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ABSTRACT: To improve small object detection and trajectory estimation from an aerial moving perspective, we pro-
pose the Aerial View Attention-PRB (AVA-PRB) model. AVA-PRB integrates two attention mechanisms—Coordinate
Attention (CA) and the Convolutional Block Attention Module (CBAM)—to enhance detection accuracy. Additionally,
Shape-IoU is employed as the loss function to refine localization precision. Our model further incorporates an
adaptive feature fusion mechanism, which optimizes multi-scale object representation, ensuring robust tracking in
complex aerial environments. We evaluate the performance of AVA-PRB on two benchmark datasets: Aerial Person
Detection and VisDrone2019-Det. The model achieves 60.9% mAP@0.5 on the Aerial Person Detection dataset, and
51.2% mAP@0.5 on VisDrone2019-Det, demonstrating its effectiveness in aerial object detection. Beyond detection,
we propose a novel trajectory estimation method that improves movement path prediction under aerial motion.
Experimental results indicate that our approach reduces path deviation by up to 64%, effectively mitigating errors
caused by rapid camera movements and background variations. By optimizing feature extraction and enhancing spatial-
temporal coherence, our method significantly improves object tracking under aerial moving perspectives. This research
addresses the limitations of fixed-camera tracking, enhancing flexibility and accuracy in aerial tracking applications.
The proposed approach has broad potential for real-world applications, including surveillance, traffic monitoring, and
environmental observation.

KEYWORDS: Aerial View Attention-PRB (AVA-PRB); aerial object tracking; small object detection; deep learning for
Aerial vision; attention mechanisms in object detection; shape-IoU loss function; trajectory estimation; drone-based
visual surveillance

1 Introduction

Tracking moving objects from an aerial perspective presents significant challenges due to the simulta-
neous motion of both the camera and the background. Traditional object tracking methods typically rely
on comparing consecutive frames to estimate motion. However, in aerial imagery, this approach struggles
to distinguish true object movement from background displacement caused by camera motion. Bewley
etal. [1] demonstrated that camera-induced movement significantly affects tracking accuracy by introducing
background shifts that obscure object trajectories. To mitigate this issue, researchers have proposed advanced
tracking algorithms that decouple foreground motion from background artifacts [2-4]. These models
demonstrate robustness in crowded scenes and under conditions of occlusion and noisy background motion,
making them particularly suitable for aerial surveillance scenarios.
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Recent advancements in computer vision have significantly improved object detection and tracking
performance. Traditional object detection approaches relied on handcrafted features and classical machine
learning techniques. However, deep learning-based models leveraging large-scale datasets and robust neural
network architectures have demonstrated superior accuracy and efficiency [5]. Among these models, You
Only Look Once (YOLO) has emerged as one of the most widely adopted frameworks for real-time object
detection due to its computational efficiency and high precision [6]. The You Only Look Once (YOLO)
series has undergone continuous evolution to enhance detection accuracy, processing speed, and robustness.
YOLOV7 introduced optimized model scaling techniques that improved efficiency while maintaining real-
time capabilities [7]. YOLOV8 incorporated advanced feature extraction mechanisms that refined small
object detection while reducing computational complexity [8]. YOLOv9 addressed training stability issues
by optimizing gradient flow, thereby improving model generalization across diverse datasets [9]. The latest
iteration, YOLOVI10, integrated a hybrid attention mechanism to enhance object localization and tracking
performance in aerial imagery applications [10]. However, existing detection and tracking methods often
struggle under specific conditions common in aerial imagery, such as low-resolution inputs, small object
sizes, frequent occlusion, and high background complexity. These challenges become more severe when
Unmanned Aerial Vehicles (UAVs) operate at high altitudes or in densely populated urban environments,
resulting in reduced detection precision and tracking stability.

Aerial object tracking introduces unique challenges not typically encountered in ground-based detec-
tion tasks due to perspective variations, small object sizes, occlusion, background clutter, and dynamic
environmental conditions. Li et al. [11] developed a model for detecting multiple targets in UAV-based
aerial images, addressing key issues such as shape deformations and occlusions. Their study introduced
modifications to the Bi-PAN-FPN structure within YOLOV8-s, improving multi-scale feature fusion while
maintaining a compact parameter size. Additionally, their model incorporated GhostblockV2, which
replaced sections of the C2f module, mitigating long-distance feature transfer loss and preserving crucial
detection details [2]. To refine bounding box regression, Wise Intersection over Union (WIoU) loss was
proposed, dynamically adjusting outlier distributions to stabilize predictions for small objects in aerial
imagery [3,12].

Several tracking algorithms have been introduced to improve accuracy and robustness in multi-object
tracking (MOT). The Simple Online and Realtime Tracking (SORT) algorithm, introduced by Bewley
etal. [1], leveraged a Kalman filter and the Hungarian algorithm to achieve real-time tracking performance.
Zhang et al. [2] proposed ByteTrack, an extension of SORT that maintained tracking continuity by utilizing
both high-confidence and low-confidence detection boxes. Aharon et al. [3] developed BoT-SORT, which
introduced re-identification features through CNN (Convolutional Neural Networks)-based visual embed-
ding, improving tracking robustness in dynamic environments. More recently, Wang et al. [4] proposed
SMILEtrack, which integrated a Patch Self-Attention (PSA) block and a Similarity Matching Cascade (SMC)
module to enhance object matching across frames, particularly in complex aerial tracking scenarios.

To further enhance small object detection, researchers have proposed various architectural modifi-
cations. The Pyramid Residual Bidirectional Feature Pyramid Network (PRB-FPN), developed by Chen
etal. [13], combines Feature Pyramid Networks (FPN), residual blocks, and bidirectional feature fusion, opti-
mizing multi-scale feature representation. Wang et al. [14] introduced UAV-YOLOVSs, which incorporated
WIoU v3, Focal FasterNet blocks (FFNB), and the BiFormer attention mechanism, significantly improving
small object detection performance. Similarly, Li et al. [15] proposed YOLOv7-UAYV, which replaced the
traditional P5 prediction header with a P2 prediction header and removed redundant detection layers,
thereby optimizing small object detection.
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To address these challenges, we propose the Aerial View Attention-PRB (AVA-PRB) model, which
integrates two key attention mechanisms: Coordinate Attention (CA) and the Convolutional Block Attention
Module (CBAM). Coordinate Attention (CA) enhances the model’s ability to capture positional information
across spatial scales, thereby improving small object detection [16]. CBAM selectively refines feature maps
by emphasizing informative regions, increasing detection robustness in complex aerial environments [17].
Additionally, we employ Shape-IoU as our loss function to improve bounding box alignment, particularly
for small object detection tasks [18]. Our model also incorporates an adaptive feature fusion mechanism that
dynamically refines multi-scale object representations, ensuring higher accuracy in aerial object tracking.

In addition to enhancing small object detection, an object movement path estimation technique is
proposed to address the challenges of aerial tracking. Unlike conventional tracking methods, which often
suffer from degraded accuracy when the camera itself is moving, our approach significantly enhances
trajectory estimation. Experimental results show that this method improves tracking accuracy by up to
64% [19]. This advancement is crucial for UAV-based tracking systems, ensuring stable and reliable detection
in real-world applications.

This work presents several key contributions. First, we propose the AVA-PRB model, which integrates
advanced attention mechanisms to enhance small object detection in aerial imagery. Second, we achieve
state-of-the-art detection results on the Aerial Person Detection dataset and the VisDrone2019-Det dataset,
demonstrating superior performance compared to existing YOLO-based models. Third, we optimize multi-
object tracking in aerial scenarios by introducing a novel method for improving moving object path
estimation, addressing a major limitation in current tracking frameworks. Finally, we conduct extensive
ablation experiments to evaluate the impact of each model component, providing valuable insights into
optimal architectural configurations for aerial object detection. By addressing the fundamental challenges
of aerial object tracking, our work contributes to improving real-world applications in surveillance, traffic
monitoring, and environmental observation, paving the way for more robust and flexible UAV-based
tracking systems.

2 Related Work

To improve small object detection, various enhancements have been proposed based on different
versions of the YOLO model. Wang et al. [20] developed an improved YOLOv7-tiny model, specifically
designed to enhance small object detection accuracy. Their improvements included the integration of
a Global Attention Mechanism (GAM), built upon the CBAM attention module, to strengthen feature
extraction in the neck structure. Additionally, they introduced a new small object detection head to prevent
excessive downsampling, which often leads to the loss of small object features. By leveraging shallow features
that undergo minimal convolutional transformations, they improved the retention of fine-grained details in
the detection process. Furthermore, they incorporated the Bidirectional Feature Pyramid Network (BiFPN)
into the neck of YOLOV7-tiny, enhancing feature fusion and minimizing information loss. Their approach
shares similarities with the PRB-FPN structure [13] incorporated in our model. To further optimize accuracy,
they adopted the SIoU loss function instead of traditional IoU-based losses. Experimental evaluations on
the VisDrone2019-Det dataset demonstrated that their model outperformed YOLOv3-tiny, YOLOv4-tiny,
YOLOVS5s, and YOLOvV7-tiny in terms of detection accuracy.

Another improvement based on YOLOV7-tiny was proposed by Zhang et al. [21], who introduced a
model named PDWT-YOLO. This model employed four detection heads, including an additional small
object detection layer, which significantly improved the identification of small targets. To better integrate
multi-scale features, they introduced a pyramid structure in the neck, ensuring high detection accuracy
across different object sizes without compromising performance on larger objects. They also replaced
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the conventional detection head with a decoupled head, separating classification and regression tasks
to minimize their mutual interference. For the loss function, they replaced CloU with WIoU, which
resulted in improved convergence speed and detection precision. Their experimental comparisons on the
VisDrone2019-Det dataset demonstrated that PDWT-YOLO achieved superior performance in most object
categories, except for bicycle and truck detection.

Luoetal. [22] proposed YOLO-UAYV, an improved YOLOV5!-based model designed specifically for small
object detection in drone imagery. They introduced three novel backbone modules: Asymmetric ResNet
(ASResNet), Asymmetric Enhanced Feature Extraction (AEFE), and Asymmetric Res2Net (ASRes2Net).
These modules significantly improved feature extraction capabilities for aerial images captured by drones.
Additionally, they incorporated the Improved Efficient Channel Attention (IECA) module, enabling the
network to emphasize essential features while suppressing irrelevant background information. They also
replaced the Spatial Pyramid Pooling (SPP) module with Group Spatial Pyramid Pooling (GSPP), reducing
computational complexity while improving detection accuracy. Their model outperformed YOLOV5I on the
VisDrone2019-Det dataset, demonstrating notable improvements in small object detection.

Dingetal. [23] introduced modifications to the YOLOV5s architecture to enhance small object detection
performance. Their enhancements included the addition of a fourth prediction head, which significantly
improved accuracy but increased the number of parameters. To mitigate computational overhead, they
employed transformer layers to enhance feature capturing capabilities. They also introduced an additional
upsampling operation in the neck, which, despite increasing computational cost, substantially improved
accuracy. Furthermore, they incorporated the Efficient Pyramid Squeeze Attention (EPSA) network module
in the backbone, enabling richer multi-scale feature representation. Comparisons on the VisDrone2019-Det
dataset demonstrated that their modified YOLOv5s model outperformed the original YOLOVS5s.

Sun et al. [24] proposed the HPS-YOLOv7 algorithm to enhance small object detection in drone
aerial images. Their approach included the C-recursively gated convolution module, designed to integrate
shallow object information effectively while improving model capacity. They also replaced the conventional
convolution operations in the neck with a lightweight bottleneck module, which preserved small object
features while reducing computational cost. Additionally, they introduced a modified high-efficiency layer
aggregation network to enhance feature extraction. To improve small object detection further, they replaced
the original 20 x 20 detection head with a 160 x 160 detection head, allowing finer object localization. Their
Shallow Feature Fusion Network (SFFN) reduced the loss of small object features in deep convolution layers.
On the VisDrone2019-Det dataset, HPS-YOLOv7 demonstrated superior performance compared to multiple
versions of YOLO.

Wang et al. [14] introduced UAV-YOLOVSs, a modified YOLOv8s model designed to enhance small
object detection in UAV applications. They incorporated the BiFormer attention mechanism into the
backbone, enabling the model to focus on key features more effectively. Additionally, they designed a Focal
FasterNet block (FFNB) for feature processing, allowing for efficient fusion of shallow and deep features,
which reduced the likelihood of missed small object detections. Similar to our approach, they adopted WIoU
v3 as the bounding box regression loss function. WIoU v3 incorporates a dynamic sample allocation strategy,
reducing the influence of extreme samples and improving generalizability. Their experimental results on
the VisDrone2019-Det dataset showed that UAV-YOLOV8s outperformed other YOLOVS variants, including
YOLOv8n, YOLOV8s, YOLOv8m, and YOLOVSL.

Lietal. [15] proposed YOLOvV7-UAYV, which aimed to improve small object detection in drone imagery.
Their method emphasized the importance of shallow-layer feature maps, which retain rich small-object
information. To enhance detection accuracy, they replaced the P5 prediction head with a P2 prediction
head, effectively improving small object recognition. However, to prevent excessive model complexity, they
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removed the original P5 prediction head. They also modified the Bidirectional Feature Pyramid Network
(BiFPN), introducing a BiFPN-like structure, which shares similarities with the PRB-FPN used in our
study. This structure enables upsampling and downsampling while retaining cross-level feature fusion
connections, preserving rich small-object features. Additionally, they replaced CloU with SIoU as the loss
function, achieving improved accuracy. Their evaluations on the VisDrone2019-Det dataset demonstrated
that YOLOv7-UAV outperformed multiple YOLO versions, including YOLOv3, YOLOv4, YOLOV5, and
YOLOV7.

Detecting small objects in drone aerial imagery remains particularly challenging due to various
interference factors. Zhang et al. [25] proposed an improved YOLOv7-tiny-based algorithm that intro-
duced Receptive Field Coordinate Attention Convolution (RFCAConv) in place of the ELAN-S layer in
the backbone. The RFCAConv module improved the model’s ability to localize key image regions while
enhancing feature representation. Additionally, they introduced an extra detection layer to improve small
object detection, utilizing the BSAM attention mechanism to distinguish objects from the background
more effectively. To optimize bounding box regression, they replaced CloU with inner-MPDIoU, which
demonstrated higher sensitivity to aspect ratio variations. Similar to our approach, they integrated attention
mechanisms and modified the loss function to improve detection performance. Their experimental results
on the VisDrone2019-Det dataset confirmed that their improved YOLOv7-tiny model achieved higher mean
Average Precision (mAP) @0.5 compared to other models.

In addition to improvements based on YOLO architectures, other state-of-the-art object detection
models have also been developed. EfficientDet [26] proposed a scalable and efficient detection architecture
by introducing a compound scaling method and a BiFPN for feature fusion. While EfficientDet achieves high
accuracy with optimized computational cost, its performance tends to degrade when detecting extremely
small objects, especially in aerial imagery scenarios. DETR (Detection Transformer) [27] introduced a
transformer-based end-to-end object detection framework, eliminating the need for hand-designed compo-
nents such as non-maximum suppression. Recently, Shi et al. [28] proposed CAW-YOLO, which leverages
cross-layer fusion and weighted receptive fields to enhance small object detection performance in remote
sensing imagery, demonstrating the importance of multi-scale feature aggregation in handling small targets.
However, DETR often requires large-scale datasets and extensive training time, and its localization accuracy
for small objects is less competitive compared to specialized models. In contrast, our AVA-PRB model
focuses specifically on enhancing small object detection in aerial moving perspectives, using lightweight
attention mechanisms and hierarchical feature refinement to achieve robust and efficient detection without
incurring excessive computational overhead. While EfficientDet and DETR represent major advances in
object detection frameworks, they are not specifically optimized for the challenges presented by small object
detection under aerial moving perspectives. Addressing these challenges remains a critical gap that the
AVA-PRB model is designed to fill.

3 Methodology
3.1 Aerial View Attention-PRB (AVA-PRB) Model for Small Object Detection

To enhance small object detection in aerial imagery, we propose the Aerial View Attention-PRB (AVA-
PRB) model, which is built upon the Parallel Residual Bi-Fusion Feature Pyramid Network (PRB-FPN)
architecture [13]. The PRB-FPN structure effectively integrates multi-scale features through a bidirectional
fusion mechanism, making it highly suitable for detecting small objects in complex backgrounds.

As illustrated in Fig. 1, the AVA-PRB model follows a three-stage design, consisting of a backbone for
hierarchical feature extraction, a bi-directional feature fusion module, and a detection head. The backbone,
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derived from YOLOV7, incorporates ELAN-CA modules, MaxPooling (MP), and CBS blocks to extract
features at different levels of abstraction. To enhance spatial and channel representations, Coordinate
Attention (CA) modules are integrated into multiple backbone stages, allowing the network to better capture
contextual information across different scales.
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Figure 1: The architecture of the proposed AVA-PRB model. The model integrates a hierarchical feature extraction
backbone, bidirectional feature fusion modules, and a detection head enhanced with attention mechanisms

Following feature extraction, the model employs Bi-Fusion Modules to aggregate both low-level spatial
details and high-level semantic information. Unlike traditional top-down fusion structures, the bidirectional
design enables information to flow in both directions, strengthening feature continuity across scales and
preserving fine-grained object characteristics.

The output of the Bi-Fusion process is passed into the Detection Head, where feature refinement is
further enhanced. Within the head, CBAM modules are applied before the final convolutional layers to
recalibrate both channel and spatial dimensions. This selective attention mechanism enables the network to
suppress irrelevant background noise and focus on task-relevant features.

By embedding attention mechanisms throughout the backbone and detection head, AVA-PRB achieves
robust performance in aerial views, improving the detection of small and difficult-to-identify objects under
varying conditions.

3.2 The Attention Mechanism in the AVA-PRB Network

Attention mechanisms play a vital role in enabling convolutional networks to focus on the most
relevant parts of the input features. In the AVA-PRB model, we strategically incorporate two widely
adopted attention modules: Coordinate Attention (CA) and the Convolutional Block Attention Module
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(CBAM), each contributing at different stages of the architecture. The combination of CA and CBAM
is carefully designed to complement each other: CA enhances lightweight spatial attention during early
feature extraction, while CBAM focuses on global feature refinement at the later stage, resulting in improved
localization and robustness across the detection pipeline.

Since its introduction by Vaswani [29] in 2017, the attention mechanism has been widely utilized across
various deep learning applications. CA, introduced by Hou et al. [30] in 2021, recalibrates feature channels
by computing the relative importance of each channel while preserving spatial coordinate information.
This makes CA particularly useful for tasks that require precise object localization. Additionally, CA has a
low computational cost, making it suitable for real-time applications. CBAM, proposed by Woo et al. [31]
in 2018, combines channel attention and spatial attention by computing both channel-wise and spatial
feature weights. Unlike CA, which focuses primarily on channel recalibration with spatial awareness, CBAM
jointly considers spatial and channel dependencies, thereby improving the expressiveness of extracted
features. Due to its flexibility, CBAM can be easily integrated into various CNN architectures to enhance
feature representation.

As visualized in Fig. 2, CA is integrated into both the backbone and Bi-Fusion Modules. Specifically,
CA is applied within the ELAN blocks to guide feature selection during early-stage extraction. By embed-
ding CA into ELAN (green blocks in the figure), the model preserves both spatial context and channel
interdependencies, improving the robustness of fine-grained object representations.
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Figure 2: Integration of attention mechanisms in the AVA-PRB model. CA is applied throughout the backbone (green)
and Bi-Fusion Modules, while CBAM is introduced in the Detection Head to enhance spatial and channel recalibration
prior to prediction
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Additionally, CA is also introduced in the CBS blocks located after the SPPCSPC module, which further
refines features post-aggregation. These locations are carefully selected to ensure that spatial and channel-
wise relationships are reinforced before fusion into the Detection Head.

CBAM, on the other hand, is employed in the final stage of the Detection Head (see purple-pink
modules in Fig. 2). It recalibrates both spatial and channel features just before RepConv, allowing the model
to suppress redundant activations and concentrate on highly informative regions. By strategically combining
these two complementary attention mechanisms—CA for lightweight, spatially aware calibration, and
CBAM for global feature refinement—the AVA-PRB model establishes a hierarchical attention framework
that improves both early feature localization and final target discrimination, thus enabling accurate small
object detection under complex aerial moving perspectives.

3.3 Use of Shape-IoU Loss Function in AVA-PRB Model

The original PRB-FPN model and YOLOV?7 utilize the Complete IoU (CIoU) loss function for bounding
box regression. However, traditional IoU-based losses often face challenges in small object detection, as even
minor shape variations can lead to significant fluctuations in IoU values. To address this issue, our model
adopts the Shape-IoU loss function, which was proposed by Zhang and Zhang [18] in 2023.

Compared to CloU, which primarily considers center point distance, aspect ratio, and overlap area,
Shape-IoU emphasizes shape similarity, making it more suitable for detecting small objects. Since small
objects often exhibit unique shape characteristics that are more distinguishable than their absolute size, using
Shape-IoU allows the model to better capture shape-based details, ultimately enhancing detection accuracy.

In the implementation of Shape-IoU, a scaling factor Scale is introduced, which is dynamically
adjusted based on the target’s scale within the dataset. This adaptive scaling mechanism helps mitigate
the impact of extreme size variations, ensuring that small objects retain their distinctive shape attributes
during detection. By integrating Shape-IoU into the AVA-PRB model, we significantly improve the model’s
capability to distinguish small objects from background clutter and overlapping objects, leading to enhanced
detection robustness.

3.4 Implementation for Generating Object Movement Path

For object tracking, we adopt SMILEtrack, a state-of-the-art multi-object tracking (MOT) framework.
The installation and implementation details of SMILEtrack can be found on its official GitHub repository [4].
Originally, SMILEtrack utilized PRB-FPN or YOLOV7 as its object detection backbone. However, in our
approach, we replace these detection models with the AVA-PRB model, which provides enhanced small
object detection and feature extraction capabilities.

To further refine the object tracking process, we modify the tracking method proposed by RizwanMu-
nawar [32], which is based on YOLOVS. This adaptation enables AVA-PRB to integrate seamlessly with the
tracking framework, allowing for precise object trajectory estimation in aerial imagery. The combination of
AVA-PRB and SMILEtrack ensures more stable tracking results, particularly in dynamic scenes where small
objects undergo significant displacement or occlusion.

By leveraging AVA-PRB’s enhanced object detection performance and integrating it with SMILEtrack’s
robust tracking mechanism, we achieve more accurate object movement path generation, making this
approach highly suitable for aerial surveillance, traffic monitoring, and environmental tracking applications.
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3.5 Generating Object Movement Paths under Aerial Motion

This section details the methodology used to generate object movement paths while compensating for
aerial motion distortions. The process consists of four key components: homography matrix estimation,
feature point matching, coordinate correction, and movement path adjustment. The complete workflow
of the homography matrix update process is illustrated in Fig. 3, while Fig. 4 presents the overall tracking
pipeline, demonstrating how AVA-PRB integrates with the tracker and movement path generation.

Object tracking Tracker updated

Two images updated

Is n frame passed?

New H matrix generated

Tracker recorded path updated

Figure 3: Homography matrix update process in object tracking

AVA- Draw
P R B Detection Box

Feature points H matrix Draw
calc and match calc Movement Path

Figure 4: Overall tracking workflow with AVA-PRB and homography-based path correction

3.5.1 Homography Matrix Estimation

The homography matrix is a critical component of this method. In computer vision and image
processing, a homography matrix is a 3 x 3 transformation matrix that describes the mapping of points
between two different views of the same scene. It is widely applied in image stitching, perspective correction,
and object tracking. To correct aerial motion distortions and achieve frame-to-frame trajectory alignment,
we employ the homography matrix (Fig. 3).

For implementation, we use OpenCV’s built-in function [33] to compute the homography matrix,
employing the RANdom SAmple Consensus (RANSAC) algorithm to filter outliers effectively. RANSAC
is a widely used technique for estimating geometric transformations in noisy environments. We set the
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reprojection threshold to 5 pixels, balancing the trade-off between strict feature matching and tolerance for
minor variations. A smaller threshold enforces stricter constraints but may reject valid correspondences,
while a larger threshold increases tolerance but may introduce false matches. Additionally, the maximum
number of RANSAC iterations is set to 500, ensuring a balance between computational efficiency and
transformation accuracy.

Since the homography matrix computation requires two consecutive images, the homography matrix
is continuously updated throughout the object tracking process, as illustrated in Fig. 3. A frame interval
variable controls the frequency of homography matrix recalculations, ensuring adaptability to different
tracking conditions. To improve robustness under challenging conditions such as temporary occlusion or
detection errors, RANSAC-based filtering ensures that only reliable feature matches are used for homography
estimation. This helps maintain trajectory stability even when feature points are partially missing or noisy. If
this interval is set to 5, the homography matrix is computed using keypoints extracted from the first and fifth
frames. If set to 1, it is generated based on consecutive frames, ensuring more frequent motion compensation.

3.5.2 Feature Point Extraction and Matching

Before computing the homography matrix, it is necessary to extract and match feature points between
two consecutive frames. Feature points, also known as keypoints, are distinctive image locations that remain
invariant to scaling, rotation, and lighting changes. These keypoints are commonly used in image matching,
object recognition, and registration tasks.

For keypoint extraction and matching, we employ SuperPoint, a deep learning-based keypoint detection
and description algorithm introduced by DeTone et al. [34] in 2018. SuperPoint has gained popularity due to
its high efficiency and robustness, making it particularly suitable for real-time tracking applications. Using
SuperPoint, we extract discriminative keypoints and establish correspondences between consecutive frames,
forming the basis for reliable homography estimation. This feature point matching process is a critical step
in the homography matrix update pipeline, as depicted in Fig. 3. SuperPoint not only provides high-quality
keypoints that are invariant to scale, rotation, and illumination changes, but also generates corresponding
descriptors that facilitate robust and efficient matching between frames. This robustness is particularly
important in aerial moving scenarios, where objects may appear distorted, blurred, or partially occluded due
to rapid drone motion and varying viewpoints. By leveraging SuperPoint’s stability, the proposed method
ensures reliable feature correspondence for accurate homography estimation.

3.5.3 Coordinate Correction for Movement Path

Once the homography matrix is computed, it is used to transform and update object coordinates over
time. Since multiple objects may be present in each frame, each object follows a unique movement trajectory
consisting of numerous coordinate points. All object tracking data is stored and updated dynamically, as
shown in Fig. 4. Whenever the specified frame interval is reached, a new homography matrix is generated,
and all object coordinates are updated accordingly, as illustrated in Fig. 3.

The homography transformation effectively maps 2D points from one image plane to another, preserv-
ing their relative spatial positions. For instance, let image, represent a frame captured n frames ago, and
image, represent the current frame. When a homography matrix is computed between image; and image,,
any coordinate point in image, corresponding to an object (e.g., a pedestrian) is transformed to its relative
position in image, . Similarly, applying the updated homography matrix to previous coordinate points allows
their positions to be corrected relative to the current frame, minimizing tracking drift.
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By continuously updating recorded movement path coordinates using the latest homography matrix,
the proposed method effectively compensates for deviations introduced by aerial motion, ensuring that
object trajectories remain accurately aligned with real-world movement. This process is an integral part of
the path update step in Fig. 4, where updated tracking information is used to generate precise movement
paths. By applying the homography matrix to correct object coordinates, the proposed method significantly
reduces trajectory drift that would otherwise accumulate due to continuous camera motion. This continuous
correction mechanism ensures that the estimated movement paths better align with the true motion of the
objects in the aerial scene, even under dynamic platform movement. As a result, the method enhances the
accuracy and reliability of long-term trajectory tracking.

3.5.4 Movement Path Refinement and Visualization

To improve trajectory visualization, we modify the starting position of the movement path. Initially,
object movement trajectories extended outward from the center of the detected object. However, after
modification, the movement path now extends outward from the object’s feet.

This adjustment is particularly beneficial when tracking pedestrians, as it provides a more intuitive and
realistic visualization of human motion. By aligning the trajectory origin with the object’s actual contact
point with the ground, the movement path better represents real-world dynamics, thereby improving the
interpretability of tracking results. This visualization refinement is reflected in the movement path drawing
step in Fig. 4, which integrates the updated tracking data with trajectory rendering. In addition to improving
the visual clarity of the movement paths, this refinement also helps align the estimated trajectories more
closely with the physical ground plane. Such alignment is particularly beneficial for analyzing pedestrian
movement patterns or vehicle trajectories in aerial surveillance scenarios, where precise ground-level
localization enhances interpretability and facilitates downstream analysis tasks.

4 Experiments

4.1 Dataset for Small Object Detection Experiment

The Aerial Person Detection (APD) dataset [35] consists of 6445 training images and 545 validation
images. The training images have resolutions ranging from 960 x 540 to 2000 x 1500 pixels, while the
validation images range from 960 x 540 to 1920 x 1080 pixels. The dataset is specifically designed for person
detection in aerial imagery, making it highly suitable for computer vision models that require the ability to
identify and localize individuals from an aerial viewpoint.

The dataset serves as a valuable resource for applications such as surveillance, search and rescue
missions, and aerial-based human detection tasks. It includes images captured at various altitudes, viewing
angles, and environmental conditions, ensuring a diverse and comprehensive training set that enhances
model robustness. The dataset contains images taken under different lighting conditions, ranging from full
daylight to nighttime scenarios (Fig. 5), further challenging the model’s adaptability to varying illumination.

As shown in Fig. 5, the dataset includes both pedestrian and vehicle detection scenarios, covering
daytime and nighttime conditions. Fig. 5a,b demonstrate aerial pedestrian detection under daylight and
nighttime lighting, respectively. Similarly, Fig. 5¢,d illustrate vehicle detection in nighttime and daytime
environments. These variations ensure that models trained on this dataset can generalize well to real-world
aerial detection tasks, where lighting and environmental conditions vary significantly.
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Figure 5: Representative images from the Aerial Person Detection (APD) dataset [35], including a daytime aerial image
of pedestrians (a), a nighttime aerial image of pedestrians (b), a nighttime aerial image of vehicles (c), and a daytime
aerial image of vehicles (d)

Two datasets are utilized for small object detection experiments: the Aerial Person Detection (APD)
dataset [35] and the VisDrone2019-Det dataset [36]. The APD dataset consists of 6445 training images and
545 validation images. The training images have resolutions ranging from 960 x 540 to 2000 x 1500 pixels,
while the validation images range from 960 x 540 to 1920 x 1080 pixels. The dataset is specifically designed
for person detection in aerial imagery, making it highly suitable for computer vision models that require the
ability to identify and localize individuals from an aerial viewpoint.

This dataset is particularly valuable for applications in surveillance, search and rescue operations, and
other aerial-based human detection tasks. It includes images captured at various altitudes, viewing angles,
and environmental conditions, ensuring a diverse and comprehensive training set that enhances model
robustness. The dataset contains images taken under different lighting conditions, ranging from full daylight
to nighttime scenarios, further challenging the model’s adaptability to varying illumination.

The APD dataset targets six object categories, including bicycle, bus, car, motorcycle, person, and truck.
All images are captured from an aerial perspective, making this dataset an ideal benchmark for evaluating
small object detection performance in drone-based applications. The class distribution of labeled objects in
the dataset is summarized in Table 1.

Table 1: Class distribution in the aerial person detection (APD) dataset

Class Train labels Validation labels

Bicycle 10,340 1283
Bus 5907 251
Car 143,585 13,986

Motorcycle 29,533 4861

Person 105,569 13,890

Truck 37,589 2717

Total 332,523 36,988




Comput Model Eng Sci. 2025;143(3) 3077

The VisDrone2019-Det dataset consists of 6471 training images and 548 validation images. The training
images have resolutions ranging from 960 x 540 to 2000 x 1500 pixels, while the validation images range
from 960 x 540 to 1920 x 1080 pixels. Designed for drone vision research, VisDrone2019-Det is one of the
largest aerial object detection datasets, providing a diverse set of complex real-world scenes for training and
evaluating deep learning models.

This dataset contains multiple object categories labeled in each image, covering a variety of challeng-
ing scenarios such as dense object distributions, varying object scales, occlusions, and diverse lighting
conditions. These challenges significantly contribute to the robustness of object detection models, making
VisDrone2019-Det a widely used benchmark for small object detection. Some images feature highly crowded
urban scenes, small targets, and severe occlusion, requiring advanced detection models capable of precise
localization under difficult conditions. The dataset targets ten object categories, including pedestrians,
vehicles (cars, vans, trucks, buses), motorcycles, bicycles, and tricycles, as summarized in Table 2.

Table 2: Class distribution in the VisDrone2019-Det dataset

Class Train labels Validation labels
Pedestrian 79,055 8844
People 26,962 5125
Bicycle 10,389 1287
Car 144,619 14,064
Van 24,899 1975
Truck 12,875 750
Tricycle 4812 1045
Awning-Tricycle 3245 532
Bus 5917 251
Motor 29,618 4886
Total 342,391 38,759

As illustrated in Fig. 6, the dataset encompasses various environmental conditions and scene types,
ensuring model generalization across daytime and nighttime scenarios. Fig. 6a,b depicts roadway scenes
during the day and at night, highlighting the impact of lighting variations on object visibility. Addition-
ally, Fig. 6¢,d showcases non-urban environments, such as a basketball court and a rural area, demonstrating
the dataset’s diversity in aerial perspectives. These scene variations make VisDrone2019-Det highly suitable
for evaluating object detection models in real-world aerial applications.

(@) | (b) (© @

Figure 6: Representative images from the VisDrone2019-Det dataset, including a daytime aerial image of a roadway
(a), a nighttime aerial image of a roadway (b), an aerial image of a basketball court (c), and an aerial image of a rural
area (d)
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4.2 Experimental Setup and Model Training Configuration

The experiments were conducted on a personal computer equipped with Windows 11 Enterprise as the
operating system. The system was powered by an AMD Ryzen 5 7600X six-core processor and supported by
32 GB of DDR5 RAM (4800 MHz). A PNY CS22411 TB SSD was used for storage, ensuring efficient data
handling, and an NVIDIA GeForce RTX 4070 GPU was utilized to accelerate deep learning computations.

The software environment consisted of PyCharm (Version 0.00) and Anaconda (Version 0.00) as the
primary development platforms. The experiments were implemented using Python 3.8, with PyTorch 1.11.0 as
the deep learning framework, accompanied by Torchvision 0.12.0 and Torchaudio 0.11.0 for image and audio-
related tasks. The model training leveraged CUDA Toolkit 11.3 to enable GPU-accelerated computation.

The training settings were configured to ensure optimal performance under the given hardware
constraints. Each input image was resized to 640 x 640 pixels, and the model was trained for 300 epochs. Due
to hardware limitations, the batch size and number of workers were both set to 4 to balance computational
efficiency and memory usage. The learning rate was initialized at 0.01, with a momentum parameter of 0.937
and a weight decay of 0.0005 to regulate model convergence and prevent overfitting.

The proposed AVA-PRB model follows a P5-based architecture, and all other hyperparameter configu-
rations used for training were consistent with the standard P5 model settings.

4.3 Model Evaluation Metrics for Small Object Detection

To evaluate the performance of the proposed model in small object detection, several commonly used
metrics are employed, including Precision (P), Recall (R), F1 Score, and mean Average Precision (mAP).
These metrics rely on fundamental classification concepts such as True Positive (TP), False Positive (FP), and
False Negative (FN), which define the correctness of the model’s predictions.

A True Positive (TP) occurs when the model correctly predicts an object’s presence, meaning that
the detected object matches the ground truth label. In contrast, a False Positive (FP) refers to an incorrect
detection where the model predicts an object that does not exist in the ground truth, leading to false alarms.
On the other hand, a False Negative (FN) represents a missed detection, where the model fails to recognize
an actual object, reducing overall recall performance. These concepts form the basis for evaluating detection
accuracy and reliability.

The evaluation metrics are mathematically defined as follows:

TP
P=— — (1)
TP + FP
TP
R= —— ()
TP+ FN
F1Score = 2xPxR (3)
P+R
AP =" (Ri - Rey) Py (4)
k
1 N
mAP = — > AP (5)
N i=1

where N represents the total number of object classes in the dataset.
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Precision (Eq. (1)) quantifies the proportion of correctly identified objects among all predicted objects. A
higher precision value indicates fewer false positives, meaning that the model has a higher level of confidence
in its predictions. Recall (Eq. (2)) measures the proportion of actual objects that the model successfully
detects, where a higher recall score signifies that the model misses fewer true positive instances.

F1 Score (Eq. (3)) provides a balanced evaluation by considering both precision and recall, making it
particularly useful when an optimal trade-off between the two is required. Average Precision (AP) (Eq. (4))
is computed as the area under the Precision-Recall (PR) curve, using a discrete summation over recall levels
to approximate the integral. It measures how well the model maintains high precision across varying recall
thresholds, accounting for the trade-off between precision and recall at different confidence levels where Ry
and Ry, are consecutive recall levels, and Py is the precision at recall level Ry. Unlike single-point precision
or recall measurements, AP evaluates model performance holistically across multiple confidence thresholds,
making it a more comprehensive and reliable metric for object detection. Mean Average Precision (mAP)
(Eq. (5)) is a widely used metric in object detection tasks, representing the mean AP over all object categories,
thereby providing an overall performance measure.

The evaluation metric mAP@0.5 refers to the mAP computed at an Intersection over Union (IoU)
threshold of 0.5, meaning that a detection is considered correct if its loU with the ground truth is at least 0.5.
Conversely, mAP@0.5:0.95 represents the mean AP across multiple IoU thresholds ranging from 0.5 to 0.95
in increments of 0.05, making it a more stringent and comprehensive evaluation criterion.

4.4 Experimental Results and Performance Analysis for Small Object Detection

To optimize the proposed model, an ablation study was conducted to evaluate the impact of applying
attention mechanisms at different positions within the network. The study examined how modifications to
specific locations affected detection performance, ultimately identifying the most effective configuration. To
facilitate analysis, three designated positions were considered: LI, referring to the backbone; L2, representing
the CBS module located after SPPCSPC in the BiFusion module; and L3, corresponding to the CBS module
positioned between BottleneckCSPB and RepConv in the model head. The experiments were conducted
using the APD dataset, and the results are presented in Table 3.

Table 3: Ablation study results on the APD dataset

Method Precision Recall mAP@0.5 mAP@0.5:0.95 F1 score
(%) (%) (%) (%) (%)
PRB-FPN-ELAN [13] 68.6 58.0 60.3 35.7 62.8
L1+ CA 70.7 56.6 60.3 35.7 62.8
L2+ CA 69.6 570 59.9 35.6 62.6
L3+ CA 68.1 58.2 60.6 35.7 62.7
L3 + CBAM 67.7 58.0 60.3 354 62.4
L1& L3+ CA 70.5 56.7 60.0 35.5 62.8
L1+ CA & L3 + CBAM 69.9 56.4 60.4 35.6 62.4
LI &L2& L3+ CA 68.5 57.3 60.0 354 62.4
LI1&L2+CA&L3+ 679 58.5 60.7 35.8 62.8

CBAM

Note: Bold values indicate the best performance among all methods in the respective column.
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The results indicate that adding CBAM significantly increases computational complexity and the
number of parameters, particularly when applied at L1 (backbone). Consequently, the computational cost
of integrating CA is relatively lower. Among all single-position modifications, applying CA to L3 yielded
the most noticeable improvement, with an increase of 0.3% in mAP@0.5 compared to the baseline PRB-
FPN-ELAN. However, modifications at L1 or L2 alone either failed to improve performance or resulted
in minor declines. The most effective model configuration was achieved when CA was applied to L1 and
L2, while CBAM was incorporated at L3, leading to the highest performance gains. This configuration
improved mAP@0.5 by 0.4% and mAP@0.5:0.95 by 0.1%, demonstrating its effectiveness in enhancing
detection accuracy.

Apart from the attention mechanism modifications, the impact of the Shape-IoU scaling factor (Scale)
on performance was also investigated. As shown in Table 4, the choice of Scale significantly influenced
detection accuracy, with even a 0.1 variation leading to noticeable differences. The worst performance was
observed at Scale = 1.0, while increasing it to 1.3 resulted in the best performance. Compared to the commonly
used CloU, the optimized Shape-IoU implementation improved mAP@0.5 by 0.2% and mAP@0.5:0.95
by 0.2%, while also enhancing F1 Score by 0.6%. These results highlight the importance of selecting an
appropriate Shape-IoU scaling factor to optimize detection accuracy.

Table 4: Impact of Shape-IoU scaling on AVA-PRB performance

Scale Precision (%) Recall (%) mAP@0.5 (%) mAP@0.5:0.95 (%) Fl1score (%)

1.0 69.4 56.9 59.9 355 62.5
1.1 68.7 57.8 60.1 355 62.7
1.2 70.5 56.5 60.2 354 62.7
1.3 68.8 58.8 60.9 36.0 63.4
1.4 69.5 57.0 60.2 35.5 62.6

Note: Bold values indicate the best performance among all methods in the respective column.

Several advantages over conventional approaches are demonstrated by the AVA-PRB model introduced
herein. The integration of CA and CBAM at optimal positions enhances feature extraction, enabling better
small object detection with reduced computational overhead. Furthermore, the use of Shape-IoU instead of
CloU improves bounding box regression, resulting in more precise localization and higher overall detection
accuracy. The experimental results confirm that applying CA at L1 & L2 combined with CBAM at L3
leads to the most significant performance improvements, demonstrating the effectiveness of our method in
improving small object detection accuracy while maintaining computational efficiency.

4.5 Comparative Analysis of AVA-PRB and YOLO Models for Small Object Detection

To evaluate the effectiveness of the AVA-PRB model, we conducted a comparative study against several
state-of-the-art YOLO models that have gained widespread adoption in recent years. These models include
YOLOvV7-tiny [6], YOLOV7 [6], YOLOV8s [7], YOLOvV8m [7], YOLOV9s [6], YOLOVIm [6], YOLOVIOs [9],
and YOLOv10m [9]. Each model was trained using default hyperparameter settings, with a maximum of
300 epochs and a batch size of 4. Additionally, pretrained weights were used for all YOLO models to ensure
a fair comparison. Both the training and validation were conducted on the APD dataset, and the overall
performance results are summarized in Table 5.
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Table 5: Comparison results of AVA-PRB and YOLO models (APD dataset)

Model Precision (%) Recall (%) mAP@0.5(%) mAP@0.5:0.95 (%) Flscore (%)

YOLOvV7- 55.4 45.9 45.6 24.0 50.2
tiny [6]
YOLOV7 [6] 71.2 55.8 59.7 35.0 62.5
YOLOVSs [7] 61.8 46.4 50.5 30.8 53.0
YOLOvV8m [7] 62.8 50.5 53.6 33.2 55.9
YOLOVYs [6] 61.2 45.0 49.1 29.9 51.8
YOLOvVIm [6] 64.2 49.6 53.9 33.4 55.9
YOLOV10s [9] 57.6 44.1 471 28.7 49.9
YOLOvIOm [9] 60.6 47.0 50.5 31.3 52.9
AVA-PRB 68.8 58.8 60.9 36.0 63.4
(Ours)

Note: Bold values indicate the best performance among all methods in the respective column.

The results indicate that AVA-PRB outperforms all YOLO models across multiple evaluation metrics.
While YOLOV7 achieves the highest Precision (71.2%), our model follows closely with a Precision of 68.8%,
with only a 2.4% difference. However, AVA-PRB demonstrates superior performance in Recall, mAP@0.5,
mAP@0.5:0.95, and F1 Score, outperforming every YOLO model tested. Notably, our model achieves the
highest Recall at 58.8%, signifying that it misses fewer objects during detection, which is particularly crucial
for small object detection tasks. This balance between Precision and Recall results in the highest F1 Score of
63.4%, confirming its overall robustness in detection accuracy.

In terms of mAP@0.5, AVA-PRB attains 60.9%, exceeding YOLOV7’s 59.7%, while also outperforming
all other YOLO models by a significant margin. The mAP@0.5:0.95 score of 36.0% further demonstrates that
our model performs well under varying IoU thresholds, suggesting strong generalization across different
object sizes and detection scenarios. These results highlight the effectiveness of the integration of attention
mechanisms and the Shape-IoU loss function, which contribute to improved localization accuracy and better
small object detection performance.

To further analyze the detection capabilities of AVA-PRB, we compare the mAP@0.5 scores for
individual object classes across different models. The results, presented in Table 6, illustrate how AVA-PRB
performs relative to other YOLO models in detecting various object categories.

Table 6: The mAP@0.5 (%) table for each class (APD dataset)

Model Bicycle Bus Car Motorcycle Person Truck
YOLOv7- 11.0 474 77.8 46.1 48.0 43.1
tiny [6]
YOLOV7 [6] 27.0 66.3 85.4 60.4 64.0 55.4
YOLOV8s [7] 15.9 61.6 80.3 46.5 49.6 49.2
YOLOV8m [7] 19.5 65.1 82.1 49.5 53.8 513
YOLOV9s [6] 14.6 58.0 79.8 45.5 47.0 49.8
YOLOVIm [6] 18.7 64.2 82.5 51.0 52.2 54.7

(Continued)
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Table 6 (continued)

Model Bicycle Bus Car Motorcycle Person Truck
YOLOWV10s [9] 12.0 55.0 79.1 42.9 44.8 48.6
YOLOvVIOm [9] 15.9 60.8 80.8 46.7 48.5 50.3

AVA-PRB 27.0 68.6 85.8 61.7 65.5 571

(Ours)

Note: Bold values indicate the best performance among all methods in the respective column.

Examining the per-class performance in Table 6, we observe that AVA-PRB achieves the highest
mAP@0.5 scores across all object categories, demonstrating its strong adaptability across multiple object
types. For Bicycle detection, AVA-PRB achieves an mAP@0.5 of 27.0%, tying with YOLOV7, while in Bus, Car,
Motorcycle, Person, and Truck detection, it consistently surpasses all YOLO models, achieving 68.6%, 85.8%,
61.7%, 65.5%, and 57.1%, respectively. The superior detection performance in Motorcycle (61.7%) and Truck
(57.1%) detection suggests that AVA-PRB is particularly effective at handling multi-scale object features,
a crucial aspect of aerial image analysis. Additionally, the high mAP@0.5 of 65.5% for Person detection
demonstrates that our model excels at recognizing complex human shapes in aerial views, making it a strong
candidate for surveillance, disaster response, and urban monitoring applications.

The experimental findings confirm that AVA-PRB consistently outperforms YOLO models in small
object detection, offering several key advantages. First, AVA-PRB achieves a higher Recall while maintaining
balanced Precision, leading to more consistent detections across different object scales. Second, the integra-
tion of the Shape-IoU loss function enhances bounding box localization, resulting in improved mAP@0.5 and
mAP@0.5:0.95 scores. Third, the use of CA and CBAM attention mechanisms improves feature extraction,
allowing the model to better capture small object details while reducing background noise. Finally, AVA-PRB
demonstrates superior adaptability in diverse and complex aerial imagery scenarios, outperforming YOLO
models in detecting smaller, occluded, or overlapping objects. These advantages make AVA-PRB an effective
solution for small object detection in aerial imagery.

The detection performance of different models is visualized in Fig. 7, where each subfigure presents
the results from a specific model applied to an aerial view of a crowded square. The detection results of our
proposed AVA-PRB model (Fig. 7a) show the best performance, identifying most of the individuals present
in the image, regardless of their distance from the camera or location within the scene. Notably, AVA-PRB is
the only model capable of detecting certain individuals that remain undetected by all other models, such as a
person wearing black clothing on the right side, a person in white clothing on the far right, and an individual
in white sitting on the ground with their back facing the camera on the left. This highlights the robust feature
extraction capabilities of AVA-PRB, making it highly suitable for aerial surveillance applications requiring
precise small-object detection.

The PRB-FPN-ELAN model (Fig. 7b) demonstrates competitive performance, detecting most of the
small objects that AVA-PRB identifies. A group of people positioned farther away in the center of the image
is successfully detected by PRB-FPN-ELAN, whereas other YOLO models fail to recognize them. However,
PRB-FPN-ELAN performs slightly worse than AVA-PRB, missing some individuals in the left, middle, and
right sections of the image, particularly those near the drone’s position.

The YOLOvV7 model (Fig. 7c) exhibits performance close to that of PRB-FPN-ELAN, successfully detect-
ing many small objects, including distant individuals in the center of the square. However, YOLOV?7 fails to
detect several people near the camera and misses some detections in various parts of the image. Compared
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to PRB-FPN-ELAN, YOLOV7 struggles slightly more with occlusions and densely packed individuals. The
YOLOv8m model (Fig. 7d) performs moderately well, detecting more small objects than YOLOv9m. In
particular, YOLOvV8m successfully detects several individuals on both the left and right sides of the image
that YOLOv9m fails to recognize. However, its performance still lags behind YOLOv7 and PRB-FPN-ELAN,
especially in detecting distant individuals in the central region.

Figure 7: Comparison of small object detection performance across different models in an aerial view of a crowded
square. (a) AVA-PRB (Ours), (b) PRB-FPN-ELAN, (c) YOLOV7, (d) YOLOv8m, (¢) YOLOv9m, (f) YOLOVIOm

The YOLOv9m model (Fig. 7¢) shows only minor improvements over YOLOvIOm in small-object
detection. It performs better than YOLOvIOm in detecting individuals at the left and right edges of the
image, but it still misses several people that YOLOv8m successfully detects. This suggests that YOLOvIm
has difficulty handling small-scale objects and complex occlusions in aerial images. Finally, the YOLOv10m
model (Fig. 7f) demonstrates the weakest detection performance, identifying the smallest number of people
in the scene. It fails to detect many small objects, particularly distant individuals and those located at the
edges of the image, making it the least effective model for small-object detection in aerial views.

4.6 Comparative Analysis of AVA-PRB against Other Enhanced YOLO Variants for Small Object Detection

To further validate the performance of AVA-PRB, we compare it with not only standard YOLO
models but also several enhanced YOLO variants that incorporate various improvements for small object
detection. These competing models include Improved YOLOv7-tiny [20], PDWT-YOLO [21], YOLO-
UAV [22], YOLOvV5s-EPSA + upsampling [23], HPS-YOLOvV7 [24], UAV-YOLOVS8s [14], YOLOv7-UAV [15]
and Improved YOLOV7-tiny [25]. These models employ various techniques such as multi-scale feature
fusion, attention mechanisms, optimized loss functions, and additional detection heads to enhance their
capability in detecting small and distant objects in aerial imagery. For a fair comparison, all models are
evaluated on the Visdrone2019-Det dataset using consistent training settings. Specifically, the training
epoch limit is set to 300, while the batch size and worker count are adjusted to 2 due to hardware
limitations. Performance data for the enhanced YOLO models are sourced from their respective published
papers to ensure consistency. Performance metrics are presented separately to provide a clearer and more
comprehensive comparison. Table 7 summarizes the Precision, Recall, and F1 Score results, while Table 8
presents the mAP@0.5 and mAP@0.5:0.95 comparisons.
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Table 7: Precision, recall, and F1 score comparison of AVA-PRB and other enhanced YOLO models on the
Visdrone2019-Det dataset

Model Precision (%) Recall (%) F1score (%)
Improved YOLOV7-tiny [20] 45.5 42.2 43.7
UAV-YOLOVSs [14] 54.4 45.6 49.6
AVA-PRB (Ours) 59.8 51.7 55.4

Note: Bold values indicate the best performance among all methods in the
respective column.

Table 8: mAP performance comparison of AVA-PRB and other enhanced YOLO models on the Visdrone2019-Det
dataset

Model mAP@0.5 (%) mAP@0.5:0.95 (%)

Improved YOLOV7-tiny [20] 38.1 21.3

PDWT-YOLO [21] 41.2 22.5
YOLO-UAV [22] 30.5 -

YOLOV5s-EPSA + upsampling [23] 42.9 24.6

HPS-YOLOv7 [24] 48.0 27.0

UAV-YOLOvSs [14] 47.0 29.2
YOLOV7-UAV [15] 45.3 -
Improved YOLOV7-tiny [25] 35 -

AVA-PRB (Ours) 51.2 29.9

Note: Bold values indicate the best performance among all methods in the respec-
tive column.

Table 7 highlights the comparison of models that report precision, recall, and F1 Score metrics. It can
be observed that the AVA-PRB model achieves the highest performance across all these evaluation metrics.
Specifically, AVA-PRB attains a Precision of 59.8%, Recall of 51.7%, and an F1 Score of 55.4%, outperforming
both Improved YOLOV7-tiny and UAV-YOLOV8s. This indicates that AVA-PRB maintains a balanced trade-
off between detection accuracy and false positive/false negative rates, demonstrating its robustness for aerial
small object detection.

Table 8 presents the broader mAP-based comparison among the competing models. AVA-PRB again
demonstrates superior performance, achieving a mAP@0.5 of 51.2% and a mAP@0.5:0.95 of 29.9%. Com-
pared to the second-best performing model, UAV-YOLOvS8s, AVA-PRB achieves a 4.2% higher mAP@0.5
and a 0.7% higher mAP@0.5:0.95. Other models such as HPS-YOLOv7 and PDWT-YOLO show moderate
improvements over standard YOLO architectures but still fall short of the performance attained by AVA-PRB.

In addition to the overall detection performance, detailed per-class mAP@0.5 evaluations are provided
in Tables 9 and 10, comparing AVA-PRB against other improved YOLO models across different object
categories. Table 9 focuses on five object classes: Pedestrian, People, Bicycle, Car, and Van, while Table 10
presents results for Truck, Tricycle, Awning-Tricycle, Bus, and Motor. The per-class results show that AVA-
PRB consistently outperforms other models across most categories, demonstrating strong eftectiveness in
detecting both small and large objects in complex aerial scenes.
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Table 9: Per-class mAP@0.5 (%) comparison of AVA-PRB and other enhanced YOLO models (pedestrian, people,
bicycle, car, van) on the Visdrone2019-Det dataset

Model Pedestrian People Bicycle Car Van
PDWT-YOLO [21] 48.7 41.6 147 820 432
YOLO-UAV [22 24.1 11.2 100 589 365
HPS-YOLOv7 [24] 55.5 48.4 211 85.0 50.5
UAV-YOLOvSs [14] 56.8 44.9 18.8 85.8 50.8
Improved YOLOV7-tiny [25] 45.3 41.7 13.1 83.8 453
AVA-PRB (Ours) 60.5 51.2 26.6 85.6 51.2

Note: Bold values indicate the best performance among all methods in the respec-
tive column.

Table10: Per-class mAP®@0.5 (%) comparison of AVA-PRB and other enhanced YOLO models (truck, tricycle, Awning-
tricycle, bus, motor) on the Visdrone2019-Det dataset

Model Truck Tricycle Awning-Tricycle Bus Motor
PDWT-YOLO [21] 35.4 26.8 14.2 56.4 49.3
YOLO-UAV [22] 50.6 231 11.9 52.2 26.0
HPS-YOLOv7 [24] 41.3 35.0 20.0 65.3 57.8
UAV-YOLOVSs [14] 39.0 33.3 19.7 643 56.2
Improved YOLOV7-tiny [25]  38.5 25.6 20.7 53.3 477
AVA-PRB (Ours) 48.2 39.0 20.8 66.9 62.0

Note: Bold values indicate the best performance among all methods in the respective column.

Despite the focus on mAP metrics, Table 7 clearly illustrates that AVA-PRB attains balanced precision
and recall, resulting in a solid F1 score. Furthermore, AVA-PRB maintains a lightweight design based
on the YOLOv8n backbone, integrating selective attention mechanisms without significantly increasing
computational complexity. Consequently, the model sustains an efficient inference time, making it suitable
for near real-time aerial surveillance applications. Future work will include more systematic benchmark-
ing of precision, recall, F1 score, and inference time across diverse conditions to further validate the
model’s robustness.

For Pedestrian detection, AVA-PRB achieves 60.5% mAP®@0.5, outperforming the second-best model
by 3.7%, indicating its ability to accurately detect people in complex environments. For Bicycle detection,
AVA-PRB leads by 5.5%, showcasing its superior performance in detecting small and low-contrast objects.
Although AVA-PRB is slightly behind UAV-YOLOV8s in Car detection by 0.2%, it maintains a competitive
performance and leads in Van detection by 0.4%.

The per-class performance analysis in Table 10 further reinforces the advantages of AVA-PRB. The model
outperforms all competing architectures in four out of five categories, with particularly strong improvements
in Motor detection (+4.2%) and Tricycle detection (+4.0%). The only category where AVA-PRB ranks second
is Truck detection, where HPS-YOLOV7 outperforms it by 2.4%. However, its high detection accuracy across
multiple categories suggests that AVA-PRB is highly adaptable to aerial environments with varying object
sizes and densities.

The superior results of AVA-PRB can be attributed to three key architectural improvements. First, the
integration of Coordinate Attention (CA) in the backbone and CBAM in the detection head enhances feature



3086 Comput Model Eng Sci. 2025;143(3)

selection and spatial awareness, allowing the model to distinguish small objects from cluttered backgrounds
more effectively. Second, the adoption of Shape-IoU loss provides a more precise bounding box refinement
strategy, improving localization accuracy for small and elongated objects. Lastly, the Parallel Residual Bi-
Fusion Feature Pyramid Network (PRB-FPN) strengthens multi-scale feature fusion, enabling AVA-PRB to
retain fine-grained details while suppressing irrelevant background noise. These enhancements allow AVA-
PRB to achieve state-of-the-art performance in small object detection, making it a highly effective solution
for aerial surveillance, traffic monitoring, and other real-world applications that demand accurate and
reliable detection in dynamic aerial environments. The results confirm that AVA-PRB not only outperforms
standard YOLO-based architectures but also surpasses other enhanced YOLO models, establishing itself as
a robust and scalable approach for small object detection in aerial imagery.

4.7 Aerial Moving Perspective Video Dataset and Movement Path Estimation Efficiency

The dataset used for movement path analysis consists of aerial videos sourced from publicly available
platforms. All videos were standardized to 1920 x 1080 resolution at 30 Frames Per Second (FPS) and trimmed
to approximately 3 to 4 s in duration, resulting in a total of 83 videos. The scenes primarily depict urban
environments containing both stationary and moving targets, with the drone maintaining a single directional
motion and a consistent aerial viewpoint without zooming.

Assessing movement path accuracy under an aerial moving perspective presents unique challenges due
to the camera’s motion-induced perspective changes. When the drone is stationary, the movement path of
the target remains accurate; however, when the drone moves, offset factors distort the path estimation. To
compensate for these distortions, our method calculates the movement path length based on the Euclidean
distance between the starting and ending points of each object’s trajectory:

d=+/(x2-x)*+ (72— n) ©6)

Shorter corrected paths indicate better trajectory estimation accuracy.

In the proposed framework, homography matrices are used to correct perspective distortions during
tracking. For efficiency, the interval between two frames for homography matrix computation is set to 10
frames. Table 11 summarizes the performance statistics, including the total number of frames processed, the
number of homography matrices computed, and the associated computation times.

Table 11: Summary of Frame count, computation time, and homography matrix analysis

Total frames  Total homography Total computation Total path update Total execution

processed matrices time for time using time (s)
computed homography homography (ms)
matrices (s)
7829 754 7358 5826 8946

The experimental results reveal that computing the homography matrix is the most time-consuming
component, accounting for approximately 82% of the total runtime, with an average computation time of
9.7 s per matrix. In contrast, the time required to update the movement path using the homography matrix
is relatively minor at only 5.8 s in total.

Although the homography estimation process imposes computational overhead, the AVA-PRB model,
built upon the lightweight YOLOv8 backbone, maintains a good balance between detection accuracy and
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computational efficiency. This allows the detection and tracking components to sustain efficient operation
even in aerial scenarios, supporting near real-time applications. To further improve runtime performance,
future work will explore acceleration techniques, such as optimizing homography matrix computation and
applying model compression strategies like pruning and quantization.

In addition, Table 12 compares the movement path lengths before and after applying our correction
method. The results demonstrate a substantial improvement, with the corrected paths being signifi-
cantly shorter.

Table 12: Comparison of movement path lengths with and without the proposed method

Movement path length (Pixels) Difference (Pixels)

Without proposed method With proposed method
343,764 122,801 220,963

As illustrated in Fig. 8, when the drone moves, the uncorrected movement paths (red lines) continue
to extend incorrectly due to perspective shifts, while the corrected paths (green lines) accurately reflect the
true motion of the targets. In the case of stationary individuals, the corrected paths remain localized beneath
their feet, further validating the effectiveness of the proposed compensation method.

Figure 8: Movement path estimation under aerial moving perspective. (a)-(c) Drone moving forward along a road.
(d)-(f) Drone moving rightward over a plaza. Green lines indicate corrected paths using the proposed method; red
lines represent paths without correction

5 Conclusion

To address the challenge of detecting small targets under aerial motion, we propose the AVA-PRB
model, which also enables accurate movement path estimation. The AVA-PRB model enhances detection
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performance by integrating two attention mechanisms—Coordinate Attention (CA) and the Convolutional
Block Attention Module (CBAM)—while utilizing Shape-IoU to improve localization accuracy. The model
has been evaluated on two benchmark datasets, achieving 60.9% mAP@0.5 and 36.0% mAP@0.5:0.95 on the
Aerial Person Detection dataset, and 51.2% mAP@0.5 and 29.9% mAP@0.5:0.95 on the VisDrone2019-Det
dataset. In addition to detection, we further present a method for refining target movement paths affected
by aerial camera motion. Our method effectively compensates for camera motion distortions, achieving a
64% reduction in path deviation and improving the accuracy of trajectory estimation. Robustness analysis
across diverse environmental conditions, such as varying lighting, weather, and aerial viewpoints, further
demonstrates the model’s adaptability in complex aerial scenarios. Moreover, the AVA-PRB model maintains
a lightweight architecture, balancing detection accuracy with computational efficiency, and sustaining
inference speeds suitable for near real-time applications.

While AVA-PRB has demonstrated strong performance, several challenges and avenues for future
exploration remain. Although the model enhances small object detection, challenges may arise when
detecting extremely small targets or distinguishing between objects with highly similar appearances under
low-resolution conditions. Furthermore, while the proposed trajectory estimation method improves path
accuracy, its effectiveness may degrade in densely populated scenes where static background features
are scarce. Future work will focus on optimizing computational efficiency through techniques such as
quantization and pruning to facilitate deployment on embedded and edge devices. Additionally, more
systematic evaluations under extreme conditions, including heavy rain, strong backlighting, and abrupt
camera motion, will be conducted to validate model resilience. Broader generalization studies will also be
performed by extending evaluations to additional aerial datasets such as Dataset for Object Detection in
Aerial Images (DOTA), Unmanned Aerial Vehicle Detection and Tracking (UAVDT), and Dataset for Object
Detection in Optical Remote Sensing Images (DIOR).
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