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ABSTRACT: In this article, we develop the Laplace transform (LT) based Chebyshev spectral collocation method
(CSCM) to approximate the time fractional advection-diffusion equation, incorporating the Atangana-Baleanu Caputo
(ABC) derivative. The advection-diffusion equation, which governs the transport of mass, heat, or energy through
combined advection and diffusion processes, is central to modeling physical systems with nonlocal behavior. Our
numerical scheme employs the LT to transform the time-dependent time-fractional PDEs into a time-independent
PDE in LT domain, eliminating the need for classical time-stepping methods that often suffer from stability constraints.
For spatial discretization, we employ the CSCM, where the solution is approximated using Lagrange interpolation
polynomial based on the Chebyshev collocation nodes, achieving exponential convergence that outperforms the
algebraic convergence rates of finite difference and finite element methods. Finally, the solution is reverted to the
time domain using contour integration technique. We also establish the existence and uniqueness of the solution
for the proposed problem. The performance, efficiency, and accuracy of the proposed method are validated through
various fractional advection-diffusion problems. The computed results demonstrate that the proposed method has less
computational cost and is highly accurate.

KEYWORDS: Laplace transform; spectral method; existence theory; fractional derivative with non-singular kernel;
contour integration methods

1 Introduction
Fractional calculus (FC) is a historical discipline in mathematics that traces its origins to the works

of Leibniz and Euler, who explored integrals and derivatives of non-integer orders [1]. Despite significant
advancements, this topic continues to captivate researchers due to its rich mathematical and numerical
aspects. Today, FC extends beyond pure mathematics and has found applications in various scientific
disciplines [2]. Replacing standard operators with fractional operators has significantly enhanced the pre-
cision and accuracy of numerous physical models and systems [3–5]. Researchers have explored numerous
fractional operators and assessed various definitions of fractional derivatives, particularly those governed
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by power-law kernels, commonly known as singular or local fractional derivatives. Notable examples
include the Grünwald-Letnikov, Riemann-Liouville, Caputo, Riesz, and Hadamard fractional derivatives [6].
However, these fractional derivatives can efficiently model the non-local and dissipative properties of
physical processes. The non-locality of a fractional derivative refers to the fact that the value of a fractional
derivative at a given point depends on the function’s values over an entire interval rather than just at the
point itself.

In 2015, Caputo and Fabrizio [7] introduced a new fractional derivative, termed the Caputo-Fabrizio
(CF) derivative, which employs an exponential kernel to overcome the limitations of fractional derivatives
with singular kernels, such as those found in the Riemann-Liouville and Liouville-Caputo derivatives.
The singularity in these earlier definitions often complicates their application to physical systems. The
CF derivative’s exponential kernel, being nonsingular, provides a more natural transition and eliminates
the issues associated with the Riemann-Liouville and Liouville-Caputo derivatives. However, despite its
innovation, the CF derivative faced criticisms for a notable drawback: its kernel lacks nonlocality. To address
these shortcomings, Atangana and Baleanu [8] introduced a novel fractional derivative in 2016, known as
Atangana-Baleanu (AB) derivative, which is based on the Mittag-Leffler function. Unlike the CF derivative
the AB derivative incorporates a nonlocal and nonsingular kernel, effectively combining the strengths of the
Riemann-Liouville, Liouville-Caputo, and Caputo-Fabrizio derivatives. The AB derivative provides several
advantages: (i) its nonlocal nature guarantees that it captures the full historical behavior of the function being
differentiated; (ii) it has an adjustable parameter, that lets researchers change the fractional order to enhance
data-fitting accuracy; (iii) the AB derivative exhibits greater flexibility than its predecessor’s derivatives,
enabling accurate modeling of complex systems; and (iv) it offers a unifying structure that can refine and
improve the existing models across various scientific domains by integrating the features of the Riemann-
Liouville, Liouville-Caputo and extending their applicability. Due to these compelling attributes, the AB
derivative has gained significant attention and has been successfully applied to a wide range of real-world
problems [9].

Time-fractional advection-diffusion equations (TFADEs) are widely used models in applied mathe-
matics to describe various physical systems. The advection term represents the movement of a fluid along
a concentration gradient, while the diffusion term describes the process by which material spreads from
regions of higher to lower concentration over time. TFADEs are applied to transport processes, including the
long-range dispersion of air pollutants [10], turbulence [11], water transport in soil [12], dispersion in porous
media [13], shallow water flow [14], ion transport in heterogeneous media [15], blood flow with chemical
interactions [16], and contaminant transport in soil [17].

Analytical solutions for TFADEs have been derived by various researchers. For example, Sanskrityayn
and Kumar [18] derived analytical solutions to TFADEs using Green’s function methods. Avci and Yetim [19]
obtained analytical solutions for TFADEs incorporating the Atangana-Baleanu fractional derivative, while
Mirza and Vieru [20] derived fundamental solutions for TFADEs using the Caputo-Fabrizio derivative.
However, obtaining exact solutions for TFADEs is often challenging due to the involvement of complex
functions, which can be difficult to handle analytically.

As a result, developing accurate and efficient numerical schemes has become essential. Many authors
in the literature have proposed numerical solutions for TFADEs. Umer et al. [21] analyzed numerical solu-
tions of advection-diffusion equations with the Atangana-Baleanu fractional derivative using an extended
cubic B-spline technique. Fazio et al. [22] studied a finite difference method on non-uniform meshes
for TFADEs with a source term. Ahmed et al. [23] applied a Haar wavelet-based numerical technique
to solve TFADEs. Kamran et al. [24] investigated numerical inverse Laplace transform methods for
approximating TFADEs.
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Other contributions include the work by Pareek et al. [25], who developed the natural transform method
for solving TFADEs, and Chawla et al. [26], who utilized extended one-step time integration schemes.
Liu et al. [27] proposed a radial basis function (RBF)-based differential quadrature method for solving two-
dimensional TFADEs. Nguyen and Reynen [28] devised a space-time least squares finite element scheme for
approximating TFADEs, while Cunha et al. [29] employed the boundary element method to solve TFADEs.
Sweilam et al. [30] simulated TFADEs using a spectral collocation method combined with a non-standard
finite difference technique.

Many authors have developed and modified numerical methods for the approximation of fractional
partial differential equations (FPDEs) from various perspectives, focusing on improving accuracy, stability,
efficiency, consistency, and performance in terms of computational cost. In recent years, hybrid methods have
gained significant attention due to their high accuracy, low computational cost, and ease of implementation
for discretizing FPDEs.

Hybrid methods combine two or more approaches, enabling them to mitigate the limitations of
individual methods. As a result, hybrid methods can approximate complex problems in a simple and effective
manner. In the literature, several researchers have proposed hybrid methods. For example, Yin et al. [31]
combined the Laplace transform and Legendre wavelet methods for the numerical simulation of Klein-
Gordon equations. Soares and Mansur [32] coupled the boundary element method with the finite element
method for solving acoustic elastodynamic problems. A hybrid method based on the Laplace transform
and Legendre wavelet approaches was analyzed in [33] for the approximation of Lane-Emden equations.
Khan et al. [34] combined the homotopy perturbation method with the Laplace transform method to solve
fractional models. Joujehi et al. [35] developed a hybrid method based on Beta functions and fractional-order
Bernoulli wavelets for approximating multi-term TFPDEs in fluid mechanics. A review of the Jacobi-
Galerkin spectral method for linear partial differential equations is examined by Hafez and Youssri [36].
Lim and Li [37] coupled the boundary element method with the finite difference method to approximate
fluid-structure interaction problems with dynamic analysis of outer hair cells. Kamran et al. [38] combined
the Laplace transform with radial basis functions for the numerical approximation of the mobile-immobile
advection-dispersion problem arising in solute transport. Sahu and Jena [39] developed an efficient technique
for time fractional Klein-Gordon equation based on modified Laplace Adomian decomposition technique
via hybridized Newton-Raphson Scheme arises in relativistic fractional quantum mechanics.

The main objective of this work is to develop and analyze a hybrid Laplace Transform-based Cheby-
shev Spectral Collocation Method (LT-CSCM) for the efficient numerical solution of time-fractional
advection-diffusion equations (TFADEs) featuring a nonsingular kernel. By combining the LT for temporal
discretization with the CSCM for spatial discretization, our method aims to achieve high accuracy and
computational efficiency.

The CSCM is a subclass of spectral methods that has recently garnered significant attention due to
its straightforward implementation for the spatial approximation of fractional partial differential equations
(FPDEs). Within the numerical framework for FPDEs, CSCM belongs to the family of Weighted Residual
Methods (WRMs) [40]. This family includes the Tau, Galerkin, and collocation methods, each employing
distinct techniques to minimize residuals. In the Galerkin and Tau methods, residuals are projected onto
a polynomial space and constrained to be zero, while the collocation method enforces zero residuals at
specific grid points. For FPDEs, Chebyshev collocation points are highly effective as grid points due to
their optimal distribution, which enhances numerical accuracy. CSCM utilizes basis functions, typically
Lagrange interpolation polynomials, defined at these points [41]. This global approach achieves spectral
convergence, delivering high accuracy for problems with simple geometries and smooth solutions [42,43].
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Compared to finite difference or finite element methods, CSCM is easier to implement and significantly
reduces computational cost.

The CSCMs have been widely adopted by numerous researchers for many applications. Such as Khader
and Saad [44] utilized the CSCM for the solution of the fractional Fisher problems. In [45], the authors
proposed approximating fractional-order diffusion problems using CSCM combined with a power-series
method based on residuals. The authors of [46] obtained the solution of the time-fractional advection-
diffusion equation using CSCM. Tohidi [47] developed a numerical scheme for finding approximate
solutions of one-dimensional parabolic partial differential equations (PDEs) under non-classical boundary
conditions. In [48], the authors proposed a spectral collocation method based on differentiated Chebyshev
polynomials to obtain numerical solutions for various types of nonlinear partial differential equations.
Li et al. [49] employed the CSCM to solve the transport equation with given initial and boundary conditions.
Rongpei et al. [50] solved two-dimensional nonlinear reaction-diffusion equations with Neumann boundary
conditions using a new highly accurate CSCM.

The LT is an efficient and error-free method for the temporal discretization of FPDEs, addressing
stability issues often encountered with traditional time-marching methods. These methods are stable and
accurate only if the error calculated in a one-time step does not amplify as computations progress. In
other words, time-marching methods remain stable if the error diminishes or remains unchanged during
computations. Moreover, achieving optimal accuracy with time-marching methods typically requires smaller
time steps, which significantly increases computational cost [51], thus affecting the overall efficiency of the
method. One of its key advantages is its ability to convert differential equations into algebraic equations,
making complex problems more manageable. Additionally, it provides a systematic approach for handling
initial conditions directly within the transformed domain, avoiding the need for numerical time-stepping
methods that may suffer from stability issues [52]. The LT is particularly beneficial for solving linear time-
invariant systems and fractional differential equations, as it allows for analytical solutions in many cases [53].
However, the method also has limitations. It is less effective for nonlinear problems, as transforming the
nonlinear terms is not straightforward, often requiring approximations or numerical techniques [54]. By
employing the LT for temporal discretization, the FPDEs are transformed into the Laplace domain. To obtain
the solution in the time domain, the inverse Laplace transform (ILT) must be applied. However, the exact
computation of Evaluating the Bromwich integral is computationally complex, prompting the adoption of
numerical inverse Laplace transform methods (ILTMs). Several authors have developed numerical ILTMs.
For instance: De Hoog et al. [55] employed the quotient-difference scheme to formulate an improved ILTM
that accelerates Fourier series convergence. Stehfest [56] developed a linear acceleration method using
Salzer’s approach for numerical inversion of the LT. Talbot [57] introduced an efficient ILTM. Weideman
and Trefethen [58] utilized parabolic and hyperbolic contours to approximate the Bromwich integral.
Weeks [59] employed Laguerre functions for numerical ILTM. Each numerical method for inverting the
Laplace transform has specific applications and is best suited to a particular problem. Contour integration
methods, such as those based on hyperbolic, parabolic, or Talbot contours, are particularly effective for
partial differential equations (PDEs) due to their ease of implementation and high accuracy. These methods
deform the integration path in the complex plane to optimize convergence, minimizing computational
complexity while maintaining precision. In this work, we utilize the numerical ILTMs described in [58,60].
Consider the following 2-D TFADE:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂σ
τ u(x̄ , τ) = Lu(x̄ , τ) + ξ(x̄ , τ), (x̄ , τ) ∈ Θ × [0, 1],

Bu(x̄ , τ) = ζ(x̄ , τ), x̄ ∈ ∂Θ,
u(x̄ , 0) = u0,

(1)
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where, x̄ = (x , y) ∈ Θ = [−1, 1]2 ⊂ R2, ∂Θ is the bound of Θ, L is the linear differential operator Lu(x̄ , τ) =
a1Δu(x̄ , τ) − a2∇u(x̄ , τ), with a1 , a2 positive constants, B a linear boundary operator, ξ(x̄ , τ), ζ(x̄ , τ)
continuous functions, and the Atangana-Baleanu-Caputo (ABC) time-fractional derivative of order σ ∈ [0, 1]
defined as [8]

∂σ
τ u(x̄ , τ) = B(σ)

1 − σ ∫
τ

0
∂su(x̄ , s)Eσ(

−σ(τ − s)σ

1 − σ
)ds, (2)

with

B(σ) = σ
Γ(σ) + (1 − σ),

and Eσ(.) the Mittag-Leffler function defined as

Eσ(τ) =
∞
∑
r=0

τr

Γ(rσ + 1) , σ > 0, τ ∈ (−∞,∞). (3)

2 Existence and Uniqueness of the Solution
In this section, we utilize the fixed-point theory to prove the existence and uniqueness of the solution to

the fractional advection-diffusion model (1). Let us define a Banach space C(Λ,R) of continuous functions
from Λ = Θ × [0, 1] into R, equipped with the norm defined by ∥u∥∞ ∶= sup{∣u(x̄ , τ)∣; (x̄ , τ) ∈ Λ}. By
applying the AB-fractional integral operator to (1), we obtain

u(x̄ , τ) = u0 +
1 − σ
B(σ)(a1Δu(x̄ , τ) − a2∇u(x̄ , τ) + ξ(x̄ , τ)) (4)

+ σ
Γ(σ)B(σ) ∫

τ

0
(τ − s)σ−1(a1Δu(x̄ , τ) − a2∇u(x̄ , τ) + ξ(x̄ , τ))ds.

Let define the operator X ∶ C(Λ,R) → C(Λ,R), that reformulates problem (1) as a fixed-point problem,
given by

Xu(x̄ , τ) = u0 +
1 − σ
B(σ)(a1Δu(x̄ , τ) − a2∇u(x̄ , τ) + ξ(x̄ , τ)) (5)

+ σ
Γ(σ)B(σ) ∫

τ

0
(τ − s)σ−1(a1Δu(x̄ , τ) − a2∇u(x̄ , τ) + ξ(x̄ , τ))ds.

The fixed point of X, corresponds to the solution of problem (1). We assume the following hypotheses
before proving our main results: for any (x̄ , τ) ∈ Λ, there exist κk > 0, k = 1, 2, 3, 4, 5, 6, such that

(A1) ∣Δu(x̄ , τ)∣ ≤ κ1∣u(x̄ , τ)∣,
(A2) ∣∇u(x̄ , τ)∣ ≤ κ2∣u(x̄ , τ)∣,
(A3) ∣u0∣ ≤ κ3,
(A4) ∣ξ(x̄ , τ)∣ ≤ κ4,
(A5) ∣Δu1(x̄ , τ) − Δu2(x̄ , τ)∣ ≤ κ5∣u1(x̄ , τ) − u2(x̄ , τ)∣,
(A6) ∣∇u1(x̄ , τ) − ∇u2(x̄ , τ)∣ ≤ κ6∣u1(x̄ , τ) − u2(x̄ , τ)∣.

Theorem 1. If assumptions (A5 , A6) hold then problem (1) has a unique solution.
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Proof. The proof consists of several steps.
Step 1: Continuity of X. We will show that X is continuous. Suppose a sequence um → u,

where u ∈ C(Λ,R). For (x̄ , τ) ∈ Λ and using the bounds in (A5 , A6) we can write

∥Xum(x̄ , τ) −Xu(x̄ , τ)∥∞ = sup{∣Xum(x̄ , τ) −Xu(x̄ , τ)∣}

= sup{∣ 1 − σ
B(σ)(a1Δum(x̄ , τ) − a2∇um(x̄ , τ)) + σ

Γ(σ)B(σ) ∫
τ

0
(τ − s)σ−1(a1Δum(x̄ , τ) − a2∇um(x̄ , τ))ds

− 1 − σ
B(σ)(a1Δu(x̄ , τ) − a2∇u(x̄ , τ)) − σ

Γ(σ)B(σ) ∫
τ

0
(τ − s)σ−1(a1Δu(x̄ , τ) − a2∇u(x̄ , τ))ds∣}

≤ sup{ 1 − σ
B(σ)(∣a1∣∣Δum(x̄ , τ) − Δu(x̄ , τ)∣ + ∣a2∣∣∇um(x̄ , τ) − ∇u(x̄ , τ)∣)

− σ
Γ(σ)B(σ) ∫

τ

0
(τ − s)σ−1(∣a1∣∣Δum(x̄ , τ) − Δu(x̄ , τ)∣ + ∣a2∣∣∇um(x̄ , τ) − ∇u(x̄ , τ)∣)ds}

≤ sup{ 1 − σ
B(σ) +

σ
Γ(σ)B(σ) ∫

τ

0
(τ − s)σ−1(κ5∣a1∣∣um(x̄ , τ) − u(x̄ , τ)∣ + κ6∣a2∣∣um(x̄ , τ) − u(x̄ , τ)∣)ds}

≤ sup{ 1 − σ
B(σ) +

τσ

Γ(σ)B(σ)(κ5∣a1∣ + κ6∣a2∣)∣um(x̄ , τ) − u(x̄ , τ)∣}

≤ τσ + (1 − σ)Γ(σ)
Γ(σ)B(σ) (κ5∣a1∣ + κ6∣a2∣)∥um − u∥∞,

Since u is continuous. Hence, we obtain

∥um − u∥∞ → 0, as m →∞.

Therefore, X is continuous.
Step 2: Boundedness of X. Next, we show that X maps bounded sets to bounded sets. It is sufficient to

prove that for γ > 0 there exists ρ > 0 such that if u ∈ Rγ = {u ∈ C(Λ,R) ∶ ∥u∥∞ ≤ γ} then it is ∥Xu∥∞ ≤ ρ.
For τ ∈ [0, T] and utilizing the assumptions (A1–A4) we have

∣Xu(x̄ , τ)∣ = ∣u0 +
1 − σ
B(σ)(a1Δu(x̄ , τ) − a2∇u(x̄ , τ) + ξ(x̄ , τ)) + σ

Γ(σ)B(σ) ∫
τ

0
(τ − s)σ−1(a1Δu(x̄ , τ)

− a2∇u(x̄ , τ) + ξ(x̄ , τ))ds∣

≤ ∣u0∣ +
1 − σ
B(σ)(∣a1∣∣Δu(x̄ , τ)∣ + ∣a2∣∣∇u(x̄ , τ)∣ + ∣ξ(x̄ , τ)∣) + σ

Γ(σ)B(σ) ∫
τ

0
(τ − s)σ−1

(∣a1∣∣Δu(x̄ , τ)∣ + ∣a2∣∣∇u(x̄ , τ)∣ + ∣ξ(x̄ , τ)∣)ds

≤ κ3 +
1 − σ
B(σ)(κ1∣a1∣∣u(x̄ , τ)∣ + κ2∣a2∣∣u(x̄ , τ)∣ + κ4) +

σ
Γ(σ)B(σ) ∫

τ

0
(τ − s)σ−1(κ1∣a1∣∣u(x̄ , τ)∣

+ κ2∣a2∣∣u(x̄ , τ)∣ + κ4)ds
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≤ κ3 +
1 − σ
B(σ)(∣a1∣κ1∥u∥∞ + ∣a2∣κ2∥u∥∞ + κ4) +

σ
Γ(σ)B(σ) ∫

τ

0
(τ − s)σ−1

(∣a1∣κ1∥u∥∞ + ∣a2∣κ2∥u∥∞ + κ4)ds

≤ κ3 +
(1 − σ)Γ(σ)

B(σ) (∣a1∣κ1∥u∥∞ + ∣a2∣κ2∥u∥∞ + κ4) +
τσ

Γ(σ)B(σ)(κ1∣a1∣∥u∥∞ + ∣a2∣κ2∥u∥∞ + κ4)

≤ κ3 +
(1 − σ)Γ(σ) + τσ

Γ(σ)B(σ) (κ1∣a1∣∥u∥∞ + κ2∣a2∣∥u∥∞ + κ4)

≤ κ3 +
(1 − σ)Γ(σ) + τσ

Γ(σ)B(σ) ((κ1∣a1∣ + κ2∣a2∣)∥u∥∞ + κ4).

Defining

ρ = κ3 +
τσ + Γ(σ)(1 − σ)

Γ(σ)B(σ) ((κ1∣a1∣ + κ2∣a2∣)γ + κ4),

it follows that ∥Xu∥∞ ≤ ρ proving that X maps bounded sets to bounded sets.
Step 3: Equicontinuity of X. Let consider u ∈ Rγ and (x̄ 1 , τ1), (x̄2, τ2) ∈ Λ, such that x̄ 1 < x̄2, τ1 < τ2.

We have

∣Xu(x̄ 1 , τ1) −Xu(x̄2, τ2)∣ = ∣
1 − σ
B(σ)(a1Δu(x̄ 1 , τ1) − a2∇u(x̄ 1 , τ1) + ξ(x̄ 1 , τ1))

+ σ
Γ(σ)B(σ) ∫

τ1

0
(τ1 − s1)σ−1(a1Δu(x̄ 1 , τ1) − a2∇u(x̄ 1 , τ1) + ξ(x̄ 1 , τ1))ds1

− 1 − σ
B(σ)(a1Δu(x̄2, τ2) − a2∇u(x̄2, τ2)) −

σ
Γ(σ)B(σ) ∫

τ2

0
(τ2 − s2)σ−1

(a1Δu(x̄2, τ2) − a2∇u(x̄2, τ2) + ξ(x̄2, τ2))ds2∣

≤ 1 − σ
B(σ)(∣a1∣∣Δu(x̄ 1 , τ1)∣ + ∣a2∣∣∇u(x̄ 1 , τ1)∣ + ∣ξ(x̄ 1 , τ1)∣)

+ σ
Γ(σ)B(σ) ∫

τ1

0
(τ1 − s1)σ−1(∣a1∣∣Δu(x̄ 1 , τ1)∣ + ∣a2∣∣∇u(x̄ 1 , τ1)∣ + ∣ξ(x̄ 1 , τ1)∣)ds1

− 1 − σ
B(σ)(∣a1∣∣Δu(x̄2, τ2)∣ + ∣a2∣∣∇u(x̄2, τ2)∣ + ∣ξ(x̄2, τ2)∣)

− σ
Γ(σ)B(σ) ∫

τ2

0
(τ2 − s2)σ−1(∣a1∣∣Δu(x̄2, τ2)∣ + ∣a2∣∣∇u(x̄2, τ2)∣ + ∣ξ(x̄2, τ2)∣)ds2

≤ 1 − σ
B(σ)(κ1∣a1∣∣u(x̄ 1 , τ1)∣ + κ2∣a2∣∣u(x̄ 1 , τ1)∣ + κ4)

+ σ
Γ(σ)B(σ) ∫

τ1

0
(τ1 − s1)σ−1(∣a1∣κ1∣u(x̄ 1 , τ1)∣ + ∣a2∣κ2∣u(x̄ 1 , τ1)∣ + κ4)ds1

− 1 − σ
B(σ){∣a1∣κ1∣u(x̄2, τ2)∣ + ∣a2∣κ2∣u(x̄2, τ2)∣ + κ4}
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− σ
Γ(σ)B(σ) ∫

τ1

0
(τ2 − s2)σ−1(∣a1∣κ1∣u(x̄2, τ2)∣ + ∣a2∣κ2∣u(x̄2, τ2)∣ + κ4)ds2

≤ 1 − σ
B(σ)(∣a1∣κ1∥u∥∞ + ∣a2∣κ2∥u∥∞ + κ4) +

σ
Γ(σ)B(σ) ∫

τ1

0
(τ1 − s1)σ−1(∣a1∣κ1∥u∥∞ + ∣a2∣κ2∥u∥∞ + κ4)ds1

− 1 − σ
B(σ)(∣a1∣κ1∥u∥∞ + ∣a2∣κ2∥u∥∞ + κ4) −

σ
Γ(σ)B(σ) ∫

τ2

0
(τ2 − s2)σ−1(∣a1∣κ1∥u∥∞ + ∣a2∣κ2∥u∥∞ + κ4)ds2

= σ
Γ(σ)B(σ) ∫

τ1

0
(τ1 − s1)σ−1(∣a1∣κ1∥u∥∞ + ∣a2∣κ2∥u∥∞ + κ4)ds1

− σ
Γ(σ)B(σ) ∫

τ2

0
(τ2 − s2)σ−1(∣a1∣κ1∥u∥∞ + ∣a2∣κ2∥u∥∞ + κ4)ds2

= (∫
τ1

0
(τ1 − s1)σ−1ds1 − ∫

τ2

0
(τ2 − s2)σ−1ds2)[

σ
Γ(σ)B(σ)(∣a1∣κ1∥u∥∞ + ∣a2∣κ2∥u∥∞ + κ4)]

= τσ
1 − τσ

2
Γ(σ)B(σ)(∣a1∣κ1∥u∥∞ + ∣a2∣κ2∥u∥∞ + κ4).

It follows that

∣Xu(x̄ 1 , τ1) −Xu(x̄2, τ2)∣ → 0 as τ1 → τ2.

By the Arzelà-Ascoli Theorem [61], the operator X is completely continuous.
Step 4: A Priori Bound. Define χ = {u ∈ C(Λ,R) ∶ u = εXu, ε ∈ (0, 1)}. We prove that χ is bounded. If

u ∈ χ, then u = εXu, with 0 < ε < 1. Then for τ ∈ [0, T], using Eq. (5) we have

∣u∣ = ∣εXu∣

= ∣ε × (u0 +
1 − σ
B(σ)(a1Δu(x̄ , τ) − a2∇u(x̄ , τ) + ξ(x̄ , τ)) + σ

Γ(σ)B(σ) ∫
τ

0
(τ − s)σ−1(a1Δu(x̄ , τ)

− a2∇u(x̄ , τ) + ξ(x̄ , τ))ds)∣.

Now, using assumptions (A1−A4) we get

∣u∣ = ε × (κ3 +
(1 − σ)Γ(σ) + τσ

Γ(σ)B(σ) ((κ1∣a1∣ + κ2∣a2∣)∥u∥∞ + κ4)),

which gives

∥u∥∞ = ε × ρ,

where ρ is as defined in Step 2. This shows that χ is bounded. By the Schaefer Fixed Point Theorem [61], X
has at least one fixed point. Consequently, the considered problem has at least one solution. ◻ (25A1)
Theorem 2. The problem define in Eq. (1) has a unique solution if the assumptions (A5 , A6) hold and

(1 − σ)Γ(σ) + τσ

Γ(σ)B(σ) {κ5∣a1∣ + κ6∣a2∣} < 1.
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Proof

∥Xu1(x̄ , τ) −Xu2(x̄ , τ)∥∞ = sup{∣Xu1(x̄ , τ) −Xu2(x̄ , τ)∣}

= sup{∣ 1 − σ
B(σ)(a1Δu1(x̄ , τ) − a2∇u1(x̄ , τ)) + σ

Γ(σ)B(σ) ∫
τ

0
(τ − s)σ−1(a1Δu1(x̄ , τ) − a2∇u1(x̄ , τ))ds

− 1 − σ
B(σ)(a1Δu2(x̄ , τ) − a2∇u2(x̄ , τ)) − σ

Γ(σ)B(σ) ∫
τ

0
(τ − s)σ−1(a1Δu2(x̄ , τ) − a2∇u2(x̄ , τ))ds∣}

≤ sup{ 1 − σ
B(σ)(∣a1∣∣Δu1(x̄ , τ) − Δu2(x̄ , τ)∣ + ∣a2∣∣∇u1(x̄ , τ) − ∇u2(x̄ , τ)∣)

− σ
Γ(σ)B(σ) ∫

τ

0
(τ − s)σ−1(∣a1∣∣Δu1(x̄ , τ) − Δu2(x̄ , τ)∣ + ∣a2∣∣∇u1(x̄ , τ) − ∇u2(x̄ , τ)∣)ds}

≤ sup{ 1 − σ
B(σ) +

σ
Γ(σ)B(σ) ∫

τ

0
(τ − s)σ−1(κ5∣a1∣∣u1(x̄ , τ) − u2(x̄ , τ)∣ + κ6∣a2∣∣u1(x̄ , τ) − u2(x̄ , τ)∣)ds}

≤ sup{ 1 − σ
B(σ) +

τσ

Γ(σ)B(σ)(κ5∣a1∣ + κ6∣a2∣)∣u1(x̄ , τ) − u2(x̄ , τ)∣}

≤ τσ + (1 − σ)Γ(σ)
Γ(σ)B(σ) (κ5∣a1∣ + κ6∣a2∣)∥u1 − u2∥∞.

Thus, we find that under the given assumptions X is a contraction. By the Banach Fixed-Point
Theorem [61], X has a unique fixed point. Therefore, the problem defined in Eq. (1) has a unique solution. ◻
(25A1)

3 Methodology
In the LT-CSCM approach, the Laplace Transform (LT) transforms Eq. (1) into the Laplace domain,

enabling efficient temporal discretization. The Chebyshev Spectral Collocation Method (CSCM) is then
applied to discretize spatial variables with high accuracy. Finally, the time-domain solution is recovered using
the Talbot method for numerical inverse Laplace transform, ensuring precision and computational efficiency.

3.1 Temporal Discretization
The Laplace Transform is used for the temporal discretization of the proposed problem defined

in Eq. (1). The LT of u(x̄ , τ) is defined as

L {u(x̄ , τ)} = û(x̄ , s) = ∫
∞

0
e−sτu(x̄ , τ)dτ.

The LT of the ABC derivative, ∂σ
τ u(x̄ , τ), defined in Eq. (2), is given by [8]

L {∂σ
τ u(x̄ , τ)} =

B(σ)(sσ û(x̄ , s) − sσ−1u0)
sσ(1 − σ) + σ

.

Applying the LT to Eq. (1) yields

B(σ)(sσ û(x̄ , s) − sσ−1u0)
sσ(1 − σ) + σ

= Lû(x̄ , s) + ξ̂(x̄ , s), x̄ ∈ Θ, (6)
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and

Bû(x̄ , s) = ζ̂(x̄ , s), x̄ ∈ ∂Θ. (7)

Simplifying further, we obtain

{( B(σ)sσ

sσ(1 − σ) + σ
)I −L}û(x̄ , s) = Ŝ(x̄ , s), x̄ ∈ Θ, (8)

and

Bû(x̄ , s) = ζ̂(x̄ , s), x̄ ∈ ∂Θ, (9)

where

Ŝ(x̄ , s) = B(σ)sσ−1u0

sσ(1 − σ) + σ
+ ξ̂(x̄ , s),

and I is the (N + 1) × (N + 1) identity operator. The time independent problem in Eqs. (8) and (9) is solved
for each s in the Laplace space, using CSCM for spatial discretization. Finally, numerical ILTM is used to to
recover the time-domain solution of (1). The next section explains the CSCM approach.

3.2 Spatial Discretization by Chebyshev Spectral Collocation Method
In CSCM, a global polynomial interpolant is utilized on specific nodes (Chebychev nodes) to approx-

imate the unknown solution of a FPDEs. The spatial derivatives are computed using discrete derivative
operators, also called differentiation matrices (DM) [41].

The solution is considered over [−1, 1] and interpolates {(xm, û(xm))}, by [42,46]

IN(x) =
N
∑
m=0

lm(x)ûm,

where ûm = û(xm), and the basic Lagrange polynomials are as follows:

lm(x) =
(x − x0) . . . (x − xm−1)(x − xm+1) . . . (x − xN)

(xm − x0) . . . (xm − xm−1)(xm − xm+1) . . . (xm − xN)
. (10)

For spatial discretization in [−1, 1], the Chebyshev nodes are usually considered

xm = cos{( lπ
N
)}

N

m=0
. (11)

The first derivative ûx is approximated as

∂x û(x) ≈ DNû,

where DN is the first-order differentiation matrix with entries of the form

[DN]n,m = {l ′m(xn)}
N

n,m=1
.
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The non-diagonal entries of DN are given as

[DN]n,m =
γm

γn(xn − xm)
, n ≠m,

where γ−1
m = ∏n

n≠m(xn − xm), and the diagonal entries of DN are calculated by

[DN]n,m = −
n
∑

m=0,m≠n
{DN}n,m, n, m ∈ {0, 1, 2, ..., N}.

The elements of the DM, DN of order ρ are analytically calculated as

[Dρ
N]n,m = {l ρ

m(xn)}
N

n,m=1
.

More efficient elaboration of the differentiation matrices can be found in [62]. Welfert [41], obtained an
easy to use recursion relation for the calculation of differentiation matrix, as follows:

[Dρ
N]n,m =

ρ
xn − xm

{γm

γn
[D(ρ−1)

N ]nn − [D(ρ−1)
N ]nm}, n ≠m.

For the square domain Θ = [−1, 1] × [−1, 1], the Chebyshev nodes are xnm, and is presented as

x̄nm = {( cos(nπ
N
), cos(mπ

N
))}

N

n,m=1
.

The basic Lagrange polynomials associated to υnm are written as

lnm(x̄) = ln(x)lm(y), (12)

with lnm(x̄nm) = [ϕnm]Nn,m=0, and the second-order derivatives are calculated as

∂2
x x lnm(x rs) = l ′′n (xr)lm(ys) = [D2

N]rnϕms ,
∂2

y y lnm(x rs) = ln(xr)l ′′m(ys) = ϕrn[D2
N]sm,

where D2
N is a differential matrix of 2nd order based on collocation nodes. Applying the operatorL on Eq. (12)

with collocation nodes υrs , we have

L(lnm(x rs)) = a1([D2
N]rnϕms + ϕrn[D2

N]sm) − a2([DN]rnϕms + ϕrn[DN]sm). (13)

Finally, the approximation of L by the CSCM is given as

LDiscre te = a1(D2
N ⊗ IN + IN ⊗D2

N) − a2(DN ⊗ IN + IN ⊗DN). (14)

By using Eq. (14) in Eq. (8), we get

{( B(σ)sσ

sσ(1 − σ) + σ
)I −LDiscre te}û(x̄ , s) = Ŝ(x̄ , s). (15)
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In order to incorporate the boundary conditions in Eq. (9), we consider LDiscre te , and all collocation
nodes x. Moreover, the rows of LDiscre te , are replaced by the corresponding nodes at the boundary with the
vectors whose magnitude is one and having unity in a position corresponding to the diagonal ofLDiscre te . So,
the boundary conditionsBû(x̄ , s) = ζ̂(x̄ , s) in Eq. (9) will be executed straightaway [42]. After re-organizing
all the corresponding columns and rows of LDiscre te , we get the matrix:

LΘ = [
H Q
0 I ] ,

where H is the square matrix of order (N −NB) × (N −NB), I is square matrix of order (NB ×NB), being
the number of nodes at the boundary NB. The solution of the system (8) and (9) is reached after solving the
system

LΘû(x̄ , s) = [Ŝ(x̄ , s)
ζ̂(x̄ , s) ] ,

where the values of interior-boundary points are accumulated via Ŝ(x̄ , s) and ζ̂(x̄ , s) correspondingly.
Finally, we will utilize the ILTMs to get the approximate solution of problem (1).
Error Bound of CSCM

As IN ∶ C(Θ) → PN, depend on the Chebyshev nodes in Eq. (11) and Lagrange polynomial in Eq. (10)
as follows:

IN(u) =
N
∑
m=0

u(xm)lm(x). (16)

For the calculation of the error bound of CSCM, we utilze the work of Börm et al. [63]. Suppose for all
u ∈ C[−1, 1], ∃ ΠN > 0, a constant, satisfies the inequality

∥IN(u)∥∞ ≤ ΠN∥u∥∞. (17)

Furthermore, for all u ∈ PN

IN(u) = u. (18)

For interpolation based on Chebyshev points, we have

ΠN =
loge(N + 1)

π
2

+ 1 ≤ (1 +N). (19)

The stability constant get larger very sluggishly [63], the approximation bound is given as

∥u − IN(u)∥∞ ≤
2−N

(N + 1)!∥u
N+1∥∞ ∀ u ∈ CN+1 , (20)
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Theorem 3 [63]. If the polynomial interpolation error bound in (17) and the approximation bound in (20) hold
for all u ∈ CN+1, with κ ∈ {0, 1, 2, . . . , N}, then

∥u(κ) − IN(u)(κ)∥∞ ≤
2Π(κ)N + 2
(1 +N − κ)!(

1
2
)
(1+N−κ)

∥u(N+1)∥∞, (21)

where Π(κ)N is given by

Π(κ)N = ΠN

κ!
( N!
(N − κ)!).

The error bound is formulated by utilizing the results in Eq. (20) and Eq. (21), for 1 − D case the linear
differential operator in Eq. (1) is L = a1

∂2

∂x2 − a2
∂

∂x ,

E = ∥(∂σ
τ u −Lu) − (∂σ

τ IN(u) −LIN(u))∥∞
= ∥∂σ

τ (u − IN(u)) −L(u − IN(u))∥∞
≤ ∥∂σ

τ (u − IN(u))∥∞ + ∥L(u − IN(u))∥∞
≤ ∥∂σ

τ (u − IN(u))∥∞ + ∣a1∣∥uυυ − IN(u)υυ∥∞ + ∣a2∣∥uυ − IN(u)υ∥∞

E ≤ ∥∂σ
τ (u − IN(u))∥∞ + ∣a1∣

2(Π(2)N + 1)
(N − 1)! (

1
2
)

N−1

∥u(1+N)∥∞ + ∣a2∣
2(Π(1)N + 1)

N!
( 1

2
)

N

∥u(1+N)∥∞,

the time derivatives is computed precisely, so the bound of error of ∥∂σ
τ (u − IN(u))∥∞, have the same order

as ∥(u − IN(u))∥∞. Finally the error bound is given by

E ≤ b3∥u(N+1)∥∞,

where b3 can be obtained after the calculation of the coefficients of ∥u(N+1)∥∞. For 2-D models, interpolation
operators based on the tensor product are used to calculate a similar error bound.

3.3 Numerical Inverse Laplace Transform Methods
We utilize the ILTMs for inversion of the solution obtained through CSCM in the Laplace space to time

domain. The solution u(x̄ , τ) is approximated as follows:

u(x̄ , τ) = 1
2πi ∫

ϑ+i∞

ϑ−i∞
esτû(x̄ , s)ds,

= 1
2πi ∫C

esτû(x̄ , s)ds, τ > 0, (22)

where C is an appropriately selected integration contour of the left half complex plane linking ϑ − i∞ to ϑ +
i∞. The integral presented in Eq. (22) is called the Bromwich integral. Various numerical algorithms are used
in the literature to compute the integral in Eq. (22). As exp(sτ) on C is a very gradually decaying complex
function, the numerical integration of the Eq. (22) is very tough to execute. The contour deformation [57] can
be utilized to handle exp(sτ), in such a way that C ∶ (ϑ + i∞, ϑ − i∞) is deformed to Hankel’s contour that
begins and ends in the half plane (to the left) such that Re(s) $→ −∞ at both ends, so exp(sτ) depreciates
very fast and therefore making the integral in Eq. (22) convenient for the approximation by using the mid-
point or the trapezoidal rule. This type of deformation can be established by the Cauchy’s theorem in
conformation to the reality that C resides in the neighborhood where û(x̄ , s) is analytic. The Talbot approach
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may fail if the transformed function û(x̄ , s) have some singularities in the imaginary region of the complex
plane. The appropriate contour will ensure the accuracy of the ILTMs. Several authors utilized different types
of contours for the approximation of Eq. (22), however, we employ the optimal parabolic contour (CP) and
hyperbolic contour (CH) presented in [58,60], which are discussed as follows.

3.3.1 Parabolic Contour (CP)
The CP proposed in [58] is given in parametric form as

s = γ(1 + iβ)2 (23)

For β = ϑ + iν, where ν > 0, −∞ < ϑ < ∞, CP is of the form

s(ϑ) = γ ((ν − 1)2 − ϑ2) − 2iλϑ(ν − 1), (24)

where γ is an unknown parameter to be determined.

3.3.2 Hyperbolic Contour (CH)
The parametric form of CH proposed in [60] is of the form

s(ϑ) = α + γ − α sin(ρ − iϑ), −∞ < ϑ < ∞, (25)

with γ ≥ 0, and α > 0, where α satisfies the relations 1
2

π < α < π, and 0 < ρ < α − 1
2

π.

Now, using CP or CH in Eq. (22) we get

u(x̄ , τ) = 1
2πi ∫

∞

−∞
es(ϑ)τ ẑ(ῡ, s(ϑ))s′(ϑ)dϑ . (26)

and the integral in Eq. (26) can be approximated using the trapezoidal rule, resulting in

uk(x̄ , τ) = k
2πi

M
∑

j=−M
es(ϑ j)τ ẑ(ῡ, s(ϑ j))s′(ϑ j), where ϑ j = jk. (27)

3.4 Error Analysis of LT-CSCM
This section addresses the error analysis of the LT-CSCM. The Laplace transform is applied in the first

step, which is inherently free of error. The CSCM is employed in the second step for approximating the
solution of the transformed problem. The following theorem establishes the error bounds of the CSCM.
Theorem 4 (Theorem 5, pp. 48, [42]). Let u(x̄ , τ) be a given function and for a sequence {ῡm}∞N=1 based on
a set of interpolation nodes, the sequence xm → ς, as m →∞, where ς is the density function, with associated
potential λ defined by

λ(α) = ∫
1

−1
ς(u) log ∣α − u∣du,

where

λ[−1,1] = sup{λ(u)}, u ∈ [−1, 1].
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For every N, construct PN a polynomial of the degree less than or equal to N which interpolate the
u(x̄ , τ) at {xm}∞N=1. If ∃ λu > λ[−1,1], where λu is a constant, such that u(x̄ , τ) is differentiable at each point
within the region defined by

{α ∈ C ∶ λ(α) ≤ λu},

suppose for k > 0 a constant, such that ∀ x̄ and ∀ N,

∣u(x̄ , τ) − PN∣ ≤ ke−N(λu−λ[−1,1]).

The above estimate is valid for any order derivatives (uα(x̄ , τ) − Pα
N, where α ≥ 1) with a new constant

which will be still not dependent on N and u.
Finally, we employ the ILTMs in order to approximate the Eq. (27). While approximating Eq. (27) the

convergence of the proposed scheme depends on C , the set of optimal parameters and the domain [τ0, T].
The error analysis of the ILTMs is discussed in the following theorem.

The error of the CP depends on error of trapezoidal-rule on real line. By comparison of Eqs. (26)
and (27), let the integral is defined as

I = ∫
∞

−∞
Q(ϑ)dϑ ,

the finite approximations are

Ik = k
∞
∑

k=−∞
Q( jk),

and the infinite approximations are

Ik ;MP = k
MP

∑
j=−MP

Q( jk).

The discretization error is given by Derr = ∣I − Ik ∣, and the truncation error is given by
Terr = ∣Ik ;MP − Ik ∣. The following Theorem will establish the error estimate for CP .
Theorem 5 [58]. Let s = ϑ + iη, ϑ , η ∈ R. Consider Q(s) is analytic in the strip η ∈ (−d , c), for some d , c > 0,
with Q(s) → 0, as ∣s∣ → ∞. Let onsider positive constants G+, G−, then Q(s)must satisfy

∫
∞

−∞
∣Q(ϑ + ir)∣dϑ ≤ G+, ∫

∞

−∞
∣Q(ϑ − iq)∣dϑ ≤ G−, ∀ 0 < r < c, 0 < q < d .

Then, we have

Derr− =
G−

ex p(2πc
k
) − 1

, Derr+ =
G+

ex p(2πd
k
) − 1

.

If c = d , G+ = G− = G , and Q is real valued, then we get the following estimate

∣I − Ik ∣ ≤
2G

ex p(2πd
k
) − 1

.
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To get an estimation of Derr , Weideman and Trefethen [58] computed λ, and k by balancing Derr and
Terr asymptotically with the parameter’s optimal values. The parameter’s optimal values for CP are

k = 1
G
(
√

8Υ + 1), Υ = T
t0

, γ = {(4
√

8Υ + 1)T}−1(πG ).

The estimate of error is

EstimateMP = ∣u(x̄ , τ) − uk(x̄ , τ)∣ = O (e−(2πG 1√
8Υ+1
)) . (28)

The parameter G used in our numerical computations is defined by the relation MP =
2G
k

, where MP

corresponds to the quadrature points and k the step of the quadrature rule.
Similarly, the estimation of the discretization error for the hyperbolic contour is presented in the

following theorem.
Theorem 6 ([60], Theorem 2). Let u(x̄ , τ) be the solution of model (1), and let ξ̂ be analytic in the set ∑γ

θ .
Set α = 2ϑ , ϑ ∈ (0, 1], and let C ⊂ Sr ⊂ ∑γ

θ is defined as ψ = α
κT , with κ = 1 − sin(ρ − r). Suppose uk(x̄ , τ)

be the approximation of Eq. (1) with k =
√

r̄
αMH

≤ r̄
log 2 . Then, if ϑ0, ν ≥ 0 and ϑ0 + 1

2 ν ≥ ϑ, we have, with
C = C(ρ, r, θ , ϑ , ϑ0) for 0 ≤ τ ≤ T ,

∥uk(x̄ , τ) − u(x̄ , τ)∥ ≤ CM α−1T α eγτ e−
√

r̄αMH(∥u0∥ϑ + ∥ξ̂∥ϑ0 ,ν ,Σγ
θ
).

In the current work, we use the optimal contour of integration with the parameters given in Eq. (25) are
suggested by McLean and Thomèe [60] as

γ = 1, ϑ = 1590
10000

, r = 2551
10000

, α = 3180
10000

, ρ = 2835
10000

, with τ ∈ [0.5, 5],

and the error estimate is given as

EstimateCH = ∣u(x̄ , τ) − zk(ῡ, τ)∣ = O(α−1T α eγτ e−
√

r̄αMH).

4 Stability of Method
To analyze the stability of our numerical scheme, we express the system defined in (8) and (9) in its

discrete form as follows:

Tû = b, (29)

where T is a differentiation matrix obtained using the CSCM. The stability constant corresponding to
system (29) is given by

Q = sup
û≠0

∥û∥
∥Tû∥ , (30)

The value of Q is finite using any type of discrete norms ∥ ⋅ ∥ on R
N . Eq (30), we obtain the following

inequality

∥T∥−1 ≤ ∥û∥∥Tû∥ ≤ Q. (31)
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In terms of pseudoinverse T† of T, we can write

∥T†∥ = sup
μ≠0

∥T† μ∥
∥μ∥ . (32)

Hence, we have the following bound:

∥T†∥ ≥ sup
μ=Tû≠0

∥T†Tû∥
∥Tû∥ = sup

û≠0

∥û∥
∥Tû∥ = Q. (33)

Eqs. (31) and (33) establish bounds for the constant Q. Although computing the pseudoinverse directly
can be numerically expensive, it provides a theoretical guarantee for the stability of the system. In practice,
for square matrices, MATLAB’s condest function can be used to estimate the inverse norm ∥T−1∥∞. This
leads to an estimate of Q as

Q ≈ condest(T
′)

∥T∥∞
. (34)

This approach performs well for our differentiation matrix T, requiring only a small amount of
computation. The bounds of the stability constant Q for the systems (8) and (9) corresponding to Example 1
and Example 2 are illustrated in Fig. 1a and Fig. 1b, respectively. It can be observed that 1 ≤ Q ≤ 1.14, which
show the stability constant Q is bounded by numbers not very large, which imply the numerical stability of
the CSCM.
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Figure 1: (a) The plot of the stability constant Q for Example 1, with N = 30, MH = 80, and σ = 0.6 at t = 1. (b) The
plot of the stability constant Q for Example 2, with N = 20, MP = 40, and σ = 0.5 at t = 1

5 Numerical Experiments
We consider three different test examples to validate and check the efficiency of the LT-CSCM. The

maximum absolute error norm is computed among the numerical solutions and the analytical solutions. The
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error norm is defined as

Err∞ = max
1≤ j≤N

∣u(x̄ j , τ) − uk(x̄ j , τ)∣,

where u is the analytical solution and uk is the approximate solution with the proposed method.

Example 1
Consider a 2D TFADE in Eq. (1) with exact solution u(x , y, τ) = τ2 + x2 + y2. The source term and

initial boundary conditions are obtained from the exact solution. For simplicity we choose a1 = a2 = 1, and
(x , y, τ) ∈ [−1, 1]2 × [0, 1]. The numerical outcomes of the maximum absolute error norm via LT-CSCM with
the parabolic and hyperbolic ILTMs utilizing the optimal values of the parameters defined in Theorem 5 and
Theorem 6 using different numerical values of the parameters σ , N, MP, MH at τ = 1 are shown in Table 1
and for σ = 0.5, MH =MP = 80, N = 12 using different values of τ are shown in Table 2. We observe that with
just N = 12, the error drops to 10−13 , demonstrating the exponential convergence of the Chebyshev spectral
method. In contrast, other methods require more points to achieve comparable accuracy. Moreover, our
method using the LT completes the computations in 4 to 22 seconds, while a time-stepping method takes
more time due to iterative steps. The results of the proposed method are compared with those of the LT-
based local RBF method. The comparison reveals that the proposed method achieves higher accuracy while
requiring less number of points and computational time. The approximate solution of the test example 1
computed by LT-CSCM using σ = 0.95, N = 23, MH = 120 at τ = 1 is depicted in Fig. 2a. Fig. 2b presents the
Err∞ error for the parabolic (CP) and hyperbolic (CH) contours as a function of M, computed using the LT-
CSCM with σ = 0.60, N = 10, and τ = 1, where CP achieves high accuracy as compared to CH . Fig. 3a shows
Err∞ vs. τ for both contours, with N = 10, MP = 80, MH = 120, and σ = 0.60, demonstrating CH ’s superior
accuracy. Similarly, Fig. 3b illustrates Err∞ vs. the fractional order σ , using N = 10, MP = 80, MH = 120, and
τ = 1, with CH consistently outperforming CP . Fig. 4a,b display the error plots for varying values of τ. A
slight increase in error is observed as τ increases, indicating a minor reduction in accuracy with larger τ.
In the hyperbolic contour case, the error escalates with increasing τ for all values of MH . Conversely, in the
parabolic contour case, the error exhibits stability for MP < 65, with a modest rise observed thereafter.

Table 1: Computed results of Err∞ for test example 1 at τ = 1

σ = 0.45 σ = 0.95

N MP Err∞ CPU (s) N MH Err∞ CPU (s)
06 80 8.2601 × 10−14 0.458728 12 80 5.5889 × 10−12 4.570705
08 2.4114 × 10−13 0.880215 14 5.8904 × 10−12 7.698902
10 2.3537 × 10−13 1.434758 16 5.6799 × 10−12 12.740710
12 5.6044 × 10−13 2.329241 18 6.0809 × 10−12 22.604758
10 60 2.0307 × 10−11 0.783448 14 60 1.7859 × 10−09 3.302329

70 2.4425 × 10−13 1.094165 70 3.6660 × 10−09 4.492414
80 2.3537 × 10−13 1.523354 80 4.1256 × 10−11 5.902070
90 2.4603 × 10−13 1.825100 90 5.8904 × 10−12 7.630492

06 80 5.3735 × 10−14 0.474708 12 100 1.5765 × 10−13 5.281663
08 1.3944 × 10−13 0.878473 14 3.3573 × 10−13 8.396366
10 3.3529 × 10−13 2.225168 16 4.8139 × 10−13 14.174648
12 3.5438 × 10−13 2.705963 18 8.4110 × 10−13 23.610341

(Continued)
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Table 1 (continued)

σ = 0.45 σ = 0.95

N MP Err∞ CPU (s) N MH Err∞ CPU (s)
10 60 2.0214 × 10−11 0.747371 14 60 1.7859 × 10−09 2.695916

70 2.2249 × 10−13 1.065972 70 3.6660 × 10−09 3.809028
80 3.3529 × 10−13 1.454191 80 4.1256 × 10−11 5.188223
90 2.9354 × 10−13 1.831423 90 5.7034 × 10−12 6.592155

[64]
31 80 7.10 × 10−4 276.273 092 60 7.32 × 10−4 127.185 713

Table 2: Computed results of Err∞ for test example 1 for various values of τ

σ = 0.5, MP = 80, N = 12 σ = 0.5, MH = 80, N = 12

τ Err∞ CPU (sec.) Err∞ CPU (sec.)
0.25 2.4647 × 10−13 3.732022 5.5511 × 10−14 8.825760
0.50 3.0020 × 10−13 3.218428 1.0836 × 10−13 8.701203
0.75 3.5172 × 10−13 3.301843 1.3189 × 10−13 8.666085
1.00 4.0723 × 10−13 3.208423 1.1546 × 10−13 8.708011
1.25 4.8272 × 10−13 3.240704 1.9051 × 10−13 8.771992
1.50 6.4171 × 10−13 3.206866 2.3448 × 10−19 8.635115
1.75 8.5443 × 10−13 3.177401 2.6201 × 10−13 8.740828
2.00 1.1502 × 10−12 3.202478 3.5527 × 10−13 8.623311
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Figure 2: (a) Numerical solution of test example 1 obtained by the proposed method. (b) Plots of Err∞ vs. M computed
by LT-CSCM using the two contours CP(parabolic) and CH(hyperbolic). The CP yields more accurate results than the
CH , as evidenced by the reduced error across the range of nodes
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Figure 3: (a) The Plots shows Err∞ as a function of τ computed by the LT-CSCM using the two contours CP(parabolic)
and CH(hyperbolic). The CH yields high accuracy, as evidenced by significantly lower error values across the evaluated
time domain. (b) The Plots shows Err∞ as a function of σ computed by LT-CSCM using the two contours CP(parabolic)
and CH(hyperbolic). The results indicate that the CH yields more accurate outcomes as compared to the CP , as evidenced
by the reduced error across the range of σ values
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Figure 4: (a) We have plotted the error as a function of MH for τ = [0.5, 1, 1.5, 2], with separate graphs for each case
value of τ. This plot indicates a slight reduction in accuracy as τ increases, reflecting the influence of temporal evolution
on the method’s performance. (b) We have plotted the error as a function of MP for τ = [0.5, 1, 1.5, 2], with separate
graphs for each case value of τ. For 40 < MP < 65, the error remains relatively stable for all values of τ. However, for
MP > 65, the plots reveal a slight increase in error as τ increases, indicating a minor reduction in accuracy due to the
influence of temporal evolution on the method’s performance

Example 2
Consider a 2D TFADE defined in Eq. (1) with exact solution u(x , y, τ) = τ3 + sin(x + y). The source

term and initial boundary conditions are obtained from the exact solution. For simplicity we choose a1 =
a2 = 1, and (x , y, τ) ∈ [−1, 1]2 × [0, 1]. The numerical outcomes of the maximum absolute error norm via LT-
CSCM with the parabolic and hyperbolic ILTMs utilizing the optimal values of the parameters defined in
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Theorem 5 and Theorem 6 using different numerical values of the parameters σ , N, MP, MH at τ = 1 are
shown in Table 3 and for σ = 0.5, MH =MP = 80, N = 12 using different values of τ are shown in Table 4.
The approximate solution of the test example 2 computed by LT-CSCM using σ = 0.95, N = 23, MH = 120
at τ = 1 is depicted in Fig. 5a. Fig. 5b displays Err∞ error for the parabolic (CP) and hyperbolic (CH)
contours as a function of the quadrature node countM, computed using the LT-CSCM with σ = 0.60, N =
10, and τ = 1. The CP contour yields superior accuracy compared to CH . Fig. 6a presents Err∞ vs. τ for
both contours, with N = 10, MP = 80, MH = 120, and σ = 0.60, where CP demonstrates greater precision.
Likewise, Fig. 6b illustrates Err∞ vs. the fractional order σ , using N = 10, MP = 80, MH = 120, and τ = 1, with
CP consistently outperforming CH . Fig. 7a,b display the error plots for varying values of τ. A slight increase
in error is observed as τ increases, indicating a minor reduction in accuracy with larger τ. For the hyperbolic
contour, larger τ values lead to a consistent error growth regardless of MH . In contrast, the parabolic contour
maintains near-constant error up to MP = 70, beyond which a gradual increase is observed.

Table 3: Computed results of Err∞ for test example 2 at τ = 1

σ = 0.45 σ = 0.95

N MP Err∞ CPU (s) N MH Err∞ CPU (s)
06 80 2.7632 × 10−06 3.390702 06 80 2.7633 × 10−06 0.761672
08 8.8751 × 10−09 1.054598 08 8.8751 × 10−09 1.385999
10 1.4140 × 10−11 1.635748 10 2.6330 × 10−11 2.367367
12 6.5681 × 10−13 2.718997 12 2.0636 × 10−11 3.727264
12 60 3.3851 × 10−09 1.855325 12 60 8.9322 × 10−10 2.006423

70 9.8712 × 10−12 1.953771 70 1.8334 × 10−09 2.784457
80 6.5681 × 10−13 2.696487 80 2.0636 × 10−11 3.698617
90 3.8503 × 10−13 3.506589 90 2.8182 × 10−12 4.835735

06 80 2.8416 × 10−06 0.553062 06 80 2.8416 × 10−06 0.718420
08 9.2162 × 10−09 0.988440 08 9.2161 × 10−09 1.286288
10 1.4426 × 10−11 1.587988 10 2.6456 × 10−11 2.207315
12 2.4558 × 10−13 2.704731 12 2.0658 × 10−11 3.416381
12 60 3.3857 × 10−09 1.488101 12 60 8.9324 × 10−10 1.865004

70 9.7549 × 10−12 2.063635 70 1.8334 × 10−09 2.872724
80 2.4558 × 10−13 2.746631 80 2.0658 × 10−11 3.413514
90 5.3868 × 10−13 3.404533 90 2.8819 × 10−12 4.358569

Table 4: Computed results of Err∞ for test example 2 for various values of τ

σ = 0.5, MP = 80, N = 12 σ = 0.5, MH = 80, N = 12

τ Err∞ CPU (sec.) Err∞ CPU (sec.)
0.25 3.8958 × 10−13 3.234866 1.0895 × 10−11 4.411454
0.50 5.0648 × 10−13 3.286405 1.3892 × 10−11 6.046790
0.75 6.4793 × 10−13 3.234721 1.4345 × 10−11 4.479463
1.00 8.1668 × 10−13 3.217594 2.0635 × 10−11 4.384079
1.25 1.0147 × 10−12 3.252007 3.8013 × 10−11 4.438511

(Continued)
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Table 4 (continued)

σ = 0.5, MP = 80, N = 12 σ = 0.5, MH = 80, N = 12

τ Err∞ CPU (sec.) Err∞ CPU (sec.)
1.50 1.2541 × 10−12 3.249500 2.0234 × 10−11 4.396462
1.75 1.5401 × 10−12 3.245634 3.7421 × 10−11 4.407512
2.00 1.9007 × 10−12 3.435805 4.2814 × 10−11 4.456666
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Figure 5: (a) Numerical solution of test example 2 otained by the proposed method. (b) Plots of Err∞ vs. M computed
by LT-CSCM using the two contours CP(parabolic) and CH(hyperbolic). The CP yields more accurate results than the
CH , as evidenced by the reduced error across the range of nodes
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Figure 6: (a) The Plots shows Err∞ as a function of τ computed by the LT-CSCM using the two contours CP(parabolic)
and CH(hyperbolic). The CP contour consistently achieves higher accuracy, as demonstrated by substantially lower
error values across the evaluated time domain. (b) The Plots shows Err∞ as a function of σ computed by LT-CSCM
using the two contours CP(parabolic) and CH(hyperbolic). The results indicate that the CP contour, with significantly
reduced errors across the range of σ values, indicating superior accuracy
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Figure 7: (a) We have plotted the error as a function of MH for τ = [0.5, 1, 1.5, 2], with separate graphs for each case
value of τ. This plot indicates a slight reduction in accuracy as τincreases, reflecting the influence of temporal evolution
on the method’s performance. (b) We have plotted the error as a function of MP for τ = [0.5, 1, 1.5, 2], with separate
graphs for each case value of τ. For 40 < MP < 70, the error remains relatively stable for all values of τ. However, for
MP > 70, the plots reveal a slight increase in error as τ increases, indicating a minor reduction in accuracy due to the
influence of temporal evolution on the method’s performance

Example 3
Consider a 2D TFADE in Eq. (1) with exact solution u(x , y, τ) = (1 + τ3 + τ4) cos( π

2 x) cos( π
2 y). The

source term and initial boundary conditions are obtained from the exact solution. For simplicity we choose
a1 = a2 = 1, and (x , y, τ) ∈ [−1, 1]2 × [0, 1]. The numerical outcomes of the maximum absolute error norm
via LT-CSCM with the parabolic and hyperbolic ILTMs utilizing the optimal values of the parameters defined
in Theorem 5 and Theorem 6 using different numerical values of the parameters σ , N, MP, MH at τ = 1 are
shown in Table 5 and for σ = 0.5, MH =MP = 80, N = 12 using different values of τ are shown in Table 6.
The approximate solution of the test example 3 computed by LT-CSCM using σ = 0.95, N = 23, MH = 120
at τ = 1 is depicted in Fig. 8a. Fig. 8b illustrates the L∞ error (Err∞) for the parabolic (CP) and hyperbolic
(CH) contours as a function ofM, computed using the LT-CSCM with σ = 0.60, N = 10, and τ = 1. The CH
contour performs better than CP . Fig. 9a displays Err∞ vs. τ, with N = 10, MP = 80, MH = 120, and σ = 0.60,
where CP and CH have produced almost similar results. Similarly, Fig. 9b presents Err∞ vs. σ , with N = 10,
MP = 70, MH = 60, and τ = 1, with CH outperforming CP . Fig. 10a,b display the error plots for varying values
of τ. A slight increase in error is observed as τ increases, indicating a minor reduction in accuracy with larger
τ. With the hyperbolic contour, the error rises steadily as τ increases for all MH . For the parabolic contour,
however, the error remains largely unchanged until MP = 80, after which it gradually increases.

Table 5: Computed results of Err∞ for test example 3 at τ = 1

σ = 0.45 σ = 0.95

N MP Err∞ CPU (s) N MH Err∞ CPU (s)
06 80 7.2419 × 10−05 0.635034 06 80 7.2419 × 10−05 0.789779
08 4.3969 × 10−05 1.041039 08 4.3967 × 10−07 1.520031

(Continued)
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Table 5 (continued)

σ = 0.45 σ = 0.95

N MP Err∞ CPU (s) N MH Err∞ CPU (s)
10 1.5267 × 10−09 1.731705 10 1.5456 × 10−09 2.339859
12 7.9465 × 10−12 2.683817 12 2.0355 × 10−11 3.832206
12 60 4.1473 × 10−07 1.408286 12 60 8.8889 × 10−10 2.106545

70 1.3362 × 10−09 2.022943 70 1.8291 × 10−09 2.877898
80 7.9465 × 10−12 2.757916 80 2.0355 × 10−11 3.822222
90 4.5706 × 10−12 3.398950 90 5.3051 × 10−12 4.890334

06 80 6.7846 × 10−05 0.687953 06 80 6.7846 × 10−05 0.742059
08 4.1668 × 10−07 1.020232 08 4.1666 × 10−07 1.333140
10 1.4685 × 10−09 1.722290 10 1.4875 × 10−09 2.200380
12 7.7858 × 10−12 2.705505 12 2.0430 × 10−11 3.429313
12 60 4.1473 × 10−07 1.409197 12 60 8.8905 × 10−10 1.897165

70 1.3363 × 10−09 2.067497 70 1.8293 × 10−09 2.618052
80 7.7858 × 10−12 2.706083 80 2.0430 × 10−11 3.453511
90 4.4067 × 10−12 3.463687 90 5.3770 × 10−12 4.372541

Table 6: Computed results of Err∞ for test example 3 for various values of τ

σ = 0.5, MP = 80, N = 12 σ = 0.5, MH = 80, N = 12

τ Err∞ CPU (sec.) Err∞ CPU (sec.)
0.25 4.9019 × 10−12 3.341849 1.0193 × 10−11 4.378416
0.50 5.2023 × 10−12 3.412732 1.5584 × 10−11 4.331457
0.75 6.0569 × 10−12 3.323900 1.6822 × 10−11 4.335437
1.00 7.9439 × 10−12 3.391502 2.0360 × 10−11 4.350298
1.25 1.1470 × 10−11 3.389320 4.5721 × 10−11 4.499091
1.50 1.7392 × 10−11 3.359923 2.6373 × 10−11 4.344852
1.75 2.6596 × 10−11 3.433501 5.9959 × 10−11 4.366634
2.00 4.0110 × 10−11 3.395691 7.8646 × 10−11 4.374096
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Figure 8: (a) Numerical solution of test example 3 obtained by the proposed method. (b) Plots of Err∞ vs. M computed
by LT-CSCM using the two contours CP(parabolic) and CH(hyperbolic). The CH yields more accurate results than the
CP , as evidenced by the reduced error across the range of node
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Figure 9: (a) The Plots shows Err∞ as a function of τ computed by the LT-CSCM using the two contours CP(parabolic)
and CH(hyperbolic). The curves for both contours overlap closely, indicating comparable accuracy across the evaluated
τ range, with negligible differences in error. (b) The Plots shows Err∞ as a function of σ computed by LT-CSCM using
the two contours CP(parabolic) and CH(hyperbolic). The results indicate that the CH contour, with significantly reduced
errors across the range of σ values, indicating superior accuracy
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Figure 10: (a) We have plotted the error as a function of MH for τ = [0.5, 1, 1.5, 2], with separate graphs for each case
value of τ. This plot indicates a slight reduction in accuracy as τincreases, reflecting the influence of temporal evolution
on the method’s performance. (b) We have plotted the error as a function of MP for τ = [0.5, 1, 1.5, 2], with separate
graphs for each case value of τ. For 40 < MP < 80, the error remains relatively stable for all values of τ. However, for
MP > 80, the plots reveal a slight increase in error as τ increases, indicating a minor reduction in accuracy due to the
influence of temporal evolution on the performance of the method

6 Conclusion
In this study, we developed a LT-CSCM to solve time-fractional advection-diffusion equations including

the AB derivative with high accuracy and computational efficiency. By integrating the LT with the CSCM,
our approach combines the advantages of both approaches: the Laplace transform eliminates time-stepping
complexities, ensuring exact temporal discretization, while the CSCM, utilizing Lagrange polynomials-based
on Chebyshev nodes, achieves exponential convergence in the spatial domain with minimal nodes. This
combination results in low computational cost and high accuracy, as demonstrated by the excellent agree-
ment between our numerical results and exact solutions across various test cases. Despite these advantages,
we acknowledge certain limitations. The CSCM’s reliance on global basis functions can pose challenges for
problems involving irregular geometries or complex boundary conditions, where local methods might be
more adaptable. Furthermore, the global nature of the approach may limit its adaptability to very large-scale
problems. To revert solutions from the Laplace domain to the time domain, we employed a numerical inverse
Laplace transform, which maintained stability and accuracy throughout. Overall, the LT-CSCM proves to
be a robust and efficient tool for time-fractional advection-diffusion problems, with the potential for further
refinement to address complex geometries and broader applications. As a future direction, we aim to extend
the proposed LT-CSCM framework to solve multi-dimensional time-fractional problems and to compare
the performance and accuracy of the method when applied to different types of fractional derivatives,
including the modified Atangana-Baleanu derivative. This will enable a deeper understanding of the method’s
adaptability and effectiveness across various fractional models and more realistic physical phenomena.
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