
Computer Modeling in
Engineering & Sciences

echT PressScience

Doi:10.32604/cmes.2025.064789

ARTICLE

Fusion Prototypical Network for 3D Scene Graph Prediction

Jiho Bae, Bogyu Choi, Sumin Yeon and Suwon Lee*

Department of Computer Science and Engineering, Gyeongsang National University, Jinju-si, 52828, Republic of Korea
*Corresponding Author: Suwon Lee. Email: leesuwon@gnu.ac.kr
Received: 24 February 2025; Accepted: 21 May 2025; Published: 30 June 2025

ABSTRACT: Scene graph prediction has emerged as a critical task in computer vision, focusing on transforming
complex visual scenes into structured representations by identifying objects, their attributes, and the relationships
among them. Extending this to 3D semantic scene graph (3DSSG) prediction introduces an additional layer of
complexity because it requires the processing of point-cloud data to accurately capture the spatial and volumetric
characteristics of a scene. A significant challenge in 3DSSG is the long-tailed distribution of object and relationship
labels, causing certain classes to be severely underrepresented and suboptimal performance in these rare categories. To
address this, we proposed a fusion prototypical network (FPN), which combines the strengths of conventional neural
networks for 3DSSG with a Prototypical Network. The former are known for their ability to handle complex scene graph
predictions while the latter excels in few-shot learning scenarios. By leveraging this fusion, our approach enhances
the overall prediction accuracy and substantially improves the handling of underrepresented labels. Through extensive
experiments using the 3DSSG dataset, we demonstrated that the FPN achieves state-of-the-art performance in 3D scene
graph prediction as a single model and effectively mitigates the impact of the long-tailed distribution, providing a more
balanced and comprehensive understanding of complex 3D environments.
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1 Introduction
The concept of scene graphs, initially introduced for 2D images [1–4], has been adapted for 3D envi-

ronments to enhance scene understanding in various applications such as virtual reality [5–8], augmented
reality [9–11], and autonomous navigation [12–14]. The shift from 2D to 3D involves additional challenges,
such as needing to interpret accurately the spatial relationships and volumetric properties of objects, which
are more complex in a three-dimenmsional context.

3D semantic scene graph (3DSSG) [15] has made significant contributions to the problem of scene
graph prediction in 3D indoor environments. 3DSSG proposed a 3D semantic scene graph dataset based
on the 3RScan dataset [16] and utilized it to demonstrate remarkable performance through a scene graph
prediction network (SGPN) [15]. Since then, most researchers have proposed scene-graph prediction models
based on SGPN. Fig. 1 shows the structure of a typical scene-graph prediction model. After 3DSSG, most
researchers improved the model’s performance by changing each module, such as the encoder, feature
input, and graph reasoning using various method. Most studies employed Pointnet as the encoder [15,17],
and some used either a dynamic graph convolutional neural network [18,19] or point transformers [20,21].
Feature input initially uses a masked point cloud per instance [15,22], and later adds geometric information
or statistical metrics such as mean, variance [23,24]. Graph reasoning initially used graph convolutional
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networks (GCN) [15,25], and later used various GCN-based attention [26] models, such as EdgeGCN, feature
wise attention (FAT), to better capture features [19,23]. Recent studies have mainly improved performance
by adding visual and linguistic information to existing models. They integrated 3D point clouds with 2D
images [24,27] and language-based models like contrastive language-image pretraining (CLIP) or a large
language model (LLM) [24,27–30].

Figure 1: Typical 3D scene graph prediction structure

In the 3DSSG dataset, both objects and predicates exhibited extremely long-tail distribution. In
particular, objects had 160 classes,of which approximately 50 had 10 or fewer data points. Despite these
distributions for objects, most studies have focused on the long-tailed problem for predicates. Also, classes
with 10 or fewer data elements occur more frequently in few-shot learning than general deep learning tests. In
this paper, we present a fusion prototypical network (FPN) that approaches sparse classes in data as few-shot
learning and rich data as general deep learning. To achieve this, the embedding space of the graph reasoning
output is altered by utilizing prototypical loss with the intention of optimally inducing the classifier to capture
sparse classes. We quantitatively and qualitatively evaluated the proposed method on the 3DSSG dataset and
found that it improved the performance of sparse classes.

2 Related Work

2.1 Scene Graph Prediction: The Point Cloud Approach
Image-based scene graph prediction is an extensively researched field, with notable advancements in

modeling semantic relationships between objects within images. However, there has also been a recent surge
in research on 3D-based scene graph prediction using point clouds. Table 1 shows a comparative analysis
of the 3D scene graph prediction models. The pioneering work in 3D scene graph prediction is from the
3DSSG framework [15], which introduced the 3DSSG generation dataset leveraging the 3RScan dataset and a
neural network named SGPN, which combines Graph Convolution Networks (GCNs) and PointNet [16]. The
SGPN model utilizes GCNs to generate 3D graphs efficiently, but its performance is limited in environments
with long-tail distributions. The SGGpoint model [19], developed by Zhang et al., employed an EdgeGCN
to capture edge-based relationships within point clouds. Further improving the reasoning capabilities, Wu
et al. [23] introduced the Scene Graph Fusion Network (SGFN), which sequentially generates 3D graphs
from RGB-D sequences and integrates them through a Graph Fusion Attention (FAT) mechanism.

Knowledge-based research has also been conducted by scholars such as Zhang et al. [22] who proposed
a knowledge-inspired network for embedding labels via meta-embedding and intervening features in scene
graph prediction models. Feng et al. [31] used hierarchical symbolic knowledge to leverage external knowl-
edge to improve the model’s classification performance for ambiguous relationships. The SGFormer [28]
model employs an LLM to enhance the visual features of objects by leveraging knowledge from the semantic
injection layer. Lang3DSG [29] inserted natural language information into the model by encoding objects and
relationships as text using CLIP [30]. Similarly, visual-linguistic semantics-assisted training (VL-SAT) [24]
overcomes the limitations of the existing point clouds by inserting natural language information through
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CLIP and using additional image data to provide visual information. These models require both point cloud
and additional image modalities to improve performance, but their reliance on extra input data can be a
limitation in real-world applications where only point cloud data may be available.

Meanwhile, SGRec3D [32] proposed a method for effectively training limited point-cloud data by using
an autoencoder for pre-training.

Table 1: Comparative analysis of 3D scene graph prediction models

Model Modalities Method Limitation Comparison with our
method

SGPN [15] Point clouds GCN, Pointnet Limited performance
in long-tail

environments

Works well in long-tail
environments

SGGpoint [19] Point clouds EdgeGCN Graph layers focused
on edges

Focus on sparse nodes

SGFN [23] Point clouds FAT Focus on improving
performance at the

GCN layer

Embedding mapping
after graph reasoning

SGFormer [28] Point
clouds, LLM

LLM with
Semantic

Injection Layer

Additional computing
resources due to LLM

Minimize additional
compute resources

Lang3DSG [29] Point
clouds, CLIP

CLIP Encoding,
Text

Representation

Requires additional
modalities, such as

images

Use only point cloud

VL-SAT [24] Point
clouds, CLIP

CLIP, Visual-
Linguistic
Training

Requires additional
modalities, such as

images

Use only point cloud

SGRec3D [32] Point clouds Autoencoder
Pre-training

training process in 2
stages

training process in 1
stages

2.2 Few-Shot Learning
Few-shot learning has recently garnered significant attention for training models with limited labeled

data. One of the pioneering works in this domain is Matching Networks proposed by Vinyals et al. [33],
which employs an attention mechanism to compare a small number of labeled examples with the query set,
leveraging the concept of support and query samples to perform classification. Another notable approach is
Prototypical Networks proposed by Snell et al. [34], which represents each class with a prototype, typically the
mean of its support set, and classifies queries based on their proximity to these prototypes in the embedding
space. Further advancements include model-agnostic meta-learning (MAML) by Finn et al. [35], which
trains models to enable rapid adaptation to new tasks with few gradient steps. Sung et al. [36] improved the
performance of relation networks in few-shot scenarios using a learnable deep distance metric to compute
the similarities between samples. Recent work has also integrated transformer architectures, as seen in the
few-Shot Transformer by Ye et al. [37], which captures long-range dependency and context. MetaOptNet by
Lee et al. [38] combined optimization-based meta-learning with support set regularization to enhance the
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performance on standard benchmarks. Meanwhile, there is also a study that addresses the Few-Shot Class-
Incremental Learning (FSCIL) problem by proposing a Filter Bank Network (FBN) [39], which augments
learnable convolution filters instead of data, thereby effectively integrating new classes.

3 Proposed Method
Fig. 2 shows an overview of the proposed system which is similar to a typical scene-graph prediction

model. However, we improve the model’s performance by changing the embedding space after applying
graph reasoning. Section 3.1 presents a scene-graph prediction problem using the 3DSSG dataset. Section 3.2
describes the encoders for the nodes and edges and the GNN-based graph-reasoning method is explained
in Section 3.3. Finally, the new, fusion prototypical loss learning method is detailed in Section 3.4.

Figure 2: Overview of the proposed model

3.1 Problem Formulation
As input, we take a point cloud P ∈ RN×3 with N 3D points and with a set M ∈ {M1 , M2, ..., Mk}

of k semantic instance masks described in 3DSSG [15]. We aim to generate a 3d semantic scene graph
G = {O , R}. The set of objects O = {oi}K

i=1 represents the classification result of a point cloud P separated
by a mask M. The set of relations R = {ri j}i , j represents the classification of predicates in a relational triple
⟨sub ject, predicate , ob ject⟩ whose subject is oi and whose object is o j.

3.2 Encoder
The encoder comprises a Node Encoder for objects and an Edge Encoder for relations. Node Encoder

extracts the initial node ϕo ∈ Rk×c and the Edge Encoder extracts the initial edge ϕr ∈ Rk×c . As input,
the node encoder takes a semantic instance Pi ∈ RN×3 extracted using the mask mi ∈ M. We apply this to
PointNet [17] to extract the features the point cloud, in the process extracting a c-dimensional representation
of the object’s initial features ϕn .

The edge encoder uses the same approach as the SGFN [23]. It extracts various features between
the semantic instance pi of subject and the semantic instance p j of object in the relational triple
⟨sub ject, predicate , ob ject⟩ and passes them through the fully connected layer. Eq. (1) calculates the edge-
encoding process. μ and σ are the mean and standard deviation of 3D points in each instance, respectively,
b = (bx , by , bz) is the size, ν = bx bybz is the volumn, and l = max(bx , by , bz) is the maximum side length.
cat (⋅) is concatenate and MLP (⋅) is fully connect layer. The initial edge feature, ϕr , i j , is the edge encoder’s
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output.

ϕr , i j = MLP (cat (μi − μ j , σi − σj , bi − b j , ln li

l j
, ln νi

ν j
)) (1)

3.3 Graph Reasoning
For message propagation between the initial nodes ϕn and edges ϕr , we applied GNN-based structures

such as VL-SAT [24] and SGFN [23]. We enhanced the information of neighboring features through two
message-passing layers. Eqs. (2) and (3) respectively show the nodes’ and edges’ message-passing processes.
� denotes the message parsing layer, go (⋅) , gr (⋅) denote fully connected layers. FAN (⋅) is the feature-wise
attention network (FAN) proposed by SGFN [23].

o�+1
i = go ([o�

i , max (FAN (o�
i , r�

i j , o�
j))]) (2)

e�+1
i j = gr ([o�

i , r�
i j , o�

j]) (3)

The FAN applies FAT as a multi-head approach [40]. Eq. (4) shows the FAT, which takes a query Q and a
target T as inputs, where ga(⋅) is a fully connected layers and⊙ is an elementwise multiplication. Q is passed
through ga(⋅) and normalized using softmax. It then performs element-wise multiplication with T. Input
features Q and T are divided into h heads, and an attention function is applied, as shown in Eq. (5). Each
head is then concatenated. Finally, multi-head feature-wise attention (MFAT) was applied to define FAN, as
shown in Eq. (6). ĝq (⋅), ĝe (⋅), ĝt (⋅) is a single fully connected layer.

FAT(Q , T) = so f tmax (ga (Q)) ⊙ T (4)

MFAT(Q , T) = [FAT (qi , ti)]hi=1 (5)

FAN (oi , ri j , o j) = MFAT ([ĝq (oi) , ĝe (ei j)] , ĝt (o j)) (6)

3.4 Fusion Prototypical Loss
Fusion prototypical loss is designed by combining traditional classification loss and prototypical loss.

The traditional classification loss is effective for classifying many labels, whereas the prototypical loss is better
suited for sparse labels. In Section 3.4.1, we introduce prototypical loss, and in Section 3.4.2, we describe the
fused loss.

3.4.1 Prototypical Loss
As shown in Fig. 2, the embedding space is transformed using the prototypical loss derived from

the updated node features after graph reasoning. This transformation helps improve the classification
performance for classes with fewer labels. The prototypical loss is similar to the loss used in prototype
networks [34]. To calculate the prototypical loss, we must first compute the prototype for each class. Eq. (7)
represents the formula used to compute the prototype. Here, k denotes the class index, and oi represents the
updated node feature obtained by graph reasoning. The prototype Ck for class k is obtained by summing the
node features oi belonging to class k and dividing by the number of nodes in that class. The prototype for
each class is then used to calculate the prototypical loss. Eq. (8) shows the formula for prototypical loss. In
this formula, d(⋅) represents the Euclidean distance between two vectors. We calculate the distance between
the updated node features and the class prototype, convert it into a negative value, and apply log softmax.
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During this process, the node features are trained to move closer to the class prototype. By transforming the
embedding space in this way, we enable the fully connected layer classifier to make better class distinctions.

Ck =
1
∣Sk ∣

∑
(xi , yi)∈Sk

oi (7)

LProto =
1
N

N
∑
i=1

log( exp(−d (oi , Ci))
∑K

k=1 exp (−d (oi , Ck))
) (8)

3.4.2 Fusion Loss
As shown in Fig. 2, the updated node and edge features resulting from graph reasoning are classified

through their respective fully connected layers. The fused loss function is created by linearly combining the
commonly used classification loss with the prototypical loss. Eq. (9) represents the fused loss function.LProto
is the prototypical loss described earlier, Lob j is the object classification loss (cross-entropy loss), and Lre l
is the predicate classification loss, which uses class-specific binary cross-entropy loss since the predicates
are multilabel. λProto , λob j, and λre l are hyperparameters that control the balance between the learning of
each loss function. The prototype losses added to these existing classification losses do not require additional
computing resources during validation.

L = λProtoLProto + λob jLob j + λre lLre l (9)

4 Experiments
We evaluated the performance of the proposed Fusion Prototypical Network (FPN). Respec-

tively, Sections 4.1–4.3 describe a) the 3DSSG dataset used in our experiments and problems with its use,
b) the evaluation metrics for the experiments, and c) the detailed implementation. Sections 4.4 and 4.5
compare our performance with state-of-the-art methods and detail how the prototypical loss was applied
to various existing scene graph prediction models to compare their performance under different data
distributions. Section 4.6 presents the qualitative evaluation of the data.

4.1 Dataset
We experimented with the 3DSSG data [15]. This dataset was based on the 3RScan dataset [16], which

contains 3D scene data annotated using 3d semantic scene graphs. The dataset contained 1553 indoor 3D
scenes with masks per instance, 160 object classes, and 26 predicate classes as labels. We used the same
training/validation split as 3DSSG [15]. The 3DSSG dataset has a extremely long-tailed distribution for both
objects and predicates. Fig. 3 shows a graph of the number of data points per class for objects and Predictates
in the training data, sorted in descending order. In the objects class shown in Fig. 3a, approximately half
of the classes had 50 or fewer data items. The predicates in Fig. 3b also exhibits a pronouncedly long-tailed
distribution. These distributions skew the model, which is why it is critical to design a model that performs
equally well across all classes.
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Figure 3: Class-wise distribution of objects and predicates in 3DSSG, (a) is the distribution of data counts by class for
objects, and (b) is the distribution of data counts by class for predicates

4.2 Metrics
In conformance with the experimental setup detailed in 3DSSG [15], the 3D scenes were consistently

placed within the same coordinate system during both the training and testing phases. To assess the accuracy
of object and predicate predictions, we employed the top-k accuracy (A@k) metric [24]. To evaluate the
triplets, we calculate triplet scores by multiplying the scores of the subject, predicate, and object, and
subsequently determined A@k as the evaluation criterion. A triplet is deemed accurate only if all its
components–subject, predicate, and object–are correctly identified. To provide a balanced assessment of
performance with a long-tailed distribution, we computed the average top-k accuracy, named the average
top-k accuracy (mA@k), over all predicate and object classes [24].

4.3 Implementation Details
Our network had a batch size of eight, and used the AdamW optimizer [41,42]. We trained for 100 epochs

on an NVIDIA A100 GPU. This took approximately 48 hours. The learning rate was 0.0001 and we followed a
cosine annealing learning rate strategy. The Pytorch platform was used [43] with the parameters set as follows:
λob j = λproto = 0.1, λre l = 1. We referenced the object (λob j) and predicate (λre l ) learning weights used in our
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previous work (VL-SAT) [24]. The newly added prototype lossLProto is used to improve object performance,
which plays a similar role to Lorac l e

ob j in vl-sat [24]. Therefore, we set λproto to equal the hyperparameter
weights ofLorac l e

ob j . The point cloud was sampled using 128 points, and all embedding vectors inside the model
including the prototype dimension, were set to 512 dimensions.

4.4 Comparison with State-of-the-Art Methods
Table 2 shows the performance of our model compared to state-of-the-art models. The VL-SAT model

is multimodal, and the rest are single models, such as ours. The base model is similarly to the SGFN [23]
and non-VL-SAT [24] models. The FPN was trained by applying a prototypical loss in to the base model.
Overall, the base model appeared to perform similarly to the SGFN model. Object performs somewhat worse
than the SGFN model, and predicate performs somewhat worse, but slightly better regarding average top-
k accuracy. This suggests that the base model performs slightly worse than SGFN but is more robust to
long-tailed distributions. Triplet performed poorly overall compared to SGFN. Comparing the base model
to our FPN, we observed a substantial performance increase across objects, predicates, and triplets. Object
exhibited performance improvement of A@1 1.37, A@5 1.5, and A@10 1.84. Predicate performed similarly for
A@K, but shows a substantial improvement in average top-k accuracy with mA@1 3.66, mA@3 4.67, and
mA@5 4.3. The triplet also shows an overall performance improvement, especially in the average top-k
accuracy, with mA@50 of 11.38 and mA@100 of 11.98. This indicates that embedding the node features
resulting from graph reasoning into the prototype space improves the overall performance of the model.
The improvement in average top-k accuracy across the different parts also shows that our FPN can
train well on data with long-tailed distributions. This trend is similar for VL-SAT multimodal model,
showing that embedding in a prototype space allows a single model to extract as much information as a
multimodal models.

Table 2: Performance comparison with state-of-the-art models

Model Object Predicate Triplet

A@1 A@5 A@10 A@1 A@3 A@5 mA@1 mA@3 mA@5 A@50 A@100 mA@50 mA@100
SGPN [15] 48.28 72.94 82.74 91.32 98.09 99.15 32.01 55.22 69.44 87.55 90.66 41.52 51.92

SGG point [19] 51.42 74.56 84.15 92.40 97.78 98.92 27.95 49.98 63.15 87.89 90.16 45.02 56.03
SGFN [23] 53.67 77.18 85.14 90.19 98.17 99.33 41.89 70.82 81.44 89.02 91.71 58.37 67.61

VL-SAT [24] 55.66 78.66 85.91 89.81 98.45 99.53 54.03 77.67 87.65 90.35 92.89 65.09 73.59
Base model 54.04 75.19 82.84 89.02 98.14 99.33 48.73 71.02 82.73 87.70 90.27 48.17 57.61
FPN (ours) 55.41 76.69 84.68 89.40 98.21 99.39 52.39 75.69 87.03 89.29 91.86 59.55 69.59

4.5 Comparison by Data Distribution for Different Backbone Models
In this section, the experimental reports are divided into three categories based on the number of objects

and predicates per class: Head, Body, and Tail, respectively. In addition, we applied the proposed fusion-loss
method to the SGFN [23] and VL-SAT [24] models. For experimental fairness, only 3D models were used
for the VL-SAT multimodal model.

Table 3 shows that for objects, applying fusion loss improves the overall performance. Except for the
mA@1 metric of the body part in SGFN and the mA@5 metric of the head part in VL-SAT, the performance
improved. In particular, the model with FPN in the tail part shows a substantial performance improvement,
with mA@1 of 0.46, mA@5 of +4.78, and mA@10 of +2.16 for SGFN, and mA@1 of +1.86, mA@5 of +6.79,
and mA@10 of +16.89 for VL-SAT. These substantial performance improvements in the tail part demonstrate
that FPN can capture the features of sparsely labeled objects in a general scene graph prediction model.
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Table 3: Comparison of the performance of objects and predicates across class distributions in existing deep learning
models

Objects Head Body Tail Total

mA@1 mA@5 mA@10 mA@1 mA@5 mA@10 mA@1 mA@5 mA@10 mA@1 mA@5 mA@10
SGFN [23] 41.29 74.24 84.24 14.21 36.12 47.47 7.41 21.30 31.64 20.88 43.75 54.31

SGFN+FPN 42.19 74.26 85.66 12.19 38.46 50.65 7.87 26.08 33.80 20.67 46.14 56.56
VL-SAT [24] 41.18 73.09 83.13 10.52 29.01 40.73 5.86 18.67 21.60 19.10 40.13 48.32

VL-SAT+FPN 41.94 72.84 83.52 13.48 37.60 52.02 7.72 25.46 38.49 20.96 45.18 57.89

Predicate Head Body Tail Total

mA@1 mA@1 mA@1 mA@1 mA@1 mA@1 mA@1 mA@1 mA@1 mA@1 mA@1 mA@1

SGFN [23] 61.19 81.00 85.13 25.57 52.63 77.94 29.01 42.23 68.79 38.96 59.25 77.61
SGFN+FPN 59.94 80.28 84.98 25.43 54.88 78.82 31.01 46.16 65.47 39.09 60.99 76.84
VL-SAT [24] 64.60 81.60 85.71 32.68 65.49 84.63 38.47 54.23 63.35 45.51 67.60 78.46

VL-SAT+FPN 64.77 82.30 85.87 35.97 69.76 84.88 35.23 51.87 78.08 45.71 68.60 83.13

Objects show consistent performance gains per backbone, while predicates show average performance
gains but no consistency in performance gains per backbone. This suggests that the model does not mitigate
backbone-specific architectural disparities, which is probably due to the model primarily focusing on
object prototypes.

4.6 Qualitative Results
In this section, we compared the base model, ground truth, and our proposed FPN. The input point

cloud, the ground-truth graph, the base model’s prediction graph, and the proposed FPN’s prediction graph
are depicted in Fig. 4. Each label denotes an object, and each line represents its relationship with other objects.
The arrowheads signify the directions of the linkages. A red arrow indicates an incorrect prediction of no
relationship. The base model incorrectly predicted three nodes, while FPN incorrectly predicted four nodes.
In some cases, our method misclassified sparse classes like “toilet” as many classes like “chair”. In general,
FCN performed better on the edges. The base model predicted numerous “no relationship” overall, and our
methods occasionally incorrectly predicted some relationships.

Figure 4: (Continued)
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Figure 4: Qualitative evaluation of the proposed method compared to the base model and ground truth; (a) is the input
point cloud, (b) is the ground truth graph, (c) is the base model prediction graph, and (d) is the FPN’s prediction graph

5 Discussion
In general, multimodal models that combine images and language perform well overall by effectively

utilizing semantic information from images and contextual information from language. However, these
models are disadvantaged by requiring additional computing resources to utilize multiple modalities. Table 4
shows the number of parameters per model. Multi-modal models such as VL-SAT [24] use a CLIP
encoder [30] for image and language alignment, which requires more computing resources than a single
model. Although our model has a slight difference in performance compared to VL-SAT [24], we can achieve
similar performance with fewer computing resources.

Table 4: Model parameter counts

Model Number of parameters
SGG point [19] 14 M

SGFN [23] 13 M
VL-SAT [24] 167 M
FPN (Ours) 13 M

6 Conclusion
We present a FPN that leverages the potential space of an existing scene graph prediction neural network

as a prototype. By embedding this space and utilizing a prototype-based mapping strategy, the FPN effectively
captures underrepresented classes, addressing the challenges posed by long-tailed distributions. Evaluating
it on the 3DSSG dataset shows clear performance gains as a single model and demonstrates robustness to
long-tailed distributions of objects and triplets. This provides a more balanced representation of complex
3D environments. However, the model focuses on capturing sparse classes of objects and does not improve
performance for predicates. In future work, we will further explore sparse class capture for both objects
and predicates, aiming for a more comprehensive understanding and representation of the relationships in
complex scenes.
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