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ABSTRACT: In order to help athletes optimize their performances in competitions while prevent overtraining and the
risk of overuse injuries, it is important to develop science-based strategies for optimally designing training programs.
The purpose of the present study is to develop a novel method by the combined use of optimal control theory and
a training-performance model for designing optimal training programs, with the hope of helping athletes achieve
the best performance exactly on the competition day while properly manage training load during the training course
for preventing overtraining. The training-performance model used in the proposed optimal control framework is a
conceptual extension of the Banister impulse-response model that describes the dynamics of performance, training load
(served as the control variable), fitness (the overall positive effects on performance), and fatigue (the overall negative
effects on performance). The objective functional of the proposed optimal control framework is to maximize the fitness
and minimize the fatigue on the competition day with the goal of maximizing the performance on the competition
day while minimizing the cumulative training load during the training course. The Forward-Backward Sweep Method
is used to solve the proposed optimal control framework to obtain the optimal solutions of performance, training
load, fitness, and fatigue. The simulation results show that the performance on the competition day is higher while
the cumulative training load during the training course is lower with using optimal control theory than those without,
successfully showing the feasibility and benefits of using the proposed optimal control framework to design optimal
training programs for helping athletes achieve the best performance exactly on the competition day while properly
manage training load during the training course for preventing overtraining. The present feasibility study lays the
foundation of the combined use of optimal control theory and training-performance models to design personalized
optimal training programs in real applications in athletic training and sports science for helping athletes achieve the
best performances in competitions while prevent overtraining and the risk of overuse injuries.

KEYWORDS: Banister impulse-response model; athletic training and performance; coaching education; physical
fitness; sports science; computational and mathematical modeling

1 Introduction

The main goal of athletic training planning is to help athletes achieve the best performances in
competitions [1]. One of the most important responsibilities of coaches and trainers is to design optimal
training programs to help athletes reach this goal. Though this goal is clear and straightforward, its execution
in practice is often far from optimal. Traditionally, coaches and trainers primarily rely on their subjective
opinions, experiences, as well as trials and errors, but rely relatively little on scientific evidence and analyses
for designing training programs [2,3]. It is conceivable that this traditional philosophy of designing training
programs could not guarantee to help athletes reach their most important goal, i.e., having optimal physical
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fitness and achieving the best performance on the competition day. In order to help athletes optimize their
performances in competitions while prevent overtraining and the risk of overuse injuries, it is important to
develop science-based strategies for optimally designing training programs.

The relationship between training and athletic performance is multi-factorial, and therefore is a complex
problem [4]. For the sake of better understanding the relationship between training and performance with
the goal of helping athletes optimize their performances, scientists have developed mathematical models
of training and performance (termed “training-performance models” in the following content) [1,3-6].
Training-performance models provide a science-based, quantitative method for understanding the effects
of training on performance and the relationship between training and performance, as well as predicting an
athlete’s performance over time during the training course and on the competition day. Since the introduction
of the Banister impulse-response (IR) model (the earliest proposed training-performance model) [7,8], a
number of training-performance models modified from the Banister IR model have been subsequently
proposed [9-13]. One of the main advantages of training-performance models is that they can be applied to
design training programs for an individual, since the model input is the data collected from an individual
and therefore the model output is specific to that individual [3]. Given a hypothetical training program (i.e.,
daily training loads during the training course) and the model parameters determined from an individual as
the inputs of the model, a training-performance model could quantitatively describe and predict an athlete’s
performance over time during the training course and on the competition day based on this hypothetical
training program, and thereby evaluate the optimality and efficacy of this hypothetical training program for
this individual.

Traditionally, in the applications of using training-performance models to design optimal training
programs, researchers resort to successive simulations based on a trial-and-error procedure [3,4]. Successive
simulations are conducted by designing many different hypothetical training programs and inputting them
into the model one by one. For each hypothetical training program, the performance on the competition
day is predicted by solving the model. Then, among the designed hypothetical training programs, the one
that generates the highest performance can be found. However, it can be understood that the theoretical
optimal training program that generates the best performance for an individual could not be easily found
by using this trial-and-error simulation procedure. Nowadays, data science and data-driven techniques have
advanced rapidly, and these kinds of methods could allow more accurate and efficient assessment, and
thereby more successful optimization of athletic performance. For example, Imbach et al. proposed that
the combined use of machine learning techniques and training-performance models could improve and
broaden the applications of training-performance models for athletic performance modeling [4]. Couceiro
etal. proposed an ecological dynamics framework capable of merging a large amount of data into a smaller set
of variables that results in a deeper and easier analysis, in order to allow sports scientists and practitioners to
interpret data of athletes’ behaviors during training and competition in real-time for helping improve athletic
performance [14]. Den Hartigh et al. proposed a multidisciplinary, dynamic and personalized approach
applying knowledge and techniques of data science to improve the resilience of athletes [15].

Optimal control theory [16-20] is a powerful mathematical framework that aims to determine the
optimal strategy to optimize a given objective functional for a dynamical system [21-23]. Optimal con-
trol theory has been applied in numerous fields, including agriculture [24-27], biology and medicine
[28-31], economics and management [32-35] and engineering [36-39], to name a few. To the best of
our knowledge, optimal control theory has not been applied to the fields of sports sciences and athletic
training, and we believe that the combined use of optimal control theory and training-performance models
could be a promising method for designing optimal training programs for helping athletes achieve the best
performances in competitions more efficiently.
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The purpose of the present study is to develop a novel method by the combined use of optimal control
theory and a training-performance model for designing optimal training programs, in order to help athletes
achieve the best performance exactly on the competition day while properly manage training load during
the training course for preventing overtraining.

2 Materials and Methods
2.1 Background of the Training-Performance Model Used in the Proposed Optimal Control Framework

The purpose of this subsection is to introduce how the training-performance model used in the
proposed optimal control framework is conceptually formulated. Since the training-performance model used
in the proposed optimal control framework is a conceptual extension of the Banister IR model as will be
explained below, the Banister IR model and some relevant background knowledge will be introduced in
advance to lay the foundation for better understanding the essence of the training-performance model used
in the proposed optimal control framework and how it is conceptually formulated.

In 1975, Banister and colleagues [7] posited that the response of athletic performance to training follows
a first-order dynamical model of the form

P (1) === p(6) +hw (1), U

where t is time, p (¢) and w (t) are performance and training load over time, respectively. 7 and k are the
time constant and gain term for p (t), respectively, and they are parameters relevant to the physiological
characteristics of an athlete; these two parameters are positive real constants. Eq. (1) is the earliest and most
fundamental training-performance model that has been served as a foundational framework for years in
the fields of sports science and athletic training for quantitatively understanding the relationship between
training and performance. It describes how performance decays over time naturally, and how training
can either slow the decay of performance or improve performance; in other words, this model intends
to describe the effects of training on performance. In the paper in which the Banister IR model was first
proposed [7,8], this model was used to describe the relationship between training and performance of a
competitive swimmer. Since then, the Banister IR model and the subsequent models modified based on it
have been applied to numerous kinds of sports and have started to attract more interest in recent years owing
to their important roles in commercially available portable devices for real-time exercise monitoring [3].

During the training course, performance can increase or decrease due to the effects of a number of
factors (including regulation of training load). Hence, performance can be assumed to be the difference
between the overall positive effects on performance (termed “fitness”) and the overall negative effects on
performance (termed “fatigue”) plus the performance on the initial day [8], i.e., p (t) = p (0) + f () — u (¢),
where f (t) and u (t) are fitness and fatigue over time, respectively, and p (0) is the performance on the
initial day.

If each of fitness and fatigue is assumed to follow the dynamical model of the form as Eq. (1),

ie,p'(t) = —lp (t) + kw (t), a modified Banister IR model can be obtained as [13]
T
, 1
()= —T—lf(t) +kaw (1),

W (t) = —Tizu(t)+k2w(t),
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and

p(t)=p(0)+f () —u(t), (2)

where 7, T, are two time constants and ki, k; are two gain terms for f (¢) and u (t), respectively, and they are
parameters relevant to the physiological characteristics of an athlete; these four parameters are positive real
constants. The first and second equations of Eq. (2) describe the dynamics of fitness and fatigue respectively,
including the effects of training on these two variables. It can be observed that trainingload is the forcing term
of the first-order differential equation governing the dynamics of fitness or fatigue, therefore, an increase in
training load causes the change in fitness or fatigue to increase over time. Since fitness and fatigue represent
positive and negative effects on performance, respectively, the equation for p (t) in Eq. (2) describes that
performance is the sum of fitness minus fatigue plus the performance on the initial day. In the proposed
optimal control framework, we use Eq. (2) as the training-performance model to describe the dynamics of
performance, fitness, fatigue, and training load. The units of the variables and parameters in Eq. (2) in the
proposed optimal control framework will be described below. Please see Section 1 of the supplementary
material for a brief introduction regarding how fitness, fatigue, and training load are typically measured
in experiments.

2.2 Formulation and Solution Methods of the Proposed Optimal Control Framework

In this subsection, we introduce the proposed optimal control framework and its solution methods.
In the proposed optimal control framework, we use Eq. (2) as the training-performance model to describe
the dynamics of performance, fitness, fatigue, and training load. The goal of the proposed optimal control
framework is to maximize the fitness and minimize the fatigue on the competition day in order to maximize
the performance on the competition day while minimize the cumulative training load during the training
course. In the context of maintaining or even improving performance, minimize the cumulative training
load during the training course can help an athlete prevent excessive training and fatigue that could lead
to the reduction of performance and the increased risk of sports injuries. Hence, the proper management
of the training load can help an athlete maintain the optimal physical and psychological conditions and
minimize the likelihood of sports injuries. In addition, if an athlete can achieve the same (or even higher)
performance with less training load, the athlete can have more time and energy for resting and activities
other than training, therefore can have a better quality of life.

Hence, the objective functional of the proposed optimal control framework is

mfx[f(tp)—u(tp)—A[Othz(t)dt], (3)

where t,, is the number of days between the initial day of training and the competition day, and A is a
parameter associated with the characteristics of an optimal training program, determining the value of the
maximum daily training load and the number of days that an athlete trains with the maximum daily training
load during the training course. These two parameters are prescribed constants in the simulation. The effects
and practical implication of A will be further discussed in the Results and Discussion section.

Combining Eqgs. (2) and (3), the proposed optimal control framework is formulated as

max [f(tp) ~u(tp) A [ w (t)dt] (4)



Comput Model Eng Sci. 2025;143(3) 2771

subject to

f’(t)=—Tllf(t)+k1W(t),f(0)=0, )

W (1) = —Tizu(t)+k2w(t),u(o) _ 0, (©)
M, <w(t) < My, (7)
p(t)=p(0)+f(t)-u(t),p(0)=0, (8)

where w (t) is the control variable (which is a piecewise continuous function), while p (t), f (t) and u (t)
are the state variables (which are continuous functions). M; and M, are the lower and upper bounds of w (t),
respectively. Though the parameters and variables in the proposed optimal control framework can be in any
suitable units according to the context, their units in the present study are set as: 7; and 7, are in days while
k; and k; are dimensionless; w (t) is in percentage since it is interpreted as the percentage of the maximum
daily training load that an athlete can tolerate (therefore, the range of w (¢) is set between 0 and 100, i.e.,
the minimum of M, is 0 and the maximum of M, is 100); p (¢), f () and u (t) are in arbitrary units. Please
see Section 2 of the supplementary material for a proof of the existence and uniqueness of solutions of the
proposed optimal control framework.

It is important to note that, although training load is mathematically treated as a piecewise continuous
function of time in the proposed optimal control framework, a bar plot is used to plot training load [3] in
the figures for emphasizing that in reality an athlete performs training of a finite amount of training load
per day; the training during the training course in the real world is not continuous or piecewise continuous,
since an athlete would not train non-stop all day/week/month/year long.

To solve the proposed optimal control framework, we begin by forming the Hamiltonian

H=—Aw2+/\1(—lf+k1w)+/\2(—iu+k2w). )
T1 T2

From the Hamiltonian, the necessary conditions can be obtained as

H
0:a—:—ZAw+k1)l1+k2)l2atw*(t), (10)
ow
, oH )\
A=——=20(t) =1, 11
1 af 7 I(P) ( )
, oH A,
=== 2 (1) =, 12
2 au 7, Az(p) ( )

where w* (t) is the optimal training program intended to be obtained.

Solving Eqs. (5), (6) and (10)-(12) simultaneously, the optimal w* (t), f* (t) and u* (¢) can be obtained.
Then, the optimal p* (t) can be obtained by substituting f (¢) = f* (¢) and u (t) = u* (¢) into Eq. (8).

The Forward-Backward Sweep Method [40-43] is used to solve Egs. (5), (6) and (10)-(12) simultane-
ously. The details of the Forward-Backward Sweep Method can be found in the book [44], and the steps
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of this algorithm is outlined below. First, making an initial guess for the control variable w over the time
interval of interest. Second, solving the state variables f and u forward in time from the initial conditions
f(0) =u(0) =0 using the current value of w. Third, solving the adjoint variables A; and 1, backward in
time from the transversality conditions A, (tp) =1land A, (tp) = -1 using the current values of w, f and
u. Fourth, updating the control variable w by substituting the new values of f, u, A;, and A, into Eq. (10).
Finally, checking the convergence by comparing the current value to the value of the previous iteration for
each variable: if the current value is sufficiently close to the previous value for each variable (convergence
criterion: |current value — previous value| < 107°), the solution is said to be obtained; otherwise, repeating
the process starting from the second step until the convergence criterion is satisfied for each variable.

2.3 Simulation Setting

In all simulations, the initial conditions of performance, fitness and fatigue are all set as zero, i.e.,
p(0)=0, f(0) =0and u (0) = 0. The physical meaning of an initial condition of zero for a variable means
that the state of this variable on the initial day of training is served as the reference baseline for evaluating
the subsequent change of this variable; therefore, the value of the optimal performance, fitness or fatigue
at a day solved by the proposed optimal control framework should be interpreted as the change relative
to the state on the initial day, therefore can be positive or negative. The simulation time (i.e., the period
of the training course, from the initial day to the competition day) is set as 128 days. The parameters 1,
75, k; and k, are set as (71, 72, k1, k2) = (25,10, 1,2), representing the physiological characteristics of an
athlete. The simulation results using another set of parameters (73, 72, k1, k2) = (30,5,1,2) that represents
the physiological characteristics of another athlete (Figs. S1-S4 and Table S1) are presented in Section 3
of the supplementary material. The above two sets of simulation parameters are referred to a classical
reference in the field of athletic training-performance modeling that is important from both educational
and practical perspectives [3]. The goal of this classical reference is to encourage and teach educators
of exercise physiology practitioners and researchers how to incorporate training-performance modeling
into their teaching and practice. In this reference, the authors demonstrate the usefulness of applying the
Banister IR model to computationally simulate and predict performance based on hypothetical training
programs; in their simulation example, the authors use the above two sets of parameters (representing
the physiological characteristics of two different athletes) as their simulation parameters to demonstrate
the effects of parameter values (i.e., the effects of individuality) on the simulated performance in order to
emphasize the importance of considering the individuality of the responses to training when using training-
performance modeling to design training programs. The parameter set (1, 72, k1, k2) = (25,10,1,2) with
a lower 7, and a higher 7, represents an athlete who has a higher tendency to accumulate fatigue, while
the parameter set (71, 72, k1, k2) = (30,5,1,2) with a higher 7; and a lower 7, represents an athlete who
has a better recovery ability. These two sets of parameters represent the physiological characteristics of two
common types of athletes, therefore the simulation findings derived from them are highly representative.

In the simulation experiment without using optimal control theory, w (t) is designed according to a
reference [3] such that the training load in each day is 100 over the initial 120 days and then linearly decreases
to 30 over the next 8 days (Fig. 1). Then, this w (¢) is substituted into Eq. (2) for solving the fitness, fatigue
and performance over time from the initial day to the competition day. Two metrics, the performance on
the competition day and the cumulative training load during the training course, are specifically recorded.
In Section 4 of the supplementary material, we present the results of four additional simulation experiments
without using optimal control theory (Figs. S5-S8) and the comparison between them to the results of a
simulation experiment with using optimal control theory (Table S2).



Comput Model Eng Sci. 2025;143(3) 2773

‘:F P T T T T
‘E 3000 (- m=== Performance | =
< o= =Fress: | | | e -
E ----- Fatigue e
4= 2000 B - e RS
0 L - )
-E. o’..-
S1000f 7 :
% ".‘ 4 s
o L4
% 9 K_// 7
=]
= 1 | 1 1 1
0 20 40 60 80 100 120
Time (days)
100
g 80
ie
E 60
2
£ 40
©
F 20
0
0 20 40 60 80 100 120

Time (days)

Figure 1: The simulation results without using optimal control theory

In the three simulation experiments with using optimal control theory, ¢, and A in Eq. (4) are set
as t, = 128 days and A = 0.0003. In order to understand the effects of limiting the lower bound of w (t)
during solving the proposed optimal control framework, M is set as 0, 20 and 40, respectively, while M,
is set as a constant 100; in other words, in these three simulation experiments, the range of w (t) is set as
0 <w(t)<100,20 < w(t) <100 and 40 < w (t) < 100, respectively. Each simulation experiment with using
optimal control theory is performed using the solution methods described in the Section 2.2 to obtain the
optimal performance, fitness, fatigue and training load over time from the initial day to the competition day.
Two metrics, the performance on the competition day and the cumulative training load during the training
course, are specifically recorded.

To understand whether the proposed optimal control framework can design an optimal training
program that can maximize the performance on the competition day and minimize the cumulative training
load during the training course, we descriptively compare these two metrics generated by training programs
with and without using optimal control theory.

3 Results and Discussion

Fig. 1 shows the simulation results without using optimal control theory. From this figure, we can
understand how performance, fitness, fatigue and training load change over time during the training course
until the competition day, and understand the relationship between these variables. It can be observed that, in
the early stages of training, performance decreases since fatigue outweighs fitness; it is probably because the
athlete just begins to adapt to training, therefore fatigue increases significantly. As training progresses, fitness
continues to increase significantly while fatigue just increases slightly, leading to improved performance.
Most notably, as the training load starts to decrease after the 120th day, performance starts to improve



2774 Comput Model Eng Sci. 2025;143(3)

significantly, suggesting that reducing the training load at a certain time during the training course before
the competition day could be beneficial for improving performance.

Fig. 2 shows the simulation results with using optimal control theory with 0 < w (t) <100. It can
be observed that both fatigue and fitness increase synchronously as training load increases; however,
fatigue outweighs fitness slightly, causing performance to decrease slightly. As the training load reaches
the highest value, fatigue starts to decrease and fitness starts to outweigh fatigue; as a result, performance
starts to improve. This pattern is similar to that in Fig. 1. As the training load starts to decrease after the
114th day, performance starts to improve significantly and then reaches the highest value exactly on the
competition day.

3
=]

o m
8
o

2
(=]

g

(=]

0 20 40 60 80 100 120
Time (days)

Model output (arbitrary units)
8
[=]

g
o

60

40|

Training load (%)

20

0 20 40 60 80 100 120
Time (days)

Figure 2: The simulation results using optimal control theory with 0 < w (¢) < 100

The results of Figs. 1 and 2 provide an important clue that strategically reducing the training load at a
certain time during the training course could be beneficial to improve performance significantly. It suggests
that, the focus of an optimal training program should not always be on pushing an athlete to train more
and harder, but should be on helping an athlete seek an optimal balance between training and recovery; an
optimal training program should carefully consider both the intensity of training and an athlete’s ability and
need for recovery to optimize performance effectively.

Figs. 3 and 4 show the results of the simulation experiments using optimal control theory with 20 <
w (t) <100 and 40 < w (t) < 100, respectively. By comparing the results of Figs. 2-4, we can understand
how setting the lower bound of w (t) (i.e., the minimum daily training load during the training course)
could affect the performance on the competition day. It can be observed that, the patterns of performance,
fitness, fatigue, as well as the values of the performance on the competition day and the cumulative training
load during the training course, are completely different between the experiments without (Fig. 2) and with
(Figs. 3 and 4) setting the lower bound of w (t). In each of these experiments, performance reaches the
highest value exactly on the competition day; however, the lower the lower bound of w (t), the higher the
highest performance.
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The values of the performance on the competition day and the cumulative training load during the
training course of all simulation experiments are summarized in Table 1. It can be observed that, in each
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experiment with using optimal control theory, the performance on the competition day is higher while the
cumulative training load during the training course is lower than those in the experiment without using
optimal control theory, showing the feasibility and benefits of using the proposed optimal control framework
to design optimal training programs for helping athletes achieve the best performance exactly on the
competition day while properly manage training load during the training course for preventing overtraining.
If the efficiency coeflicient is defined as the performance on the competition day over the cumulative training
load during the training course as shown in Table 1, it can be observed that the experiment with using optimal
control theory with 0 < w () <100 has the highest efficiency while the experiment without using optimal
control theory has the lowest efficiency. In the three experiments with using optimal control theory, the
lower the lower bound of w (t), the higher the efficiency, and this finding suggests that the proposed optimal
control framework without limiting the lower bound of w () can design the best and most efficient optimal
training program that maximizes the performance on the competition day while minimizes the cumulative
training load during the training course.

Table 1: The values of the performance on the competition day («), the cumulative training load during the training

a

course (f8) and the efficiency coefficient ( ) of all simulation experiments with and without using optimal control

B
theory (OCT)
w/ using OCT w/o using OCT
Rangeof w(t) 0<w(t) <100 20<w(t) <100 40<w(t) <100 n/a
o 866 778 695 598
B 8018 8362 9168 12390
% 0.1080 0.093 0.0758 0.0483

The simulation results show that the performance on the competition day with using optimal control
theory (with 0 < w (#) <100) is 44.82% higher than that without. However, it is important to note that
these simulation results are derived from the parameters of an individual athlete. Since the efficacy of an
optimal training program designed using the proposed optimal control framework should be dependent on
the physiological characteristics of an athlete, it may not always be that high for all athletes. For example,
for the simulation results derived from another set of parameters that represents another athlete shown in
Section 3 of the supplementary material, the performance on the competition day with using optimal control
theory (with 0 < w () < 100) is only 3.38% higher than that without. However, it is important to note that, in
competitive sports especially at the elite level, even a small change in performance can have substantial effects
on an athlete’s chance of winning or medaling [45-48], and this small but significant change that can have
drastic effects on the outcome of a sporting event is often less than 1% or 2% [49,50]. Hence, the proposed
optimal control framework is flexible, could work well for different athletes with different physiological
characteristics and personal goals.

It is important to discuss the effects and practical implications of the parameter A in Eq. (4). To
understand the effects and practical implications of the parameter 4, it is first necessary to note that if w (t)
has no upper bound, the profile of an optimal w () (denoted as w* () below) solved by the proposed optimal
control framework looks as shown in Fig. 5. The effects of A is on determining the range and maximum of
w* (t); the lower the value of A, the larger the maximum of w* (t). For example, Fig. 5 is a w* (t) designed
using A = 1, and it can be observed that the maximum of this w* (¢) is around 0.1026. Figs. 6 and 7 show two
w* (t) designed using A = 0.1and A = 0.01, respectively, and it can be observed that the maximums of these
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two w* (t) are higher than the maximum of w* (t) designed using A = 1. Hence, since the range of w (t)
is defined between 0 and 100 in the proposed optimal control framework as Eq. (7) shows, it is necessary
to properly set the value of A before solving the proposed optimal control framework such that the range
of a w* (t) is between 0 and 100. Since the upper bound of w (t) is set as 100 during the solving process of
the proposed optimal control framework, the maximum of a w* (¢) must be limited to 100 or under; as a
result, the profile of a w* (¢) could look like the one designed using A = 0.0001 as shown in Fig. 8. Since the
physical meaning of w* (t) is an optimal training program (that indicates the optimal magnitude of training
load in each day during the training course) designed by the proposed optimal control framework, it can
be interpreted that the practical implication of A is a parameter associated with the characteristics of an
optimal training program, determining the value of the maximum daily training load and the number of
days that an athlete trains with the maximum daily training load during the training course. In addition,
since the characteristics of w* (t) determines the performance on the competition day and the cumulative
training load during the training course, the parameter that determines the characteristics of w* (t), i.e.,
A, determines these effects of training. In using the proposed optimal control framework to design optimal
training programs in real applications, one can freely set the value of A according to the purposes and
expected results. For example, if the purpose is to achieve higher performance on the competition day,
regardless of the cumulative training load during the training course, then one can design an optimal training
program using A = 0.0001 as shown in Fig. 8. On the other hand, if the purpose is to seek a balance between
these two metrics, then one can design an optimal training program using A = 0.001 as shown in Fig. 9.
The simulation results of these two cases are shown in Table 2. It can be observed that the performance on
the competition day with A = 0.0001 is higher than that with A = 0.001, but the cumulative training load of
the former is higher than that of the latter.
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Figure 5: Illustration of a w* () designed using A =1
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Figure 7: Illustration of a w* (t) designed using A = 0.01

Training load (%)

80 100 120

&0
Time (days)

Figure 8: Illustration of a w* (t) designed using A = 0.0001
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Figure 9: Illustration of a w* (t) designed using A = 0.001

Table 2: The values of the performance on the competition day («), the cumulative training load during the training

course (f3) and the efficiency coefficient (%) of two simulation experiments with using optimal control theory (OCT)

with A = 0.0001and A = 0.001, respectively (with 0 < w () <100). The simulation results without using optimal control
theory are also shown

w/ using OCT w/o using OCT
A=0.0001 A=0.001 n/a
o 917 635 598
B 10374 4640 12390
% 0.0884 0.1368 0.0483

The main limitations of the present study are related to the assumptions of the training-performance
model, i.e., Eq. (2), used in the proposed optimal control framework. First, this model is an empirical (or say
phenomenological) model formulated based on empirical concepts and observations, but not a mechanistic
model that takes underlying mechanisms into account; in other words, this model only considers the overall
positive and negative effects on performance (i.e., fitness and fatigue in the model, respectively), but does not
consider the individual effect of every possible factor that could affect performance. Second, in this model, the
dynamical response of fitness or fatigue that contributes to the change of performance is assumed to be a first-
order linear differential equation, but this mathematical form could be too simple to accurately describe the
complicated relationship between training and performance; to address this issue, several modified models
based on the original Banister IR model with more elaborate mathematical forms have subsequently been
proposed to improve the descriptive and predictive abilities of the models [9-13]. Third, this model does not
consider physiological adaptions to training; that is, the coefficients (i.e., 71, 72, k; and k3) in Eq. (2) that
represent the physiological characteristics of an athlete are assumed to be time-invariant constants; however,
in reality, the physiological characteristics of an athlete could adapt to training and change over time,
therefore it could be more reasonable to model these coefficients as functions of time [1,3,4]. In summary,
as a pilot study that intends to develop a novel method by the combined use of optimal control theory and
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a training-performance model for designing optimal training programs, we choose to adopt a model with a
simpler mathematical form to formulate the proposed optimal control framework, such that the proposed
optimal control framework can be easier to formulate and solve, facilitating us to assess the feasibility of this
innovative idea as well as to demonstrate the existence and uniqueness of the optimal solutions. In the future,
it is necessary to adopt a more advanced training-performance model (rather than the earliest and simplest
Banister IR model) to formulate the optimal control framework. Furthermore, in the future, experiments
are needed to justify whether a designed optimal training program using the proposed optimal control
framework is indeed optimal, and whether it can help athletes achieve the best performance exactly on the
competition day while properly manage training load during the training course to prevent overtraining.

4 Conclusions

To the best of our knowledge, it is the first study that intends to develop a novel method by the combined
use of optimal control theory and a training-performance model for designing optimal training programs
that can be served as references for coaches, trainers and athletes to design training programs, to help
athletes achieve the best performance exactly on the competition day while properly manage training load
during the training course for preventing overtraining. Specifically speaking, the function of the proposed
optimal control framework is to, based on the physiological characteristics of an athlete and the personal
goals, design an optimal training program that indicates the ideal magnitude of training load on each day
during the training course until the competition day. Coaches, trainers, and the athlete can then refer to this
optimal suggestion to design the daily training load of a training program to help the athlete achieve the
best performance exactly on the competition day while properly manage training load during the training
course to prevent overtraining. The simulation results show that the performance on the competition day
is higher while the cumulative training load during the training course is lower with using optimal control
theory than those without, successfully showing the feasibility and benefits of using the proposed optimal
control framework to design optimal training programs for helping athletes achieve the best performance
exactly on the competition day while properly manage training load during the training course for preventing
overtraining. In addition, an optimal training program designed by the proposed optimal control framework
can be personalized to match the physiological characteristics and personal goals of an athlete; therefore,
the proposed optimal control framework is flexible, could work well for different athletes with different
physiological characteristics and personal goals. The present feasibility study lays the foundation of the
combined use of optimal control theory and training-performance models to design personalized optimal
training programs in real applications in athletic training and sports science for helping athletes achieve the
best performances in competitions while prevent overtraining and the risk of overuse injuries. The main
limitation of the present study is that the training-performance model adopted to formulate the optimal
control framework could be too simple to accurately and realistically describe the dynamics of performance
and training load. In the future, it is necessary to adopt a more advanced training-performance model (rather
than the earliest and simplest Banister IR model) to formulate the optimal control framework.
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