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ABSTRACT: This study introduces a lightweight deep learning model and a novel synthetic dataset designed to restore
damaged one-dimensional (1D) barcodes and Quick Response (QR) codes, addressing critical challenges in logistics
operations. The proposed solution leverages an efficient Pix2Pix-based framework, a type of conditional Generative
Adversarial Network (GAN) optimized for image-to-image translation tasks, enabling the recovery of degraded
barcodes and QR codes with minimal computational overhead. A core contribution of this work is the development of a
synthetic dataset that simulates realistic damage scenarios frequently encountered in logistics environments, such as low
contrast, misalignment, physical wear, and environmental interference. By training on this diverse and realistic dataset,
the model demonstrates exceptional performance in restoring readability and decoding accuracy. The lightweight
architecture, featuring a U-Net-based encoder-decoder with separable convolutions, ensures computational efficiency,
making the approach suitable for real-time deployment on embedded and resource-constrained devices commonly
used in logistics systems. Experimental results reveal significant improvements: QR code decoding ratios increased
from 14% to 99% on training data and from 15% to 68% on validation data, while 1D barcode decoding ratios improved
from 7% to 73% on training data and from 9% to 44% on validation data. By providing a robust, resource-efficient
solution for restoring damaged barcodes and QR codes, this study offers practical advancements for enhancing the
reliability of automated scanning systems in logistics operations, particularly under challenging conditions.
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1 Introduction

The history of 1D barcodes dates back to the late 1940s when Bernard Silver and Norman Joseph
Woodland conceptualized encoding information with lines and spaces, leading to the first patent in 1952 [1].
The breakthrough came in 1973 with the adoption of the Universal Product Code (UPC) in the retail industry,
revolutionizing inventory tracking and checkout processes. Meanwhile, the QR code, a type of 2D barcode,
was invented in 1994 by Denso Wave, a subsidiary of Toyota, to improve manufacturing efficiency by allowing
for more data storage and faster readability [2]. While 1D barcodes remain widely used in various industries,
QR codes have gained popularity for their ability to store complex information and their versatility in
applications such as marketing and mobile payments.

1D barcodes are machine-readable patterns applied to products, packaging or parts, representing data
in the widths and spaces of parallel lines [3,4]. These codes were developed primarily for tracking products
throughout their lifecycle in logistics and automation [5]. Conversely, QR codes are two-dimensional (2D)
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barcodes that store information both vertically and horizontally, thus providing significantly more data
storage capacity than 1D barcodes [6,7]. This improved storage capacity has enabled QR codes to be used to
store information such as addresses and URLs, making them popular with users of camera smartphones.

Both 1D barcodes and QR codes play a crucial role in effectively communicating data, allowing
businesses across various industries to automate processes and increase efficiency. Especially in the logistics
sector, these codes are widely used to track the movement of products from production to the final consumer.
The use of barcodes in these capacities increases accuracy, traceability, and sorting capabilities.

Logistics companies can use 1D barcodes and QR codes embedded in products or packaging for
comprehensive, real-time product tracking that increases supply chain efficiency and transparency. The
proliferation of smartphones has made QR codes even more important in various industries in recent years,
especially in automotive and commercial marketing applications [6]. This is because more people have a
barcode reader in their pocket, giving businesses a unique opportunity to enhance their advertising strategies
by driving users directly to their brand website and moving them further down the conversion funnel.

There are a number of reasons why barcodes can become unreadable, and these reasons usually have to
do with issues with the barcode itself or the technology used to read it.

Low contrast: Barcode readers rely on distinguishing light and dark elements of a barcode. Insufficient
contrast, caused by dark barcodes on dark backgrounds, light barcodes on reflective surfaces, printing
inconsistencies, substrate variations, or poor lighting, hinders readability [8].

Quiet zone violations: The quiet zone is a clear area around a barcode that must be free of obstructions.
Encroachment into this zone prevents accurate barcode interpretation.

Print or mark inconsistency: Inconsistent printing or marking, due to poor ink distribution, uneven
pressure, or improper equipment settings, leads to readability issues like low contrast and quiet zone viola-
tions.

Improper reading position: Accurate barcode decoding requires the reader to be correctly positioned
regarding focal distance, scan angle, and orientation. Misalignment or improper positioning can prevent
barcode reading [9,10].

Barcode damage or distortion: Handling, transport, or harsh environments can damage barcodes,
causing readability issues. Damage includes scratches, smudges, tears, fading, or contamination by sub-
stances [4,11].

Blurring: Blurring from camera shake, incorrect focus, or object/scanner movement during image
capture impairs barcode readability [12].

Low resolution: Low-resolution images from inappropriate sensors or cameras make it difficult for
readers to distinguish barcode elements, especially for small barcodes [3,13].

Lighting: Poor lighting conditions, including glare, shadows, or uneven illumination, create challenges
for barcode readers in interpreting the code [3,13].

Various traditional approaches are employed to repair or restore damaged barcodes and QR codes.

Using error correction codes: Some barcodes, such as QR codes and Data Matrix codes, include built-
in redundancy to maintain readability even when damaged. QR codes offer four levels of error correction
(Low, Medium, High, and Quadrant), which can be utilized by barcode readers like the Dynamsoft Barcode
Reader to recover data from damaged codes. The highest level of correction can recover up to 30% of data
bytes. Similarly, Data Matrix codes use Reed-Solomon error correction, enabling data recovery from codes
that are up to 50% damaged [8].
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Image processing techniques: Various image processing techniques are employed to enhance the
quality of barcode images and improve recognition. These techniques include filtering, contrast balancing,
image rotation, and binarization. The Radon method can rotate skewed barcode images, while the Otsu
segmentation method can separate the barcode from the original image [14].

Using symbol reconstruction technology: Symbol reconstruction technology enables barcode readers
to recover data from damaged or corrupted barcodes [8]. This method uses an algorithm to combine
discontinuous symbol data from multiple scan lines, merging the missing code fragments of partially hidden
or rotated symbols into a single, complete scanline that can then be deciphered by the reader.

Traditional barcode readers face difficulties in reading low-quality barcodes, especially those that are
blurry, damaged or distorted [3,8]. Deep learning (DL) based systems are promising for overcoming these
limitations and improving barcode recognition accuracy and speed [15,16]. DL plays a crucial role in two
fundamental stages of barcode recognition: barcode detection and barcode image restoration.

Various deep learning methods and models are effective for restoring barcode and QR code images,
including GANs, CNNs, RNNs, and autoencoders.

GANs are powerful deep learning models widely used in image restoration, deblurring, and denoising
tasks, as highlighted in recent studies [16-18]. GANSs consist of two networks, a generator and a discriminator,
that work together to produce realistic images [19]. The generator attempts to create a clean image from a
corrupted one, while the discriminator tries to distinguish between the generated image and a real image.
GAN:Ss are particularly effective at restoring QR codes with motion blur [12]. For instance, DeblurGAN-v2,
trained on noisy and sharp image pairs, has been successfully used to deblur barcode images. Additionally,
GANSs have been employed in QR code repair, leveraging their image-generating capabilities to synthesize
missing regions with plausible content, based on the original image [18].

Convolutional Neural Networks (CNNs) are a widely used deep learning models, especially for image
recognition and classification tasks [10,17,20]. They are effective at recognizing features and patterns in
images, making them suitable for barcode and QR code restoration [19]. CNNs have been employed for
various image restoration tasks, including noise removal [6], deblurring [6,19], and super resolution [13].
Researchers have used a CNN-based framework to address QR code blurring issues, as well as to remove
shadows and white noise [21]. CNNs have also been used to convert low-resolution QR codes into decipher-
able images [22]. Additionally, deep CNNs have been integrated into autoencoders, a type of neural network
designed to create clean images from corrupted barcode images [6].

Recurrent Neural Networks (RNNs) are particularly effective at removing motion blur from barcodes in
video frames because they can capture patterns and dependencies in sequential data [10,12]. This capability
is especially useful in video processing, where motion blur is a gradual degradation that often occurs over
multiple frames. The structure of RNNs allows them to store information from previous frames and use
that information when processing the current frame, making them well-suited for restoring images with
motion blur.

This study presents a resource-efficient deep learning model aimed at restoring damaged barcodes and
QR codes by leveraging the Pix2Pix framework, a type of conditional GAN. Pix2Pix [23] is particularly suited
for this task as it excels in image-to-image translation, learning to map damaged barcode images to their
restored versions. The model employs a U-Net architecture with 2D separable convolutions, optimizing the
balance between detailed feature restoration and computational efficiency, making it ideal for embedded
systems. Central to our approach is the development of a highly realistic synthetic dataset that mimics
severe damage scenarios frequently observed in logistics. Our dataset generation pipeline incorporates
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diverse augmentation techniques to replicate issues such as low contrast, misalignment, physical damage, and
environmental interference. The remainder of the study includes the presentation and discussion of results.

2 Methodology
2.1 Pix2Pix Overview

Pix2Pix is a type of Conditional GAN specifically designed for image-to-image translation tasks. The
idea behind Pix2Pix is to train a model to learn the mapping from an input image to an output image.
Unlike traditional GANs, which generate images from random noise, Pix2Pix transforms an image from one
domain into a corresponding image in another domain. This makes it particularly useful for tasks such as
generating realistic images from sketches, converting daytime scenes to nighttime scenes, or transforming
satellite images into maps.

The training process involves feeding pairs of images into the network: an input image from the source
domain and its corresponding target image from the target domain. The generator network learns to create
realistic output images, while the discriminator network learns to distinguish between real target images
and generated ones. During the training stage, the generator and discriminator networks are fed through an
adversarial type of training process. Here the generator strives to produce images that are indistinguishable
from real ones, while the discriminator endeavors to differentiate between real and generated images.
Through this adversarial training modality, the generator progressively enhances its capability to generate
realistic output images.

Pix2Pix has been applied to a range of image-to-image translation tasks, such as generating life-
like street scenes from sketches, converting satellite images into maps, and even transforming sketches
into photographs. Its performance has showcased remarkable outcomes, yielding high-quality, visually
convincing images.

Pix2Pix for barcode image restoration: Barcode image restoration is an image-to-image translation
task. In this context, Pix2Pix is a suitable model because it specializes in transforming an input image into
an output image with desired characteristics. For barcode restoration specifically, the input images might be
damaged or degraded barcode images, while the output images would ideally be clean and legible versions of
those barcodes. During training, Pix2Pix model learns to capture the underlying patterns and structures in
the barcode images, enabling it to generate high-quality restored images when presented with new, unseen
damaged barcode inputs. The versatility of Pix2Pix in learning a wide range of features can be summarized
as follows:

Complex mapping: Pix2Pix excels at learning complex mappings between different domains. For
barcode image restoration, it needs to understand the relationship between damaged or degraded barcode
images and their clean versions. This involves capturing the intricate patterns and structures specific to
barcode images, which Pix2Pix can effectively learn through its training process.

Conditional generation: Pix2Pix is a conditional GAN, meaning it generates output images based on
input images. For barcode image restoration, this means that given a damaged or partially obscured barcode
image as input, Pix2Pix can produce a restored version as output. The conditional nature of Pix2Pix allows
it to leverage the contextual information in the input image to guide the restoration process effectively.

High-quality results: Pix2Pix has demonstrated the ability to produce high-quality, visually realistic
images in various image-to-image translation tasks. This is crucial for barcode image restoration, as the goal
is to produce clean and legible barcode images that accurately represent the encoded information. Pix2Pix’s
capability to generate visually plausible outputs helps ensure that the restored barcode images are both
readable and faithful to the original data.
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Flexibility and adaptability: Pix2Pix is a flexible framework that can be adapted to various image
restoration tasks by training it on appropriate datasets. Barcode images come in multiple formats and may
suffer from different types of damage or degradation. By training Pix2Pix on a diverse dataset of damaged
barcode images paired with their corresponding clean versions, the model can learn to handle a wide range
of restoration scenarios and produce accurate results.

2.2 System Pipeline

In the logistics application, a parcel moves along a conveyor belt with a camera fixed above it. The camera
captures an image of the scene, which is then sent to the processing and decoding pipeline. We developed
a platform with a conveyor belt and an overhead camera to enable live testing of the proposed algorithm
(Fig. 1).

Figure 1: Conveyor belt with an overhead camera

The processing pipeline consists of several stages (Fig. 2):

1. Barcode Detection: We used YOLO v8 to detect barcodes or QR codes from the captured images.
2. Tracking: A Kalman tracker was employed to track the detected barcodes.

3. Image Processing:

o Each detected barcode area was cropped from the image and sent to the decoding stage.

o If the image could not be decoded, it was first sent to the restoration stage and then to the decoding
stage after restoration.

For decoding, we used a common library called ZBar. For image restoration, we utilized our trained
deep learning model.
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Figure 2: Barcode detection and decoding pipeline

2.3 Generator and Discriminator Architecture

The U-Net architecture designed for barcode image restoration processes input images of size 256 x 256
pixels with three color channels (RGB), resulting in an input shape of (256, 256, 3). This choice of input size is
a balance between maintaining sufficient resolution to capture barcode details and managing computational

efficiency (Fig. 3a).
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The model features a symmetric encoder-decoder structure. In the encoder (downsampling path), the
model employs a series of 2D separable convolution layers with strides of 2, paired with Leaky Rectified
Linear Unit activations (Fig. 3c).

This process progressively reduces the spatial dimensions while increasing the number of filters. The
specific sequence of filter sizes used in the encoder typically follows a pattern of doubling the number of filters
at each downsampling step, starting from a relatively low number and increasing to capture more complex
features as the spatial dimensions decrease. Our design can be outlined as follows:

o  The first 2D separable convolution utilizes 64 filters.

« The second 2D separable convolution layer increases to 128 filters.

o  The third 2D separable convolution layer further increases to 256 filters.
o« The fourth 2D separable convolution layer employs 512 filters.

 The fifth to eighth 2D separable convolution layers maintains 512 filters, capturing intricate details as the
spatial dimensions are progressively reduced.

In the decoder (upsampling path), 2D upsampling layer followed by 2D separable convolution layer and
Rectified Linear Unit activations are utilized to upsample the feature maps back to the original image size
(Fig. 3d).

The number of filters in the decoder typically mirrors those in the encoder, decreasing as the spatial
dimensions increase:

The first to fourth layers in the decoder use 2D upsampling followed by 2D separable convolution layer
with 512 filters.
 The fifth layer reduces to 256 filters.

The sixth layer reduces further to 128 filters.
o  The seventh layer reduces to 64 filters.
+ The final layer restores the output back to the original image depth of 3 filters (for the RGB channels).

These design choices, including the input size and the filter configuration, ensure that the U-Net can
effectively capture and restore detailed features in barcode images, preserving their readability and accuracy.
Essential to this architecture are the skip connections, which link corresponding layers in the encoder
and decoder. These connections concatenate the high-resolution feature maps from the encoder directly to
the decoder layers, ensuring that fine details are preserved and effectively incorporated into the restored
barcode image.

Using 2D separable convolution offers significant benefits by reducing the computational load and the
number of parameters. This is achieved by decomposing a standard convolution into depthwise and point-
wise convolutions, resulting in a more efficient and faster model. This approach is particularly advantageous
for embedded systems with limited processing power and memory. The reduced computational complexity
and memory usage make 2D separable convolution highly suitable for real-time applications on embedded
devices, such as mobile and IoT devices, ensuring energy efficiency and faster inference times. Using a
2D upsampling layer followed by a 2D separable convolution layer significantly reduces computational
load and parameters, leading to faster inference times. It produces smoother outputs with fewer artifacts,
preserving fine details crucial for barcode readability. This thoughtful design enables the U-Net to produce
clear, accurate restorations of barcode images while maintaining the integrity and readability of the barcodes,
even on resource-constrained platforms.
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The discriminator model for the barcode image restoration task is designed to distinguish between real
and restored barcode images, ensuring the generator produces high-quality outputs. The architecture starts
with two input layers: ‘input_image’ and ‘target_image, both with shapes of (256, 256, 3)’ (Fig. 3b).

These inputs are concatenated along the channel axis, resulting in a combined shape of (256, 256, 6).
The concatenated input is then passed through a series of sequential blocks. Each of these blocks comprises
2D convolution layers with strides of 2 and Leaky Rectified Linear Unit activations, which effectively
downsample the feature maps, reducing their spatial dimensions while increasing the depth. Specifically,
these blocks transform the input shape from (256, 256, 6)’ to (128, 128, 64)’, then to (64, 64, 128); and finally
to (32, 32, 256).

Following these downsampling blocks, the architecture includes a 2D input Zero-padding layer to
maintain the spatial dimensions required for subsequent convolutions. The padded feature maps are then
processed by a 2D convolution layer, further refining the features and producing output shapes of ‘(31, 31,
512)’ This layer is followed by a Leaky Rectified Linear Unit activation function, which introduces non-
linearity and helps stabilize the training. Another 2D input Zero-padding layer and a 2D convolution layer
continue to refine the features, culminating in a final output shape of (30, 30, 1)’ This final layer represents
the discriminator’s prediction, indicating whether the input barcode image pair is real or restored. This
detailed architecture allows the discriminator to effectively differentiate between genuine and generated
images, driving the generator towards producing more accurate and high-quality restorations.

2.4 Loss Functions

Deep learning models for restoring barcode and QR code images can utilize several types of loss
functions, such as Mean square error [12], Perceptual loss [12], Style loss [24], Total variation [24], Barcode-
specific structural loss [24], Cross-entropy [25], Adversarial loss [12,16,26] each addressing different visual
features of the damaged codes.

Pix2Pix is a conditional Generative Adversarial Network (cGAN) composed of two primary compo-
nents: a generator and a discriminator. Its training is guided by two key loss functions:

Generator Loss: The generator aims to produce images that are both realistic and closely match the
target images. Its loss function combines two components:

o Adversarial Loss (GAN Loss): Encourages the generator to produce images that can fool the discriminator
(Eq. (1)). This is typically computed using binary cross-entropy, comparing the discriminator’s output
on generated images against the label “real™:

GAN_Loss = —E[log(D(G(x)))] 1)

Here x is the input image, G is the generator function, D is the discriminator function, E is the
expected value.

o Reconstruction Loss (LI Loss): Measures the pixel-wise difference between the generated image and the
ground truth (Eq. (2)), helping preserve the content and structure of the image:

L1_Loss = E[||ly - G(x)|h] (2)

where y is the target image.
o Total Generator Loss: A weighted sum of both losses (Eq. (3)):

Generator_Loss = GAN_Loss + A - L1_Loss (3)
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where A is the loss weight.

Discriminator Loss: The discriminator learns to differentiate between real and generated images,
conditioned on the input

It is trained using binary cross-entropy to penalize incorrect classifications (Eq. (4)):
Discriminator_Loss = E[log(D(y))] + E[log(1- D(G(x)))] (4)

In this work, the reconstruction loss has been extended to incorporate a combination of multiple loss
functions, rather than relying solely on the L; loss.

The loss function of the traditional Pix2Pix algorithm seeks to minimize a combination of adversarial
loss and mean absolute error (MAE), which quantifies the discrepancy between the target and output images.
In our proposed algorithm, however, we go beyond relying solely on adversarial loss and MAE. We have
introduced additional components: the Structural Similarity Index (SSIM) and Focused Mean Absolute
Error. SSIM estimates the similarity between the target and output images by measuring the mean intensity
of the two images to quantify the perceived quality.

Focused Mean Absolute Error (FMAE): To guide the model in prioritizing the restoration of crucial
regions within barcodes and QR codes, a specialized loss component, FMAE, has been introduced. This loss
emphasizes image areas containing useful information, guiding the model to more accurately reconstruct
these critical regions. The process begins with the ground truth (target) image of a barcode or QR code.
To identify the region of interest (ROI), the image is first converted to grayscale and inverted to highlight
the barcode area (Fig. 4). A binary threshold is then applied, producing a binary image in which the
relevant region appears white, effectively separating it from the background. To refine this binary mask,
morphological dilation is applied. This operation expands the white regions and connects nearby features,
ensuring that the full structure of the barcode or QR code is captured. The resulting mask defines the ROI with
high precision. Using this mask, the corresponding regions in both the predicted and ground truth images
are extracted through bitwise operations. This isolates the informative area and excludes the background,
allowing error computation to focus solely on the regions that matter. Within this masked region, metrics
such as MAE and Mean Squared Error (MSE) are calculated, providing a targeted assessment of model
performance. The focused error is then incorporated into the overall loss function, increasing the influence
of the ROI during training. This approach leads to higher restoration quality in the most crucial parts of the
image where decodability is essential.

The mean absolute error calculates only for the areas in the images covered by the barcode or QR code,
emphasizing accuracy in these critical regions. The composite loss function then becomes “loss = MAE +
FMAE + LSSIM”.

Here y is the true image and  is the predicted image by the network model. Both y and y are matrices
of the same size (r, ¢), where r is the number of rows and c is the number of columns in the image matrix.
Then the MAE loss function is described as in Eq. (5):

1 A
MAE = roc Z:‘:l Z;=l yii = Jiil )

where y;; represents the pixel intensity value at the " row and f* column of the true image matrix.
§,jrepresents the pixel intensity value at the # row and j* column of the predicted image matrix.

The FMAE loss function calculates the mean absolute error over a specific region of interest (ROI) in
the image, as defined by a binary mask. This mask highlights the area where the loss should be computed,
ignoring the rest of the image.
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Target Image ROI Mask

Input Image

Training Data
Figure 4: ROI detection and mask generation

FMAE incorporates a binary mask M of the same size (r, ¢) as the image matrix, where M;; = I indicates
a pixel (4, j) part of the ROI, and M;; = 0 indicates that it is not a part of the ROI (Eq. (6)). FMAE loss function
is described as:

1 r c A
FMAE = Yzt Ljo1 Mij Zi:l o Mij- |yij ~ i ©)
Given two images x and y of similar size r x ¢, the SSIM is calculated using the following Eq. (7):
2 +Cp) (204 +C
SSIM (x,y) = Curisy +C) (20 + C) (7)

(y)zc + yf, + Cl) (0,% + 0)% + Cz)

tx and u, are the mean intensities of image matrices x and y, respectively.
0% and af are the variance of image matrices x and y, respectively
Oy is the covariance of image matrices x and y.

Here C; and G, are constants used to stabilize the division with weak denominator values and are defined
asin Eq. (8):
2
C1 = (K IL)

C, = (K;L) ®)

where L is the dynamic range of the pixel values, such as 255 for 8-bit grayscale images. K; and K, are small
constants, for instance, K; = 0.01 and K, = 0.03.

The loss function associated with SSIM is described as in Eq. (9):

LSSIM (x,y) =1—|SSIM(x, y)| )
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2.5 Dataset Generation Pipeline

Real datasets contain images of real-world barcodes under varying conditions. For example, one study
used 3900 barcode images collected in logistics warehouse environments with industrial cameras to create a
realistic dataset [13]. Similarly, researchers have created datasets consisting of barcode images captured with
smartphone cameras [15]. Using these real-world datasets enhances the ability of trained models to handle
various real-world perturbations. However, collecting and labeling real datasets can be time-consuming and
costly, and extreme damage scenarios might not necessarily be encompassed, making them impractical for
a wider range of applications.

Synthetic Datasets on the other hand address the limitations of real datasets, researchers often turn to
algorithmically generated datasets. Using Pythons QR code library [11,18,24], it is possible to create a wide
variety of barcode styles with desired error correction levels, code versions, and image sizes. This approach
helps create a diverse dataset, preventing trained models from overfitting to specific barcode styles. By adding
artificial distortions, synthetic datasets can be created to mimic real-world conditions, such as noise, blur,
shadows, and whitening [21,22]. For example, one study used sigmoid and 2D Gaussian functions to simulate
realistic shadow and whitening effects, respectively [21]. This technique allows trained models to improve
their ability to cope with varying levels of distortion intensity.

Some studies have utilized the GOPRO dataset, which is widely used in image restoration tasks [12,17].
These datasets often contain images that mimic realistic blur effects, such as camera motion blur, making
them suitable for training models for barcode and QR code image restoration. While creating synthetic
datasets is often more cost-effective and efficient, they may not perfectly capture all the characteristics and
variations of real-world data. As a result, many research efforts adopt a hybrid approach that offers the best of
both worlds [15]. These hybrid datasets incorporate real-world barcode images and Python’s QR code library
extracts [11,18,24], combined with synthetic distortions added using OpenCV and Pillow (PIL) libraries [16],
resulting in more robust and generalizable deep learning models.

The quality and relevance of the dataset significantly impact the performance of trained deep learning
models. Datasets should reflect the real-world scenarios the model is intended for. Using a combination of
real and synthetic data leverages the advantages of both approaches. Real data provides authentic samples,
while synthetic data allows for controlled introduction of specific degradations and variations, enhancing
the model’s robustness. Synthetic datasets offer a cost-effective and efficient way to generate large amounts
of data [15,27], although they may not fully reflect all the characteristics of real-world data [28]. As a result,
the ideal training dataset for deep learning models is a combination of both real and synthetic data. This
approach allows for the creation of a diverse and large dataset that comprehensively addresses real-world
conditions while also covering a wide range of perturbation levels and difficulties.

The effectiveness of a deep learning model is significantly influenced by the quality and realism of its
training data. For our barcode image restoration model tailored to logistics applications, the emphasis has
been on generating a highly realistic synthetic dataset that simulates extreme cases of barcode and QR code
damage commonly encountered in logistics operations.

Various studies have identified common causes of unreadable barcodes, including issues such as low
contrast, quiet zone violations, improper reading positions, print inconsistencies, and physical damage or
distortion. This comprehensive understanding guided our augmentation strategy, ensuring that our synthetic
dataset accurately reflects real-world scenarios.

The pipeline begins with generating random strings, which are then encoded into the desired barcode or
QR code format. To mimic real-life conditions, each image contains a single barcode occupying a significant
portion of the frame, similar to images from previous detection stages.
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In this study, a wide range of augmentation techniques were applied to create realistic representations
of damaged barcodes:
e  Geometric transformations:

o Random horizontal and vertical flip: To simulate mirrored images.

o Random 3D re-projection: Adjusting perspective to mimic viewing angles.
o Random rotation: Up to 180 degrees to represent tilted images.

o Random zoom out: To include surrounding context.

o Random shift: To simulate misaligned captures.

e Background alterations:

o Random background color changes: To reflect various lighting conditions.
o Random background texture changes: To include different surfaces.

e  Physical damage simulations:

o  Adding random curve and straight lines: To simulate scratches or scribbles.

[e]

Adding blobs: To mimic stains or blotches.
o  Adding text: To represent overlaid information or labels.
Adding glare and shadows: To simulate light reflections and obstructions.

[¢]

o Image quality modifications:

o Random color saturation and brightness changes: To simulate varying lighting conditions.
o Random blur: To mimic out-of-focus images.

o  Adding gaussian noise: To represent sensor noise.

o Random intensity range changes: To simulate contrast variations.

o Random resolution reduction: To mimic low-quality images.

The augmentations are controlled by parameters and probabilities defined in a JSON settings file
(Table 1). These settings ensure a diverse range of augmentations, primarily focusing on extreme cases to
robustly train the model.

Table 1: Dataset generation pipeline—augmentation techniques

Technique Percent Settings parameter
probability
Horizontal flip 35
Vertical flip 35
3D projection 70
Rotation 50 Maximum rotation angle: 180
Zoom out 80 Range: [1, 1.3]
Shift 80 Range: [-20, 20]%
Change background 100
color
Change background 100
texture
Add black curve lines 60 Maximum line number: 3, Maximum line thickness: 4,

Maximum intensity: 150

(Continued)
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Table 1 (continued)

Technique Percent Settings parameter
probability
Add white curve lines 60 Maximum line number: 3, Maximum line thickness: 4,
Maximum intensity: 150
Add black straight 60 Maximum line number: 3, Maximum line thickness: 4,
lines Maximum intensity: 150
Add white straight 60 Maximum line number: 3, Maximum line thickness: 4,
lines Maximum intensity: 150
Add blobs 80 Maximum number: 7, Size range: [3,10], Color: Black
Add text 80 Maximum number: 4, Font scale range: [1,2], Maximum
rotation angle: 50, Maximum length: 12 char, Shift range:
[-40, 40]%
Add glare 80 Maximum glare width: 70%, Maximum glare factor: 1.4,
Maximum rotation angle: 180
Add shadow 80 Maximum shadow width: 70%, Maximum shadow factor:
1, Maximum rotation angle: 180
Change color 50 Range: [0.5, 3]
saturation
Change brightness 50 Range: [0.5, 2]
Change color 20
temperature
Blur 60
Add Gaussian noise 50 Standard deviation range: [20, 100]
Change intensity 80 Intensity maximum range: [130, 180], Intensity minimum
range range: [35, 80]
Reduce resolution 60 Scale factor range: 3

Here two distinct groups of datasets were generated-one for 1D barcodes and another for QR codes. The
dataset sizes are as follows:

« 1D Barcode Training set: 10,000 samples
o 1D Barcode Validation set: 600 samples
+ QR Code Training set: 11,000 samples

+ QR Code Validation set: 700 samples

This pipeline ensures the generation of a highly realistic and diverse synthetic dataset, essential for
training a robust barcode image restoration model capable of handling a wide range of real-world damages
and distortions.

Below are some sample images showcasing the generated damaged 1D barcodes (Fig. 5) and QR codes
(Fig. 6).
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Figure 5: Damaged 1D barcode images generated through random variations and degrees of fault augmentations. (a)
Sample 1, (b) sample 2, (c) sample 3

Figure 6: Damaged QR code images generated through random variations and degrees of fault augmentations. (a)
Sample 1, (b) sample 2, (c) sample 3

3 Experimental Setup and Results

3.1 Training Configuration

Two separate models were trained independently: one for QR code restoration and the other for 1D
barcode restoration. Each model was trained from scratch on its respective dataset using the same set of
hyperparameters (Table 2).

Table 2: Hyperparameters of the proposed model

Number of epochs 50

Batch size 1
Learning rate 0.0002
Optimizer Adam

Lambda (L1 loss weight) 10

For both models, the training process exhibited consistent behavior. The generator and discriminator
losses stabilized after approximately 40 epochs, indicating convergence. Additionally, the validation loss
closely followed the training loss, suggesting that both models generalized well to unseen data and did
not overfit.
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3.2 Computational Metrics

The computational metrics of the proposed model demonstrate its efficiency and effectiveness in
performing complex tasks, even when tested on an NVIDIA GeForce RTX 2080 Ti GPU with TensorFlow
and without any additional optimization strategies. The model requires a total of 1.25 GFLOPs, reflecting a
relatively low computational cost for its operations (Table 3). It consists of 3.54 million parameters, balancing
model complexity and performance. The memory footprint is modest at 13.52 MB, indicating that the
model is lightweight and suitable for deployment in memory-constrained environments. Additionally, the
inference time is just 13 ms, enabling real-time or near-real-time performance in practical applications, such
as logistics, that require instant barcode and QR code scanning.

Table 3: Computational metrics of the proposed model

Total FLOPs 1.25 GFLOPs
Total MFLOPs 1279.04
Total GLOPs 1.25
Total TFLOPs 0.0012
Number of parameters 3.54 million
Memory footprint 13.52 MB
Inference time (NVIDIA GeForce RTX) 13 ms
Inference time (OAK-1 Myriad X VPU) 185 ms
Inference time (Jetson Orin Nano) 41 ms

3.3 Restoration Performance
3.3.1 Evaluation Metrics

The model was evaluated on both 1D barcodes and QR codes using a custom synthetic dataset that
simulates various types of damage commonly encountered in logistics. The primary evaluation metric for
this study is the decodability rate, which measures the ability of the restored image to be accurately decoded
by a barcode reader. This metric is crucial, as it directly affects the usability of the restored barcode in real-
world scenarios. While other metrics, such as MAE, MSE, SSIM, and Peak Signal-to-Noise Ratio (PSNR),
provide insights into the similarity between the restored and original images, decodability is the most critical,
as even small errors in key areas of the barcode can render it unreadable.

The model’s performance was evaluated using several key metrics: MAE, MSE, FMAE, Focused Mean
Squared Error (FMSE), SSIM, and PSNR. Each metric offers a unique perspective on the quality of the
restored images, providing a comprehensive assessment of the model’s effectiveness.

Mean absolute error (MAE): Measures the average absolute difference between the original and
restored images, with a lower value indicating better performance.

Mean squared error (MSE): Provides a measure of the squared differences between the original and
restored images, with lower values indicating higher restoration quality.

Focused MAE (FMAE) and Focused MSE (FMSE): These metrics are calculated specifically over the
barcode areas, highlighting accuracy in the most critical regions of the image.

Structural similarity index (SSIM): Assesses the similarity between the original and restored images
in terms of structure and luminance, with values closer to 1 indicating greater similarity.
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Peak signal-to-noise ratio (PSNR): Evaluates the quality of the restored images by measuring the ratio
between the maximum possible signal power and the power of the corrupting noise, with higher values
indicating better quality.

3.3.2 Quantitative Results

The 1D Barcode Training initially had a low decodability percentage of only 7%, indicating that most of
the barcodes were unreadable or difficult to decode (Table 4). However, after applying a restoration process,
the decodability significantly increased to 73%. This improvement of 66% demonstrates the effectiveness of
the restoration methods in enhancing the readability and accuracy of barcode decoding in the dataset.

Table 4: Decodability of the proposed deep learning model for 1D barcodes and QR codes

Original decodability Decodability after restoration Improvement

1D barcode training 7% 73% 66%
1D barcode validation 9% 44% 35%
QR code training 14% 99% 85%
QR code validation 15% 68% 53%

The 1D Barcode validation results show a notable improvement in decodability after restoration efforts.
Initially, the barcodes had a decodability percentage of just 9%, indicating that a vast majority were difficult to
read accurately (Table 4). After applying restoration techniques, the decodability increased to 44%, marking
a 35% improvement.

The QR code training dataset experienced a significant improvement in decodability after restoration
efforts (Table 4). Initially, the decodability percentage was a mere 14%, indicating that most QR codes
were challenging to decode accurately. After applying restoration techniques, the decodability dramatically
increased to 99%, representing an 85% improvement.

The QR code validation results highlight a considerable improvement in decodability after the restora-
tion process was applied (Table 4). Initially, the decodability percentage was only 15%, indicating that a
majority of the QR codes were difficult to decode successfully. After undergoing restoration, the decodability
increased to 68%, reflecting a 53% improvement.

The deep learning model’s validation performance on the barcode dataset, consisting of 600 samples,
demonstrates its ability to generalize, though with slightly lower accuracy than in training (Table 5). The
model achieved an average MAE of 0.019 and a MSE of 0.005, while the focused errors were somewhat higher,
with a MAE focused average of 0.064 and MSE focused average of 0.016. The SSIM average was 0.97, with an
SSIM error average of 0.028, indicating that the restored barcodes are generally similar to the original ones,
albeit with minor discrepancies. The PSNR average stood at 32.80, signifying good reconstruction quality,
though slightly lower than in the training phase.

For the QR code train dataset, comprising 11,000 samples, the deep learning model exhibited outstand-
ing performance in enhancing the quality and readability of QR codes (Table 5). The model achieved an
impressively low average MAE of 0.004 and a near-zero MSE of 0.001, with slightly higher focused errors
(MAE focused average of 0.014 and MSE focused average of 0.002). The high SSIM average of 0.99 and a
very low SSIM error average of 0.005 demonstrate that the restored QR codes are nearly identical to the
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original ones. Additionally, the model achieved an excellent PSNR average of 39.46, indicating superior
reconstruction quality.

Table 5: Performance of 1D barcode and QR code decoding with the proposed deep learning restoration model

1D barcode 1D barcode QR code QR code
training validation training validation

Number of samples 10,000 600 11,000 700
MAE (Average) 0.013 0.019 0.004 0.009
MSE (Average) 0.002 0.005 0.000 0.003
MAE focused (Average) 0.045 0.064 0.014 0.027
MSE focused (Average) 0.008 0.016 0.002 0.010
SSIM (Average) 0.99 0.97 0.99 0.98
SSIM error (Average) 0.015 0.028 0.005 0.021
PSNR (Average) 33.64 32.80 39.46 39.94

The deep learning model’s validation performance on the QR code dataset, consisting of 700 samples,
indicates robust generalization capability, though with some decline compared to the training phase
(Table 5). The model achieved an average MAE of 0.009 and a MSE of 0.003, while the focused errors were
slightly higher, with a MAE focused average of 0.027 and MSE focused average of 0.010. SSIM average was
0.98, with an SSIM error average of 0.021, reflecting high similarity between the restored and original QR
codes but with some minor deviations. PSNR average was 39.94, suggesting excellent reconstruction quality,
even slightly surpassing the training phase in this regard.

3.3.3 Visual Examples and Qualitative Results

The results for the two models developed for 1D barcode and QR codes were impressive, with both
models effectively cleaning the images. Sample inputs of damaged barcodes, the expected targets, and the
predicted output images, along with MAE rates, are presented in the following Figs. 7 and 8. Deep learning-
based decoding of 1D barcode examples resulted in MAE rates ranging from 1.6% to 2.6%, while SSIM were
between 96% and 98% (Fig. 7).

Input Output Target

N ur w

Figure 7: (Continued)
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Figure 7: Application of deep learning for decoding 1D Barcodes and associated MAE rates. (a) MAE = 0.026,
SSIM = 0.96 (b) MAE = 0.023, SSIM = 0.97 (c) MAE = 0.016, SSIM = 0.98

(a)

Figure 8: (Continued)
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Figure 8: Application of deep learning for decoding QR codes and associated Mean Absolute Error rates.
(a) MAE = 0.013, SSIM = 0.98, (b) MAE = 0.018, SSIM = 0.96, (c) MAE = 0.032, SSIM = 0.93

Deep learning-based decoding of QR code examples produced MAE rates ranging from 1.3% to 3.2%,
with SSIM ranging from 93% to 98% (Fig. 8).

3.4 Real-World Data Test

To evaluate improvements in decodability, a real-world dataset was created. Random barcodes and
QR codes were printed and intentionally damaged using manual methods. For simplicity, three damage
techniques were employed:

»  Writing over the codes
o  Scratching the codes
«  Applying paint blobs
These methods were designed to make the codes initially undecodable

Images of the damaged codes were captured using an OAK-1 camera, with 30 images collected for each
type (barcode and QR code). These images were then used to test the performance of the proposed restoration
model. The results demonstrated a substantial improvement in decodability:

QR codes: decodability increased from 0% to 90%.
Barcodes: decodability increased from 0% to 73%.

The accompanying figure presents example images from the dataset alongside their restored counter-
parts, highlighting the effectiveness of the model (Fig. 9).
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Figure 9: Real-time demonstration of 1D barcode and QR code restoration: (a) barcode input, (b) barcode restored,
(c) QR code input, (d) QR code restored

4 Discussions
4.1 Visual Metrics and Decodability

Overall, the proposed model demonstrates strong performance in restoring damaged barcode and
QR code images. Clear improvements are observed across all evaluated metrics on both the training and
validation datasets. Notably, the model achieves low MAE and FMAE, reflecting accurate restoration in both
general image areas and barcode-specific regions. Most importantly, decodability, the primary objective of
this work, shows substantial improvement following restoration, particularly on the training data.

When comparing training and validation results, MAE and FMAE values remain relatively close, though
the validation values are consistently higher. This indicates that the model generalizes well in terms of
visual reconstruction, albeit with slightly better performance on the training data. However, the decodability
results reveal a more significant disparity. For instance, QR code decodability increases from 14% to 99%
on the training set, but only from 15% to 68% on the validation set. A similar trend is observed for 1D
barcodes. At first glance, this discrepancy might suggest overfitting. However, this is not the case. Both the
training and validation datasets were generated using the same augmentation pipeline and parameters, with
no intentional distributional differences. Therefore, the performance gap cannot be attributed to dataset
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mismatch or conventional overfitting. Instead, it underscores a more fundamental challenge: visual similarity
does not necessarily ensure functional decodability.

Even when restored images appear visually accurate, as indicated by low MAE or high SSIM, they
may still be undecodable if minor errors occur in structurally critical regions, such as alignment patterns,
timing lines, or quiet zones. These elements are essential for successful decoding, and even slight distortions
imperceptible to the human eye can disrupt machine readability. This sensitivity explains why decodability
often lags behind traditional visual metrics and highlights the need for evaluation methods that extend
beyond general image quality. This insight also exposes a limitation in prior research. Most existing studies on
barcode and QR code restoration report metrics such as SSIM, PSNR, or MAE, which assess visual similarity
but do not capture actual decodability. Consequently, models may appear to generalize well while failing
in practical scenarios where machine readability is critical. By prioritizing decodability as a core evaluation
metric, this study provides a more realistic and application-oriented assessment of restoration performance.

To better align visual quality with decoding success, future work could integrate decodability directly
into the loss function, either by introducing a decoding-aware term or by assigning greater weight to struc-
turally critical regions. One promising strategy involves explicitly identifying key areas, such as alignment
patterns, timing lines, and quiet zones, and applying a targeted loss to those regions. A complementary
approach would enhance the data augmentation pipeline by more frequently introducing damage to these
sensitive areas during training. This would encourage the model to focus on restoring the components most
essential for decodability, thereby narrowing the gap between visual quality and functional performance.
Collectively, these insights underscore both the strengths of the proposed model and the inherent challenges
in achieving full decodability in real-world scenarios, laying a foundation for future advancements in barcode
restoration systems.

4.2 Generalization to Real-World Scenarios

A key aspect of the evaluation on the real-world dataset is that the restoration model was trained
exclusively on synthetically generated data. Despite this, it performed remarkably well on real-world
damaged codes, achieving high decodability rates on the test set. This demonstrates strong generalization
capabilities, as the model successfully transferred knowledge from synthetic distortions to complex, real-
life damage patterns it had never encountered during training. The higher recovery rate observed for QR
codes can be attributed to their structural redundancy and built-in error correction, which complement
the restoration model and enhance overall readability. While 1D barcodes are more susceptible to damage
due to their simpler design, they still showed substantial improvements, albeit to a slightly lesser degree.
These findings validate the effectiveness of using synthetic data for training, especially when collecting real-
world data is costly or time-consuming. Moreover, they highlight the practical potential of such models
in real-world scenarios where physical codes are frequently exposed to wear and tear-such as in logistics,
manufacturing, retail, and outdoor labeling. Overall, the results underscore that a model trained solely
on synthetic damage can successfully restore real-world visual codes, reducing data loss and improving
robustness in everyday applications.

4.3 Limitations and Future Directions

The current training process employs a loss function designed to optimize visual similarity between
the generated output and the ground truth image. While this effectively guides the model toward producing
visually accurate reconstructions, it does not directly account for decodability; the ability of the restored
code to be successfully read by a scanner. As a result, even when the model achieves high similarity scores,
such as SSIM or MAE, the output may still fail to decode if critical regions of the QR code or barcode are
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not accurately restored. This underscores an important distinction: visual similarity does not always equate
to functional performance. Certain small but essential regions, such as alignment patterns, timing patterns,
or quiet zones are particularly sensitive to distortion, and even minor errors in these areas can render the
entire code unreadable. To overcome this limitation, future work could incorporate decodability directly
into the loss function, either by introducing a decoding-aware term or by assigning greater weight to critical
structural regions. One potential strategy involves identifying these key areas and applying a focused loss,
akin to a region-based attention mechanism. A complementary approach would be to enhance the data
augmentation pipeline by more frequently introducing damage to these sensitive regions during training.
This would encourage the model to learn how to restore the parts of the code that have the greatest impact
on decodability.

5 Comparison with Previous Works

To the best of our knowledge, there are no existing models in the literature that directly address the
specific problem we tackle: restoring heavily damaged barcodes and QR codes to improve decodability in
real-world logistics scenarios. Most prior work focuses on general image restoration tasks, such as denoising,
deblurring, or super-resolution or targets barcode deblurring under controlled conditions. These approaches
were developed with different objectives and evaluated on datasets that differ significantly from our study in
terms of content, damage severity, and practical context. Due to these fundamental differences in both the
task and evaluation setup, retraining or directly comparing against these models would not yield meaningful
insights. However, for reference and to provide broader context, results from two representative studies in
the field are summarized in the following Table 6.

Table 6: Comparison with the previous studies

Proposed by Model SSIM Decodability rate
Gu [19] Gs-DeblurGANv2  0.87 Not reported
Dong [12] CGAN 0.91 Not reported

This study Proposed model 0.99 99% (Training)/68% (Validation)

While these models exhibit strong performance in terms of SSIM, they do not report decodability; a
key metric for our application. In contrast, our proposed model not only achieves a high SSIM score but
also demonstrates a robust decodability rate, which is particularly noteworthy given the severity of damage
present in our dataset.

6 Conclusions

This study tackles the practical challenge of restoring damaged barcodes and QR codes, a common
issue in logistics and automation systems where code readability directly impacts operational efficiency. To
address this, we propose a lightweight deep learning model based on the Pix2Pix framework, trained on a
comprehensive synthetic dataset designed to simulate a wide range of realistic damage scenarios.

The model achieved substantial improvements in decodability, boosting QR code readability from 14%
to 99% on the training set and from 15% to 68% on the validation set. For 1D barcodes, decoding accuracy
increased from 7% to 73% on training data and from 9% to 44% on validation data. These results highlight
the model’s ability to deliver both visually and functionally restored codes while maintaining a lightweight
design, making it well-suited for real-time deployment in embedded logistics systems.
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A key contribution of this work is the development of a lightweight deep learning model capable
of efficiently restoring damaged barcodes and QR codes, making it suitable for real-time, embedded
applications. Additional contributions include the creation of a realistic synthetic dataset that replicates a
wide range of severe damage scenarios, the use of region-focused loss functions such as FMAE to emphasize
structurally critical areas, and the introduction of decodability as a primary evaluation metric. Together, these
elements enable the model to deliver strong restoration performance and generalize effectively to real-world
data, despite being trained exclusively on synthetic inputs.

The model’s strong performance on real-world damaged codes confirms the effectiveness of the
synthetic dataset design. However, a noticeable gap remains between training and validation decodability,
reflecting the high sensitivity of decoding algorithms to subtle distortions. This highlights the need for
restoration models that move beyond visual similarity and explicitly optimize for decoding success.

The main limitation of this study is that the model is not explicitly optimized for decodability. While
the loss function incorporates focused visual metrics such as FMAE to emphasize structurally important
regions, it lacks a decoding-aware component. As a result, minor visual inaccuracies in critical areas can still
lead to decoding failures. Another limitation is the exclusive reliance on synthetic data for training. Although
the synthetic dataset was designed to be diverse and realistic, it may not fully capture the complexity and
unpredictability of real-world barcode damage.

Future research should explore decoding-aware loss functions, region-sensitive optimization tech-
niques, and more advanced augmentation strategies that simulate targeted damage to high-impact regions.
Expanding real-world testing and incorporating decoding feedback into the training loop could further
enhance the model’s generalization and reliability.

In summary, this work presents a practical and effective foundation for barcode and QR code restoration
under realistic conditions, paving the way for more decoding-focused, deployable solutions in logistics and
other application domains.
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