such as GANs and domain adaptation to enrich training datasets.
Addressing these limitations is crucial to developing more reliable and scalable face detection solutions.

This study has some limitations that should be acknowledged. First, while we attempted to provide a
comprehensive review, some recent developments and proprietary models may not have been covered due
to access restrictions. Second, the model comparison was based primarily on reported metrics, which may
not fully reflect differences in real-world performance. Additionally, the lack of a standardized criterion for
hidden face detection limits the ability to make absolute comparisons between different approaches. Finally,
the study does not include an experimental evaluation, meaning that the results are based on secondary
sources rather than direct experimental validation.
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