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ABSTRACT: Object detection in occluded environments remains a core challenge in computer vision (CV), especially
in domains such as autonomous driving and robotics. While Convolutional Neural Network (CNN)-based two-
dimensional (2D) and three-dimensional (3D) object detection methods have made significant progress, they often fall
short under severe occlusion due to depth ambiguities in 2D imagery and the high cost and deployment limitations
of 3D sensors such as Light Detection and Ranging (LiDAR). This paper presents a comparative review of recent
2D and 3D detection models, focusing on their occlusion-handling capabilities and the impact of sensor modalities
such as stereo vision, Time-of-Flight (ToF) cameras, and LiDAR. In this context, we introduce FuDensityNet, our
multimodal occlusion-aware detection framework that combines Red-Green-Blue (RGB) images and LiDAR data to
enhance detection performance. As a forward-looking direction, we propose a monocular depth-estimation extension
to FuDensityNet, aimed at replacing expensive 3D sensors with a more scalable CNN-based pipeline. Although this
enhancement is not experimentally evaluated in this manuscript, we describe its conceptual design and potential for
future implementation.
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1 Introduction
Object detection remains a fundamental problem in computer vision, playing a crucial role in applica-

tions such as autonomous driving, surveillance, and robotics. Although a lot of work has been put toward
improving deep learning-based detection models, occlusion is still one of the key issues that affect detection
performance in real-world environments eminently [1]. Occlusion occurs when objects partially or fully
obstruct each other, leading to loss of visual information and creating ambiguities in object localization
and classification. The ability to track and detect occluded objects is profoundly important in urban traffic
monitoring, where pedestrians can be occluded by vehicles, or in warehouse automation, where objects
overlap in cluttered surroundings, for which failing to do so puts productivity and safety at stake [2]. This
challenge calls for the need for robust occlusion-aware detection techniques that can effectively infer missing
object structures while maintaining high detection performance across various environmental conditions.

Conventional 2D object detection models, predominantly based on convolutional neural networks
(CNNs), have demonstrated remarkable success in detecting objects within images [3]. Frameworks such
as Region-based Convolutional Neural Network (R-CNN) and You Only Look Once (YOLO) leverage
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hierarchical feature extraction and attention mechanisms to enhance object localization and classification
accuracy [2]. However, 2D models inherently suffer from depth ambiguity, as they rely solely on appearance
cues without direct spatial information. When objects are partially occluded, models can utilize context
reasoning and feature aggregation to make informed predictions, but under severe occlusions, the lack of
depth perception leads to detection failures [2]. Other 2D detection models, such as transformer-based
approaches like Swin Transformer [4] and Detection Transformer (DETR) [5], have introduced global self-
attention mechanisms to enhance feature learning; however, they still rely heavily on learned priors rather
than explicit depth cues [6]. Consequently, 2D object detection methods remain limited in their ability to
fully address severe occlusions, as they lack the spatial depth necessary to disambiguate complex scenes.

To address these limitations, 3D object detection methods leverage additional depth information from
sensors such as LiDAR, stereo cameras, and structured light systems [7]. One of the major advantages
of including 3D spatial cues is the improved ability to differentiate between background and foreground
objects, thus enhancing detection accuracy in occluded scenes [2]. Methods such as PointPillars and Point-
Voxel Region-based Convolutional Neural Network (PV-RCNN) have demonstrated superior performance
compared to 2D-based approaches, particularly in autonomous driving scenarios where occlusions are
frequent and highly dynamic [8]. Despite their effectiveness, 3D object detection systems present critical
drawbacks, including high hardware costs, increased computational complexity, and environmental sensitiv-
ity [2]. LiDAR sensors, while highly accurate, remain prohibitively expensive and struggle in adverse weather
conditions such as rain or fog. Alternative depth-sensing technologies offer alternative depth estimation
strategies but still require extensive calibration and can be prone to measurement inconsistencies [7]. This
raises an important question regarding when 3D information becomes essential for object detection and
whether a more cost-effective solution can bridge the gap between 2D and 3D detection.

An emerging approach in occlusion handling is monocular depth estimation, which seeks to generate
3D representations from 2D images using deep learning techniques [2]. By predicting depth maps directly
from monocular images, recent methods such as Mixed Depth and Scale (MiDaS) [9] and Adaptive
Binning Network (AdaBins) [10] have demonstrated promising results in reconstructing scene geometry
without the need for explicit depth sensors [7]. The potential of learning-based depth estimation to replace
LiDAR or stereo sensors offers a scalable and low-cost alternative for applications where high-resolution
depth perception is necessary but unavailable due to hardware constraints [2]. However, challenges such
as depth estimation accuracy, generalization across diverse scenes, and computational overhead remain
significant limitations [11]. Evaluating whether synthetic depth cues can sufficiently replace sensor-based
depth information remains a key research challenge in occlusion-aware object detection.

While numerous studies have reviewed advancements in 2D and 3D object detection, the unique focus
of this paper lies in evaluating their effectiveness in occlusion handling across different levels of occlusion
severity (Easy, Moderate, Hard). This study systematically examines: (i) the capabilities and limitations of
2D object detection models in occluded environments, (ii) the necessity and impact of integrating 3D data
for improving occlusion robustness, and (iii) the feasibility of replacing traditional 3D sensors with depth
estimation techniques. Furthermore, this review introduces the perspective of integrating learned depth
estimation into FuDensityNet, our existing multimodal occlusion-handling framework. By bridging the gap
between sensor-based and learning-based depth perception, this work aims to establish new directions for
scalable and adaptable occlusion-aware object detection.
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Compared to prior reviews, this paper offers several key contributions:

• A comparative benchmark evaluation of state-of-the-art 2D and 3D object detection models under
varying occlusion levels, providing empirical insights into their robustness.

• A quantitative analysis of occlusion-induced performance degradation, highlighting the extent to which
occlusion affects detection accuracy across different architectures.

• A comparative study assessing the performance trade-offs within 2D object detection models and within
3D object detection models, following a structured state-of-the-art evaluation.

• The introduction of an updated version of FuDensityNet [12], which integrates depth estimation to
provide an alternative approach to occlusion handling while reducing reliance on traditional 3D sensors.

These contributions provide a new perspective on occlusion-aware detection, addressing gaps in existing
literature by evaluating both detection robustness and the feasibility of scalable depth-based solutions.

The remainder of this paper is structured as follows. Section 2 reviews the various sensor technologies
used in object detection, outlining their advantages and limitations in occluded scenarios. Section 3 presents
an in-depth analysis of 2D and 3D object detection methods, detailing their architectural advancements
and performance constraints. Section 4 discusses comparative evaluations conducted on both standard and
occlusion-aware datasets, highlighting key performance metrics. In Section 5, we introduce the updated
FuDensityNet framework, demonstrating how learned depth estimation can serve as a viable alternative to
traditional 3D sensors for occlusion handling. Finally, Section 6 summarizes key findings and outlines future
research directions for improving occlusion-aware detection.

2 Sensor Technologies for Object Detection
Object detection relies on a diverse set of sensor technologies, each offering distinct advantages and

limitations in perceiving the environment. Visual sensors, such as RGB cameras, provide high-resolution 2D
imagery, making them the most widely adopted modality due to their affordability and ease of deployment.
However, these sensors inherently suffer from depth ambiguity, limiting their effectiveness in occlusion-
heavy environments where object separation and spatial reasoning are critical.

To address these challenges, depth-sensing technologies such as LiDAR, stereo vision, and Time-of-
Flight (ToF) cameras enable explicit spatial measurements, improving object localization and robustness
in occlusion-aware detection. These sensor modalities collectively define the data acquisition pipeline for
modern vision systems, providing essential geometric and appearance-based cues necessary for object
detection across various applications.

Fig. 1 illustrates the classification of sensor technologies based on their data acquisition methods and
functional roles in object detection. The section first examines visual sensing technologies, focusing on
RGB and monochrome cameras, which are widely used for extracting appearance-based features. It then
explores depth-sensing modalities, which introduce spatial awareness to improve detection performance
under occlusions. By analyzing their capabilities, limitations, and adaptability to environmental constraints,
this section provides a structured comparison of these technologies in occlusion-aware object detection.
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Figure 1: Taxonomy of sensor technologies for object detection, categorizing visual and depth-sensing modalities

2.1 Visual Sensing Technologies
Visual sensing technologies play a crucial role in object detection, surveillance, and pattern recognition

tasks [13]. These sensors capture high-resolution 2D images that provide essential visual cues for deep
learning-based detection models. Their affordability and ease of deployment make them widely used across
industries, from autonomous driving to industrial automation [14]. However, their primary limitation lies in
the lack of depth perception, making them susceptible to occlusion-related errors.

2.1.1 RGB Cameras
RGB cameras are widely used in computer vision, capturing scene information through three color

channels: red, green, and blue. Equipped with CMOS or CCD sensors, they produce high-resolution images
that serve as the primary input for deep learning-based object detection models [15]. Their affordability
and ease of integration make them essential for applications such as autonomous driving, surveillance, and
industrial inspection [13].

However, RGB cameras lack depth perception, making occlusion handling a significant challenge.
Without explicit spatial information, distinguishing foreground objects from the background in cluttered
scenes becomes difficult, leading to detection failures under severe occlusions [14]. Environmental factors
such as low lighting, fog, and adverse weather further impact their reliability [15]. To mitigate these
limitations, alternative sensing technologies such as stereo cameras or depth estimation techniques are
explored to enhance detection in occluded environments.

2.1.2 Monochrome Cameras
Monochrome cameras [16], also known as grayscale cameras, capture images using intensity values

alone, offering superior light sensitivity and contrast compared to RGB cameras. By eliminating the color
filter array, they maximize photon efficiency, making them well-suited for industrial inspections, biomedical
imaging, and low-light environments. Their enhanced structural detail improves edge detection and object
recognition, particularly in challenging lighting conditions.

Despite these advantages, monochrome cameras lack depth perception, making them insufficient
for occlusion handling in complex scenes. Without color information, distinguishing overlapping objects
depends solely on texture and intensity variations, which are unreliable in cluttered environments. This
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limitation restricts their standalone effectiveness in occlusion-aware object detection [17]. However, when
integrated with structured light or stereo vision, monochrome cameras contribute valuable contrast and
detail, improving spatial feature extraction. Fig. 2 illustrates an example of grayscale data captured by a
monochrome camera.

Figure 2: Example of grayscale image captured by a monochrome camera, demonstrating enhanced contrast and edge
clarity [18]. (A) Raw infrared capture. (B) Enhanced grayscale image. (C) Denoised version. (D) Final preprocessed
input

2.2 Depth-Sensing Technologies
Depth-sensing technologies provide explicit spatial information, enabling accurate distance measure-

ment between objects in a scene. Unlike visual sensors that rely on color and texture cues, depth sensors
generate spatial representations that significantly improve occlusion handling in complex environments [19].
These sensors play a crucial role in robotics, autonomous navigation, and augmented reality applications by
providing robust 3D object localization.

This section examines the major depth-sensing modalities, including LiDAR and alternative technolo-
gies designed to estimate depth through different sensing principles. Each sensor type is evaluated based on
its ability to enhance object detection under occlusion conditions, as well as its limitations in terms of cost,
environmental sensitivity, and computational complexity.

2.2.1 LiDAR Sensors
LiDAR (Light Detection and Ranging) is a depth-sensing technology that provides precise 3D spatial

information by emitting laser pulses and measuring their return time. This enables accurate object localiza-
tion and segmentation, making LiDAR essential in applications such as autonomous driving, urban mapping,
and surveillance [19]. Unlike 2D sensors, LiDAR captures depth discontinuities and geometric structures,
improving occlusion handling by distinguishing objects in cluttered environments. Fig. 3 illustrates an
example of a LiDAR-generated point cloud.

Figure 3: Example of LiDAR point cloud illustrating depth perception capabilities [20]
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Despite its high accuracy and ability to operate in low-light conditions, LiDAR faces significant
limitations. Its high cost restricts large-scale deployment, while its dependence on precise calibration
complicates integration [21]. Furthermore, LiDAR performance degrades under adverse weather conditions
such as rain, fog, and dust, affecting laser reflections and reducing depth reliability [22]. These constraints
have driven interest in alternative depth-sensing approaches, such as monocular depth estimation, which
aims to provide spatial perception without relying on expensive 3D sensors.

2.2.2 Stereo Cameras
Stereo cameras estimate depth by capturing two offset images from slightly different perspectives,

mimicking human binocular vision. By computing disparities between corresponding pixels in the left and
right images, they generate dense depth maps without requiring active depth sensing [23]. This makes them a
cost-effective alternative to LiDAR, widely used in robotics, surveillance, and augmented reality applications.
The depth Z of an object is determined through triangulation (Eq. (1)):

Z = f ⋅ B
d

(1)

where f is the focal length, B is the baseline distance between the two lenses, and d is the disparity between
matched pixels in the two images [24]. The ZED 2 stereo camera exemplifies a high-resolution depth
estimation system, often integrated with IMUs for motion stabilization.

While stereo cameras provide real-time depth perception at a lower cost than LiDAR, they face
limitations in environments with low-texture surfaces or extreme lighting, which can disrupt disparity
calculations [25]. Additionally, occlusions between objects can create disparity mismatches, affecting depth
accuracy. Fig. 4 illustrates a depth map captured by the ZED 2, highlighting its ability to generate structured
depth data for object detection and navigation [26].

Figure 4: Depth map visualization: RGB image (top-left), depth map (bottom-left), and point cloud (right) captured
by the ZED 2
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2.2.3 Time-of-Flight Cameras
Time-of-Flight (ToF) cameras provide real-time depth perception by emitting modulated infrared

light and measuring the time taken for the reflected signal to return. This enables fast and accurate depth
estimation, making ToF sensors valuable in robotics, augmented reality, and security systems [27]. Unlike
passive stereo cameras, ToF sensors do not rely on scene texture, allowing them to function effectively in
low-light environments. The depthZ is computed using the Eq. (2):

Z = c ⋅ Δt
2

(2)

where c is the speed of light, and Δt is the measured time delay [28]. Modern ToF cameras, such as the
Microsoft Azure Kinect and PMD Technologies’ sensors, leverage this principle to generate dense depth
maps, enhancing object detection in occlusion-heavy scenes [29].

While ToF cameras offer fast and precise depth sensing, they are susceptible to errors caused by reflective
surfaces, multi-path interference, and ambient light distortions [30]. Additionally, adverse weather condi-
tions like fog and rain can degrade ToF depth accuracy, posing challenges for outdoor deployment. Fig. 5
illustrates a depth map captured by a ToF camera, highlighting its ability to provide structured depth
information in various environments [29].

Figure 5: Depth map representation captured by a ToF camera [28]

2.2.4 RGB-D Cameras
RGB-D (Red-Green-Blue and Depth) cameras integrate traditional RGB imaging with depth sensing,

providing both visual and spatial information for improved scene understanding. By capturing pixel-wise
depth alongside color data, these sensors enhance object detection in occlusion-heavy environments and
enable tasks such as 3D modeling, motion tracking, and real-time navigation [31]. Microsoft’s Kinect
first popularized RGB-D technology, which is now widely adopted in robotics, augmented reality, and
autonomous systems.

These cameras combine an RGB sensor with depth estimation techniques such as structured light or
ToF [31]. The Microsoft Kinect, for example, projects infrared (IR) patterns onto the scene and measures
their deformation to infer depth. This fusion of RGB and depth data results in enriched datasets, allowing for
accurate object localization (Fig. 6) [32]. While RGB-D cameras improve depth perception and remain cost-
effective compared to LiDAR, they are constrained by shorter depth ranges and lower resolution, limiting
their applicability in large-scale environments. Additionally, their depth accuracy is affected by lighting
variations and adverse weather, requiring application-specific adaptation [32].
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Figure 6: Example of data captured by an RGB-D camera: RGB image (left) and depth map (right) [32]

2.3 Applications of Sensor Technologies
Sensor technologies are integral to object detection, providing crucial visual and spatial data for various

real-world applications. This section summarizes the key applications of 2D and 3D sensing technologies,
emphasizing their relevance to occlusion handling.

2.3.1 Applications of 2D Sensors
RGB and monochrome cameras are widely used in applications requiring high-resolution imaging but

lacking explicit depth perception. They support video surveillance by enabling real-time monitoring and
anomaly detection, with monochrome cameras enhancing visibility in low-light conditions [13]. In industrial
inspection, monochrome imaging improves defect detection, while RGB cameras play a key role in facial
recognition and biometric authentication [18]. Despite their advantages, 2D sensors struggle with occlusions
due to their inability to capture depth information.

2.3.2 Applications of 3D Sensors
Depth-sensing technologies such as LiDAR, stereo cameras, and ToF cameras provide essential spatial

information, making them indispensable for occlusion-aware perception. In autonomous driving, they
enhance obstacle detection and lane navigation by generating real-time depth maps [31]. Robotics and
industrial automation leverage stereo and ToF cameras for precise object manipulation and collision avoid-
ance [19]. Additionally, LiDAR enables large-scale 3D reconstructions for urban mapping and infrastructure
modeling [22]. While these sensors significantly improve occlusion handling, their effectiveness depends on
how object detection models process and integrate depth information.

The next section examines state-of-the-art 2D and 3D object detection models, evaluating their ability
to leverage sensor data for robust detection in occluded environments.

3 State-of-the-Art Object Detection Methods
Object detection is a key area of computer vision, focused on identifying and localizing objects in

both 2D and 3D domains. This section explores state-of-the-art advancements, emphasizing the evolution of
architectures and techniques (Fig. 7). By addressing both 2D pixel-based data and 3D spatial representations,
it highlights the unique challenges and innovations shaping object detection across diverse environments.
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Figure 7: Taxonomy of object detection models, extended beyond 2D and 3D paradigms to include Transformer-based
and Multimodal Fusion approaches

3.1 2D Object Detection
Deep learning has significantly advanced 2D object detection, improving both accuracy and efficiency.

This section reviews state-of-the-art approaches, emphasizing CNNs as foundational architectures. Two-
stage detection frameworks, known for high precision via region-based proposals, are contrasted with
one-stage methods, which prioritize real-time performance. These advancements enable applications in
video surveillance, urban monitoring, and autonomous systems, where fast and accurate object recognition
is critical.
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3.1.1 Two-Stage Detectors (Region-Based CNNs)
Two-stage detectors divide object detection into two sequential steps: region proposal generation and

classification. The first stage identifies regions of interest (RoIs), while the second stage refines their bounding
boxes and classifies objects (Fig. 8). This structure enables high precision, particularly in complex or crowded
scenes [33].

Figure 8: Basic architecture of two-stage detectors [34]

Compared to single-stage detectors, two-stage models prioritize accuracy over speed, making them
suitable for applications requiring high precision, such as medical imaging and autonomous driving. This
section reviews key frameworks, including R-CNN [35], Fast R-CNN [36], Faster R-CNN [37], Cascade
R-CNN [38], and DetectoRS [39], outlining their evolution and functionality.

R-CNN (Region-Based Convolutional Neural Network)
R-CNN [35] introduced the concept of region proposal-based object detection by combining selective

search [40] with CNN-based feature extraction. It generates region proposals by hierarchically grouping
image segments based on color, texture, and shape, then processes each region independently through a
CNN. The extracted features are classified using a support vector machine (SVM) [41], and bounding box
regression refines object localization (Fig. 9).

Figure 9: A flow diagram illustrating the R-CNN pipeline, showing the separate stages of region proposal, feature
extraction, classification, and bounding box regression [35]
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Despite its accuracy improvements over traditional methods, R-CNN suffered from inefficiencies due
to its multi-stage pipeline, where each proposal was processed separately, leading to redundant computations
and slow inference. Its lack of end-to-end training hindered real-time deployment, while handling occluded
objects required multiple overlapping proposals, further increasing computational costs. These limitations
motivated the development of Fast R-CNN, which introduced a unified feature extraction mechanism to
enhance efficiency.

Fast R-CNN
Fast R-CNN [36] addressed the inefficiencies of R-CNN by introducing a shared CNN feature map

for the entire image, significantly reducing computational redundancy. Instead of processing each region
proposal independently, Fast R-CNN applies a single convolutional pass over the input image to generate
a feature map. Region proposals, obtained using selective search [40], are projected onto this feature map
through a Region of Interest (RoI) pooling layer, which extracts fixed-length feature vectors for each proposal
(Fig. 10).

Figure 10: Architecture of Fast R-CNN, featuring a shared feature map and RoI pooling for region proposals [36]

By sharing computation across all region proposals, Fast R-CNN eliminated redundancy and allowed
end-to-end training, significantly improving inference speed. However, its reliance on selective search
still posed a bottleneck, limiting real-time performance. Additionally, the model remained sensitive to
occlusions, as overlapping objects could lead to misaligned RoI features, reducing detection accuracy in
cluttered environments.

The improvements in computational efficiency made Fast R-CNN a significant step forward, paving the
way for Faster R-CNN, which further optimized the region proposal process.

Faster R-CNN
Faster R-CNN [37] improves upon Fast R-CNN by integrating the Region Proposal Network (RPN)

directly into the detection pipeline, eliminating the need for selective search and enabling end-to-end
training. The model extracts a shared feature map using a CNN backbone, such as VGG [42], which the RPN
processes to generate object proposals. These proposals are refined through RoI pooling before classification
and bounding box regression, significantly enhancing efficiency and detection accuracy (Fig. 11).

While Faster R-CNN achieves higher precision and reduced inference time, it remains sensitive to
occlusions. Partial occlusions can generate incomplete region proposals, leading to false negatives, and its
anchor-based mechanism may misalign detections in cluttered scenes. Despite these limitations, Faster
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R-CNN set the stage for more advanced two-stage detectors, improving computational efficiency without
sacrificing accuracy in complex visual environments.

Figure 11: Architecture of Faster R-CNN, integrating an RPN for region proposal generation within the detection
pipeline [37]

Cascade R-CNN
Cascade R-CNN [38] enhances Faster R-CNN by introducing a multi-stage refinement process that

iteratively improves object localization and classification. Unlike traditional single-stage detectors, it employs
sequential detection stages with progressively stricter Intersection over Union (IoU) thresholds, ensuring
improved accuracy for objects of varying scales and occlusion levels (Fig. 12).

The model generates region proposals using an RPN, similar to Faster R-CNN, but instead of applying
a fixed IoU threshold, it refines predictions through multiple cascaded stages. Early stages focus on coarse
proposals, while later stages apply stricter localization criteria, reducing misaligned detections and improving
object segmentation. The incorporation of a Feature Pyramid Network (FPN) further enhances multi-scale
detection, making the model more effective for small and occluded objects.

The cascading structure allows for more precise detection, particularly in cluttered scenes where
occlusions degrade feature quality. However, this refinement process increases computational overhead,
making inference slower compared to single-stage approaches. Despite this, Cascade R-CNN remains a
highly effective model for high-accuracy object detection in challenging real-world scenarios, including
those with significant occlusions.

DetectoRS
DetectoRS (Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolu-

tion) [39] enhances two-stage object detection through Recursive Feature Pyramid (RFP) and Switchable
Atrous Convolution (SAC). RFP iteratively refines feature extraction through a top-down and bottom-up
structure, strengthening multi-scale object detection (Fig. 13). SAC dynamically adjusts receptive fields by
switching between dilation rates, improving adaptability to varying object sizes and aspect ratios (Fig. 13b).
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Figure 12: Cascade R-CNN architecture, illustrating iterative refinement across multiple detection stages [38]

Figure 13: The DetectoRS architecture, illustrating the Recursive Feature Pyramid (a) and Switchable Atrous Convo-
lution (b) components [39]

Built upon Faster R-CNN, DetectoRS employs an RPN for proposal generation, with RFP introducing
an iterative feedback loop that refines feature extraction. SAC further augments the model by adaptively
modulating the receptive field, improving object boundary detection and enhancing robustness in cluttered
scenes. These combined mechanisms improve object detection in complex environments, particularly when
dealing with densely packed or irregularly shaped objects.

While DetectoRS enhances spatial reasoning and feature consistency, severe occlusions still disrupt its
detection accuracy. Its reliance on learned priors, rather than explicit depth cues, limits robustness under
extreme occlusions. Despite these limitations, DetectoRS represents a significant advancement in two-stage
detection, demonstrating the benefits of recursive feature refinement and adaptive convolution.

This exploration of two-stage detectors traces their evolution from R-CNN to advanced frameworks
such as Cascade R-CNN and DetectoRS. These models illustrate significant improvements in precision and
efficiency for 2D object detection, providing a foundation for the upcoming discussion on one-stage detectors
in the next section.
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3.1.2 Single-Stage Detectors (Fully CNN-Based)
Single-stage detectors streamline object detection by integrating the entire detection pipeline into

a single unified step, bypassing the need for a separate region proposal stage. This design prioritizes
computational efficiency, making these models well-suited for real-time applications where speed is critical.
While single-stage detectors trade some precision for faster inference compared to two-stage models, they
remain effective in scenarios requiring rapid and reliable detection (Fig. 14).

Figure 14: Basic architecture of single-stage detectors [34]

This section examines key single-stage detection frameworks, including the YOLO family [43–47],
EfficientDet [48], Scaled-YOLOv4 [49], and PP-YOLOE [50], analyzing their architectural advancements
and impact on real-time object detection.

YOLO Series: Evolution and Architectures
The YOLO (You Only Look Once) [43] series is a pioneering family of single-stage object detectors

designed for real-time performance while maintaining accuracy. These models adopt a grid-based detection
strategy, dividing the input image into cells, each responsible for predicting bounding boxes and class
probabilities. Over the years, the YOLO series has undergone significant advancements, starting from
YOLOv1 [43] and evolving through YOLOv2 [51], YOLOv3 [52], and more recent iterations such as
YOLOv5 [44], YOLOv7 [45], YOLOv8 [46], and YOLOv10 [47]. This section presents the major innovations
introduced in each version while analyzing their strengths and limitations, particularly in occlusion handling.

1. YOLOv3
YOLOv3 [52] introduced anchor boxes and an FPN (Fig. 15) to enhance multi-scale detection. Unlike its
predecessors, YOLOv3 employs three output layers corresponding to different feature map sizes (13 × 13,
26× 26, and 52× 52), enabling better detection of objects at varying scales. The model utilizes a Darknet-
53 backbone, composed of residual blocks, to improve gradient flow and enhance feature extraction.
The integration of FPN allows YOLOv3 to capture objects at different scales, improving detection in
cluttered environments. However, despite its ability to process multi-scale features, YOLOv3 struggles
with occlusions due to its reliance on grid-based predictions. When objects overlap significantly, the
model may produce inaccurate bounding boxes as feature aggregation remains limited by the predefined
anchor boxes. Additionally, the increased computational cost from multi-scale feature extraction and
anchor-based predictions affects inference speed, making it less efficient for real-time applications.
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Figure 15: YOLOv3 architecture with multi-scale detection capabilities [8]

2. YOLOv5
YOLOv5 [44] enhances computational efficiency with a Cross Stage Partial Network (CSPNet) back-
bone, reducing redundancy while improving gradient flow (Fig. 16). It integrates a Path Aggregation
Network (PANet) for multi-scale feature fusion and employs Spatial Pyramid Pooling (SPP) to capture
contextual information, optimizing both speed and accuracy.
The incorporation of CSPNet and PANet improves feature propagation and enhances the model’s ability
to detect objects at different scales. However, YOLOv5 still faces challenges in heavily occluded envi-
ronments. While its improved feature fusion mechanism provides better spatial reasoning, occlusions
can still degrade detection performance, particularly when multiple objects overlap closely. Moreover,
the reliance on appearance-based cues rather than explicit depth estimation contributes to reduced
localization accuracy in highly cluttered scenes.
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Figure 16: YOLOv5 architecture with CSPNet and PANet [44]

3. YOLOv7
YOLOv7 [45] introduces an Extended Efficient Layer Aggregation Network (ELAN), which improves
feature extraction efficiency by splitting and merging features at multiple stages. This facilitates
enhanced gradient propagation, allowing for better generalization across different object scales. The
model retains FPN and PANet for multi-scale feature fusion, ensuring improved object localization
(Fig. 17).
By incorporating ELAN, YOLOv7 achieves a superior balance between accuracy and inference speed.
However, its performance in occlusion-heavy environments remains limited, as feature representations
are still constrained to 2D spatial cues without explicit occlusion modeling. The model also requires
careful post-processing to refine detections in cases of overlapping objects, where bounding box
misalignment can occur.
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Figure 17: YOLOv7 architecture emphasizing ELAN [45]

4. YOLOv8
YOLOv8 [46] transitions to an anchor-free detection paradigm, removing predefined box sizes for a
simpler training process. It integrates C2f modules for efficient feature reuse and employs a unified
detection head for classification, localization, and segmentation (Fig. 18).
The anchor-free detection approach simplifies the model’s architecture, reducing computational com-
plexity and improving adaptability across datasets. However, while YOLOv8 enhances general detection
performance, it struggles in highly cluttered environments where objects are occluded or closely
packed. The absence of predefined anchors increases localization errors in such scenarios, necessitating
additional refinements in post-processing to improve robustness against occlusions.
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Figure 18: YOLOv8 architecture, showcasing its anchor-free detection [46]

5. YOLOv10
YOLOv10 [47] introduces a dual-label assignment strategy, integrating one-to-many and one-to-one
matching mechanisms for classification and regression tasks. This refinement enhances detection in
occluded scenes by improving object representation (Fig. 19).
The integration of dual-label assignment improves occlusion robustness by refining spatial align-
ment and detection confidence. The model effectively balances recall and precision, making it more
resilient to object overlap. However, despite these advancements, YOLOv10 still lacks explicit depth
reasoning, limiting its performance in extreme occlusion scenarios. The added complexity from the
matching strategy also increases computational requirements, making it less suitable for real-time
low-resource applications.
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Figure 19: YOLOv10 with dual-label assignment and refined spatial alignment [47]

The YOLO series has evolved significantly, introducing improvements in feature extraction, multi-
scale fusion, and detection efficiency. While these advancements enhance real-time detection capabilities,
occlusion remains a key limitation due to the reliance on appearance-based feature extraction rather than
explicit spatial depth modeling. Addressing these challenges requires further innovations in occlusion-aware
architectures that integrate both 2D and 3D contextual information.

EfficientDet
EfficientDet [48] builds upon the EfficientNet backbone [53], employing a compound scaling method

to optimize network depth, width, and resolution. A key innovation is the Bi-directional Feature Pyramid
Network (BiFPN), which enhances multi-scale feature fusion by incorporating bidirectional connections
and learnable feature importance weights (Fig. 20). Unlike traditional FPNs, BiFPN adaptively prioritizes
the most relevant features, improving detection performance while maintaining computational efficiency.

Figure 20: BiFPN structure in EfficientDet, illustrating its multi-scale feature fusion process [48]

While EfficientDet balances accuracy and efficiency, its reliance on feature fusion rather than explicit
depth estimation makes it vulnerable to occlusions. In heavily cluttered scenes, missing object details may
not be fully reconstructed, leading to detection failures. However, its lightweight architecture and high
efficiency make it well-suited for real-time applications where computational constraints exist. By leveraging
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EfficientNet’s backbone and BiFPN’s adaptive feature refinement, EfficientDet remains a competitive choice
in single-stage detection models [48].

PP-YOLOE
PP-YOLOE [50] enhances the PP-YOLO series [54] by integrating a CSPRepResNet backbone, PAN

neck, and Efficient Task-aligned Head (ET-head), optimizing both speed and accuracy (Fig. 21). The
CSPRepResNet backbone employs RepResBlocks to improve feature extraction efficiency while minimizing
inference overhead. Additionally, Effective Squeeze and Extraction (ESE) layers enhance channel-wise
attention, refining object representations across different scales [50].

Figure 21: PP-YOLOE architecture, integrating CSPRepResNet, PAN, and ET-head [50]

The PAN neck improves multi-scale feature fusion by propagating fine-grained spatial details, enhanc-
ing detection across varying object sizes. The ET-head introduces lightweight IoU-aware layers, refining
bounding box localization and confidence estimation [50]. These architectural optimizations enable
PP-YOLOE to maintain high real-time performance while improving robustness against occlusions through
better spatial reasoning and feature alignment.

The advancements in single-stage detectors highlight their pivotal role in achieving a balance between
accuracy and real-time efficiency. These innovations have not only reinforced the foundations of 2D object
detection but have also paved the way for more complex spatial representations, including 3D. As detection
tasks increasingly demand enhanced depth perception and contextual awareness, the transition from 2D to
3D object detection becomes essential for applications such as autonomous systems and smart surveillance.
This progression underscores the necessity of models that effectively integrate spatial depth information
while maintaining computational efficiency, setting the stage for the exploration of 3D object detection
approaches in the following section.

3.2 3D Object Detection
The advancement of 3D object detection has led to the development of diverse methodologies that

process spatial information using different data representations. Unlike 2D models that rely solely on image-
based features, 3D detection methods incorporate depth cues from point clouds, voxel grids, and multi-view
representations, enabling improved spatial reasoning. These approaches are categorized into voxel-based,
point-based, and hybrid models, each addressing challenges such as data sparsity, occlusion handling, and
computational efficiency.
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3.2.1 Voxel-Based Approaches
Voxel-based methods transform raw point cloud data into structured volumetric representations,

allowing efficient feature extraction using 3D convolutional networks. By discretizing 3D space into a
voxel grid, these methods facilitate robust spatial analysis, making them particularly effective in large-scale
environments. However, voxelization introduces trade-offs between accuracy and computational complexity,
requiring optimization strategies to balance performance and efficiency.

1. VoxelNet
VoxelNet [55] is one of the pioneering voxel-based object detection models, integrating voxelization and
feature learning into a unified framework. The pipeline begins by partitioning the input point cloud into
a voxel grid, converting the unstructured data into a format compatible with 3D convolutions. A Voxel
Feature Encoding (VFE) layer processes each voxel using shared Multi-Layer Perceptrons (MLPs) to
extract local geometric and spatial features. These features are aggregated into a single descriptor per
voxel, forming the foundation for higher-level feature extraction. The voxelization process and grouping
strategy play a crucial role in structuring the raw point cloud for subsequent learning stages (Fig. 22).
Despite its advantages in enhancing spatial reasoning and occlusion handling, VoxelNet suffers from
high computational complexity due to dense voxelization, making real-time deployment challenging.
Additionally, the quantization process in voxelization can introduce boundary inaccuracies, particularly
in occluded or small-object scenarios. These limitations have led to the development of more efficient
voxel-based models, focusing on improving sparsity handling and computational efficiency while
maintaining robust 3D object detection performance.

Figure 22: VoxelNet architecture illustrating the voxelization process, VFE layer for local feature aggregation, and 3D
convolutional layers for hierarchical feature extraction [55]

2. SECOND
SECOND (Sparsely Embedded Convolutional Detection) [56] enhances voxel-based 3D object detec-
tion by integrating sparse convolutional operations, significantly reducing computational costs while
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maintaining strong detection accuracy. Unlike traditional 3D convolutional methods that process all
voxels, SECOND selectively processes only non-empty voxels, improving efficiency without sacrificing
spatial resolution. The voxelized input is first passed through a voxel feature extractor, which aggregates
spatial information before feeding it into sparse convolution layers. This method preserves crucial
geometric details while minimizing redundant computations (Fig. 23).
By leveraging sparse convolutions, SECOND improves inference speed, making it more viable for real-
time applications compared to dense voxel-based models like VoxelNet. However, the voxelization
process still introduces quantization errors, affecting object boundary precision. Additionally, while
sparse convolutions optimize feature extraction, they become less effective in highly dense object
clusters, where occlusions and overlapping structures can lead to feature fragmentation and reduced
detection robustness.

Figure 23: SECOND architecture: Sparse convolution operations applied to voxel grids, followed by their integration
into 3D convolutional layers [56]

3.2.2 Point-Based Approaches
Point-based methods directly operate on raw point clouds, preserving the original 3D spatial structure

without voxelization. These approaches maintain fine-grained geometric details, enabling precise shape and
structure representation. By leveraging point-wise feature extraction, point-based models excel in scenarios
where maintaining geometric fidelity is critical. However, their reliance on unordered point sets and high
computational complexity presents challenges in large-scale 3D object detection.

1. PointNet
PointNet [57] introduced a paradigm shift in 3D object detection by processing raw point clouds directly,
bypassing voxelization. Each point is treated as an independent entity, with shared Multi-Layer Per-
ceptrons (MLPs) encoding per-point features such as curvature and local density. To ensure geometric
transformation invariance, PointNet incorporates a T-Net module, which learns a transformation matrix
to align input points.
Aggregation is performed through a symmetric max-pooling operation, which condenses the extracted
features into a global feature vector representing the entire point cloud. This feature vector is used for
classification, segmentation, and bounding box regression. For segmentation, additional layers refine
point-wise predictions by integrating global and local features (Fig. 24).
While PointNet effectively processes unordered point clouds, its reliance on global pooling limits
its ability to capture fine-grained local structures. This constraint impacts object localization and
segmentation in occlusion-heavy environments, where detailed spatial relationships are essential.
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Figure 24: PointNet architecture, showing point-wise feature extraction with MLPs and global feature aggregation via
max-pooling [57]

2. PointNet++
PointNet++ [58] enhances PointNet by introducing a hierarchical structure that groups points into local
neighborhoods based on spatial proximity. Shared MLPs extract features from each local region, which
are aggregated hierarchically to capture geometric structures at multiple scales (Fig. 25).

Figure 25: Hierarchical feature extraction in PointNet++, illustrating local grouping and multi-level pooling [58]

The hierarchical architecture consists of the following steps:

• Set Abstraction: Points are sampled and grouped into local regions using k-nearest neighbors (k-NN)
or ball query methods. Shared MLPs extract local features from each group.

• Multi-Level Pooling: Local features from multiple regions are aggregated hierarchically, allowing the
model to capture geometric structures at different scales.

• Skip Link Concatenation: Features from earlier layers are concatenated with higher-level representa-
tions, preserving fine-grained details for segmentation tasks.
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The hierarchical approach enables PointNet++ to adapt to varying point densities, addressing challenges
commonly encountered in outdoor LiDAR scans. Its ability to model local dependencies significantly
improves occlusion handling, enhancing detection robustness in cluttered 3D scenes.

3.2.3 Hybrid Approaches
Hybrid approaches combine voxel-based and point-based techniques to leverage the structured repre-

sentation of voxels and the fine-grained detail of point clouds. By integrating these complementary methods,
hybrid models achieve a balance between computational efficiency and detailed geometric representation,
enabling robust and accurate 3D object detection. These approaches are particularly effective in addressing
challenges such as data sparsity and irregularity, commonly encountered in 3D data.

1. PV-RCNN
PV-RCNN (Point-Voxel Region-Based CNN) [59] integrates voxel-based and point-based strategies
to enhance 3D object detection. The architecture first voxelizes the raw point cloud to extract global
structural features using sparse 3D CNNs. Simultaneously, key points are sampled from the raw point
cloud to capture fine-grained local details. These global voxel features and local point features are then
fused using a voxel set abstraction module to generate a comprehensive scene representation (Fig. 26).
The detection pipeline consists of two stages: an RPN-based proposal generation and a refinement stage
utilizing RoI-grid pooling. The predicted keypoint weighting module enhances object proposals by
refining feature aggregation. This structure ensures precise classification and bounding box regression,
improving the model’s performance in challenging scenarios with sparse or occluded environments.
By integrating the advantages of both voxel-based and point-based techniques, PV-RCNN reduces
computational overhead while maintaining high detection accuracy. Its two-level fusion mechanism
enhances robustness, making it effective for 3D object detection tasks in large-scale, unstructured envi-
ronments.

Figure 26: PV-RCNN architecture, illustrating voxel-based global features and point-based local features fusion [59]

2. VoteNet
VoteNet [60] introduces a novel voting mechanism for 3D object detection in raw point clouds,
diverging from conventional CNN- or voxel-based methodologies. Each point in the input cloud
predicts offsets towards potential object centers, generating object proposals that are iteratively refined
through feature propagation layers and attention mechanisms (Fig. 27).
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The architecture incorporates attention modules, filtering out irrelevant spatial features while empha-
sizing informative regions within the point cloud. This attention-enhanced feature propagation
enables VoteNet to differentiate objects from cluttered backgrounds, making it particularly effective in
occlusion-heavy scenarios.
The model’s hierarchical design balances efficiency and accuracy, employing set abstraction layers and
adaptive feature refinement to detect objects of varying scales and positions. VoteNet’s ability to model
fine-grained geometric structures without voxelization makes it well-suited for applications such as
indoor scene understanding and robotic perception.

Figure 27: VoteNet’s voting mechanism, where points generate and refine object proposals through offset predic-
tions [60]

3.3 Transformer-Based and Multimodal Detection Models
Recent advances in object detection have introduced a new generation of architectures that leverage

transformer-based mechanisms and multimodal data fusion. Unlike traditional CNN-based detectors, these
models are explicitly designed to capture long-range spatial dependencies, align features across multiple
views, and integrate complementary modalities such as LiDAR, RGB, and depth. These capabilities make
them particularly well-suited for addressing occlusion-related challenges, where visual information from a
single modality or limited receptive field often proves insufficient.

Although not included in our comparative evaluation due to their computational complexity and
dataset-specific implementation requirements, these state-of-the-art models represent an important shift
in the object detection landscape. In this section, we briefly present the design principles behind key
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transformer-based and multimodal fusion detectors and highlight their relevance as promising directions
for future occlusion-aware detection frameworks.

3.3.1 Transformer-Based Models
Transformer-based object detection models have recently emerged as powerful alternatives to tra-

ditional CNN-based architectures, particularly in complex scenarios involving occlusion and long-range
spatial reasoning. These models leverage self-attention mechanisms to capture global contextual depen-
dencies, making them more adept at handling partially visible objects, aligning features across multiple
perspectives, and reasoning about object relationships in cluttered environments. In contrast to earlier
approaches that rely heavily on localized receptive fields, transformers provide holistic scene understanding,
which is critical for occlusion-aware detection tasks in both indoor and outdoor applications.

BEVFormer
BEVFormer [61] is a transformer-based model designed to generate bird’s-eye-view (BEV) represen-

tations from multi-camera inputs, enabling robust perception in autonomous driving tasks. The model
aggregates spatial and temporal features using attention mechanisms, facilitating accurate object detection
and scene understanding across time.

As shown in Fig. 28, the BEVFormer encoder comprises six transformer layers tailored with three key
components: grid-shaped BEV queries, spatial cross-attention, and temporal self-attention. BEV queries serve
as learnable embeddings arranged over a 2D spatial grid, which attend to image features from multiple views.

Figure 28: Overview of BEVFormer architecture. The model processes multi-view inputs through a backbone and
fuses spatiotemporal features using spatial cross-attention and temporal self-attention mechanisms to refine BEV
representations [61]

During inference at time t, multi-view images are processed by a backbone network to extract camera-
specific feature maps Ft = {F i

t }Nview
i=1 . Simultaneously, the BEV features Bt−1 from the previous timestep are

stored. Each BEV queryQ interacts with Bt−1 using temporal self-attention to encode motion and scene
continuity. Then, it attends to the multi-camera features Ft using spatial cross-attention, focusing only on
relevant regions of interest.
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This two-step attention process allows BEVFormer to produce refined BEV embeddings Bt that
integrate both temporal context and spatial observations. These are further processed by detection and
segmentation heads to generate outputs such as 3D bounding boxes and semantic maps.

PETR
PETR (Position Embedding Transformation for 3D Object Detection) [62] introduces a pure

transformer-based pipeline for 3D detection using multi-view 2D images, without relying on LiDAR or depth
sensors. It reformulates 3D object detection as a set prediction task and integrates 3D positional encoding
directly into the transformer framework to enhance geometric reasoning from 2D inputs.

As illustrated in Fig. 29, the pipeline begins by passing multi-view images through a shared 2D con-
volutional backbone (e.g., ResNet) to extract spatial image features. These features are then combined with
3D spatial priors generated by a dedicated 3D Coordinates Generator, which discretizes the shared camera
frustum space into a structured 3D meshgrid. Using known intrinsic and extrinsic camera parameters,
the meshgrid is projected from the frustum to the 3D world space, enabling spatial grounding of the
input features.

Figure 29: PETR architecture. Multi-view images are processed through a backbone and combined with 3D coordi-
nates derived from the camera frustum. A 3D position encoder injects this spatial context into the transformer decoder,
enabling direct prediction of 3D bounding boxes and classes from image-based queries [62]

The resulting 3D coordinates and 2D image features are injected into a 3D Position Encoder, which cre-
ates position-aware embeddings that encode geometric context. These are passed to a standard transformer
decoder, where learnable object queries, generated by a Query Generator, interact with the encoded 3D-aware
features to update their semantic and localization information.

The updated queries are finally decoded into 3D bounding box coordinates and class predictions.
Notably, PETR avoids intermediate BEV transformation, directly modeling 3D spatial relationships from 2D
feature space, making it efficient for camera-only setups while retaining strong geometric understanding.
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DETR3D
DETR3D (3D Detection Transformer) [63] is a transformer-based architecture that leverages multi-

view images to directly predict 3D object bounding boxes without the need for explicit 3D reconstruction or
post-processing steps like Non-Maximum Suppression (NMS). Its key innovation lies in alternating between
2D and 3D computations to maintain spatial awareness throughout the pipeline.

As illustrated in Fig. 30, the pipeline begins with a set of RGB images from multiple calibrated cameras,
where intrinsic and extrinsic parameters are known. These images are passed through a shared ResNet+FPN
backbone to extract dense 2D feature maps. Instead of generating dense voxelized 3D grids, DETR3D
generates a sparse set of object queries, each of which corresponds to a 3D reference point in space.

Figure 30: DETR3D architecture: object queries interact with multi-view image features through 2D-3D projections
and attention modules to predict 3D bounding boxes without dense reconstruction [63]

These 3D points are projected into the 2D image plane using camera parameters, allowing DETR3D
to sample the corresponding image features via bilinear interpolation. A 2D-to-3D transformation module
then fuses these sampled features with the original query embedding, refining the queries in a geometry-
aware manner.

The queries are then passed through multiple transformer layers, where self-attention and cross-
attention modules iteratively enhance the features by modeling inter-query dependencies and their
relationships with the extracted 2D features. This process effectively links 2D and 3D representations,
enabling robust spatial reasoning even under occlusion.

DETR3D is trained using a set-to-set matching loss inspired by DETR, ensuring one-to-one matching
between predicted boxes and ground truth annotations. This architecture avoids NMS and dense 3D
supervision, making it both computationally efficient and robust to visual clutter or overlapping objects.

3.3.2 Multimodal Fusion Networks
Multimodal fusion networks aim to combine complementary information from multiple sensor modal-

ities, typically RGB images and LiDAR point clouds, to improve object detection performance, especially
under challenging conditions such as occlusion or sparse observations. Unlike single-modal systems,
these approaches benefit from the rich semantic content of images and the accurate depth perception of
LiDAR. Recent transformer-based fusion models leverage attention mechanisms to align and integrate these
modalities at various stages of the detection pipeline. In the following, we review representative methods
that illustrate this paradigm, starting with TransFusion.
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TransFusion
TransFusion [64] is a transformer-based multimodal detection network that fuses information from

LiDAR point clouds and RGB images for 3D object detection. Unlike traditional fusion strategies that operate
at an early or late stage, TransFusion adopts a two-stage query-based fusion mechanism that enables rich,
category-aware, and spatially aligned feature aggregation.

As shown in Fig. 31, TransFusion uses two separate backbones to extract features from both LiDAR BEV
maps (top stream) and camera images (bottom stream). A sparse set of object queries is initialized from
the LiDAR features, guided by an image-aware query initialization strategy. These queries are then processed
sequentially through two transformer decoder layers:
• The first decoder focuses on LiDAR features and outputs an initial prediction using object queries

learned from the BEV space.
• The second decoder, enhanced with Spatially Modulated Cross Attention (SMCA), fuses these initial

predictions with RGB image features. The SMCA module introduces locality bias to help queries focus
on the most relevant image regions, improving texture and appearance modeling.

Figure 31: TransFusion architecture: LiDAR and image features are fused via two-stage transformer decoders. Initial
queries from BEV features are refined through spatially modulated cross attention (SMCA) using image features,
improving occlusion robustness and object localization [64]

This progressive refinement allows TransFusion to leverage both precise geometric structure from
LiDAR and rich semantic cues from images. The fusion enhances the detection of small, occluded, or sparsely
represented objects, particularly in cluttered scenes, by reinforcing weak LiDAR signals with complementary
image guidance.

FusionFormer
FusionFormer [65] is a transformer-based multimodal detection model that integrates multi-view image

features and LiDAR point cloud data to generate robust bird’s-eye-view (BEV) representations. As shown
in Fig. 32, the model begins by extracting 2D features from RGB images and voxel-based features from
LiDAR points through separate backbones. These features are then processed by a Multimodal Fusion Encoder
(MMFE), which performs self-attention and cross-attention operations to jointly encode spatial cues from
both modalities into BEV queries.
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Figure 32: FusionFormer architecture: (a) Overall detection pipeline with multimodal fusion and temporal encoding;
(b) Internal structure of the Multimodal Fusion Encoder (MMFE), showing sequential attention operations on BEV
queries [65]

The generated BEV features are not only based on the current frame but are also temporally enriched
using a Temporal Fusion Encoder (TFE). The TFE aggregates sequential BEV representations stored in
a memory bank to enhance temporal context awareness and continuity, which is especially valuable in
occluded or motion-rich scenes. This temporal fusion produces the final fused BEV representation, which is
then fed into a 3D detection head to output bounding boxes and class predictions.

As illustrated in Fig. 32, the MMFE module utilizes a stack of transformer layers, where BEV queries
are iteratively updated through self-attention, image cross-attention, and voxel feature cross-attention
mechanisms. This layered fusion allows FusionFormer to exploit complementary strengths of color-rich
image features and geometry-aware LiDAR features, improving detection robustness in visually ambigu-
ous scenarios.

3.4 Summary
Object detection has evolved with both 2D and 3D approaches, each addressing specific challenges while

exhibiting inherent limitations. 2D object detection models, such as Faster R-CNN [37] and YOLOv5 [44],
achieve high accuracy and efficiency through hierarchical feature extraction, multi-scale processing, and
anchor-based predictions. However, their reliance on 2D appearance cues limits their robustness in occluded
environments, where overlapping objects cause localization errors. Although later iterations, such as
YOLOv8 [46] and YOLOv10 [47], introduced anchor-free detection and adaptive feature fusion, 2D models
inherently lack depth perception, making them susceptible to severe occlusions.

3D object detection methods address these limitations by incorporating spatial depth information.
Voxel-based methods, such as VoxelNet [55] and SECOND [56], enable structured 3D feature extraction
using voxel grids, enhancing object localization under occlusion. However, dense voxelization increases
computational cost, limiting real-time applicability. Point-based techniques, including PointNet [57] and
PointNet++ [58], operate directly on raw point clouds, capturing fine-grained geometric details. Yet, they
struggle with sparsity and uneven point distributions, affecting detection accuracy. Hybrid models, such
as PV-RCNN [59] and VoteNet [60], integrate voxel- and point-based features to balance efficiency and
precision, yet occlusion-induced feature loss remains a challenge.

To address the shortcomings of traditional architectures in occlusion-heavy settings, recent works have
explored transformer-based and multimodal fusion paradigms. Transformer-based 3D detectors such as
BEVFormer [61], PETR [62], and DETR3D [63] leverage spatiotemporal and multi-view attention mecha-
nisms to better align features across frames and camera perspectives, enhancing object visibility even under
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partial occlusion. These models encode scene geometry into learnable queries, which interact with image
features to infer precise 3D object representations. Additionally, multimodal fusion networks, including
TransFuser [64] and FusionFormer [65], integrate LiDAR, RGB, and contextual data using advanced fusion
modules such as cross-attention and temporal encoding. By combining the complementary strengths of 2D
appearance and 3D geometry, these models improve detection robustness in complex urban environments.

Beyond occlusion, environmental factors such as fog, rain, and poor lighting further degrade detection
performance. LiDAR-based models are sensitive to point cloud sparsity in adverse weather, while stereo and
ToF-based depth estimation methods suffer from measurement inconsistencies due to reflectance variations.
These challenges highlight the trade-offs between different architectures, necessitating a comparative analysis
to evaluate their effectiveness in occlusion handling, computational efficiency, and real-world deployment.

To aid this comparison, we summarize the core characteristics of each model category–2D, 3D,
transformer-based, and multimodal–in a synthetic overview Table 1, highlighting their respective contribu-
tions and limitations with respect to occlusion handling and sensor fusion. The following section builds on
this comparison to guide future design choices in occlusion-aware object detection.

Table 1: Summary of object detection models: type, contributions, occlusion handling, and sensor fusion

Model Type Key contributions Occlusion handling Sensor
fusion

R-CNN [35] 2D Introduced region proposal
with CNN-based

classification.

Weak–relies on
multiple overlapping

region proposals;
sensitive to clutter.

N/A

Fast R-CNN [36] 2D Shared feature maps improve
speed; RoI pooling

introduced.

Moderate–shared
features help, but RoI
misalignment under
occlusion persists.

N/A

Faster R-CNN [37] 2D Integrated Region Proposal
Network (RPN) for

end-to-end learning.

Moderate–faster and
more robust than

predecessors, but still
suffers from anchor

misalignment.

N/A

Cascade
R-CNN [38]

2D Multi-stage detection with
increasing IoU thresholds.

Strong–improves
robustness against
occlusion through

iterative refinement.

N/A

DetectoRS [39] 2D RFP and SAC improve
multi-scale detection and

adaptability.

Strong–better
boundary detection in

cluttered scenes.

N/A

YOLOv3 [52] 2D Multi-scale anchor-based
detection with FPN.

Weak–limited feature
aggregation leads to
false positives under

occlusion.

N/A

(Continued)
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Table 1 (continued)

Model Type Key contributions Occlusion handling Sensor
fusion

YOLOv5 [44] 2D CSPNet and PANet enhance
feature fusion and inference

speed.

Moderate—better
multi-scale fusion, but

still
appearance-based.

N/A

YOLOv7 [45] 2D ELAN enhances gradient
flow and generalization.

Moderate—effective
for small objects but

still lacks depth
reasoning.

N/A

YOLOv8 [46] 2D Anchor-free, lightweight
with C2f modules.

Moderate—better
flexibility but reduced

precision under
occlusion.

N/A

YOLOv10 [47] 2D Dual-label assignment
improves recall and

alignment.

Strong—robust to
moderate occlusion
via refined matching

strategy.

N/A

EfficientDet [48] 2D EfficientNet backbone +
BiFPN for lightweight

detection.

Moderate—BiFPN
enhances fusion, but
struggles with heavy

occlusion.

N/A

PP-YOLOE [50] 2D CSPRepResNet + PAN +
ESE layers improve spatial

attention.

Strong—task-aligned
head helps refine
predictions under

occlusion.

N/A

VoxelNet [55] 3D Unified voxelization and
feature learning using 3D

convolutions.

Strong—robust spatial
encoding, but affected
by quantization near
occluded boundaries.

Depth
(LiDAR

only)

SECOND [56] 3D Sparse convolutions to
reduce compute load
without losing much

accuracy.

Moderate—improved
speed, less detail in
dense occlusions.

Depth
(LiDAR

only)

PointNet [57] 3D Point-wise feature extraction
without voxelization or grid

structuring.

Weak—lacks local
geometric context;

poor under occlusion.

Depth
(LiDAR

only)
PointNet++ [58] 3D Hierarchical point grouping

with multi-scale abstraction.
Strong—handles

clutter and occlusion
better with localized

features.

Depth
(LiDAR

only)

(Continued)
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Table 1 (continued)

Model Type Key contributions Occlusion handling Sensor
fusion

PV-RCNN [59] 3D Hybrid of voxel and
point-based representations;

RoI-grid pooling.

Strong—fuses coarse
and fine-grained cues,

effective under
occlusion.

Depth
(LiDAR

only)

VoteNet [60] 3D Voting-based proposal
generation directly from

point cloud.

Strong—attention-
enhanced proposals
refine detection in

clutter.

Depth
(LiDAR

only)

BEVFormer [61] Transformer Generates BEV features from
multi-camera input using
spatial cross-attention and

temporal self-attention.

Strong—robust
temporal-spatial

reasoning improves
performance in
cluttered scenes.

Multiview
RGB

(cam-
eras)

PETR [62] Transformer Projects 2D image features
into 3D space using position
encodings, enabling direct
3D detection from images.

Moderate—good
geometric reasoning
but no depth sensor.

Multiview
RGB
only

DETR3D [63] Transformer Performs direct 3D detection
using 2D-to-3D attention, no

voxelization or
post-processing.

Strong—geometry-
aware fusion via

object queries
improves detection

under occlusion.

Multiview
RGB
only

TransFusion [64] Multimodal Two-stage transformer
decoder fusing LiDAR and

RGB via spatially modulated
attention.

Strong—semantic
cues enhance sparse
LiDAR inputs under

occlusion.

LiDAR +
RGB

FusionFormer [65] Multimodal Multi-level BEV fusion with
image and LiDAR, enriched

with temporal memory.

Very
Strong—temporal and

multimodal fusion
enhances robustness.

LiDAR +
RGB

(tempo-
ral)

4 Comparative Analysis of Object Detection
Object detection models are evaluated across diverse datasets and sensor modalities to assess their

robustness, particularly in handling occlusion. This section examines three key aspects: (i) an empirical
analysis of 2D and 3D sensor outputs (4.2), (ii) benchmarking of detection models on standard datasets (4.3),
and (iii) evaluation on occlusion-aware datasets (4.4). By analyzing sensor-based experiments and dataset-
specific evaluations, we aim to highlight the challenges posed by occlusion and the comparative strengths of
different detection methods.
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4.1 Implementation Setup
All experiments were conducted on a high-performance workstation equipped with an Intel Core i7-

14700KF processor featuring 20 cores, 32 GB of memory, and an NVIDIA GeForce RTX 4080 GPU with
16 GB of VRAM. The software stack included Ubuntu 22.04, Python 3.10, PyTorch 2.0.0, and OpenCV 4.7.0.
The models were evaluated in a consistent environment to ensure comparability across different detection
methods and datasets.

For each dataset-specific evaluation, the training and inference configurations are described within
their respective sections. The following subsections detail the sensor-based experiments, benchmarking on
standard datasets, and benchmarking on occlusion-aware datasets.

4.2 Sensor-Based Experiments
The performance of object detection models is inherently influenced by the quality of input data, which

depends on the type of sensor used. This section presents an empirical evaluation of different sensors (2D
cameras, stereo cameras, and LiDAR) to assess their effectiveness in capturing occlusion scenarios. The
analysis provides insights into the strengths and limitations of each modality, serving as a foundation for
evaluating model performance on benchmark datasets.

4.2.1 2D Camera: Canon EOS 1300D
The Canon EOS 1300D was used to capture high-resolution RGB images in urban environments with

varying degrees of occlusion. Despite its image clarity, the absence of depth perception significantly affects
occlusion reasoning.
Experimental Setup:

The experiments included two scenarios: a pedestrian crossing with moving individuals partially block-
ing vehicles (Fig. 33) and a group interaction scene where overlapping human figures (Fig. 34) and objects
created occlusion. The camera was fixed at a constant viewpoint to maintain consistency across frames.

Figure 33: Sequence of occlusion at a pedestrian crossing, showcasing varying levels of occlusion as pedestrians block
vehicles in the background
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Figure 34: Group interaction scenario, highlighting challenges in distinguishing individuals and objects under
overlapping conditions

Observations:
The analysis revealed that occluded objects become indistinguishable due to the lack of depth cues,

making it difficult to infer spatial relationships in complex environments. Lighting variations also introduced
challenges, as shadowed areas and contrast differences reduced feature extraction reliability. Additionally,
the reliance on texture and color alone limited the model’s ability to segment overlapping objects.

The experimental findings reinforce the limitations of 2D-based object detection models, especially in
occlusion-heavy environments where spatial cues are crucial.

4.2.2 Stereo Camera: ZED 2
The ZED 2 stereo camera was tested to assess its ability to reconstruct depth information and enhance

occlusion reasoning. Unlike monocular cameras, the ZED 2 generates depth maps, confidence maps, and
point clouds, facilitating improved object localization in occluded settings.
Experimental Setup:

The ZED 2 was positioned indoors at a height of 1.5 meters, capturing multiple individuals positioned at
different distances to simulate occlusion effects. The depth map, confidence map, and point cloud data were
extracted using the ZED SDK [66].
Observations:

The depth map visualization (Fig. 4) illustrates the camera’s ability to compute depth variations between
objects, effectively distinguishing partially occluded entities. However, low-texture surfaces and reflective
objects introduce errors in depth estimation, as seen in the confidence map (Fig. 35). Calibration plays a
crucial role, as stereo misalignment can degrade spatial accuracy.

The ZED 2 enhances occlusion analysis compared to monocular 2D cameras, yet it remains limited in
highly occluded environments where no visible texture or edges exist in either camera view.
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Figure 35: Confidence map visualization: RGB image (top-left), confidence map (bottom-left), and point cloud (right)
captured by the ZED 2

4.2.3 LIDAR: KITTI Dataset and Point Clouds
The KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute) dataset [67] was used

to evaluate LiDAR-based 3D sensing for occlusion analysis. Unlike cameras, LiDAR sensors capture spatial
structure without relying on color or texture, making them robust against illumination variations.

Observations: LiDAR point clouds effectively capture occluded objects by reconstructing depth-aware
spatial consistency (Fig. 36). However, data sparsity increases with distance, leading to a reduction in
accuracy for small or far objects. Additionally, LiDAR lacks semantic context, making it challenging to
distinguish between object classes without multimodal fusion.

Figure 36: Example from the KITTI dataset: Left: RGB image, Right: Associated point cloud

The KITTI dataset incorporates an occlusion-aware evaluation framework, classifying objects as Easy,
Moderate, or Hard based on occlusion level (Table 2). This structured annotation system provides a
benchmark for assessing object detection models in occlusion-heavy scenarios.
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Table 2: Difficulty division of the KITTI dataset [67]

Difficulty level Minimum box height Maximum occlusion
Easy 40 pixels Fully visible

Moderate 25 pixels Partially occluded
Hard 25 pixels Difficult to identify

The findings from the KITTI dataset highlight the strengths of LiDAR for occlusion handling but also
reinforce the necessity of multimodal fusion, as LiDAR alone lacks fine-grained semantic details.

4.2.4 Discussion
The empirical analysis of 2D, stereo, and LiDAR-based sensors reveals crucial trade-offs in occlu-

sion handling:

• 2D cameras struggle with occlusion reasoning due to missing depth cues.
• Stereo cameras improve occlusion handling but are sensitive to textureless and reflective surfaces.
• LiDAR captures spatial depth but lacks semantic detail, making fusion with RGB data necessary for

robust detection.

These findings directly influence the comparative benchmarking of object detection models in the
following sections. The next part of this study evaluates state-of-the-art 2D and 3D object detection models
across standard datasets (4.3) and occlusion-aware datasets (4.4), analyzing their performance across varying
occlusion levels.

4.3 Benchmarking on Standard Object Detection Datasets
This section evaluates the performance of state-of-the-art 2D and 3D object detection models on

widely adopted benchmark datasets. The goal is to compare detection accuracy, computational efficiency,
and robustness under non-occluded conditions, providing a baseline for further analysis in occlusion-
aware environments.

4.3.1 Experimental Setup
The evaluation of object detection models is conducted using two widely recognized benchmark

datasets: COCO for 2D object detection and SUN RGB-D for 3D object detection. Performance is measured
using standardized object detection metrics, including Average Precision (AP) and IoU, to ensure fair
comparison across different architectures. Additionally, execution time and model size are assessed to
evaluate computational efficiency.

Datasets
COCO Dataset (2D Detection):

The COCO (Common Objects in Context) dataset [68] is a large-scale dataset for 2D object detection,
featuring over 330,000 images with more than 1.5 million annotated instances across 80 object categories. In
our experiments, we used the standard split of 118,287 images for training and 5000 for validation. The test set
(40,670 images) was reserved for performance evaluation. COCO presents a diverse range of object classes,
including “person,” “car,” “dog,” and “chair,” making it a challenging benchmark for evaluating detection
robustness. However, it suffers from notable class imbalance, with some categories like “person” and “car”
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being highly overrepresented, which may bias the model toward dominant classes during training (More
detail in the Appendix A).
SUN RGB-D Dataset (3D Detection):

The SUN RGB-D dataset [69] is a large-scale dataset for 3D object detection, containing RGB images
and depth maps with annotations for 37 object categories. It includes 10,335 training samples and 2855 testing
samples. Capturing indoor scenes like offices and bedrooms, it supports evaluations of 3D models leveraging
both visual and depth modalities. In our experiments, only the 3D modality (point cloud and voxel-based
representations) was used (Appendix A).

Evaluation Metrics
1. Average Precision (AP):

The AP score measures object detection accuracy by computing the area under the precision-recall
curve, formally expressed as:

AP = ∫
1

0
P(R) dR (3)

where P(R) represents precision as a function of recall.
Two common AP variations are considered:
• AP@50: AP computed at an IoU threshold of 0.5, measuring moderate localization accuracy.
• AP@ [0.5:0.95]: Mean AP across multiple IoU thresholds from 0.5 to 0.95 in steps of 0.05, providing

a more rigorous evaluation.
2. Intersection over Union (IoU):

The IoU metric quantifies the overlap between predicted and ground truth bounding boxes:

IoU = Area of Overlap
Area of Union

(4)

where the numerator represents the intersection of predicted and actual bounding boxes, and the
denominator accounts for the total combined area.

3. Precision (P):
Precision measures the proportion of correctly detected objects relative to all detections:

P = TP
TP + FP

(5)

where TP (True Positives) are correct detections, and FP (False Positives) are incorrect detections.
4. Recall (R):

Recall evaluates the model’s ability to detect all ground truth objects:

R = TP
TP + FN

(6)

where FN (False Negatives) are objects that were not detected.
5. Computational Efficiency Metrics:

In addition to detection accuracy, two key computational metrics are reported:
• Execution Time (ms): The average processing time per image or point cloud, indicating real-

time feasibility.
• Model Size (MB): The memory footprint of the trained model, which impacts deployability on

resource-constrained hardware.



Comput Model Eng Sci. 2025;143(3) 2547

4.3.2 Comparative Analysis
This subsection presents a comparative analysis of 2D and 3D object detection models, evaluating

their accuracy, computational efficiency, and real-time feasibility on benchmark datasets. The results
highlight trade-offs between precision and speed, providing insights into the strengths and limitations of
each approach.

Validation Metrics Across Training Epochs:
To evaluate the convergence behavior and intermediate performance of the 2D and 3D object detection

models, validation metrics were analyzed over 50 training epochs. The models were trained using the Adam
optimizer with an initial learning rate of 10−3 and a batch size of 16. Early stopping criteria were based on
validation loss, ensuring optimized training without overfitting. The following figures illustrate the trends in
validation loss and AP for 2D and 3D object detection methods across the validation dataset.

As shown in Fig. 37a,c, validation loss decreases consistently across all models, reflecting effective
learning throughout the training process. Among 2D methods, YOLOv8 and YOLOv10 exhibit the steepest
loss reduction, converging faster than others, such as Faster R-CNN and Cascade R-CNN, which demonstrate
slower declines in loss due to their more complex multi-stage architectures. In the 3D category, VoxelNet
achieves the most rapid loss reduction, outperforming SECOND and PointNet++ in convergence speed.

Figure 37: Validation loss and AP trends for 2D and 3D object detection methods across training epochs. (a) Validation
loss for 2D models. (b) Validation AP for 2D models. (c) Validation loss for 3D models. (d) Validation AP for 3D models

Fig. 37b,d highlights the trends in validation AP across epochs. YOLOv10 achieves the highest AP in 2D
detection, with steady improvement over epochs, reflecting its superior feature extraction and localization
capabilities. In contrast, two-stage detectors such as Cascade R-CNN and DetectoRS improve more gradually
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but still demonstrate competitive AP values by the final epochs. For 3D detection, VoxelNet leads in
validation AP, followed by PV-RCNN, with both benefiting from robust spatial feature encoding. However,
methods like PointNet exhibit slower growth in AP, attributed to their limited ability to capture fine-grained
geometric details in highly complex scenes.

These diagrams illustrate the training process, highlighting the progression of validation loss and AP
metrics across epochs. While they provide insights into the convergence behavior and learning stability of
the evaluated models, the final evaluation and comparison are based on the results obtained from the test
dataset, which are discussed below.

2D Object Detection Methods
The performance of 2D object detection models is assessed on the COCO dataset based on AP@50,

AP@ [0.5:0.95], execution time, and model size. Table 3 summarizes the results.

Table 3: Comparative analysis of 2D object detection methods on COCO dataset

Model AP@50 (%) AP@ [0.5:0.95] (%) Execution time (ms) Model size (MB)
Faster R-CNN [37] 87.2 52.1 120 200

Cascade R-CNN [38] 89.5 55.7 140 210
DetectoRS [39] 91.3 57.8 160 230
YOLOv5 [44] 92.5 58.4 10 20
YOLOv7 [45] 94.3 60.1 8 25
YOLOv8 [46] 95.6 61.5 7 30
YOLOv10 [47] 97.8 64.2 6 32

EfficientDet [48] 90.7 57.3 12 25
PP-YOLOE [50] 93.5 59.8 9 22

YOLOv10 achieves the highest AP@50 (97.8%) and AP@ [0.5:0.95] (64.2%) while maintaining the fastest
inference time of 6 ms, making it highly efficient for real-time applications. The YOLO series consistently
outperforms two-stage methods like Faster R-CNN and Cascade R-CNN, which, despite high accuracy,
suffer from slower inference times. PP-YOLOE and EfficientDet demonstrate a balance between accuracy
and efficiency, making them suitable for resource-constrained deployments.

3D Object Detection Methods

The performance of 3D object detection models is evaluated on the SUN RGB-D dataset. Table 4
presents the results.

Table 4: Comparative analysis of 3D object detection methods on SUN RGB-D dataset

Model AP@50 (%) AP@ [0.5:0.95] (%) Execution time (ms) Model size (MB)
VoxelNet [55] 91.2 60.5 100 150
SECOND [56] 85.6 54.2 120 180
PointNet [57] 80.1 49.5 180 150

PointNet++ [58] 86.2 55.1 160 170
PV-RCNN [59] 90.7 59.2 110 200

VoteNet [60] 89.8 58.4 110 190
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VoxelNet achieves the highest AP@50 (91.2%) and AP@ [0.5:0.95] (60.5%), demonstrating superior
feature extraction from voxelized representations. PV-RCNN closely follows, leveraging a hybrid point-voxel
approach for enhanced detection accuracy. SECOND, while efficient, exhibits a trade-off in accuracy due to
its reliance on sparse convolution. PointNet++ and VoteNet are limited in handling complex 3D structures
but remain competitive for real-time processing.

While models like VoxelNet and PV-RCNN offer high accuracy, they also have relatively large model
sizes (150–200 MB) and execution times (100–110 ms), which may present challenges for deployment in
resource-constrained or real-time applications.

These findings establish a baseline performance comparison for non-occluded settings. The subsequent
section extends this analysis by investigating the impact of occlusion on object detection models, leveraging
occlusion-aware datasets.

4.4 Benchmarking on Occlusion-Aware Datasets
While object detection models achieve impressive results in standard benchmarks, their performance

often degrades significantly in occluded environments. This section evaluates state-of-the-art 2D and 3D
object detection networks on occlusion-specific datasets, highlighting their limitations in handling varying
levels of occlusion.

The evaluation follows the same experimental setup as in Section 4.3, with the models tested under
occlusion-heavy conditions. The datasets used in this benchmarking include KITTI 2D, which contains
natural urban occlusions, and OccludedPascal3D, which explicitly annotates heavily occluded 3D objects
(Appendix A). The objective is to assess how well different detection architectures generalize when exposed
to partial visibility, complex background clutter, and depth ambiguities.

4.4.1 2D Object Detection under Occlusion
The KITTI 2D dataset provides a real-world urban driving environment where occlusions frequently

occur due to vehicles, pedestrians, and street objects. Models trained on standard COCO data often struggle
in KITTI due to occlusion-induced feature loss, depth ambiguities, and overlapping object regions. We used
the official split, consisting of 3712 training images and 3769 test images. Although KITTI is effective for
evaluating occlusions, it also exhibits significant class imbalance, especially for pedestrians and cyclists,
which may lead to lower detection performance for these underrepresented classes.

All models in this evaluation were trained with a batch size of 16 and an initial learning rate of 10−3, using
the Adam optimizer. Training was conducted for 50 epochs with early stopping criteria based on validation
performance. Importantly, the test data used in this evaluation consisted exclusively of hard occlusion cases
to assess the robustness of these models under challenging conditions. Table 5 presents the AP scores for
three object categories (car, pedestrian, and cyclist) at varying occlusion levels.

Table 5: Object detection AP results and inference time on the KITTI 2D hard occlusion subset, evaluating performance
across occluded car, pedestrian, and cyclist classes

Model AP(%) (KITTI 2D—Occluded) Inference time (ms)
Car Pedestrian Cyclist

Faster R-CNN [37] 59.8 55.7 52.6 120.0
Cascade R-CNN [38] 63.1 58.9 54.5 140.0

(Continued)
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Table 5 (continued)

Model AP(%) (KITTI 2D—Occluded) Inference time (ms)
Car Pedestrian Cyclist

DetectoRS [39] 65.7 61.2 57.8 160.0
F-RCNN [70] 61.2 57.8 54.3 45.0

ResNet50-F-RCNN [71] 65.8 59.1 56.2 48.0
MobileNetv2-F-RCNN [72] 47.3 42.6 39.5 35.0

VGG16-F-RCNN [73] 50.4 45.9 40.8 52.0
SSD [74] 58.5 55.1 50.0 40.0

RetinaNet [75] 56.2 53.3 48.7 55.0
YOLOv5 [76] 78.9 76.5 70.8 35.0
YOLOv6 [77] 81.3 77.2 73.1 30.0
YOLOv7 [45] 80.1 75.8 72.4 31.0
YOLOv8 [78] 83.7 81.2 76.4 25.0
YOLOv10 [70] 85.1 80.4 75.8 29.0

EfficientDet [48] 79.5 76.1 71.2 28.0
PP-YOLOE [50] 81.9 78.7 74.0 26.5

The results show a significant drop in AP scores compared to standard datasets due to occlusion-
induced feature loss. YOLOv10 and YOLOv8 maintain the highest detection performance, particularly for
small objects like pedestrians and cyclists, which suffer the most from occlusions. However, anchor-based
models like Faster R-CNN and RetinaNet struggle with overlapping instances, as they rely heavily on region
proposals that fail when object boundaries are unclear.

EfficientDet and PP-YOLOE demonstrate improved performance over older YOLO versions due to their
ability to capture multi-scale features. Nevertheless, even top-performing models exhibit an average 10%–15%
drop in AP compared to non-occluded conditions, underscoring the persistent challenge of occlusion in 2D
object detection.

4.4.2 3D Object Detection under Occlusion
The OccludedPascal3D dataset is specifically designed to evaluate the robustness of 3D object detection

models under severe occlusion conditions, with all test cases featuring hard occlusions. This dataset does
not include training samples; it consists of 8506 occlusion-heavy test cases. Models evaluated on this dataset
were trained using parameters consistent with the KITTI 3D configuration. Only 3D modalities were used
in this evaluation.

Training was conducted using the same parameters as the KITTI dataset, ensuring consistency in
evaluation settings. Table 6 presents the AP scores across nine object categories, showcasing the challenges
posed by occlusion-heavy scenarios.
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Table 6: Object detection AP results for OccludedPascal3D dataset

Model
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SECFPN [79] 57.6 55.4 56.1 54.3 56.7 54.0 56.9 54.8 52.6
PointNet++ [58] 55.9 54.0 54.8 53.5 55.0 52.8 55.1 53.2 51.7

SSN [80] 54.5 52.9 53.6 52.1 54.3 53.9 54.8 52.7 50.5
ResNeXt-152-3D [71] 50.7 49.6 50.9 49.8 51.2 53.0 50.5 49.2 47.8

VoxelNet [55] 74.1 72.5 73.6 71.2 73.4 72.9 73.0 71.5 70.8

VoxelNet remains the strongest performer, leveraging its 3D convolutional feature extraction to retain
spatial information even when significant portions of objects are occluded. However, compared to non-
occluded settings, AP drops by an average of 10%–15%, reinforcing the difficulty of detecting objects with
missing visual data.

Hybrid models like SECFPN and PointNet++ suffer from occlusion, as their reliance on global feature
pooling reduces their ability to infer occluded object parts.

4.4.3 Comparative Analysis of Visual Results under Hard Occlusion
To further emphasize the challenges posed by occlusion in object detection, Fig. 38 showcases the visual

results of selected 2D and 3D detection models on the OccludedPascal3D dataset with hard occlusions.
This visual analysis also serves as a qualitative robustness evaluation, illustrating how occlusion affects
model behavior and where typical detection failures occur, such as false positives, missed detections, and
localization inaccuracies. While this analysis does not quantify false positive/negative rates or occlusion
severity, it provides insight into the relative robustness of different model architectures.

While VoxelNet and SECFPN demonstrate better localization in cluttered environments by leveraging
spatial depth, they still struggle to reconstruct occluded object structures fully in some cases. Conversely,
PP-YOLOE and Cascade R-CNN, although capable of handling simple occlusions, fail to detect objects
accurately in complex overlapping scenarios due to their reliance on 2D appearance features without explicit
depth cues. Among the evaluated models, YOLOv10 displayed better detection results overall, showing
higher robustness in distinguishing occluded objects compared to other 2D approaches. These results
reinforce the need for enhanced fusion strategies and occlusion-aware approaches to improve detection
robustness across varying levels of occlusion.
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Figure 38: Qualitative comparison of object detection results across five models (YOLOv10, PP-YOLOE, Cascade
R-CNN, VoxelNet, SECOND) under challenging scenarios including occlusion, clutter, and varied object types. Each
column corresponds to a specific detection model and is visually color-coded for clarity. Each row presents a different
test scene for a specific occluded class, allowing direct comparison of model behavior under the same conditions

4.4.4 Visual Explainability Analysis
To further support our architectural analysis, we include qualitative visual explanations using two

explainability techniques: Grad-CAM [81] and EigenCAM [82]. These methods highlight the spatial regions
within an image that most strongly influence a model’s predictions, offering insights into model focus
under occlusion.

We selected YOLOv8 for this analysis for two main reasons. First, it achieved the highest AP scores in our
occlusion-aware evaluations (e.g., KITTI 2D Hard), consistently outperforming older anchor-based models
under visual clutter. Second, YOLOv8 serves as the backbone of our proposed FuDensityNet architecture.
While current explainability tools are not yet adapted to multimodal fusion networks that involve joint
LiDAR-image processing, applying them to YOLOv8 offers a proxy for understanding how the base feature
extractor behaves under occlusion–a core aspect of FuDensityNet’s performance.

We applied Grad-CAM and EigenCAM on occlusion-heavy images from urban driving scenes. The
heatmaps produced by both methods provide interpretable cues about the regions that contribute most to
object detection decisions.

Fig. 39 shows that the model attends to semantically meaningful regions such as visible car contours,
pedestrians, and structural edges even in the presence of strong occlusion or clutter. Grad-CAM highlights
more concentrated object zones, while EigenCAM captures broader contextual attention, valuable for
understanding the model’s spatial reasoning.
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Figure 39: Explainability results using Grad-CAM and EigenCAM for YOLOv8 on occlusion-rich scenes. The
highlighted regions correspond to features with high activation contributing to detection outputs. (a, b) Grad-CAM
visualizations for scenes 1 and 2. (c, d) EigenCAM visualizations for scenes 1 and 2. (e, f) Grad-CAM and EigenCAM for
scene 3. (g, h) Grad-CAM and EigenCAM for scene 4. These visual cues confirm the model’s ability to localize relevant
objects even when partially occluded

These explainability results complement our benchmark analysis by visually validating YOLOv8’s
robustness under occlusion and support the design choice of using it as the core feature extractor
in FuDensityNet.

4.5 Discussion
The evaluation on standard datasets (COCO and SUN RGB-D) demonstrates that state-of-the-art 2D

and 3D models achieve high accuracy in non-occluded scenarios, with models like YOLOv10 and VoxelNet
exceeding 90% AP in their respective domains. However, these results degrade significantly when evaluated
on occlusion-aware datasets, highlighting the limitations of single-modal detection methods. In 2D models,
occlusion disrupts feature extraction and object boundaries, leading to misclassification and incomplete
bounding boxes. Similarly, 3D models experience fragmentation in point cloud data, reducing the ability to
reconstruct occluded objects.
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On occlusion-aware datasets (KITTI 2D and OccludedPascal3D), all tested models suffer a 10–20% drop
in AP, with the most affected being anchor-based detectors and point-based 3D methods like Faster R-CNN
and PointNet++. In contrast, single-stage models (YOLO series) and voxel-based approaches (VoxelNet,
PV-RCNN) demonstrate better robustness due to their dense feature representation and hierarchical feature
extraction mechanisms. However, even these approaches fail in severe occlusions, where crucial object details
are entirely missing from the input.

While the paper primarily focuses on standard benchmarks, it is worth noting that the KITTI dataset
includes several crowded urban scenes, especially in “Hard” occlusion cases, which contributed to testing
model robustness under realistic conditions. Additional experiments with FuDensityNet were also con-
ducted on the NuScenes dataset in the context of another study. Although these results are not included
here to avoid overlap, we recognize the need for further evaluation in more dynamic and densely populated
environments, which we highlight as a direction for future work.

Additionally, sensor-specific factors such as calibration noise, variations in resolution, and environ-
mental conditions can affect detection performance and model generalization. Future work will explore
how occlusion-aware models can adapt to diverse sensor configurations and deployment settings to ensure
consistency across real-world applications.

Beyond AP metrics, current evaluation lacks finer-grained robustness indicators such as false posi-
tive/negative rates and bounding box jitter. These indicators are crucial for assessing the reliability of object
detection in dynamic, occlusion-heavy environments. Future work will incorporate these metrics to quantify
not only average detection accuracy but also stability and consistency across frames, offering a deeper
understanding of model behavior under partial visibility and motion.

These findings emphasize the necessity of multimodal fusion strategies that integrate 2D and 3D
modalities to compensate for feature loss caused by occlusion. Our proposed multimodal occlusion handling
network, FuDensityNet [12], successfully combines RGB and LiDAR data, leveraging their complementary
strengths to enhance occlusion robustness. However, reliance on LiDAR and other 3D sensors introduces
scalability and cost limitations, making large-scale deployment challenging. This constraint motivates an
alternative approach: depth extraction from 2D images, which offers a more cost-effective and scalable
solution. The next section explores depth estimation as a perspective, discussing its feasibility as a substitute
for LiDAR and its potential integration into multimodal fusion strategies for improved occlusion handling.

In line with this focus, the present study offers a qualitative assessment of model efficiency, grounded in
architectural characteristics and supported by referenced benchmarks. While detailed runtime metrics such
as floating point operations per second (FLOPs), frames per second (FPS), or memory consumption [83] are
not reported in this version, these aspects will be addressed in future work to extend the current analysis and
further support real-world deployment [84] considerations.

To complement the evaluation on standard datasets, several models discussed in this work, including
FuDensityNet, were also tested on a confidential dataset provided by Infrabel, Belgium’s national rail-
way infrastructure manager [85]. This dataset includes real-world railway scenes involving construction
equipment and maintenance activities, characterized by dynamic interactions, environmental variability,
and significant occlusion challenges. Although the original dataset is confidential and cannot be shared, a
simulated environment created in Unity is provided to visually convey the types of occlusion-heavy scenarios
and operational contexts encountered (Figs. 40 and 41) .
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Figure 40: Simulated representation of the Infrabel dataset environment, illustrating railway infrastructure, construc-
tion equipment, and typical occlusion scenarios used for real-world model testing

Figure 41: Dataset statistics of the simulated Unity environment: (a) Distribution of action durations (in seconds); and
(b) Class distribution of occlusion-heavy industrial interactions including worker types and vehicle classes [86]

The simulation, developed using the Unity engine, is intended solely as an illustrative visual aid and was
not used in training, testing, or model evaluation. It features four fixed camera viewpoints under daytime
lighting conditions (no nighttime scenes), simulating a partially cloudy to sunny weather environment.
The scenes involve various real-world elements including a passing train on an active railway line, oper-
ational engines, maintenance workers, and environmental clutter such as trees, rocks, and construction
materials. Fig. 41 provides additional insights into the simulated dataset, showing the distribution of action
durations and the class distribution of occlusion-prone interactions. Although the simulation does not
include precise occlusion metrics or detailed lighting variability, it effectively represents the spatial and
operational diversity of the Infrabel dataset, enhancing the reader’s understanding of the testing context.
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5 Perspective: Depth Estimation as an Alternative to 3D Sensors
Occlusion handling remains a fundamental challenge in object detection, particularly for 2D-based

models, where missing depth cues hinder accurate localization. Traditional solutions rely on LiDAR and
stereo cameras to provide explicit depth information, enabling improved spatial reasoning. However, these
sensors introduce significant cost and scalability constraints, limiting their widespread deployment. As an
alternative, depth estimation from monocular RGB images offers a promising approach to extracting 3D
spatial structure while reducing reliance on specialized hardware. This section explores depth estimation
techniques, their integration within FuDensityNet, and their potential impact on occlusion handling.

5.1 Monocular Depth Estimation
Monocular depth estimation aims to infer depth directly from single RGB images, leveraging deep

learning to capture scene geometry. Unlike LiDAR-based methods, monocular depth estimation is entirely
passive, does not require additional sensors, and can be deployed on standard RGB cameras, making it a
scalable alternative for object detection in occluded environments.

Several deep-learning-based methods have demonstrated state-of-the-art performance in monocular
depth prediction:

• MiDaS: A robust scale-invariant depth estimation model developed by Intel [9]. It leverages a
transformer-based architecture trained on a diverse dataset to generalize across different domains.

• AdaBins: A model that employs an adaptive binning strategy to improve depth estimation resolution,
enhancing accuracy in fine-grained object structures [10].

• DepthFormer: A transformer-based model that introduces self-attention mechanisms to refine spatial
depth predictions, improving generalization in cluttered and occluded scenes [87].

Despite their advancements, monocular depth estimation methods face several challenges:

• Scale Ambiguity: Unlike stereo or LiDAR-based methods, monocular depth estimation lacks absolute
scale information, leading to inconsistencies in metric depth values.

• Occlusion Boundaries: Depth discontinuities occur in heavily occluded regions, reducing predic-
tion accuracy.

• Generalization Issues: The accuracy of learned depth models depends on the training data distribution,
making them sensitive to domain shifts.

Given these constraints, depth estimation alone is insufficient for robust occlusion handling. However,
integrating depth cues with multimodal fusion strategies can mitigate these issues, forming the foundation
of our proposed FuDensityNet depth-aware pipeline.

5.2 Application in FuDensityNet: A Future Direction
The updated FuDensityNet pipeline (Fig. 42) introduces an adaptive multimodal framework that

dynamically selects the processing strategy based on the available input data. The system first determines the
number of inputs and their dimensionality (2D or 3D) to establish the appropriate processing path. If only a
single 2D RGB image is provided, monocular depth estimation is applied to generate a depth map, which is
then converted into a 3D point cloud. If both RGB and 3D point cloud data are available, direct multimodal
fusion is performed in the FusionNet-YOLOv8 backbone. Once the data type is determined, preprocessing
is applied accordingly, where 2D images undergo standard enhancement techniques, while 3D point clouds
are processed through occlusion rate analysis and density estimation.
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The occlusion rate (OR) is then computed to assess the level of visual obstruction in the scene. This OR
value acts as a decision criterion for model selection. If the occlusion rate exceeds a predefined threshold, the
data is processed using the FusionNet-YOLOv8 network, which integrates multimodal features to enhance
occlusion-aware detection. Conversely, if occlusion remains low, a state-of-the-art 2D detection network is
employed for efficiency. By incorporating an occlusion assessment mechanism, the updated FuDensityNet
architecture ensures an adaptive detection pipeline that dynamically balances computational efficiency and
occlusion robustness.

Figure 42: Updated FuDensityNet processing pipeline. The system dynamically selects between monocular depth
estimation, direct point cloud processing, and multimodal fusion depending on sensor availability and occlusion rate
assessment
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This architecture enables flexible adaptation to varying sensor configurations while optimizing object
detection in occlusion-heavy scenarios. The integration of depth estimation as a fallback mechanism reduces
reliance on expensive 3D sensors, making FuDensityNet a scalable solution for real-world applications where
occlusion remains a persistent challenge.

5.2.1 Depth Estimation
To estimate depth maps from 2D images, we employ the MiDaS (Mixed Depth Scale) model developed

by Intel [9], a state-of-the-art deep neural network architecture. MiDaS is designed to extract complex visual
features from RGB images and infer depth relationships using contextual and geometric cues. It utilizes
supervised learning on diverse datasets, incorporating advanced regularization techniques to ensure high
generalization capabilities across varying environments. This robustness makes MiDaS particularly effective
for real-world applications where explicit depth sensors are unavailable or costly.

The depth maps generated by MiDaS act as essential spatial cues, enabling the reconstruction of 3D
scenes. By converting 2D images into depth representations, the model enhances the geometric understand-
ing required for addressing occlusion challenges in object detection tasks. The depth estimation process
bridges the gap between appearance-based detection and spatial reasoning, laying the groundwork for point
cloud generation.

5.2.2 Point Cloud Generation
After obtaining the depth map, we generate corresponding 3D point clouds as a geometric represen-

tation of the scene. This transformation leverages the camera’s intrinsic parameters and pixel coordinate
adjustments, as outlined below:

• Camera Parameters: The intrinsic parameters include the focal length ( f ) and the principal point
coordinates (cx , cy), which are critical for projecting pixel coordinates into 3D space.

• Pixel Coordinates: Each pixel is represented by its horizontal (u) and vertical (v) coordinates in the
2D image.

• Depth Map: The depth value D(u, v) is derived from the MiDaS model, representing the distance of
each pixel from the camera.

• 3D Coordinate Calculation: Using the depth map and intrinsic parameters, the spatial coordinates (X,
Y, Z) are computed as follows:

Z = D(u, v) (7)

X = (u − cx) ⋅ Z
f

(8)

Y =
(v − cy) ⋅ Z

f
(9)

The Eqs. (7)–(9) convert 2D image data into 3D spatial points, producing a point cloud that captures
the scene’s geometric structure. This transformation is crucial for bridging the gap between 2D imaging and
3D spatial understanding, providing depth-enhanced features to improve occlusion-aware object detection.

By integrating depth estimation and point cloud generation, the proposed approach enables the use of
depth-aware features to mitigate occlusion challenges in environments where explicit 3D sensors may not be
feasible. This process highlights the potential of leveraging learned depth to enhance spatial reasoning and
robustness in object detection systems.
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5.2.3 Integration into the Fusion Network
The point clouds generated from monocular depth estimation are integrated into FuDensityNet’s

FusionNet module, replacing or complementing LiDAR inputs in cases where LiDAR is unavailable. Key
advantages include:

• Enhanced occlusion reasoning: Depth-based point clouds provide structural cues to reconstruct
occluded object parts.

• Reduced sensor dependency: The system remains operational in the absence of LiDAR or stereo cam-
eras.

• Scalability across platforms: The approach supports deployment on low-cost devices where LiDAR
is infeasible.

5.2.4 Visualization
Visualizing the process of point cloud generation allows us to verify the accuracy and coherence of the

3D reconstruction. Fig. 43 illustrates an example of the visualization pipeline, including the original RGB
image, the estimated depth map, and the corresponding generated point cloud.

Figure 43: Visualization of the point cloud generation process: (a) Original RGB image showcasing the captured scene,
(b) Estimated depth map derived from the RGB image, (c) Generated point cloud constructed using depth information
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This visualization demonstrates how depth information derived from 2D images can be effectively
transformed into detailed 3D point clouds, providing a comprehensive representation of the scene for
advanced computer vision tasks.

5.3 Optimization and Future Perspectives
While depth-driven occlusion handling presents several advantages, optimizing its integration remains

essential for robust performance. Future work will focus on:

• Point Cloud Density Reduction: Ensuring optimal balance between point cloud sparsity and accuracy,
minimizing redundancy while preserving fine-grained occlusion details.

• Testing on the FuDensityNet Model: Evaluating the depth-enhanced pipeline’s impact on occlusion-
aware object detection.

• Model Update and Fine-Tuning: Adapting FusionNet to effectively handle depth-derived point clouds,
refining fusion mechanisms for improved accuracy.

In summary, the enhanced 2D-driven approach in FuDensityNet provides a scalable, cost-effective
alternative to explicit 3D sensors while maintaining robust occlusion handling capabilities. By leveraging
depth estimation as a multimodal extension, the model adapts dynamically to sensor availability, reinforcing
its applicability in real-world occlusion scenarios.

6 Conclusion
This work provides a comprehensive evaluation of state-of-the-art 2D and 3D object detection models,

which are not specifically designed to address occlusions but are widely used for general object detection
tasks. The study investigates the extent to which these models can handle occlusion scenarios and evaluates
the necessity of transitioning to 3D detection approaches for improved performance in occlusion-heavy
environments. Furthermore, the feasibility of replacing 3D sensors with depth estimation techniques is
explored, offering insights into cost-effective alternatives for enhancing object detection under occlusion.

This study systematically analyzed the impact of occlusion on 2D and 3D object detection models,
benchmarking them across standard and occlusion-aware datasets. Our findings demonstrate that occlusion
significantly reduces detection performance, particularly in 2D models, which experience an average AP
drop of 10%–15% on occlusion-heavy datasets compared to non-occluded conditions. Despite their efficiency,
2D detectors struggle to resolve severe occlusions due to their lack of depth perception, with Faster R-CNN
and RetinaNet showing up to a 20% drop in AP for small occluded objects like pedestrians and cyclists.
Conversely, 3D models, such as VoxelNet, exhibited a lower but still notable performance degradation of
12%–15%, confirming that while depth cues mitigate occlusion effects, they do not eliminate them entirely.

To address these challenges, we introduced the updated FuDensityNet framework, which integrates
depth estimation as a scalable alternative to 3D sensors. Our proposed approach dynamically selects between
sensor-based depth input (if available) and monocular depth estimation (if only 2D data is provided),
ensuring flexible adaptation to different sensor configurations. This enhances the practical applicability of
detection systems, reducing reliance on expensive LiDAR setups while maintaining competitive detection
accuracy. Preliminary results indicate that leveraging depth estimation for point cloud generation could lead
to a potential 50%–60% cost reduction in sensor requirements without significantly sacrificing occlusion
handling performance.

While depth estimation presents a promising alternative, its effectiveness in extreme occlusion scenarios
requires further study. The accuracy of estimated depth maps, their generalization to diverse environments,
and their integration into multimodal fusion networks remain open challenges. Furthermore, achieving
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real-time inference within hardware-limited settings and improving occlusion robustness in dynamic and
densely populated scenes remain critical areas for future exploration. In addition, although explainability
techniques such as Grad-CAM or SHAP are not used in this study, we recognize their potential in
supporting architectural decisions, especially for interpreting occlusion-related detection behavior. We plan
to incorporate such techniques in future evaluations of FuDensityNet to better justify design choices. In our
future work, we will refine depth-aware fusion strategies, evaluate the robustness of learned depth across
real-world datasets, and optimize computational trade-offs to achieve real-time occlusion handling without
specialized hardware.

Beyond the scope of 2D and 3D object detection, recent advances in multimodal fusion suggest
that combining additional input modalities, such as thermal, radar, or inertial measurements, can further
enhance detection robustness under occlusion. Several recent works [88,89] have demonstrated that these
complementary sensors help disambiguate overlapping or partially visible objects, particularly in adverse
conditions such as fog, darkness, or motion blur.

In parallel, vision-language models (VLMs) [90] are emerging as powerful tools that fuse textual context
with visual information. This paradigm introduces semantic awareness into the perception pipeline. For
example, information about the time of day, weather conditions, or special events (e.g., holidays) could be
provided in text form and integrated with image-based detection to guide decision-making in occlusion-
prone scenarios.

Furthermore, large vision models (LVMs) [91], trained on diverse data at scale, are being explored as
unified architectures capable of adapting to multiple visual tasks with minimal task-specific tuning. These
models represent a promising step toward generalizable detection systems that can maintain robustness
across varying modalities, scenes, and sensor configurations. We identify these multimodal directions as
exciting prospects for future research.
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Appendix A Dataset Analysis and Per-Class Evaluation
Appendix A.1 Dataset Class Distribution and Occlusion Relevance
Appendix A.1.1 COCO Dataset

The COCO dataset comprises 80 diverse object categories. However, class distribution is uneven,
with dominant classes such as person and car appearing significantly more frequently than rare categories
like toaster or hair drier (Fig. A1). This imbalance can bias training, leading to reduced accuracy for less-
represented classes. Moreover, while COCO is a strong benchmark for general object detection, it lacks a
focus on occluded scenarios, limiting its utility in occlusion-aware evaluations.

Figure A1: Class distribution of the COCO dataset. The imbalance between dominant and rare categories is clearly
visible

Appendix A.1.2 KITTI Dataset
KITTI is widely used for autonomous driving tasks and provides annotated images across three

categories: car, pedestrian, and cyclist. As visualized in Fig. A2, there is a substantial class imbalance, with
car being the most represented. This uneven distribution poses a challenge, particularly in occluded scenes
where small, underrepresented objects like cyclists are harder to detect. The dataset’s hard occlusion subset
was exclusively used for evaluation to assess robustness.
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Figure A2: Class distribution in KITTI dataset showing high imbalance in favor of cars

Appendix A.1.3 SUN RGB-D Dataset
SUN RGB-D provides indoor scene annotations across 37 object categories. Unlike COCO or KITTI,

it features a relatively balanced class distribution, with the top nine categories ranging from approximately
2700 to 3800 images each (Fig. A3). This makes it a reliable benchmark for 3D detection models without
the confounding factor of imbalance, though occlusions here are generally mild compared to KITTI or
OccludedPascal3D.

Figure A3: SUN RGB-D dataset class distribution showing relative balance among top categories

Appendix A.1.4 OccludedPascal3D Dataset
OccludedPascal3D is specifically designed to evaluate robustness under hard occlusions. It includes

8506 test samples equally distributed across nine classes. As shown in Fig. A4, each category contains roughly
the same number of samples, ensuring class balance. This uniformity allows fair comparison of model
performance without imbalance bias, especially under challenging visibility conditions.
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Figure A4: Balanced class distribution in OccludedPascal3D dataset

Appendix A.2 Per-Class AP Evaluation for COCO and KITTI Datasets
This section provides a detailed breakdown of per-class AP scores for selected object detection models

evaluated on the COCO and KITTI datasets. The goal is to highlight the effect of class imbalance on model
performance and underscore the need for strategies to mitigate it.

To account for variability across repeated runs, standard deviation values were computed for each class
and used to generate error bars in the visualizations. These error bars reflect the consistency of detection
performance across runs and help identify classes where predictions are unstable due to imbalance or
dataset complexity.
Appendix A.2.1 COCO Dataset—Per-Class AP Results

The COCO dataset, while extensive and widely used, exhibits significant class imbalance. For example,
frequently occurring classes such as person and car tend to dominate training, whereas rarer classes like chair
and dog are underrepresented. Fig. A5 presents the per-class AP results for four prominent models: YOLOv5,
YOLOv7, YOLOv8, and YOLOv10, on a subset of COCO categories.

To incorporate statistical insight, we computed the standard deviation σ (Eq. (A1)) of AP scores over
three repeated inference runs per model, for each object class. This provides a measure of variability and
confidence in the reported performance:

σ =
�
��� 1

n

n
∑
i=1
(APi − ĀP)2 (A1)

where ĀP represents the average precision across runs. These error bars are visualized in the diagrams to
reflect performance consistency across categories.

To help interpret these values, Table A1 summarizes standard deviation thresholds and their implica-
tions for object detection performance:



Comput Model Eng Sci. 2025;143(3) 2565

Figure A5: Per-class AP scores (with standard deviation) for selected models on COCO dataset

Table A1: Interpretation of standard deviation (σ) in detection performance

Standard deviation (σ) Interpretation Detection implication
σ < 2% Very low variability High stability and model confidence

2% ≤ σ < 4% Moderate variability Acceptable consistency, minor fluctuations
σ ≥ 4% High variability Unstable predictions, may indicate occlusion or

class imbalance effects

Summary: Across the evaluated models, YOLOv10 achieved the highest average AP of 78.4% and
the lowest standard deviation of ±2.7%, indicating both strong detection capability and high consistency
across object categories. YOLOv8 followed with an average AP of 75.1% and a slightly higher standard
deviation of ±3.1%, reflecting solid generalization but slightly more fluctuation across classes. Frequent
classes such as person and car exhibited high AP values (above 85%) with very low variability (e.g., ±1.2%
for person), aligning with the “very low variability” category as defined in Table A1, and thus reflecting high
model confidence.

In contrast, underrepresented categories like dog and chair not only showed lower AP scores (below
60%) but also higher standard deviations reaching ±5.4%, which corresponds to the “high variability”
range. This implies less stable predictions and potential model uncertainty. Such inconsistency becomes
especially critical in occlusion scenarios, where rare classes, already underrepresented in training, face
compounding detection challenges. Occlusion amplifies visual ambiguity, leading to increased false negatives
and localization drift for these vulnerable classes. These findings underscore the need for occlusion-aware
and class-balanced training strategies to improve detection fairness and robustness.



2566 Comput Model Eng Sci. 2025;143(3)

Appendix A.2.2 KITTI Dataset—Per-Class AP Results
The KITTI 2D dataset is known for its urban driving scenes but suffers from class imbalance, most

notably, the car category is vastly overrepresented compared to pedestrian and cyclist. This affects the
detection reliability of smaller or less frequent classes under occlusion-heavy conditions. The AP results for
each class across various models are presented in Fig. A6.

Figure A6: Per-class AP scores (with standard deviation) for selected models on KITTI dataset

Summary: In the KITTI dataset evaluation, YOLOv10 again demonstrated the strongest performance,
achieving an average AP of 80.4% with a low standard deviation of ±2.3%, indicating robust and stable
detection across the car, pedestrian, and cyclist classes. YOLOv8 followed closely with an average AP
of 78.6% and a slightly higher deviation of ±3.0%. The car class, being highly represented, consistently
produced the highest AP values (over 85%) and the lowest variability (±1.1%), while the pedestrian and
cyclist categories exhibited weaker detection (with APs often below 75%) and more variability (up to ±4.8%).
These discrepancies in standard deviation signal the instability of model predictions for underrepresented
and visually ambiguous classes. Under occlusion-heavy conditions, these weaker classes become even more
prone to detection failure. The compounded effect of class imbalance and occlusion reduces detection
reliability, particularly for smaller or less frequent classes, reaffirming the need for architectures that integrate
robustness mechanisms, including data augmentation, weighted loss functions, and fusion with geometric
depth cues.
Appendix A.2.3 Analysis and Perspective on Mitigation Strategies

The statistical analysis, including error bars computed from standard deviation across multiple inference
runs, confirms that class imbalance not only reduces average precision for rare categories but also increases
prediction variability. As shown in Table A1, higher standard deviations indicate less stable detections,
particularly in underrepresented classes such as dog, chair, cyclist, and pedestrian. These fluctuations, when
combined with occlusion, further degrade reliability, leading to missed detections and poor localization.
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Although the current study does not apply dedicated mitigation techniques, several well-established
strategies remain relevant and promising:

• Weighted Loss Functions: Assign higher loss weights to rare classes during training to counteract
data imbalance.

• Data Augmentation: Use oversampling, synthetic data, or adversarial occlusions to diversify underrep-
resented classes.

• Focal Loss: Focus training on hard-to-classify or highly variable examples, particularly where standard
deviation is elevated.

In future work, these approaches will be explored to enhance both average detection accuracy
and prediction consistency across all object categories, especially under occlusion-heavy and class-
imbalanced conditions.
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