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ABSTRACT: Activity recognition is a challenging topic in the field of computer vision that has various applications,
including surveillance systems, industrial automation, and human-computer interaction. Today, the demand for
automation has greatly increased across industries worldwide. Real-time detection requires edge devices with limited
computational time. This study proposes a novel hybrid deep learning system for human activity recognition (HAR),
aiming to enhance the recognition accuracy and reduce the computational time. The proposed system combines a pre-
trained image classification model with a sequence analysis model. First, the dataset was divided into a training set
(70%), validation set (10%), and test set (20%). Second, all the videos were converted into frames and deep-based features
were extracted from each frame using convolutional neural networks (CNNs) with a vision transformer. Following
that, bidirectional long short-term memory (BiLSTM)- and temporal convolutional network (TCN)-based models
were trained using the training set, and their performances were evaluated using the validation set and test set. Four
benchmark datasets (UCF11, UCF50, UCF101, and JHMDB) were used to evaluate the performance of the proposed
HAR-based system. The experimental results showed that the combination of ConvNeXt and the TCN-based model
achieved a recognition accuracy of 97.73% for UCF11, 98.81% for UCF50, 98.46% for UCF101, and 83.38% for JHMDB,
respectively. This represents improvements in the recognition accuracy of 4%, 2.67%, 3.67%, and 7.08% for the UCFI1,
UCF50, UCFI101, and JHMDB datasets, respectively, over existing models. Moreover, the proposed HAR-based system
obtained superior recognition accuracy, shorter computational times, and minimal memory usage compared to the
existing models.
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1 Introduction

Human activity recognition (HAR) is one of the most active challenges in the field of computer vision,
enabling the construction of machines that understand human behavior and intentions and provide better
services. Specifically, HAR can detect human criminal acts (unusual events) from images and videos obtained
from surveillance cameras [1] around town and in facilities and assist in the detection of human falls in
hospitals, nursing homes, and care facilities, thus reducing the time between the occurrence of an incident
and human recognition and preventing increased risk. Similarly, in the entertainment field, HAR can be
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easily applied to human-computer interaction (HCI) tasks [2,3], such as reflecting human behavior in games,
and it is in increasing demand for many applications.

Recently, automated systems have gained more attention in the industrial world due to their ability to
improve productivity and reduce computational costs [1]. Cloud computing utilizes an internet connection
to facilitate the transfer of substantial data volumes to IT/OT(Information Technology/Operation Tech-
nology) applications. It is also easy to request additional computing resources as needed, making it easy
to support machine learning (ML)- and deep learning (DL)-based models that require a large amount of
resources. However, cloud computing also requires constant internet connectivity and is unsuitable for use in
industries with intermittent network connectivity or without network connectivity. Cloud computing is also
bandwidth-intensive because it requires large amounts of data to be sent to the servers where computation
and storage take place. This can lead to high communication costs in an environment where vast amounts
of information are generated. Moreover, round-trip network latency can cause application response times
to be seconds to minutes. This can be problematic for use cases that require near-real-time response and
decision-making (e.g., abnormal detection and fall detection) [4]. Edge computing has also gained more
attention as a solution to the disadvantages of cloud computing, but edge computing resources are limited,
so it is necessary to propose an automated system that can operate with as few resources as possible.

The HAR recognition method depends on the type of data, and sensor-based HAR methods that
use data from accelerometers and gyro sensors provided by wearable sensors are also attracting attention.
Sensor-based approaches are superior in terms of protecting user privacy, having fewer location restrictions,
and recognizing body motion-related behavior. Thakur et al. [5,6] proposed a unique DL-based approach
involving multi-head convolutional neural networks (CNNs) and long short-term memory (LSTM), and
reported state-of-the-art results using a large benchmark dataset and an original dataset, which was recorded
by smartphone sensors. Computer vision is an active and important field in computer science, and it includes
ML- and DL-based approaches. It is the process by which computers process information obtained mainly
from visual sensors, such as cameras. The AlexNet [7] system was proposed for image classification in
2012. Following that, VGGnet [8] and ResNet [9] were developed to solve the problem of gradient loss due
to multilayering and to incorporate residual connection technology that enables further multilayering. A
model with a high trade-oft between the number of parameters and recognition accuracy was proposed for
image classification.

Recently, various transformer-based models have been proposed, such as the vision transformer
(ViT) [10], which adapts the transformer and multi-head self-attention modules [11] from natural language
processing to computer vision. These models have become the primary models used in various tasks in the
field of computer vision, including HAR. In HAR tasks, decisions based solely on individual frames are often
inadequate because human activities generally span a sequence of frames. This temporal dependency means
that to accurately classify an activity, it is essential to consider the context provided by multiple consecutive
frames. This helps to capture the transitions and continuous nature of activities, which is crucial for effective
recognition and classification [12].

In this study, a DL-based approach for HAR in video classification was designed by combining a CNN
and RNN(Recurrent Neural Network). A video was regarded as a sequence of frames, and the CNN-based
component was used to extract spatial features from individual frames, capturing details about objects
and movements within each frame. Following that, the RNN-based approach was used for the analysis of
temporal information and changes. The combination of CNN- and RNN-based approaches has shown partial
success. However, the dependency on previous steps in the RNN, LSTM, and GRU(Gate Recurrent Unit)
approaches hampers parallel processing, leading to prolonged training and inference times [11]. To solve
these problems, we designed a hybrid DL-based approach for HAR by combining ConvNeXt (pre-trained
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model) [13] and a temporal convolutional network (TCN)-based model. Our proposed system provided
lower inference times and superior recognition accuracy. In summary, this study provides the following novel
contributions:

1. The primary objective of video surveillance systems is the precise recognition of various human
activities within visual data. We conducted validation testing by employing four well-known benchmark
datasets: UCF11, UCF50, UCF101, and JHMDB. To enhance the feature generation efficiency, reduce the
computational time, and minimize memory usage, this study used data augmentation methods, transfer
learning, and ConvNeXt.

2. Wereshaped the features extracted by ConvNeXt as sequence data, and a TCN, which consists of residual
join and extended convolution, was employed. This approach enabled time-dependent dependencies to
be captured and facilitated classification tasks, all while supporting parallel processing.

3.  Finally, the proposed combined ConvNeXt and TCN method is faster than the vision transformer in
terms of the inference speed and has lower memory usage. This means that we can expect our proposed
method to have a faster inference speed and lower memory usage than previous methods.

2 Related Works

In this section, we review some existing studies that are relevant to our proposed system and address the
challenges of the HAR task. Various DL-based methods have been proposed for HAR. For example, 3DCNN
was employed to capture both spatial information and temporal relationships [14]. The I3D-based model [15]
can easily handle both RGB (Red, Green, Blue) and optical flow data with robust feature extraction, and it has
been widely used in various domains, such as abnormal detection. Moreover, R3D [16], S3D [17], T3D [18],
and LTC [19] have also been used successfully for HAR tasks. Despite the successful utilization of 3DCNN-
based architectures for HAR tasks, their efficiency declines with longer frame sequences due to escalating
computational demands.

Our approach was to address the HAR task with video using a combination of CNN- and RNN-based
models. While 2DCNN captured only the spatial information for a single frame, many HAR methods contain
some kind of temporal dependency. To solve this issue, we used an RNN (a sequential analysis model),
along with the spatial information extracted by a 2DCNN model. This combination enables us to capture the
temporal changes over time, effectively addressing the temporal dependencies present in human behavior
recognition tasks.

Ullah et al. [20] proposed a densely connected bidirectional LSTM (BiLSTM) method. To reduce
redundancy and complexity, they extracted CNN-based features from a video at intervals of four, six, and
eight frames and learned continuous information between frame features with a multilayered BiLSTM. They
used three benchmark datasets (UCF-101, YouTube Action, and HMDB51) to evaluate their proposed system
and obtained a recognition accuracy of 91.21% for UCF-101, 92.84% for YouTube Action, and 87.64% for the
HMDBSI dataset.

Ahmad et al. [21] proposed a system combining a CNN with the BiGRU method by employing a
GRU with a simple structure and low computational costs for LSTM. They employed VGGI6, consisting
of only 16 weighted layers, to reduce the computational cost. They extracted features using the VGGI16
model and evaluated the potentiality of these features using a random forest (RF)-based model to reduce
the training complexity and remove noisy and redundant features. They also used three benchmark datasets
and obtained a recognition accuracy of 91.79% for UCF-101, 93.38% for YouTube Action, and 71.89% for the
HMDB51 dataset.
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Hussain et al. [22] focused on the shortcomings of conventional CNN-based models and convolutional
layers, which limit the learning of long-range dependencies beyond the receptive field. They attempted
to solve the problem of long-range spatial dependencies using the vision transformer, which has a large
receptive field and does not use convolutional layers. The extracted features were trained to learn temporal
dependencies using an LSTM-based model and achieved a recognition accuracy of 96.14% for UCF50 and
73.71% for the HMDB51 dataset.

Wensel et al. [23] also focused on transformers and proposed the recurrent transformer (ReT) to solve
the problem of RNN-, LSTM-, and GRU-based models not being able to perform parallel processing in
a series analysis model. In their experiments, they used four combinations of models: ResNet50 + LSTM,
ResNet50 + ReT, ViT + LSTM, and ViT + ReT. They optimized the parameters of the LSTM and ReT models.
They also evaluated the performance of the proposed method using four benchmark datasets. They reported
that the ViT-ReT-based model achieved superior recognition accuracies of 94.70% for UCF-101, 92.40% for
YouTube Action, 97.10% for UCF50, and 78.40% for the HMDB51 dataset.

Existing studies have used ViT- and VGGNet-based models with a large number of parameters (86.6M
parameters and 138.4M parameters). The greater number of parameters enhanced the expressiveness of
the models, facilitating the capture of intricate patterns and enabling more adaptable responses to diverse
data. However, this also increased computational costs, posing challenges for edge computing, which
has constrained resources. Additionally, the LSTM and RNN models lack parallel processing capabilities,
potentially increasing the computational time and also impacting real-time detection.

3 Materials and Methods
3.1 Proposed Methodology

We propose a hybrid deep learning framework that combines ConvNeXt for spatial feature extraction
and a TCN for sequential modeling. ConvNeXt captures high-level patterns in the input data, while the
TCN effectively models temporal dependencies using dilated convolutions. The extracted features from
ConvNeXt are fed into the TCN, ensuring that both spatial and temporal characteristics are learned
optimally. Fig. | illustrates this architecture, depicting the interaction between ConvNeXt and the TCN in
our framework. We divided our experimental protocol into four parts: (i) data partitioning, (ii) feature
extraction, (iii) classification, and (iv) performance evaluation. First, we divided our experimental datasets
(using four datasets: UCF11, UCF50, UCF101, and JHMDB) into three parts: a training set, validation set, and
test set. We took 70% of the dataset as the training set, 20% for the test set, and the remaining data were used
as a validation set. We also converted all videos into frames and took images for each partition. The second
stage was feature extraction, which involved extracting features from each frame of the videos by combining
a CNN and a vision transformer and then feeding those features into a time sequence analysis model. Here,
the CNN captures the spatial information of the video, while the time sequence analysis model captures the
temporal information. Subsequently, we extracted features from each frame using a tuned feature extractor
and reshaped them so that they had the same sequence order as the original video. Finally, we trained the
sequence analysis models using the training and validation sets and evaluated their performance using the
test set.

3.2 Experimental Dataset

This study used four benchmark datasets, UCF1l, UCF50, UCF101, and JHMDB, to evaluate
the performance of the proposed HAR-based system. Descriptions of each dataset are provided in
the following subsections.
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3.2.1 UCFl11

The UCFI1 dataset [24] consists of data from 11 distinct sports action categories: volleyball, basketball,
golf, horseback riding, biking/cycling, tennis, diving, football, swinging, jumping, and walking with a dog.
It includes video clips from 25 subjects, with each subject contributing more than four clips. These clips
share common features, such as the same actor, similar backgrounds, and consistent viewpoints. However,
the dataset is challenging due to substantial variations in camera motion, object appearance and pose, object
scale, viewpoint, background, and illumination conditions. This dataset has 1600 original videos in total. We
used 1120 original videos for the training set; they yielded 178,981 clipped videos. Another 160 original videos
were assigned to the validation set, resulting in 26,104 clipped videos. The rest of the original videos (320
videos) were utilized for the test set and produced 51,450 clipped videos.

3.2.2 UCF50

The UCF50 dataset [25] contains 50 action categories, with video clips collected from YouTube in
“avi” format. Each class was categorized into groups that share common features. For instance, one group
features a person playing a piano four times from different viewpoints. The dataset is highly diverse,
encompassing a wide range of human activities, with significant variation in camera motion, poses, object
appearances, viewpoints, backgrounds, and illumination conditions. UCF50 consists of 6681 original videos.
This study partitioned the dataset as follows: 4676 original videos were allocated for the training set, yielding
784,700 clipped videos. About 668 original videos were designated for the validation set, resulting in 112,624
clipped videos. The remaining original videos (1337 videos) were reserved for the test set, producing 225,583
clipped videos.

3.2.3 UCF101

The UCFI101 dataset [26] was one of the largest realistic datasets for HAR, contains approximately 13,320
videos across 101 action classes. These videos were extracted from YouTube and fall, are categorized into five
main types: sports, human body movement, playing music, human-to-human interaction, and human-to-
object interaction. The dataset presents significant challenges due to the similarities between different classes,
as well as variations in illumination conditions and viewpoints. Unlike many other HAR datasets, which
focus on unrealistic, pre-planned actions performed by actors, UCF101 consists of real-life videos captured
in natural settings. UCF101 contains a total of 13,320 original videos. Among them, 9324 original videos were
used for the training set, resulting in 1,448,573 clipped videos. Another 1332 original videos were assigned to
the validation dataset, resulting in 203,724 clipped videos. The remaining original videos (2664 videos) were
assigned to the test set, and we made 418,082 clipped videos from them.

3.2.4 JHMDB

The JHMDB dataset [27] consists of 21 distinct action categories, including activities such as catching,
clapping, hair-brushing, baseball bat swinging, gunshot firing, jumping, and more. It includes a total of 923
videos, each featuring a variety of actions, making it a challenging dataset for activity recognition. Among
them, 649 original videos were assigned to the training dataset, resulting in 3380 clipped videos. Another 93
original videos were used for the validation dataset, resulting in 448 clipped videos. The remaining original
videos (186 videos) were assigned to the test dataset, resulting in 1023 clipped videos.



Comput Model Eng Sci. 2025;143(3) 3621

3.3 Proposed Architecture

Fig. 2 presents an overview of the proposed DL-based method for HAR. The system consists of two main
components: a spatial feature extractor (CNN) to capture spatial information and a sequence analysis model
(RNN) to capture temporal information. The innovation of this paper lies in using ConvNeXt as a spatial
feature extractor and TCN as a sequence analysis model. Initially, frames were extracted from the videos,
followed by the extraction of spatial-based features using a pre-trained model. Subsequently, the extracted
features were reshaped into sequence data, and the sequence analysis model was employed to predict the
final human activity. Each step of the proposed system is further elaborated in the following subsections.
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Figure 2: Overview of proposed architecture for HAR: (a) Feeding extracted features to TCN, calculating the mean
outputs, and passing them into a fully connected layer for activity classification. (b) Feeding extracted features to LSTM
and classifying the activity based on the mean output of LSTM

3.4 Spatial Feature Extractor

To capture the spatial information from the videos, features were extracted using pre-trained image
classification models. The image classification models inherently captured the spatial information for each
frame. We considered the videos as sequences of frames, and spatial information was obtained by adapting an
image classification model for each frame. Four image classification models were used to extract the spatial
information and features. Brief descriptions of these models are presented as follows.
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3.4.1 ResNet50

ResNet is an image recognition model proposed in 2015 by He et al. [9]. At that time, it was expected
that the more layers a CNN-based model had, the better its performance would be. However, these models
faced the problem of learning poorly due to the gradient loss problem caused by multilayering. To solve
this problem, ResNet has a residual block with skipped connections that is incorporated into the model,
thereby eliminating the gradient loss problem. Other models that have been proposed include ResNet18
and ResNet34, which have shallower layers, and ResNet101 and ResNet152, which have deeper layers. In this
experiment, ResNet50 was used because it does not have a large number of total parameters and it provides an
adequate performance; additionally, since this model has been used for comparison in previous studies [23],
it was also employed in this study in an ablation study for comparison.

3.4.2 EfficientNetB4

EfficientNet is an image recognition model proposed in 2019 by Tan and Le [28]. Conventional models
at that time had non-uniform model scaling, making it difficult to design an efficient model due to serious
computational costs and an increasing number of parameters. Therefore, Tan and Le proposed a new
scaling method that scales the different dimensions (depth, width, and resolution) equally, and this approach
achieved a high performance with a minimal increase in the computational cost and number of parameters.
In this study, we employed EfficientNetB4, which has fewer parameters than ResNet50 but performs equally
well, and compared it to our proposed method as part of an ablation study.

3.4.3 Vision Transformer

The vision transformer (ViT) was proposed in 2020 by Dosovitskiy et al. [10] as an alternative to
CNN-based models for image recognition. CNN-based models can easily capture local features due to their
convolutional nature but struggle with capturing long-range spatial dependencies. To solve this limitation,
ViT patchifies images and introduces a self-attention mechanism. This mechanism calculates the attention
for each patch, enabling the model to compute based on these calculations. In this experiment, ViT_B_16,
which is the ViT model with the lowest number of parameters, was used for the experimental comparison.
Additionally, to make it easy to perform a comparison with state-of-the-art approaches [23], we used it for
comparison and an ablation study.

3.4.4 ConvNeXt

ConvNeXt is a model proposed in 2022 by Liu et al. [13] that achieves a higher performance than the
ViT system using a traditional CNN-based approach. Transformer-based models have been proposed, and
the model is based on the ResNet50 model. Derived from ResNet50, this model is compact and exhibits a
higher performance than the Swin transformer [29] model. This achievement is attributed to optimizations
in various aspects, including the stage ratio, patchiness adopted in the vision transformer, kernel size of
the convolution layer, activation function, and normalization layer, all aligned with the transformer model’s
state. For this experiment, we also used ConvNeXt_tiny, which had fewer parameters than ViT_B_16 but
provided a higher recognition accuracy. We expect that these advantages will contribute to the reduction of
the required computing resources and the extraction of powerful spatial features.

3.5 Sequence Analysis Model

As explained in the previous section, image classification models can capture the spatial information
of a single frame, but it is difficult for them to capture temporal information and changes. Therefore, by
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employing a sequence analysis model such as an RNN, we can capture spatial and temporal information
from a video by analyzing the features extracted from each frame as a sequence.

3.5.1 Long Short-Term Memory

RNNs were introduced to efficiently analyze patterns and learn dependencies in serial data [30]. How-
ever, when they first appeared, there were problems with learning dependencies on long timescales due to
gradient loss or gradient explosion. Therefore, LSTM networks with a special structure, with inputs, outputs,
forget gates, and memory cells, were implemented to learn longer dependencies more efficiently. Eqs. (1)-(7)
represent the computations carried out by LSTM units:

itZO'((Xt+St_1)Wi+bi), (1)
fi=0((xc+si2) W +by), )
0y =0((xt+s21)W° +b,), 3)
g =tanh((x; +si-1) WE + by), (4)
ct=Cr1fr+ g in (5)
s¢ = tanh(¢;) - oy, (6)
Lengths
final_state = softmax (V- #gtht) . (7)

In the equations, x; represents the input data at time ¢, and s, represents the state of the hidden layer
at time ¢. The input gate it (Eq. (1)) calculates how much new information is reflected by x; and s;_;. f; is
the forget gate (Eq. (2)) at time ¢ and calculates how much of the previous information in the memory cell is
retained. o, represents the output gate (Eq. (3)) at time ¢t and calculates how much information from long-
term memory will be retained in the next step. g is computed through the activation function Tanh based
on the input x; and the state of the hidden layer s,_, at the previous step (Eq. (4)). Then, using the computed
g, the input gate i, the memory cell ¢;_; from the previous step, and the forget gate f;, the information in
the memory cell ¢; is updated (Eq. (5)). Finally, the states and outputs of the hidden layer s, at time ¢ are
computed using the information of the memory cell and the output gate o, (Eq. (6)). The mean outputs of the
LSTM are fed into the fully connected layers, and finally a softmax function is used to obtain the prediction
probabilities for each class (Eq. (7)). LSTM and BiLSTM have been used in previous studies [22,23,31] and
achieved outstanding performances. We also employed these similar methods to make it easier to perform
a comparison.

3.5.2 Temporal Convolutional Network

The TCN is a network that uses residual connections and dilated convolution layers to capture long-term
dependencies. The dilated convolution layer is implemented for the purpose of increasing the receptive field,
asshownin Fig. 3, where the layers are not convolved with adjacent elements but with the gaps between them.
Also, the spacing between the convolution gaps becomes wider with each layer. Residual connections are
then implemented in each layer to prevent gradient loss due to multilayering and help stabilize the learning
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process. In contrast to RNN models, where the next computation cannot be performed until the previous
step’s computation is finished, the TCN enables computations to be performed in parallel, thus lowering the
computational time. Because of these advantages, we also adopted the TCN.
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Figure 3: Dilated convolutional layer

3.6 Implementing the Spatial Feature Extractor

We implemented the four models introduced in the Proposed Methodology section. The four models
are provided as pre-trained models in PyTorch and Torchvision. In this experiment, those pre-trained models
were used and fine-tuned to extract optimized features for HAR by performing transfer learning. Transfer
learning is a technique that reuses the weights and learning results of DL-based models trained on large-scale
datasets of different problems to provide effective and efficient solutions for specific challenges. Using this
method, models can be adequately trained to produce powerful features using image data on only a small
amount of human behavior.

3.7 Training Procedure for Feature Extractor
3.71 Data Preprocessing and Data Augmentation

To train the image classification model as the feature extractor, images (or frames) were extracted
from videos using OpenCV as a preprocessing step. Data enhancement was performed during training
using the create_transform function provided by the timm library. Specifically, the input size was set to
224 x 224 pixels. The recommended input size was established for each image classification model. However,
since larger input sizes are generally more computationally expensive, the images are resized to the most
commonly used size of 224 x 224 pixels. The input images are normalized by subtracting the mean (0.485,
0.456, 0.406) and dividing by the standard deviation (0.229, 0.224, 0.225) for each channel. During training,
the RandomAffine transform, horizontal and vertical rotation, ColorJitter, auto-augmentation [32], and
RandomErasing were applied to prevent overfitting problems.

3.7.2 Training Procedure and Configuration

ResNet50-, EfficientNetB4-, ViT-, and ConvNeXt-based models were separately trained for 30 epochs;
the batch size was 32, the optimizer was SGD [33], and training was performed using CosineLR Sched-
uler, with the learning rate ranging from 0.00125 to 0.000125. Label smoothing techniques were used to
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suppress overfitting. Table | summarizes the details of the experiments. Finally, these features were used in
classification models, which were trained for 30 epochs.

Table 1: Training configurations for ResNet50-, EfficientNetB4-, Vision Transformer-, and ConvNeXt-based models

Parameter name Value
Input shape (3, 224, 224)
Training epoch 30
Batch size 32
Optimizer SGD [33]
Learning rate scheduler CosineLRScheduler
Base learning rate (Max.) 1.25e-02
Minimum learning rate (Min.) 1.25e-04
Label smoothing [34] 0.01

3.7.3 Extract Features from Video

A fine-tuned classification model was used to extract features that were used to train the sequence
analysis model. A resized and standardized frame of 224 x 224 pixels was passed to the fine-tuned image
classification model to extract features that were later fed into the combined layers of the image classification
model. The extracted features were stored as sequence data in the same order as the original video.

3.8 Training Procedure for Sequence Analysis Model

We implemented a sequence analysis model for HAR based on the sequence data, while the features
were extracted by the fine-tuned classification model. Fig. 4 shows an overview of the BILSTM-based model
with adam optimizer [35]. The input data were fed into a BILSTM-based model to allow it to learn long-term
temporal dependencies, and the extracted features were used for classification. As explained in the Proposed
Methodology section, the mean outputs of the LSTM were fed to the fully connected layer, and finally a
softmax function was applied to obtain the prediction probabilities for each class.

Fig. 5 shows an overview of the TCN-based model. The TCN consisted of three temporal blocks. Each
block consisted of a dilated 1D convolutional layer and residual connection. The deeper the position of the
block, the larger the dilated size of the dilated 1D convolutional layer. This expanded the receptive field
and captured more long-term time-dependent relationships. After passing through the temporal blocks, the
average value was extracted for the time direction. The final output was then compressed into the number
of classes to perform classification using the linear layer. Tables 2 and 3 summarize the parameters of each
model and the training configuration parameters.
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Table 2: Hyperparameter tuning ranges and training configuration for BILSTM-based model

Parameter Value
Input Dim. Depends on feature extractor
Sequence length 32
Hidden_Size 64-1024
Num_Layers 1-3
Number of classes Depends on datasets
Training epoch 100
Batch size 512
Optimizer Adam [35]
Learning rate scheduler CosineLRScheduler
Base learning rate (Max.) 5e-04-5e-06
Minimum learning rate (Min.) 5e-07
Label smoothing [34] 0.01

Table 3: Hyperparameter tuning ranges and training configuration for TCN-based model

Parameter Value
Input Dim. Depends on feature extractor
Sequence length 32
Num_Channels [64-256, 64-256, 64-256]
Kernel_Size 2-5
Dropout 0.3
Number of classes Depends on datasets
Training epoch 100
Batch size 512
Optimizer Adam [35]
Learning rate scheduler CosineLRScheduler
Base learning rate (Max.) 5e-06-5e-04
Minimum learning rate (Min.) 5e-07
Label smoothing [34] 0.01

4 Experimental Environment and Performance Metrics
4.1 Experimental Environment

We performed our all experiments in Python and PyTorch [36], which were used primarily for the
implementation and training of the models. A GPU PC with an Intel Core i9 13900 CPU and an NVIDIA
Geforce RTX4090 was used to conduct our experiments. We used the DL-based frameworks “PyTorch” and
“Torchvision” for feature extraction and classification. The configuration of the training parameters for the
ResNet50-, EfficientNetB4-, VisionTransformer-, and ConvNeXt-tiny-based models for feature extraction is
presented in Table 1. The hyperparameter and training parameter ranges for the BiLSTM- and TCN-based
models are also presented in Tables 2 and 3. This study subdivided the datasets using a ratio of 70:10:20,
where 70% of the datasets were used for the training set, 10% for the validation set, and the remaining 20%
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for the test set. Also, one sample was made from a continuous 32-frame video, which is about the same
as a l-second video clipped from the original video. Then, by sliding the clip position from the original
video, multiple 32-frame clipped videos were created from one original video, and these were used for model
training. We trained our proposed system based on the training set and validation set, and we evaluated
the performance using the test set. We used four performance metrics, the accuracy, precision, recall, and
Fl-score, for four datasets (UCF11, UCF50, UCF101, and JHMDB) to show the robustness and efficiency of
our proposed system.

4.2 Performance Metrics

For the measurement of the model performances, we employed the accuracy (Acc), macro-average
precision (Prec), macro-average recall (Rec), and macro-average Fl-score (FS), which were computed from
the confusion matrix. The computational formulae for calculating each performance metric are shown
in Egs. (8)—(11):

TP+ TN

A= P TN+ FP+ FN’ ®)
1 C

Prec = — IETP T FD) )
1 & TP

Rec-E;m (10)
1 & TP;

(11)

;2TP +FP; + FN;’

Here, C is the total number of classes; TP; is the number of true positives for class i; TN; is the number
of true negatives for class i; FP; is the number of false positives for class i; and FN; is the number of false
negatives for class i.

5 Results and Discussion

This study designed a set of eight combination systems by crisscrossing four feature extractors
(ResNet50, EfficientNetB4, ViT_B_16, and ConvNeXt-T) and two sequential models (BiLSTM and TCN).
We evaluated all combination systems on the test set for each dataset. We chose the best combination
of feature extractors and sequential models, which provided outstanding performances. In the following
section, a detailed explanation of the performance evaluation is provided for the UCF11, UCF50, UCF101,
and JHMDB datasets.

5.1 UCF11

The recognition accuracy and other performance metrics in each combination system for the UCFI1
dataset are illustrated in Table 4. We observed that the TCN-based model achieved better recognition
accuracy compared to BiLSTM for both the validation and test sets. The combination of ConvNeXt-T with
the TCN provided the highest recognition accuracy of 97.73% compared to other combination systems. We
observed that the lowest recognition accuracy of 88.71% was achieved by the combination of ResNet50 and
BiLSTM. Our proposed (ConvNeXt with TCN) system also obtained a precision of 97.58%, a recall of 97.19%,
and an Fl-score of 97.35% for the UCFI1 dataset.
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Table 4: Performance comparisons (in %) of various sequential models for UCF11 dataset. Bold values indicate the
results of our proposed system

Feature extractor Model Valid Acc Test set
Acc  Prec Rec EFS

ResNet50 BiLSTM 91.62 88.71 88.71 8754 88.03
ResNet50 TCN 93.48 90.70 90.37 90.10 90.09
EfficientNetB4 BiLSTM 95.47 93.02 9312 9254 9276
EfficientNetB4 TCN 97.38 95.74 95.63 95.31 9545
ViT_B_16 BiLSTM 98.80 96.84 96.78 96.49 96.58
ViT_B_16 TCN 98.85 9704 96.88 96.66 96.72
ConvNeXt-T BiLSTM 98.14 9694 96.87 9536 96.56
ConvNeXt-T TCN 99.21 97.73 9758 9719 97.35

5.2 UCF50

Table 5 presents the recognition accuracy and other performance metrics of eight combination systems
for the UCF50 dataset, with the last row indicating the performances of our proposed method. When
ResNet50 and ConvNeXt are employed as feature extractors, the performance trends align with those
observed on the UCF11 dataset. However, when EfficientNetB4 and ViT are used as feature extractors, there
is a slight improvement in the performance of BILSTM compared to the TCN. Our hybrid system, combining
ConvNeXt and the TCN, achieved a recognition accuracy of 98.81%, a precision of 98.36%, a recall of 98.36%,
and an Fl-score of 98.34%.

Table 5: Performance comparisons (in %) of various sequential models for UCF50 dataset. Bold values indicate the
results of our proposed system

Feature extractor Model Valid Acc Test set
Acc Prec Rec ES

ResNet50 BiLSTM 84.30 8533 82.67 80.70 81.42
ResNet50 TCN 93.29 9375 9317 9188 92.35
EfficientNetB4 BiLSTM 94.02 9345 9214 9238 9217
EfficientNetB4 TCN 91.98 9212 9096 90.20 90.49
ViT_B_16 BiLSTM 98.71 98.43 98.08 9775 9788
ViT_B_16 TCN 98.42 98.35 9795 97.71 97.79
ConvNeXt-T BiLSTM 98.62 98.40 9784 9789 9784
ConvNeXt-T TCN 98.75 98.81 98.36 98.36 98.34

5.3 UCFI101

The performance results on the UCF101 dataset are given in Table 6. Using EfficientNetB4, ViT, and
ConvNeXt as feature extractors, the TCN outperformed BiLSTM. On the other hand, the TCN-based model
has shown a lower performance than BiLSTM when ResNet50 is employed as a feature extractor. The hybrid
model combining ConvNeXt and the TCN achieved the highest recognition accuracy (98.46%) for the
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UCFI101 dataset. Our proposed method also obtained a precision of 98.06%, a recall of 97.99%, and an F1-score
of 97.98%.

Table 6: Performance comparisons (in %) of our proposed system for UCF101 dataset. Bold values indicate the results
of our proposed system

Feature extractor Model Valid Acc Test set
Acc Prec Rec ES
ResNet50 BiLSTM 86.48 86.01 83.88 82.56 83.00
ResNet50 TCN 83.58 82.37 80.07 7780 78.58
EfficientNetB4 BiLSTM 93.54 92.53 91.02 91.07 90.93
EfficientNetB4 TCN 94.50 93.87 93.06 9247 92.63
ViT_B 16 BiLSTM 98.54 98.01 97.41 9746 9737
ViT_B_16 TCN 98.62 98.05 9745 9748 9739

ConvNeXt-T BiLSTM 98.79 98.33 9785 9789 9783
ConvNeXt-T TCN 99.07 98.46 98.06 97.99 97.98

5.4 JHMDB

Finally, the performance results on the JHMDB dataset are given in Table 7. The hybrid model
combining ConvNeXt and the TCN also achieved the highest accuracy (83.38%) for JHMDB. Our proposed
method also obtained a precision of 79.24%, a recall of 78.37%, and an Fl-score of 77.35%.

Table 7: Performance comparisons (in %) of our proposed system for JHMDB dataset. Bold values indicate the results
of our proposed system

Feature extractor Model Valid Acc Test set
Acc Prec Rec FS

ResNet50 BiLSTM 70.76 56.01 55.38 44.62 4737
ResNet50 TCN 63.62 5728 46.16 45.88 44.10
EfficientNetB4 BiLSTM 56.92 51.42 4397 4166 3991
EfficientNetB4 TCN 71.88 61.38 49.60 5132 4747
ViT_B_16 BiLSTM 82.59 79.57 7703 7749 75.27
ViT_B_16 TCN 79.91 8094 7794 78.08 75.69
ConvNeXt-T BiLSTM 77.68 79.18 7782 74.86 74.55
ConvNeXt-T TCN 81.25 83.38 79.24 78.37 77.35

5.5 Comparison of Proposed System with the State of the Art

The comparison of our proposed system with existing state-of-the-art systems in terms of the recog-
nition accuracy on only the test dataset is presented in Table 8 for UCF11, Table 9 for UCF50, Table 10 for
UCF101, and Table 11 for JHMDB. The last rows of Table 8-11 show the recognition accuracy of the proposed
method, and the bold values represent the highest recognition accuracies of our proposed system. Existing
approaches like CNN-BiLSTM [20], 3DCNN [37], VGG-BiGRU [21],and ViT-ReT [23] obtained recognition
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accuracies of 92.84%, 85.20%, 93.38%, and 92.40%, respectively, for HAR using the UCFI1 dataset, while our
proposed system achieved a recognition accuracy of 97.73% using the same UCF11 dataset, which indicates
an almost 4% improvement in the recognition accuracy over the existing methods [21].

Table 8: Comparison of proposed system and existing systems for UCFI1 dataset. Bold values indicate the results of
our proposed system

Method Year Split ratio (train/val/test) (%) Acc (%)
CNN-BIiLSTM [20] 2018 60/20/20 92.84
3DCNN [37] 2022 70/10/20 85.2
VGG-BiGRU [21] 2023 60/20/20 93.38
ViT-ReT [23] 2023 80 (train)/20 (test) 92.4
Proposed system 2024 70/10/20 97.73

Table 9: Comparison of proposed system and existing systems for UCF50 dataset. Bold values indicate the results of
our proposed system

Method Year Split ratio (train/val/test) (%) Acc (%)
3DCNN [37] 2022 70/10/20 82.2
ViT-LSTM [22] 2022 Not given 96.14
ViT-ReT [23] 2023 80 (train)/20 (test) 92.4
Proposed system 2024 70/10/20 98.81

Table 10: Comparison of proposed system and existing systems for UCF101 dataset. Bold values indicate the results of
our proposed system

Method Year Split ratio (train/val/test) (%) Acc (%)
CNN-BILSTM [20] 2018 60/20/20 91.21
Hybrid Model [38] 2020 75 (train)/25 (test) 89.3
VGG-BiGRU [21] 2023 60/20/20 91.79

ViT-ReT [23] 2023 80 (train)/20 (test) 94.7
Proposed system 2024 70/10/20 98.46

Table 11: Comparison of proposed system and existing system for JHMDB dataset. Bold values indicate the results of
our proposed system

Method Year Split ratio (train/val/test) (%) Acc (%)
Deep_BiLSTM [31] 2024 80 (train)/20 (test) 76.3
Proposed system 2024 70/10/20 83.38

As shown in Table 9, we considered the recognition accuracy for the UCF50 dataset for 3DCNN [37],
ViT-LSTM [22], and ViT-ReT [23]. These methods achieved recognition accuracies of 82.2%, 96.14%, and
92.40%, respectively, for the UCF50 dataset. The second highest recognition accuracy of 96.14% was obtained
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by ViT-LSTM [22] for the UCF50 dataset. However, our proposed system obtained the highest recognition
accuracy of 98.81%, improving the recognition accuracy by up to almost 2.67% for the UCF50 dataset.

The comparison of the recognition accuracy of our proposed system and that of previous systems for
the UCF101 dataset is shown in Table 10. The existing hybrid model obtained an 89.30% recognition accuracy
for the UCF101 dataset [38]. However, other existing systems such as CNN-BiLSTM [20], VGG-BiGRU [21],
and ViT-ReT [23] obtained recognition accuracies of 91.21%, 91.79%, and 94.70%, respectively. We observed
that the ViT-ReT [23] system obtained the second highest recognition accuracy, while our system enhanced
the recognition accuracy by almost 3.76% and achieved a recognition accuracy of 98.46% for the UCF101
dataset. This demonstrates the robustness and effectiveness of our proposed system for HAR.

The comparison of the recognition accuracy of the proposed system and that of a previous system for
the JHMDB dataset is shown in Table 11. MobileNetV2-LSTM obtained a 76.3% recognition accuracy for
the JHMDB dataset [31]. We observed that our proposed system achieved the highest recognition accuracy
(83.38%), obtaining an almost 7% improvement in the recognition accuracy compared to the existing
system [31].

5.6 Inference Time and Memory Usage

In this section, we measured the inference time (forward time) and memory usage of the spatial feature
extractor and sequence analysis model used in our experiments. The experiments were carried out on a GPU
PC equipped with an NVIDIA Geforce RTX3070 and an Intel Core i7 10700. We generated dummy inputs
with a shape of (1, 3, 224, 224), assuming one sample (one frame) of input, and measured the average inference
time of 300 trials for each spatial feature extractor.

In the same way, we assumed that the feature extractor was the ConvNeXt model, generated dummy
inputs with a shape of (1, 32, 768), and measured the average inference time in 300 trials for each sequence
analysis model. The memory usage referenced the “Param size” in the summary function of the “torchinfo”
library. We show the inference time (forward time) and memory usage for the spatial feature extractor and
the sequence analysis model.

5.6.1 Inference Time and Memory Usage for Each Model

Table 12 shows crucial performance metrics for various spatial feature extractors (SFEs), including the
inference time, memory usage, and number of parameters. Among the SFEs evaluated, ConvNeXt-tiny
demonstrated superior performance, characterized by the shortest inference time and minimal memory
consumption. This efficiency is highly advantageous, particularly in resource-constrained environments
where computational resources are limited.

Table 12: Computational time (in ms) and memory usage (in MB) for each spatial feature extractor

Feature extractor Mean (Std) Memory usage Params (m)
ResNet50 5.3230 (0.0369) 272.55 25.6
EfficientNetB4 14.1278 (0.0660) 343.36 19.3
ViT_B_16 6.0222 (0.0957) 333.91 86.6
ConvNeXt-T 4.4615 (0.0277) 243.16 28.6

In addition, Table 13 presents crucial performance metrics for various SAMs, including the inference
time, memory usage, and number of parameters. Notably, the inference speed of our proposed TCN model
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was observed to be more than three times faster than that of the BiLSTM-based model. One possible
explanation for this disparity could be the sequence length considered during the evaluation, which was set
to only 32 frames.

Table 13: Computational time (in ms) and memory usage (in MB) for each SAM

Feature extractor ~ Mean (Std) Memory usage Params
BiLSTM 0.4207 (0.0075) 3.99 09M
TCN 1.3443 (0.0149) 1.85 03M

Table 14 provides valuable information on the inference times of sequence analysis models for different
sequence lengths. In particular, BILSTM exhibited increased inference times as the sequence length grew
longer, whereas the TCN maintained constant inference times regardless of the sequence length. This
behavior was attributed to the architectural differences between the models. Although BiLSTM relied on
sequential processing, necessitating the completion of each step before proceeding to the next, the TCN’s
architecture enables parallel computation, allowing it to process input sequences in constant time regardless
of length.

Table 14: Computational time (in ms) vs. sequence length

Model Sequence length

16 32 64 128 256 512

BiLSTM 0.334 0.452 0.603 0.901 1473 2.624
TCN 1.335 1344 1320 1318 1301 1.310

5.6.2 Inference Time and Memory Usage in Combination Methods

This section discusses the inference time and memory usage for each feature extractor and sequence
analysis model combination. Table 15 shows the inference time and memory usage for each combination.
As mentioned in the previous section, ConvNeXt’s short inference time (forward time) was a significant
advantage. The combined ConvNeXt and TCN method was slightly slower than the combined ResNet50 and
BiLSTM method. However, the combined ConvNeXt and TCN method obtained a superior performance.
The experiment also showed that the models combining ConvNeXt with the TCN and BiLSTM were faster
than the ViT model, which was used as a feature extractor in previous studies. Moreover, the combination
of ConvNeXt with the TCN and BiLSTM surpasses ViT in inference speed while maintaining low memory
usage, making it more suitable for edge computing.
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Table 15: Computational time (in ms) and memory usage (in MB) in combination methods

Feature extractor Model Time Memory usage

ResNet50 BiLSTM  5.77 281.95
ResNet50 TCN 6.67 279.44
EfficientNetB4 BiLSTM  14.56 352.67
EfficientNetB4 TCN 15.42 348.98
ViT_B_16 BiLSTM  6.45 3379
ViT_B_16 TCN 7.35 335.76
ConvNeXt-T BiLSTM  4.88 24715
ConvNeXt-T TCN 5.82 245.01

6 Conclusion, Limitations, and Future Work

Various image classification models have been proposed in the field of computer vision and applied to
the HAR task. However, edge computing for real-time processing has limited computational resources and
may not be suitable for use with dense and complex models. Human behavior generally involves temporal
dependencies, and RNNs and LSTM must be used to capture these relationships. Due to their structure, RNN
and LSTM models cannot perform parallel processing, and the inference time can be long. In this paper,
the objective was to develop a method that achieves high accuracy in human behavior recognition while
reducing the required computational resources by combining a relatively small image classification model
with a TCN capable of parallel processing. The experimental results show that the combined ConvNeXt and
TCN method achieved a recognition accuracy of 97.73% for UCF11, 98.81% for UCF50, 98.46% for UCF101,
and 83.38% for JHMDB, respectively.

In future work, we will continue to develop a HAR system that has a higher recognition accuracy,
shorter inference speeds, and lower memory usage. In particular, our experiments have shown that the image
classification model has a significant impact on the inference speed and memory usage. The development of
an image classification model with a smaller size and faster inference speed is expected to contribute not only
to the HAR task but also to all tasks related to the image classification field. We will adopt a skeleton-based
approach or a sensor-based method for HAR that is not affected by the background.
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