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ABSTRACT: Asthma is the most common allergic disorder and represents a significant global public health problem.
Strong evidence suggests a link between ascariasis and asthma. This study aims primarily to determine the prevalence
of Ascaris lumbricoides infection among various risk factors, to assess blood parameters, levels of immunoglobulin E
(IgE) and interleukin-4 (IL-4), and to explore the relationship between ascariasis and asthma in affected individuals.
The secondary objective is to examine a fractal-fractional mathematical model that describes the four stages of the life
cycle of Ascaris infection, specifically within the framework of the Caputo-Fabrizio derivative. A case-control study
was conducted that involved 270 individuals with asthma and 130 healthy controls, all of whom attended general
hospitals in Duhok City, Iraq. Pulmonary function tests were performed using a micromedical spirometer. The presence
of Ascaris lumbricoides antibodies-Immunoglobulin M (IgM), Immunoglobulin G (IgG), and Immunoglobulin E
(IgE)-was detected using ELISA. Blood parameters were analyzed using a Coulter counter. The overall infection rate
was (42.5%), with the highest rates observed among asthmatic men (70.0%) and rural residents (51.4%). Higher
infection rates were also recorded among low-income individuals (64.3%) and those with frequent contact with the
soil (58.6%). In particular, infected individuals exhibited a significant decrease in red blood cell count and hemoglobin
concentration, while a marked increase in white blood cell count was recorded. In addition, levels of Immunoglobulin
E (IgE) and interleukin-4 were significantly higher in the infected group compared to the controls. Effective disease
awareness strategies that incorporate health education and preventive measures are needed. Exposure to Ascaris has
been associated with reduced lung function and an increased risk of asthma. More research is required to elucidate the
precise mechanisms that link Ascaris infection with asthma. Furthermore, the existence and uniqueness of solutions
for the proposed model are investigated using the Krasnosel’skii and Banach fixed-point theorems. The Ulam-Hyers
and Ulam-Hyers-Rassias stability types are explained within the framework of nonlinear analysis in Łp-space. Finally,
an application is presented, including tabulated results and figures generated using MATLAB to illustrate the validity
of the theoretical findings.
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1 Introduction
Ascaris lumbricoides is a soil-transmitted parasite responsible for ascariasis. It ranks as the most preva-

lent parasitic helminth infection globally and causes significant health problems in humans, including lung
diseases and intestinal obstructions [1]. The impact of this infection is particularly severe in impoverished
populations that do not have access to clean water, sanitation, and hygiene facilities, especially in tropical
and subtropical regions, due to the parasite’s life cycle relying on fecal soil contamination [2].

Beyond its substantial health implications, the migration of Ascaris larvae through the lungs can
contribute to various pulmonary diseases, including asthma. In addition, chronic intestinal ascariasis can
result in growth stunting, malnutrition, and severe abdominal pain [3]. The immune response to this parasite
plays a role in the pathogenesis of allergic diseases, studies indicating that antibody responses to its proteins
are linked to asthma symptoms [4]. According to [5], recent advances focus on understanding tissue-specific
Type 2 immune responses to helminths, including the discovery of immune cells and cytokine pathways that
contribute to immunity, tissue repair, and tolerance to parasites, as well as comparisons with immune-related
diseases such as asthma and allergies. Upon exposure to allergens, crosslinking of IgE triggers the release of
histamine, leukotrienes, and prostaglandins, leading to bronchoconstriction [6].

Pulmonary function tests are commonly used to assess lung function by measuring lung volumes and
capacities. The connection between ascariasis and asthma remains unclear and is currently being investigated
in regions that transition from high to low prevalence of helminthiasis [7]. Previous studies in Iraq have
examined various aspects of ascariasis [8–10], while global research has been conducted in Brazil, Colombia,
and Europe [11–13].

Recently, mathematical models and fractional calculus have been widely used to analyze the spread
and control of infectious diseases, providing insight into epidemic dynamics, as demonstrated in studies on
dengue infection [14] and breast cancer [15]. In [16], the authors analyze the dynamics of monkeypox in
the UK and evaluate the impact of vaccination using a fractional mathematical model based on real data
to inform effective disease control strategies. The stability of the Bcl-2/Bax ratio over time in reproductive
cancer has been studied using Atangana-Baleanu fractional derivative operators, along with an investigation
of the effect of the ABT-737 inhibitor on mitochondrial apoptosis through mathematical modeling and
numerical simulations [17]. A fractal-fractional cancer model has been developed to examine the interactions
between stem cells, effector cells, and tumor cells, both with and without chemotherapy, as well as to assess
the role of chemotherapy in cancer treatment [18]. In addition, the study in [19] explored the effectiveness
of seasonally timed treatment programs to control Ascaris lumbricoides infections using mathematical
modeling for the four different stages of the life cycle of A. lumbricoides, intending to educate public health
strategies by optimizing treatment schedules and maximizing the impact of intervention.

Over the years, fixed-point theory has become a crucial and effective tool for studying nonlinear
phenomena. For example, the authors of [20] discussed that the Banach theorem has been utilized to establish
the uniqueness, stability, and existence of stable solutions for the fractional-order mathematical model for
cervical cancer in the sense of the Caputo-Fabrizio operator. Various fixed-point theorems and stability
analyzes have been used to determine the conditions under which solutions exist and remain unique for
different types of fractional differential problems; see [21–24]. Recently, stability has been an important
topic in differential equations and guaranteeing that there is a close and exact solution. Several articles have
been published related to Ulam-Hyers and Ulam-Hyers-Rassias stability; see [25–28]. Some researchers have
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begun to focus on the existence and stability of p-integrable solutions under specific conditions, with the
aid of Hölder’s inequality, which helps prove the continuity or boundedness of operators in the space. In
particular, the existence and uniqueness results of fractional differential equations with boundary conditions
when (0 < α ≤ 1) in Łp space have been studied in [29,30]; for additional details, one can refer to [31–33].

Motivated by the above work, the objective of this study is to assess the relationship between ascariasis
and asthma in humans. This research aims to increase public awareness about the health complications
associated with this parasite, highlighting the importance of risk reduction and early treatment. Furthermore,
by using fresh mathematical techniques, this study generalizes the model presented in [19] using the
fractal-fractional Caputo-Fabrizio (FFCF) derivative of order α as follows:

FFCF
D

α ,c J(η) = BL(η) − ( 1
τ1

+ M1) J(η),

FFCF
D

α ,c M(η) = 1
τ1

J(η) − M2M(η),

FFCF
D

α ,c E(η) = sN λM(η) − ( 1
τ2

+ γ1) E(η),

FFCF
D

α ,c L(η) = 1
τ2

E(η) − (BN + γ2)L(η), (1)

with the initial conditions

J(0) = J0, M(0) = M0, E(0) = E0, L(0) = L0.

Here, we present an analysis of the existence and uniqueness of a fractal-fractional Ascaris lumbricoides
mathematical model by applying Banach’s contraction mapping principle and Krasnosel’skii’s fixed point
theorem, along with the Hölder inequality in the Łp space. Furthermore, the stability of the model
was investigated under sufficient conditions through the Ulam-Hyers and Ulam-Hyers-Rassias stability
approaches. To the best of our knowledge, this is the first attempt to investigate the existence and stability of
a fractal-fractional Ascaris lumbricoides model in Łp space.

The structure of the manuscript is as follows: Section 1 presents the introduction and motiva-
tion. Section 2 outlines the materials and methods, while Section 3 displays the results. The definitions and
fundamental concepts relevant to this study are introduced in Section 4. The fractal-fractional extension
of the mathematical model for Ascaris infection is formulated in Section 5. The existence and uniqueness
theorems for the fractal-fractional model are established in Section 6. The Ulam-Hyers and Ulam-Hyers-
Rassias stability is analyzed in Section 7. Finally, the discussion and conclusion are provided in Sections 8
& 9, respectively.

2 Materials and Methods
This section outlines the study design, including participant grouping, laboratory procedures to

detect ascariasis, serological tests for anti-Ascaris lumbricoides antibodies, data collection, and statistical
analysis methods.

Patients: This study included 270 individuals with asthma and 130 controls who visited general hospitals
in Duhok city, Iraq. A specialist physician confirmed the asthma diagnosis prior to the enrollment of patients
in the study. The participants ranged in age from 15 to 80 years. A questionnaire was developed to collect
information from each participant.
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Pulmonary function tests: Pulmonary function tests (PFT) were conducted on all subjects using
a MicroMedical Spirometer (MIR SpirolabIII Diagnostic Spirometer, Ltd., England), which is effective
for accurate diagnosis of respiratory conditions such as asthma and pulmonary diseases. All participants
underwent spirometry and received instructions to forcefully and continuously exhale into the instrument’s
mouthpiece. This test was performed as a confirmatory diagnosis for asthma.

Blood Sample Collection: A volume of five milliliters of venous blood was collected from participants
using a sterile syringe. One milliliter of this blood was placed in a tube containing anticoagulants for
blood parameter analysis using the Coulter Count machine (Swelab, Germany). In [34], the remaining four
milliliters was transferred to a second tube without anticoagulants, allowed to clot for 20 min, and then
centrifuged for 10 min at 3000 rpm to obtain the serum. The collected serum was stored in sterile Eppendorf
tubes at −20○C until it was needed for analysis in [35].

Measurement of blood parameters by Coulter Count machine: A volume of one milliliter of the blood
sample was placed into a tube containing anticoagulant and analyzed using the Coulter Count machine to
assess blood parameters [36].

Parasite examination: This study assessed A. lumbricoides using anti-A. lumbricoides IgM (AFG
Bioscience, USA) and anti-E. granulosus IgG antibodies (AFG Bioscience, USA).

Serum total IgE measurement: The measurement of total IgE levels in serum was conducted using an
ELISA kit (AFG Bioscience, USA), which allows for a quantitative assessment of human IgE in vitro. The
procedure was carried out in accordance with the manufacturer’s guidelines.

Measurement of IL-4 using ELISA: In this study, interleukin-4 was measured using a kit (AFG
Bioscience, USA), following the manufacturer’s guidelines. The optical density was recorded at 450 nm with
a BioTek ELISA plate reader (USA). The procedure was carried out following the manufacturer’s guidelines.

Inclusion criteria: Subjects who agreed to participate in the current study were included.
Exclusion criteria: Individuals who declined to participate in this study, along with those suffering from

infectious, non-infectious, chronic, and autoimmune diseases, were excluded.
Statistical analysis: All data were analyzed using the statistical program R and a chi-square test.

Descriptive statistics included means, standard deviations, and ranges for numerical variables, along with
frequencies (n) and percentages (%) for categorical data. The results are presented in tables and histogram
charts. A p-value of less than 0.05 was considered statistically significant.

3 Results
In this section, the results of the study are presented, including the distribution of ascariasis infection

among different groups, the serological findings, and statistical analysis of the data.
A total of 400 subjects aged 15 to 80 years participated in this study, with 170 (42.5%) found to be infected

with ascariasis. Among the infected cases, 45 individuals (26.5%) tested positive for anti-A. lumbricoides
IgM antibodies, while 125 (73.5%) had IgG antibodies. The asthmatic group included 270 subjects and 130
controls. Within the asthmatic patients, 140 (51.9%) tested positive for ascariasis, while only 30 infections
(23.1%) had been detected in the control group, as explained in Table 1.

Table 2 displays the distribution of various demographic characteristics between asthmatic and control
subjects. Concerning asthmatic patients, the majority were male, with 170 cases (63.0%), while females
made up 100 cases (37.5%). The age group with the highest occurrence was 48 to 58 years, accounting for
(37.0%) of the cases, whereas only 8 cases (3.0%) observed in the 70 to 80-year age range. The data indicated
that 160 cases (59.3%) from urban areas, in contrast to 110 cases (40.7%) from rural locations. A notable
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proportion of asthmatic patients had completed secondary education, totaling 190 cases (70.4%), compared
to 16 cases (5.9%) among individuals with lower educational qualifications, within the asthmatic cohort,
160 cases (59.2%) ported having a low income, while 35 patients (13.0%) reported having a high income. In
addition, 150 cases (55.6%) reported did not wash their hands before meals, while (44.4%) practiced hand
washing. Finally, 140 asthmatic patients (51.9%) had exposure to soil, while 130 cases (48.1%) did not.

Table 1: Frequency of ascariasis among examined subjects

Individuals No. Seropositive ascaris Seronegative ascaris
Asthmatic patients 270 140 (51.9%) 130 (48.1%)

Controls 130 30 (23.1%) 100 (76.9%)
Total 400 170 (42.5%) 230 (57.5%)

Table 2: Sociodemographic characteristics among studied groups

Parameter Groups Total Asthma No. (%) Controls No. (%)
Gender Male 210 170 (63.0) 40 (30.8)

Female 190 90 (69.2) 100 (37.0)

Age 15–25 55 45 (16.7) 10 (7.7)
26–36 60 50 (18.5) 10 (7.7)
37–47 67 55 (20.4) 12 (9.2)
48–58 160 100 (37.0) 60 (46.2)
59–69 30 12 (4.4) 18 (13.8)
70–80 28 8 (3.0) 20 (15.4)

Residency Rural 140 110 (40.7) 30 (23.1)
Urban 260 160 (59.3) 100 (76.9)

Education Illiterate 30 16 (5.9) 14 (10.8)
Primary 50 30 (11.1) 20 (15.3)

Secondary 230 190 (70.4) 40 (30.8)
Higher education 90 34 (12.6) 56 (43.1)

Monthly income Below 150.00 Dinars 190 160 (59.2) 30 (23.1)
150.000–300.000 Dinars 130 75 (27.8) 55 (42.3)
Above 300.000 Dinars 80 35 (13.0) 45 (34.6)

Washing hands before meals Yes 170 120 (44.4) 50 (38.5)
No 230 150 (55.6) 80 (61.5)

Soil contact Yes 160 140 (51.9) 20 (15.4)
No 240 130 (48.1) 110 (84.6)

The analysis of ascariasis among the examined subjects is illustrated in Fig. 1. Out of 270 asthmatic
patients, 140 (51.9%) tested seropositive for Ascaris, while 130 (48.1%) showed no infection.
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Figure 1: Distribution of ascariasis among examined individuals

Fig. 2 shows the sociodemographic features among individuals. Regarding asthmatic patients, males
comprised the majority of cases of 170 (63.0%), followed by 100 females (37.0%). The highest cases belonged
to age group 48–58 years represented 100 (37.0%) and the lowest found to be 8 (3.0%) as 70–80 years old.
The rates of asthmatic patients from urban and rural areas accounted for (59.3%) and (40.7%), respectively.
Secondary qualification reported 190 (70.4%) and illiterates 16 (5.9%). In terms of monthly income, 160
(59.2%) cases recorded a monthly income below 150.000 Dinars, and 35 subjects (13.0%) had more than
300.000 Dinars. About, 140 (51.9%) cases had a soil contact and 130 (48.1%) did not have it.

Figure 2: Demographic characters among subjects

Fig. 3 shows the infected and non-infected cases among asthmatic patients. About, the infection rate
among males and females are 98 (70.0%) and 42 (30.0%), respectively. The age group 48–58 years old assessed
45 (32.1%) and 6 cases (4.3%) among 70–80 years old. Infected rural patients reported 72 (51.4%) and urban
ones 68 (48.6%).
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Figure 3: Cases of seropositive and seronegative ascariasis among asthmatic patients

Table 3 clarifies the prevalence of ascariasis according to various factors. About asthmatic patients,
98 males (70.0%) had been infected, while females constituted 42 cases (30.0%). The highest infection rate,
at (32.1%), was observed in the 48–58 age group, whereas only (4.3%) of those aged 70–80 were infected.
Infection rates in rural areas stood at (51.4%), compared to (48.6%) in urban settings. A significantly high
rate of infection was found among individuals with secondary education, accounting for (75.0%), in contrast
to just (7.1%) among those with higher education. Concerning monthly income, the majority of infections
were found in the low-income group (64.3%), while only (5.7%) noted among high-income individuals. Also,
the rate of infection was (53.6%) among subjects who did not practice hand washing, compared to (46.4%)
among hand washing. Finally, individuals with soil contact had an infection rate of (58.6%), while those
without such contact had a rate of (41.4%). All the studied risk factors had an association with infection with
a p-value < 0.05.

Table 3: Demographic and lifestyle data of anti-Ascaris seropositive and seronegative asthmatic patients

Parameter Groups Total
asthma

Seropositive
asthma no. (%)

Seronegative
asthma no. (%)

p-value

Gender Male 170 98 (70.0) 72 (55.4) ∗0.01
Female 100 42 (30.0) 58 (44.6)

Age 15–25 45 17 (12.1) 28 (21.5) ∗0.01
26–36 50 27 (19.3) 23 (17.7)
37–47 55 35 (25.0) 20 (15.5)
48–58 100 45 (32.1) 55 (42.3)
59–69 12 10 (7.2) 2 (1.5)
70–80 8 6 (4.3) 2 (1.5)

Residency Rural 110 72 (51.4) 38 (29.2) ∗0.0002
Urban 160 68 (48.6) 92 (70.8)

(Continued)



3384 Comput Model Eng Sci. 2025;143(3)

Table 3 (continued)

Parameter Groups Total
asthma

Seropositive
asthma no. (%)

Seronegative
asthma no. (%)

p-value

Education Illiterate 16 10 (7.1) 6 (4.6) ∗0.036
Primary 30 15 (10.8) 15 (11.5)

Secondary 190 105 (75.0) 85 (65.4)
Higher

education
34 10 (7.1) 24 (18.5)

Monthly income Below
150.000 IQD

160 90 (64.3) 70 (53.8) ∗0.001

150.000–
300.000

IQD

75 42 (30.0) 33 (25.4)

Above
300.000 IQD

35 8 (5.7) 27 (20.8)

Washing hands
before meals

Yes 160 65 (46.4) 55 (42.3) ∗0.001

No 150 75 (53.6) 75 (57.7)

Soil contact Yes 140 82 (58.6) 58 (44.6) ∗0.01
No 130 58 (41.4) 72 (55.4)

Note: The asterisk (*) indicates statistically significant values (p-value < 0.05).

Table 4 presents the mean values ± standard deviation (SD) for different blood parameters, IgE and
IL-4, for both infected asthmatic individuals and the control group. In the infected asthmatic group, there
was a notable reduction in the number of red blood cells and hemoglobin concentration, while their white
blood cell count showed a significant increase compared to controls. Furthermore, both IgE and IL-4 levels
were significantly higher in the patients. All the studied parameters had an association with infection with
p-value < 0.05.

Table 4: Mean of blood parameters, IgE and IL-4 among individuals

Parameters Infected asthmatic mean±SD Controls mean ± SD p-value
RBCs (X106/μL) 3.75 ± 0.03 4.55 ± 0.01 ∗0.04

Hb (g/dl) 10.94 ± 1.14 14.65 ± 1.7 ∗0.001
WBCs (103/μL) 12.41 ± 0.46 6.71 ± 0.24 ∗0.002

Platelets (X103/μL) 255.4 ± 7.53 316 ± 7.1 ∗0.03
Eosinophils 2.06 ± 0.48 0.2 ± 1.23 ∗0.01

IgE 290.4 ± 90.7 70.6 ± 78.6 ∗0.02
IL-4 320.6 ± 45.3 40.36 ± 83.8 ∗0.02

Note: RBCs: red blood cells, Hb: hemoglobin, WBCs: white blood cells, PLT: platelets, IgE:
Immunoglobulin E, IL-4: Interleukin-4. (*) Statistically significant values (p-value < 0.05).



Comput Model Eng Sci. 2025;143(3) 3385

4 Fractional Calculus and Fundamental Concepts
This section introduces the fundamental definitions, lemmas, and prerequisite results that are crucial

for developing the theoretical framework of the study.
The Caputo-Fabrizio derivative of order 0 < α < 1 (in the sense of Caputo) is defined as:

Definition 1. [37] Let a ∈ R, 0 < α ≤ 1 and ϝ be a continuous on (a, b), then the fractional derivative of order
α in the sense of Caputo-Fabrizio is given by

CF
D

α
a ϝ(η) = S(α)

1 − α ∫
η

a
ϝ′(θ) e( −α

1−α (η−θ))dθ , 0 < α ≤ 1,

where S(0) = S(1) = 1.
According to Riemann’s definition, it is formulated as follows:

CFR
D

α
a ϝ(η) = S(α)

1 − α
d

dη ∫
η

a
ϝ(θ) e( −α

1−α (η−θ))dθ , 0 < α ≤ 1.

Then the corresponding Caputo Fabrizio integral is defined by

CF Iα
a ϝ(η) = 1 − α

S(α) ϝ(η) + α
S(α) ∫

η

a
ϝ(θ)dθ ,

so that

CF Iα
a

CFR
D

α
a ϝ(η) = CFR

D
α
a

CF Iα
a ϝ(η) = ϝ(η),

and

CF Iα
a

CF
D

α
a ϝ(η) = ϝ(η) − ϝ(a). (2)

However, it has been observed that

CF
D

α
a

CF Iα
a ϝ(η) = ϝ(η) − S(α)ϝ(a)eλα(t−a)

1 − α
, λα = −α

1 − α
. (3)

The fractal of order c > 0, initiated at a, for a function ϝ is defined as

dϝ(θ)
dθc = lim

η→θ

ϝ(η) − ϝ(θ)
(η − a)c − (θ − a)c .

It is clear that ϝ(θ) is differentiable, and by applying L’Hôpital’s rule, the following is obtained

dϝ(η)
dηc = ϝ′(η)

c(η − a)c−1 .

Definition 2. [38,39] Suppose that ϝ(η) is a continuous function and fractal differentiable on an open
interval (a, b) with order c. Then, a α-order fractal-fractional derivative of ϝ(η) in a Caputo sense with an
exponential decay type kernel is given by

FFCF
D

α ,c
a ϝ(η) = S(α)

1 − α ∫
η

a

dϝ(θ)
dθc e( −α

1−α (η−θ))dθ , 0 < α ≤ 1, c > 0.
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where S(0) = S(1) = 1.
The fractal-fractional derivative in the Riemann sense with an exponential law is defined as

FFCFR
D

α ,c
a ϝ(η) = S(α)

1 − α
d

dηc ∫
η

a
ϝ(θ) e( −α

1−α (η−θ))dθ , 0 < α ≤ 1, c > 0.

Definition 3. [39] Suppose that ϝ is a continuous function on (a, b), the fractal-fractional integral of ϝ(η)
with an exponential decaying type kernel is given by

Iα ,c
a ϝ(η) = (1 − α) c

S(α) (η − a)c−1 ϝ(η) + α c
S(α) ∫

η

a
(η − θ)c−1 ϝ(θ)dθ ,

= CF Iα
a (c(η − a)c−1 ϝ(η)),

where S(0) = S(1) = 1.
Notice that for c > 1, it holds that (Iα ,c

a ϝ)(a) = 0.
Remark 4. Following [39], in Definition (3), the author selects the fractal order c to lie between 0 and 1.
However, this choice prevents the corresponding integral operator from vanishing at the initial time η = 0. As
a result, the solution generated in the form of an integral equation does not satisfy the initial condition unless
the right-hand side of the model also vanishes at η = 0. This imposes a constraint on the initial population
size. Moreover, it becomes impossible to verify the solution in the backward direction. To overcome this
issue, we choose the value of c to be greater than one; for instance, 1 < c ≤ 2.

Further, it is clear that

Iα ,c
a

FFCFR
D

α ,c
a ϝ(η) = FFCFR

D
α ,c
a Iα ,c

a ϝ(η) = ϝ(η),

but not able to prove that

Iα ,c
a

FFCF
D

α ,c
a ϝ(η) = ϝ(η) − ϝ(a).

Due to this fact and Remark 4, the following new fractal fractional derivative with exponential law is
defined in the Caputo sense as
Definition 5. Suppose that ϝ(η) is a continuous function and fractal differentiable on an open interval (a, b)
with order c. Then, a α-order fractal-fractional derivative of ϝ(η) in a Caputo sense with an exponential
decay type kernel is given by

FFCF
D

α ,c
a ϝ(η) =

CFDα
a ϝ(η)

c(η − a)c−1 , 0 < α ≤ 1, c > 1.

The following lemma is crucial for advancing the solution representation of the system that describes the
investigated model. The solution will satisfy the dynamic equation on both sides and verify the initial data.
Lemma 6. For c > 1, 0 < α < 1 and a function ϝ ∶ [a, b] → R whose derivative is integrable, it follows that

•

Iα ,c
a

FFCF
D

α ,c
a ϝ(η) = ϝ(η) − ϝ(a). (4)

•
FFCF

D
α ,c
a Iα ,c

a ϝ(η) = ϝ(η). (5)
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Proof. • From definition and (2), the result is

Iα ,c
a

FFCF
D

α ,c
a ϝ(η) = CF Iα

a [ c(η − a)c−1 CFDα
a ϝ(η)

c(η − a)c−1 ] = ϝ(η) − ϝ(a).

• From definition of the fractal fractional operators, (3), and that (η − a)c−1 vanishes at a, one can has

FFCF
D

α ,c
a Iα ,c

a ϝ(η) =
CFDα

a
CF Iα

a [c(η − a)c−1 ϝ(η)]
c(η − a)c−1 ϝ(η) = ϝ(η). ◻

Lemma 7. [40] The measurable function ϝ ∶ [a, b] × R → R is Bochner integrable, if ∣∣ϝ∣∣ is Lebesgue inte-
grable.
Theorem 8. (Kolmogorov) [40]

Suppose ϝ̂ is a set of functions in Łp[0, J], 1 ≤ p < ∞. To ensure that this set is relatively compact, it is
essential and adequate for both of the subsequent conditions to be fulfilled:

(A) The set ϝ̂ is bounded in Łp;
(B) limg→0 ∣∣Hg − H∣∣ = 0 uniformly with respect H ∈ ϝ̂, where

Hg(η) = 1
g

∫
η+g

η
H(θ)dθ .

Lemma 9. (Hölder’s inequality) [40]
Let B be a measurable space and f1 and f2 satisfy the condition 1

f1
+ 1

f2
= 1. 1 ≤ f1 < ∞, 1 ≤ f2 < ∞ with

(mn) ∈ Ł(B), which is satisfied if m belong to Ł f1 (B) and n belong to Ł f2 (B).

∫
B

∣mn∣ dη ≤ (∫
B

∣m∣ f1 dη)
1
f1 (∫

B
∣n∣ f2 dη)

1
f2

.

Theorem 10. (Krasnosel’skii theorem) [41]. Let M be a closed, bounded, convex, and nonempty subset of a
Banach space V. Let A and B be two operators such that

(1) Az1 + Bz2 ∈ M whenever z1 , z2 ∈ M;
(2) A is compact and continuous;
(3) B is a contraction mapping.

Then there exists z ∈ M such that z = Az + Bz.
Mathematical model of the dynamics of Ascaris infection

5 Fractal-Fractional Mathematical Model of Ascaris Infection
Mathematical modeling is an essential tool for effectively illustrating and understanding the epidemic

models and intricacies of scientific phenomena. In this section, we discuss the mathematical model
developed by [19] for the four stages of the A. lumbricoides life cycle, as described below.
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dJ
dη

= BL(η) − ( 1
τ1

+ M1)J(η),

dM
dη

= 1
τ1

J(η) − M2M(η)

dE
dη

= sN λM(η) − ( 1
τ2

+ γ1)E(η)

dL
dη

= 1
τ2

E(η) − (BN + γ2)L(η) (6)

with initial conditions

J(0) = J0 > 0, M(0) = M0 > 0, E(0) = E0 > 0, L(0) = L0 > 0,

where B is ingestion or uptake rate seasonal; τ1 is the maturation rate from juvenile stage to adult worm; τ2 is
maturation rate from eggs to infective larvae; μ is death rate of hosts; M1 is death rate of juvenile worms; M2
is death rate of adult worms; γ1 is death rate of immature eggs; γ2 is death rate of infective larval stages; s is sex
ratio in adult worms (proportion female); λ is baseline fecundity per adult female worm; N is host population
size; J is juvenile worms (inside the host); M is mature worms (inside the host); E is eggs (developing in the
environment); and L is larvae (at infectious stage in the environment). These states are denoted by the letters;
J and M are taken to be mean values per host, whereas E and L are total values in the environment.

The work mentioned above serves as our inspiration, as we examine the model (6) in the fractal-
fractional sense, in the Caputo-Fabrizio (CF) sense:

FFCF
D

α ,c J(η) = BL(η) − ( 1
τ1

+ M1)J(η) ,

FFCF
D

α ,c M(η) = 1
τ1

J(η) − M2M(η),

FFCF
D

α ,c E(η) = sN λM(η) − ( 1
τ2

+ γ1) E(η),

FFCF
D

α ,c L(η) = 1
τ2

E(η) − (BN + γ2)L(η). (7)

The functions gi for i = 1, 2, 3, 4 are provided as follows:

g1(η, J(η)) = BL(η) − ( 1
τ1

+ M1)J(η),

g2(η, M(η)) = 1
τ1

J(η) − M2M(η),

g3(η, E(η)) = sN λM(η) − ( 1
τ2

+ γ1)E(η),

g4(η, L(η)) = 1
τ2

E(η) − (BN + γ2)L(η).

FFCF
D

α ,c S(η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FFCFDα ,c J(η),
FFCFDα ,c M(η),
FFCFDα ,c E(η),
FFCFDα ,c L(η),

S(η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J(η),

M(η),

E(η),

L(η),
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S0 = S(0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J(0),

M(0),

E(0),

L(0),

ϖ(η, S(η)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1(η, J(η)),

g2(η, M(η)),

g3(η, E(η)),

g4(η, L(η)).

The fractal-fractional mathematical model (7) can be reformulated as the following problem

FFCFDα ,c S(η) = �(η, S(η)), 0 < α ≤ 1
S(0) = S0, η ∈ J = [0, Q].

(8)

Lemma 11. Let M ∈ Łp(K,R), then the initial value problem (8) has a solution

S(η) = S0 + (1 − α)c
S(α) ηc−1ϖ(η, S(η)) + αc

S(α) ∫
η

0
θc−1ϖ(θ , S(θ)) dθ . (9)

Proof. Applying the fractal-fractional integral Iα ,c
0 to both sides of Eq. (8), and utilizing (4) from Lemma 6

with a = 0, yields the solution representation given by Eq. (9). Conversely, applying the fractal-fractional
derivative to the solution representation in Eq. (9), and using (5) in Lemma 6, recovers the right-hand side
of Eq. (8). Moreover, the solution given in Eq. (9) satisfies the initial data. The proof is complete. ◻

The solutions can be expressed as follows:

J(η) = J(0) + (1 − α) c
S(α) ηc−1 g1(η, J(η)) + α c

S(α) ∫
η

0
θc−1 g1(θ , J(θ))dθ ,

M(η) = M(0) + (1 − α) c
S(α) ηc−1 g2(η, M(η)) + α c

S(α) ∫
η

0
θc−1 g2(θ , M(θ))dθ ,

E(η) = E(0) + (1 − α) c
S(α) ηc−1 g3(η, E(η)) + α c

S(α) ∫
η

0
θc−1 g3(θ , E(θ))dθ ,

L(η) = L(0) + (1 − α) c
S(α) ηc−1 g4(η, L(η)) + α c

S(α) ∫
η

0
θc−1 g4(θ , L(θ))dθ . (10)

CF
D

α S(η) = cηc−1ϖ(η, S(η)), �⇒
CFDα S(η)

cηc−1 = ϖ(η, S(η)), c > 1.

FFCF
D

α S(η) = ϖ(η, S(η)).

6 Existence and Uniqueness of Fractal-Fractional Model
This section focuses on studying the existence and uniqueness of the fractal-fractional model (8) under

certain conditions. For a measurable function denoted by ϖ, equipped with the following norm

∥ϖ∥p
p

= ∫
Q

0
∣ϖ(η)∣p dη, (1 ≤ p < ∞).

In this case, Łp(J,R) denotes the Banach space of all Lebesgue measurable functions.
The assumptions below are fundamental to this analysis:
(ℶ1) ∃ a positive functions ψ(η), ψ1(η), ψ2(η), ψ3(η), ψ4(η) such that
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∣ϖ(η, S(η))∣ ≤ ψ(η), ∣g1(η, J(η))∣ ≤ ψ1(η), ∣g2(η, E(η))∣ ≤ ψ2(η),
∣g3(η, M(η))∣ ≤ ψ3(η), ∣g4(η, L(η))∣ ≤ ψ4(η).

(ℶ2) ∃ a constants ℵ, ℵ1 , ℵ2, ℵ3, ℵ4 > 0 such that ℵ = sup ∣ϖ(θ , 0)∣, ℵ1 = sup ∣g1(θ , 0)∣, ℵ2 =
sup ∣g2(θ , 0)∣, ℵ3 = sup ∣g3(θ , 0)∣, ℵ4 = sup ∣g4(θ , 0)∣.

For simplicity, we define the notation as follows:

N1 = [((1 − α)c
S(α) )

p Qp(c−1)+1

p(c − 1) + 1
+ ( αc

S(α))
p

( p − 1
pc − 1

)
p−1 Qpc+1

pc + 1
],

N2 = [((1 − α)c
S(α) )

p Qp(c−1)+1

p(c − 1) + 1
+ ( αc

S(α))
p

( p − 1
pc − 1

)
p−1 Qpc

pc
],

G = (((1 − α)c
S(α) )

p Qp(c−1)+1

p(c − 1) + 1
+ ( α

S(α))
p Qpc+1

pc + 1
),

Ω1 = 2 K1N
1
p

2 , Ω2 = 2 M2N
1
p

2 , Ω3 = 2 K2N
1
p

2 ,

Ω4 = 2 K3N
1
p

2 . Ω = 2 Q1 N
1
p

2 .

Lemma 12. The function ϖ(η, S(η)) defined in Eq. (8) satisfies the Lipschitz condition with respect to ϖ,
and the following Lipschitz constant is obtained

Q1 = max(( 1
τ1

+ M1), M2, ( 1
τ2

+ γ1), (BN + γ2))

Proof.

∣g1(η, J(η)) − g1(η, Ĵ(η))∣ ≤ K1∣J(η) − Ĵ(η)∣.

In the same way

∣g2(η, M(η)) − g2(η, M̂(η))∣ ≤ M2∣M(η) − M̂(η)∣, (11)
∣g3(η, E(η)) − g3(η, Ê(η))∣ ≤ K2∣E(η) − Ê(η)∣,
∣g4(η, L(η)) − g4(η, L̂(η))∣ ≤ K3∣L(η) − L̂(η)∣.

where

K1 = ( 1
τ1

+ M1), K2 = ( 1
τ2

+ γ1), K3 = (BN + γ2).

By including all equations, it concludes that

∣ϖ(η, S(η)) − ϖ(η, Ŝ(η))∣ ≤ Q1∣S(η) − Ŝ(η)∣. (12)

◻
Theorem 13. Assume that ϖ satisfy the condition (12). If Ω1,2,3,4 < 1, then the problem (8) has a only one
solution.
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Proof. First, consider the operator H defined by

(HJ)(η) = S(0) + (1 − α)c
S(α) ηc−1 g1(η, J(η)) + αc

S(α) ∫
η

0
θc−1 g1(θ , J(θ))dθ , (13)

(HM)(η) = M(0) + (1 − α)c
S(α) ηc−1 g2(η, M(η)) + αc

S(α) ∫
η

0
θc−1 g2(θ , M(θ))dθ ,

(HE)(η) = E(0) + (1 − α)c
S(α) ηc−1 g3(η, E(η)) + αc

S(α) ∫
η

0
θc−1 g3(θ , E(θ))dθ ,

(HL)(η) = L(0) + (1 − α)c
S(α) ηc−1 g4(η, L(η)) + αc

S(α) ∫
η

0
θc−1 g4(θ , L(θ))dθ .

To derive the Banach fixed point theorem, defined the set:
FO = {S , J , M , E , L ∈ Łp ∶ ∣∣S∣∣pp ≤ O

p, ∣∣J∣∣pp ≤ O
p

1 , ∣∣M∣∣pp ≤ O
p

2 , ∣∣E∣∣pp ≤ O
p

3 , ∣∣L∣∣pp ≤ O
p

4 , O,O1 ,O2,
O3,O4 > 0}.

Choose

O ≥ (2p∣S(0)∣pQ + 23pℵpN1

1 − 23pQp

1 N2
)

1
p

,

for S ∈ FO, we have

∫
Q

0
∣(HJ)(η)∣pdη ≤ 2p∣J(0)∣pQ + 22p((1 − α)c

S(α) )
p

∫
Q

0
ηp(c−1)∣g1(η, J(η)) − g1(η, 0) + g1(η, 0)∣pdη + 22p( α c

S(α))
p

∫
Q

0
( ∫

η

0
θc−1∣g1(θ , J(θ)) − g1(θ , 0) + g1(θ , 0)∣dθ)

p

dη.,

∫
Q

0
∣(HM)(η)∣pdη ≤ 2p∣M(0)∣pQ + 22p((1 − α)c

S(α) )
p

∫
Q

0
ηp(c−1)∣g2(η, M(η)) − g2(η, 0) + g2(η, 0)∣pdη + 22p( αc

S(α))
p

∫
Q

0
( ∫

η

0
θc−1∣g2(θ , M(θ)) − g2(θ , 0) + g2(θ , 0)∣dθ)

p

dη,

∫
Q

0
∣(HE)(η)∣pdη ≤ 2p∣E(0)∣pQ + 22p((1 − α)c

S(α) )
p

∫
Q

0
ηp(c−1)∣g3(η, E(η)) − g3(η, 0) + g3(η, 0)∣pdη + 22p( α c

S(α))
p

∫
Q

0
( ∫

η

0
θc−1∣g3(θ , E(θ)) − g3(θ , 0) + g3(θ , 0)∣dθ)

p

dη,

∫
Q

0
∣(HL)(η)∣pdη ≤ 2p∣L(0)∣pQ + 22p((1 − α)c

S(α) )
p
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∫
Q

0
ηp(c−1)∣g4(η, L(η)) − g4(η, 0) + g4(η, 0)∣pdη + 22p( α c

S(α))
p

∫
Q

0
( ∫

η

0
θc−1∣g4(θ , L(θ)) − g4(θ , 0) + g4(θ , 0)∣dθ)

p

dη. (14)

Thus, ( ∫
η

0 θc−1∣g1(θ , J(θ)) − g1(θ , 0) + g1(θ , 0)∣dθ)
p

, along with all other terms in Eq. (14), is

Lebesgue integrable. Therefore, it is Bochner-integrable. To simplify the third term of Eq. (14), Hölder’s
inequality can now be applied as follows:

∫
Q

0
∣(HJ)(η)∣pdη ≤ 2p∣J(0)∣pQ + 23p((1 − α)c

S(α) )
p

( ∫
Q

0
ηp(c−1)∣g1(η, J(η)) − g1(η, 0)∣pdη + ∫

Q

0
ηp(c−1)∣g1(η, 0)∣pdη) + 23p( αc

S(α))
p

( p − 1
pc − 1

)
p−1

∫
Q

0
ηpc−1 ∫

η

0
(∣g1(θ , J(θ)) − g1(θ , 0)∣p + ∣g1(θ , 0)∣p)dθdη,

∫
Q

0
∣(HM)(η)∣pdη ≤ 2p∣M(0)∣pQ + 23p((1 − α)c

S(α) )
p

( ∫
Q

0
ηp(c−1)∣g2(η, M(η)) − g2(η, 0)∣pdη + ∫

Q

0
ηp(c−1)∣g2(η, 0)∣pdη) + 23p( αc

S(α))
p

( p − 1
pc − 1

)
p−1

∫
Q

0
ηpc−1 ∫

η

0
(∣g2(θ , M(θ)) − g2(θ , 0)∣p + ∣g2(θ , 0)∣p)dθdη,

∫
Q

0
∣(HE)(η)∣pdη ≤ 2p∣E(0)∣pQ + 23p((1 − α)c

S(α) )
p

( ∫
Q

0
ηp(c−1)∣g3(η, E(η)) − g3(η, 0)∣pdη + ∫

Q

0
ηp(c−1)∣g3(η, 0)∣pdη) + 23p( αc

S(α))
p

( p − 1
pc − 1

)
p−1

∫
Q

0
ηpc−1 ∫

η

0
(∣g3(θ , E(θ)) − g3(θ , 0)∣p + ∣g3(θ , 0)∣p)dθdη,

∫
Q

0
∣(HL)(η)∣pdη ≤ 2p∣L(0)∣pQ + 23p((1 − α)c

S(α) )
p

( ∫
Q

0
ηp(c−1)∣g4(η, L(η)) − g4(η, 0)∣pdη + ∫

Q

0
ηp(c−1)∣g4(η, 0)∣pdη) + 23p( αc

S(α))
p

( p − 1
pc − 1

)
p−1

∫
Q

0
ηpc−1 ∫

η

0
(∣g4(θ , L(θ)) − g4(θ , 0)∣p + ∣g4(θ , 0)∣p)dθdη.

From (ℶ2) and the Lipschitz condition, the following is obtained

∣∣HJ∣∣pp ≤ 2p∣J(0)∣pQ + 23pℵp

1 N1 + 23pKp

1 N1O
p

1 ≤ O
p

1 ,
∣∣HM∣∣pp ≤ 2p∣M(0)∣pQ + 23pℵp

2N1 + 23pMp

2N1O
p

2 ≤ O
p

2 ,
∣∣HE∣∣pp ≤ 2p∣E(0)∣pQ + 23pℵp

3N1 + 23pKp

2 N1O
p

3 ≤ O
p

3 ,
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∣∣HL∣∣pp ≤ 2p∣L(0)∣pQ + 23pℵp

4N1 + 23pKp

3 N1O
p

4 ≤ O
p

4 ,
and
∣∣HS∣∣pp ≤ 2p∣S(0)∣pQ + 23pℵpN1 + 23pQp

1 N1O
p ≤ O

p,

which implies that HFO ⊆ FO.
Hence, H ∶ FO → FO.
Now, to prove that H is a contraction mapping, let (J1 , J2, M1 , M2, E1 , E2, L1 , L2) ∈ Łp, we get

∣∣HJ1 − HJ2∣∣p ≤ Ω1 ∣∣J1 − J2∣∣p,
∣∣HM1 − HM2∣∣p ≤ Ω2 ∣∣M1 − M2∣∣p,
∣∣HE1 − HE2∣∣p ≤ Ω3 ∣∣E1 − E2∣∣p,
∣∣HL1 − HL2∣∣p ≤ Ω4 ∣∣L1 − L2∣∣p.

Then,

∣∣HS1 − HS2∣∣p ≤ Ω∣∣S1 − S2∣∣p.

If Ω < 1, then the problem (8) has a only one solution.
The following result illustrates the application of Krasnosel’skii’s fixed point technique

Theorem 14. Assume that th condition (11) and (ℶ1) hold. Then, the fractal fractional mathematical model (8)
has at least one solution.
Proof. Define the following operators based on Eqs. (9) and (10) as

V11 J(η) = αc
S(α) ∫

η

0
θc−1 g1(θ , J(θ))dθ ,

V12 J(η) = J(0) + (1 − α)c
S(α) ηc−1 g1(η, J(η)),

V21M(η) = αc
S(α) ∫

η

0
θc−1 g2(θ , M(θ))dθ ,

V22M(η) = M(0) + (1 − α)c
S(α) ηc−1 g2(η, M(η)),

V31E(η) = αc
S(α) ∫

η

0
θc−1 g3(θ , E(θ))dθ ,

V32E(η) = E(0) + (1 − α)c
S(α) ηc−1 g3(η, E(η)),

V41L(η) = αc
S(α) ∫

η

0
θc−1 g4(θ , L(θ))dθ ,

V42L(η) = L(0) + (1 − α)c
S(α) ηc−1 g4(η, L(η)),

V1S(η) = αc
S(α) ∫

η

0
θc−1ϖ(θ , S(θ))dθ ,

V2S(η) = S(0) + (1 − α)c
S(α) ηc−1ϖ(η, S(η)).
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Consider a set defined as UX = {S , J , M , E , L ∈ Łp ∶ ∣∣S∣∣pp ≤ Xp, ∣∣J∣∣pp ≤ Xp

1 , ∣∣M∣∣pp ≤ Xp

2 ,
∣∣E∣∣pp ≤ Xp

3 , ∣∣L∣∣pp ≤ Xp

4 ,X,X1,2,3,4 > 0}.
Let us observe that if S , Ŝ , J , Ĵ , M , M̂ , E , Ê , L, L̂, ∈ UX, we have

∫
Q

0
∣(V11 J)(η) + (V12 Ĵ)(η)∣pdη ≤ 2p∣J(0)∣pQ + 22p((1 − α)c

S(α) )
p

∫
Q

0
θp(c−1)∣g1(θ , Ĵ(θ))∣pdθ + 22p( αc

S(α))
p

∫
Q

0
( ∫

η

0
θc−1∣g1(θ , J(θ))∣dθ)

p

dη.

By the Lipschitz condition and Hölder’s inequality, the following result is obtained

∣∣V11 J + V12 Ĵ∣∣pp ≤ 2p∣J(0)∣pQ + 22p((1 − α)c
S(α) )

p

∣∣ψ1∣∣pp
Qp(c−1)+1

p(c − 1) + 1

+ 22p( αc
S(α))

p

( p − 1
pc − 1

)
p−1

∣∣ψ1∣∣pp
Qpc

pc
.

By the same technique, one can have

∣∣V21M + V22M̂∣∣pp ≤ 2p∣M(0)∣pQ + 22p((1 − α)c
S(α) )

p

∣∣ψ2∣∣pp
Qp(c−1)+1

p(c − 1) + 1

+ 22p( αc
S(α))

p

( p − 1
pc − 1

)
p−1

∣∣ψ2∣∣pp
Qpc

pc
,

∣∣V31E + V32Ê∣∣pp ≤ 2p∣E(0)∣pQ + 22p((1 − α)c
S(α) )

p

∣∣ψ3∣∣pp
Qp(c−1)+1

p(c − 1) + 1

+ 22p( αc
S(α))

p

( p − 1
pc − 1

)
p−1

∣∣ψ3∣∣pp
Qpc

pc
,

∣∣V41L + V42L̂∣∣pp ≤ 2p∣L(0)∣pQ + 22p((1 − α)c
S(α) )

p

∣∣ψ4∣∣pp
Qp(c−1)+1

p(c − 1) + 1

+ 22p( αc
S(α))

p

( p − 1
pc − 1

)
p−1

∣∣ψ4∣∣pp
Qpc

pc
.

Hence

∣∣V1S + V2 Ŝ∣∣pp ≤ 2p∣S(0)∣pQ + 22p((1 − α)c
S(α) )

p

∣∣ψ∣∣pp
Qp(c−1)+1

p(c − 1) + 1

+ 22p( αc
S(α))

p

( p − 1
pc − 1

)
p−1

∣∣ψ∣∣pp
Qpc

pc
.

This shows that the operators V12 ,V22,V32,V42 are contractions. For this J , J̄ ∈ Łp(J,R), we have

∣∣V12 J − V12 J̄∣∣p ≤ W1 ∣∣J − J̄∣∣p.

Similarly, it follows that

∣∣V22M − V22M̄∣∣p ≤ W2 ∣∣M − M̄∣∣p,
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∣∣V32E − V32Ē∣∣p ≤ W3 ∣∣E − Ē∣∣p,
∣∣V42L − V42L̄∣∣p ≤ W4 ∣∣L − L̄∣∣p.

Then,

∣∣V2S − V2 S̄∣∣p ≤ W5 ∣∣S − S̄∣∣p,

where

W1 = (1 − α)c
S(α)

Q(c−1)+ 1
p

(p(c − 1) + 1) 1
p

K1 , W2 = (1 − α)c
S(α)

Q(c−1)+ 1
p

(p(c − 1) + 1) 1
p

M2,

W3 = (1 − α)c
S(α)

Q(c−1)+ 1
p

(p(c − 1) + 1) 1
p

K2, W4 = (1 − α)c
S(α)

Q(c−1)+ 1
p

(p(c − 1) + 1) 1
p

K3,

W5 = (1 − α)c
S(α)

Q(c−1)+ 1
p

(p(c − 1) + 1) 1
p

Q1 .

If Wi < 1, (i = 1, ..., 5), then V2 is a contraction.
Next, to prove that the operator V1 ,V11 ,V21 ,V31 ,V41 are compact and continuous, we have

∣∣V11 J∣∣p ≤ αc
S(α)( p − 1

pc − 1
)

p−1
p Qc

(pc) 1
p

∣∣ψ1∣∣p,

∣∣V21M∣∣p ≤ αc
S(α)( p − 1

pc − 1
)

p−1
p Qc

(pc) 1
p

∣∣ψ2∣∣p,

∣∣V31E∣∣p ≤ αc
S(α)( p − 1

pc − 1
)

p−1
p Qc

(pc) 1
p

∣∣ψ3∣∣p,

∣∣V41L∣∣p ≤ αc
S(α)( p − 1

pc − 1
)

p−1
p Qc

(pc) 1
p

∣∣ψ4∣∣p,

Then,

∣∣V1S∣∣p ≤ αc
S(α)( p − 1

pc − 1
)

p−1
p Qc

(pc) 1
p

∣∣ψ∣∣p.

Therefore, V1 ,V11 ,V21 ,V31 ,V41 are bounded. At this point, to demonstrate that these operators are
completely continuous, we apply Theorem (8). Let ω be a bounded subset of UX.

Then, V1(ω),V11(ω),V21(ω),V31(ω),V41(ω) are bounded in Łp(J), i.e., condition (A) of Theorem (8)
is satisfied. It remains to show that (V11 J)g → V11 J in Łp(J) as g → 0, uniformly with respect to J ∈ ω. We
have the following estimation

∣∣(V11 J)g(η) − (V11 J)(η)∣∣pp ≤ ∫
Q

0
∣ 1
g

∫
η+g

η
(V11 J)(θ)dθ − (V11 J)(η)∣pdη

≤ ∫
Q

0

1
g

∫
η+g

η
∣Ig1(θ , J(θ)) − Ig1(η, J(η))∣pdθdη,
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and

∣∣(V1S)g(η) − (V1S)(η)∣∣pp = ∫
Q

0
∣(V1S)g(θ) − (V1S)(η)∣pdη

≤ ∫
Q

0
∣ 1
g

∫
η+g

η
(V1S)(θ)dθ − (V1S)(η)∣pdη

≤ ∫
Q

0

1
g

∫
η+g

η
∣Iϖ(θ , S(θ)) − Iϖ(η, S(η))∣pdθdη,

Since ω ∈ Łp(J), it follows that Iω ∈ Łp(J). Thus, one can conclude that

∣Ig1(θ , J(θ)) − Ig1(η, J(η))∣p → 0.

Hence

(V11 J)g(η) → (V11 J)(η), uniformly as g → 0.

Similarly

(V21M)g(η) → (V21M)(η), uniformly as g → 0,
(V31E)g(η) → (V31E)(η), uniformly as g → 0,
(V41L)g(η) → (V41L)(η), uniformly as g → 0,

Hence

(V1S)g(η) → (V1S)(η), uniformly as g → 0.

Then, by Theorem (8), it can be concluded that V1(ω) is relatively compact, which implies that V1
is a compact operator. As a consequence of Krasnosel’skii’s fixed point theorem, the fractal-fractional
mathematical model (8) has at least one solution.

7 Ulam-Hyers and Ulam-Hyers-Rassias Stability
This section is dedicated to establishing the stability for the problem (8) in the sense of Ulam-Hyers and

Ulam-Hyers-Rassias. The following definitions and conditions are introduced.
Definition 15. The Eq. (8) is Ulam-Hyers stable, if there exists a positive real number zd such that Δ > 0 and
for each solution Υ ∈ Łp(J,R) of the following

∣FFCF
D

α ,c Υ(η) − ϖ(η, Υ(η))∣ ≤ Δ, η ∈ J. (15)

∃ a solution S ∈ Łp of Eq. (8) with ∣Υ(η) − S(η)∣ ≤ ze Δ.
Definition 16. The Eq. (8) is Ulam-Hyers-Rassias-stable, if there exists a positive real number zd such that
Δ > 0 and for each solution Υ ∈ Łp of the following

∣FFCF
D

α ,c Υ(η) − ϖ(η, Υ(η))∣ ≤ Δ Φ(η), (16)

for some non-negative function Φ defined on J, ∃ a solution S ∈ Łp of Eq. (8) with

∣Υ(η) − S(η)∣ ≤ zdΦΔ.
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(ℶ3) Φ, Φ1, Φ2, Φ3, Φ4 are increasing functions in ∈ Łp and ∃ Λ̂Φ > 0 such that, for any η ∈ J, the
following holds

∫
η

0
θc−1Φ1(θ)dθ ≤ Λ̂Φ1 Φ1(η), ∫

η

0
θc−1Φ2(θ)dθ ≤ Λ̂Φ2 Φ2(η),

∫
η

0
θc−1Φ3(θ)dθ ≤ Λ̂Φ3 Φ3(η), ∫

η

0
θc−1Φ4(θ)dθ ≤ Λ̂Φ4 Φ4(η),

∫
η

0
θc−1Φ(θ)dθ ≤ Λ̂ΦΦ(η).

Theorem 17. The fractal-fractional mathematical problem (8) is Ulam-Hyers-stable.
If χ1,2,3,4 < 1, where χ1 = 22pKp

1 N2, χ2 = 22pMp

2N2, χ3 = 22pKp

2 N2, χ4 = 22pKp

3 N2.
Proof. For Δ, Δ1, Δ2, Δ3, Δ4 > 0, and Υ, Υ1, Υ2, Υ3, Υ4 are solutions that satisfy the following inequalities

∣FFCF
D

α ,c Υ1(η) − g1(η, Υ1(η))∣ ≤ Δ1,
∣FFCF

D
α ,c Υ2(η) − g2(η, Υ2(η))∣ ≤ Δ2,

∣FFCF
D

α ,c Υ3(η) − g3(η, Υ3(η))∣ ≤ Δ3, (17)
∣FFCF

D
α ,c Υ4(η) − g4(η, Υ4(η))∣ ≤ Δ4,

∣FFCF
D

α ,c Υ(η) − ϖ(η, Υ(η))∣ ≤ Δ,

which give

∣Υ1(η) − Υ1(0) − (1 − α)c
S(α) ηc−1 g1(η, Υ1(η)) − αc

S(α) ∫
η

0
θc−1 g1(θ , Υ1(θ))dθ∣p

≤ 2pΔp

1 (((1 − α)c
S(α) )

p

ηp(c−1) + ( α
S(α))

p

ηpc),

∣Υ2(η) − Υ2(0) − (1 − α)c
S(α) ηc−1 g2(η, Υ2(η)) − αc

S(α) ∫
η

0
θc−1 g2(θ , Υ2(θ))dθ∣p

≤ 2pΔp

2 (((1 − α)c
S(α) )

p

ηp(c−1) + ( α
S(α))

p

ηpc),

∣Υ3(η) − Υ3(0) − (1 − α)c
S(α) ηc−1 g3(η, Υ3(η)) − αc

S(α) ∫
η

0
θc−1 g3(θ , Υ3(θ))dθ∣p

≤ 2pΔp

3 (((1 − α)c
S(α) )

p

ηp(c−1) + ( α
S(α))

p

ηpc),

∣Υ4(η) − Υ4(0) − (1 − α)c
S(α) ηc−1 g4(η, Υ4(η)) − αc

S(α) ∫
η

0
θc−1 g4(θ , Υ4(θ))dθ∣p

≤ 2pΔp

4(((1 − α)c
S(α) )

p

ηp(c−1) + ( α
S(α))

p

ηpc),

and

∣Υ(η) − Υ(0) − (1 − α)c
S(α) ηc−1ϖ(η, Υ(η)) − αc

S(α) ∫
η

0
θc−1ϖ(θ , Υ(θ))dθ∣p

≤ 2pΔp(((1 − α)c
S(α) )

p

ηp(c−1) + ( α
S(α))

p

ηpc).
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For each η ∈ J, we have

∫
Q

0
∣Υ1(η) − J(η)∣pdη ≤ ∫

Q

0
∣Υ1(η) − J(0) − (1 − α)c

S(α) ηc−1 g1(η, J(η))

− αc
S(α) ∫

η

0
θc−1 g1(θ , J(θ))dθ∣pdη,

∫
Q

0
∣Υ2(η) − M(η)∣pdη ≤ ∫

Q

0
∣Υ2(η) − M(0) − (1 − α)c

S(α) ηc−1 g2(η, M(η))

− αc
S(α) ∫

η

0
θc−1 g2(θ , M(θ))dθ∣pdη,

∫
Q

0
∣Υ3(η) − E(η)∣pdη ≤ ∫

Q

0
∣Υ3(η) − E(0) − (1 − α)c

S(α) ηc−1 g3(η, E(η))

− αc
S(α) ∫

η

0
θc−1 g3(θ , E(θ))dθ∣pdη,

∫
Q

0
∣Υ4(η) − L(η)∣pdη ≤ ∫

Q

0
∣Υ4(η) − L(0) − (1 − α)c

S(α) ηc−1 g4(η, L(η))

− αc
S(α) ∫

η

0
θc−1 g4(θ , L(θ))dθ∣pdη,

∫
Q

0
∣Υ(η) − S(η)∣pdη ≤ ∫

Q

0
∣Υ(η) − S(0) − (1 − α)c

S(α) ηc−1ϖ(η, S(η))

− αc
S(α) ∫

η

0
θc−1ϖ(θ , S(θ))dθ∣pdη.

Then, using condition (11) and Hölder’s inequality, the results follow

∣∣Υ1 − J∣∣p ≤ 4Δ1G
1
p

(1 − χ1)
1
p

, ∣∣Υ2 − M∣∣p ≤ 4Δ2 G
1
p

(1 − χ2)
1
p

,

∣∣Υ3 − E∣∣p ≤ 4Δ3 G
1
p

(1 − χ3)
1
p

, ∣∣Υ4 − L∣∣p ≤ 4Δ4 G
1
p

(1 − χ4)
1
p

,

∣∣Υ − S∣∣p ≤ 4Δ G
1
p

(1 − 22pQp

1 N2)
1
p

.

Hence

∣∣Υ1 − J∣∣p ≤ ze1 Δ1, ∣∣Υ2 − M∣∣p ≤ ze2 Δ2, ∣∣Υ3 − E∣∣p ≤ ze3 Δ3,
∣∣Υ4 − L∣∣p ≤ ze4 Δ4, ∣∣Υ − S∣∣p ≤ ze Δ,

where ze = 4 G
1
p

(1 − ß)
1
p

, and ß = 22pQp

1 N2.
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Hence, the fractal fractional mathematical model (8) is Ulam-Hyers stable. ◻
Theorem 18. Assume that g1 , g2, g3 and g4 be a continuous functions and the condition (11) holds. If χi <
1, i = 1, 2, 3, 4. Then the fractal-fractional mathematical problem (8) is Ulam-Hyers-Rassias stable.
Proof. The solutions Υ, Υ1, Υ2, Υ3, Υ4 are satisfies the following inequality

∣FFCF
D

α ,c Υ1(η) − g1(η, Υ1(η))∣ ≤ Δ1 Φ1(η),
∣FFCF

D
α ,c Υ2(η) − g2(η, Υ2(η))∣ ≤ Δ2 Φ2(η),

∣FFCF
D

α ,c Υ3(η) − g3(η, Υ3(η))∣ ≤ Δ3 Φ3(η),
∣FFCF

D
α ,c Υ4(η) − g4(η, Υ4(η))∣ ≤ Δ4 Φ4(η),

∣FFCF
D

α ,c Υ(η) − ϖ(η, Υ(η))∣ ≤ Δ Φ(η), (18)

which gives

∣Υ1(η) − Υ1(0) − (1 − α)c
S(α) ηc−1 g1(η, Υ1(η)) − αc

S(α) ∫
η

0
θc−1 g1(θ , Υ1(θ))dθ∣p

≤ 2pΔp

1 (((1 − α)c
S(α) )

p

η
p(c−1)(Φ1(η))p + ( αc

S(α))
p

(Λ̂Φ1 Φ1(η))
p

),

∣Υ2(η) − Υ2(0) − (1 − α)c
S(α) ηc−1 g2(η, Υ2(η)) − αc

S(α) ∫
η

0
θc−1 g2(θ , Υ2(θ))dθ∣p

≤ 2pΔp

2 (((1 − α)c
S(α) )

p

η
p(c−1)(Φ2(η))p + ( αc

S(α))
p

(Λ̂Φ2 Φ2(η))
p

),

∣Υ3(η) − Υ3(0) − (1 − α)c
S(α) ηc−1 g3(η, Υ3(η)) − αc

S(α) ∫
η

0
θc−1 g3(θ , Υ3(θ))dθ∣p

≤ 2pΔp

3 (((1 − α)c
S(α) )

p

η
p(c−1)(Φ3(η))p + ( αc

S(α))
p

(Λ̂Φ3 Φ3(η))
p

),

∣Υ4(η) − Υ4(0) − (1 − α)c
S(α) ηc−1 g4(η, Υ4(η)) − αc

S(α) ∫
η

0
θc−1 g4(θ , Υ4(θ))dθ∣p

≤ 2pΔp

4(((1 − α)c
S(α) )

p

η
p(c−1)(Φ4(η))p + ( αc

S(α))
p

(Λ̂Φ4 Φ4(η))
p

),

∣Υ(η) − Υ(0) − (1 − α)c
S(α) ηc−1ϖ(η, Υ(η)) − αc

S(α) ∫
η

0
θc−1ϖ(θ , Υ(θ))dθ∣p

≤ 2pΔp(((1 − α)c
S(α) )

p

η
p(c−1)(Φ(η))p + ( αc

S(α))
p

(Λ̂ΦΦ(η))
p

).

Thus,

∫
Q

0
∣Υ1(η) − J(η)∣pdη ≤ 22p[Δp

1 ∫
Q

0
(((1 − α)c

S(α) )
p

η
p(c−1)(Φ1(η))p

+ ( αc
S(α))

p

(Λ̂Φ1 Φ1(η))
p

)dη + ((1 − α)c
S(α) )

p

∫
Q

0
ηp(c−1)∣g1(η, Υ1(η)) − g1(η, J(η))∣pdη (19)

+ ( αc
S(α))

p

∫
Q

0
( ∫

η

0
θc−1∣g1(θ , Υ1(θ)) − g1(θ , J(θ))∣dθ)

p

dη].
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Using the same technique and considering condition (11) alongside Hölder’s inequality, it follows that

∣∣Υ1 − J∣∣p ≤ zd1 Δ1 ∣∣Φ1∣∣p , ∣∣Υ2 − M∣∣p ≤ zd2 Δ2 ∣∣Φ2∣∣p ,
∣∣Υ3 − E∣∣p ≤ zd3 Δ3 ∣∣Φ3∣∣p , ∣∣Υ4 − L∣∣p ≤ zd4 Δ4 ∣∣Φ4∣∣p ,

∣∣Υ − S∣∣p ≤ zd Δ ∣∣Φ∣∣p ,

where zd1 = 4N
1
p

2

(1 − χ1)
1
p

, zd2 = 4N
1
p

2

(1 − χ2)
1
p

, zd3 = 4N
1
p

2

(1 − χ3)
1
p

,

zd4 = 4N
1
p

2

(1 − χ4)
1
p

, and zd = 4N
1
p

2

(1 − ß)
1
p

.

Then, the fractal fractional mathematical model (8) is Ulam-Hyers-Rassias-stable.
Example 19. To estimate the obtained results for the Banach contraction mapping and UH,UHR stable of
the mathematical model (8), apply Theorems (13), (18) and (17), all the parameters of the problem (8) are
taken from [19].

8 Discussion
The current study found a prevalence of ascariasis in Duhok city at an overall rate of (42.5%). This

finding aligns with the results of [42] reported an Ascaris infection rate of (41.4%), and the authors in [12]
found a similar prevalence of (43.3%). However, the current results differ from those of [11] and [43] reported
infection rates of only (23.1%) and (6.25%), respectively. Also, the present study indicated that the infection
rate among males was higher than in females, consistent with the findings of [44] showed that males had
an infection rate of (59.0%) compared to (41.0%) for females. This is linked to the everyday participation
of males in agricultural activities that bring them into contact with the soil. In contrast, Ref. [43] found a
higher incidence of infection in females (57.1%) compared to males (42.9%), as most of their participants
lived in rural areas and lacked knowledge of infection. The current findings also revealed a higher infection
rate in rural residents compared to urban ones, with [45] reporting prevalence rates of (69.0%) in rural
areas and (31.0%) in urban settings. This trend can be attributed to the limited access to sanitation facilities
and healthcare in rural regions. However, some studies, like that of [46], reported that urban residents had
a higher infection rate (16.5%) compared to rural residents (3.6%), attributing this to the high population
density in urban areas and the lack of effective infection prevention and control strategies. This study found
a link between poverty and increased exposure to parasitic infections due to inadequate clean water, poor
sanitation, and crowded living conditions [45], supported the current results and investigated the infection
rates among low-income and high-income patients, which (55.0%) and (18.0%), respectively. Ref. [47] noted
that elevated IgE levels associated with Ascaris increase the risk of asthma by inducing larval migration
through the lungs, leading to pulmonary infiltrates and airway obstruction [13] also found that elevated
serum IgG antibody levels against Ascaris are associated with significantly reduced lung function and
increased asthma symptoms. On the other hand, Ref. [9] provided contrasting results, suggesting that this
parasite provokes an immune response in children, manifested by significant changes in white blood cell
counts, eosinophils, and IgE; it did not have a substantial impact on pulmonary function tests (PFTs).
Researchers found that the PFT results of asthmatic children were significantly worse than those of Ascaris-
infected children, implying that the impairment in PFTs was primarily due to asthma rather than Ascaris
infection. As well, Ref. [3] reported findings that contrasted with the current study, indicating no correlation
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between allergic reactions and parasitic infections in children. In terms of hematological parameters and IgE
levels, the present study detected significant variations (p < 0.05) across all blood metrics.

According to recent research, patients infected with A. lumbricoides showed reduced red blood cell
counts and hemoglobin levels compared to the control group. Supporting this finding, Ref. [48] stated
that infected individuals also exhibited lower red blood cell and hemoglobin concentrations. This decrease
may be attributed to the parasite’s ability to cause hemolysis of red blood cells, resulting in a reduction in
their overall number. Ascaris infection appears to be associated with elevated levels of white blood cells,
eosinophils, IgE, and IL-4, reflecting an immune response similar to that seen in asthma [49] indicating
that the immune response to helminthic parasites results in elevated levels of IgE, eosinophilia, interleukins
4, 5, and 13. In a similar vein, understanding the mathematical models that describe immune responses
can benefit from a solid grasp of contraction mapping. Contraction mapping is fundamental in many areas
of mathematics and applied sciences. Understanding their properties, particularly the importance of the
contraction constant being less than 1, is crucial for ensuring convergence to a unique solution. Consequently,
the contraction constant was examined in different cases, with the findings presented in tables and diagrams
for further clarity.

To highlight the efficiency of the Banach contraction principle and the fractal-fractional Caputo-
Fabrizio mathematical model of Ascaris lumbricoides in ensuring a unique solution, we will evaluate
the values of the contraction parameters Ω1, Ω2, Ω3, Ω4 across several different values of α, p and c.
Figs. 4–7 illustrate these findings on the interval [0, 1]. In addition, Table 5 shows the computed results of
Ω1,2,3,4 < 1, which guarantees the existence of a unique fixed point on the interval [0, 1]. Now, To explain that
the problem (7) is Ulam-Hyers and Ulam-Hyers-Rassias stable, the results of χ1,2,3,4 has been investigated at
many values of 0 < α ≤ 1, c > 1 and 1 ≤ p < ∞. The graphical representation and numerical results of χ1,2,3,4 at
various values of p, α, and c are presented in Figs. 8–11 and Table 6. Furthermore, the behavior of χ1 , χ2, χ3, χ4
that is attractively plotted in Fig. 12 shows that the solution of the mathematical model is stable when c ∈ [1, 2]
and α ∈ (0, 1] at different values a) p = 2, η = 0.2; b) p = 3, η = 0.9 c) p = 4, η = 0.5. It was deduced that
the condition of Theorems (18) and (17) is satisfied, then the mathematical model (7) is Ulam-Hyers and
Ulam-Hyers-Rassias stable.

Figure 4: Behavior of the contraction parameters Ω1, Ω2, Ω3, Ω4 for different values of α, c&p. a) α = 0.2, c = 1.65,
p = 2; b) α = 0.3, c = 1.95, p = 4; c) α = 0.75, c = 1.3, p = 10; d) α = 0.5, c = 1.5, p = 20
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Figure 5: To show the efficiency of the Banach contraction principle and that the problem has a unique solution, the
graphical 3D representation of the contraction parameter Ω1,2,3,4 < 1 for α ∈ (0, 1] are plotted at p = 2, c = 1.4 . a) Ω1;
b) Ω2; c) Ω3; d) Ω4

Figure 6: To explain the applicability of the Banach fixed theorem, Geometrical behaviour of Ω1, Ω2, Ω3, Ω4 are
graphed at 0 < α ≤ 1, p = 9, c = 1.1 a) Ω1; b) Ω2; c) Ω3; d) Ω4

Figure 7: To establish a solution exists and there is only one solution to the mathematical model at selected points,
the behavior of the parameters Ω i , i = 1, 2, 3, 3 is illustrated in the graph at some points. p = 15, c = 1.53 and 0 < α ≤ 1.
a) Ω1; b) Ω2; c) Ω3; d) Ω4
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Table 5: To verify the existence and uniqueness of the solution to the mathematical model based on the Banach fixed-
point theorem and ensuring that the contraction condition holds. The numerical results for Ω1,2,3,4 < 1 are presented
for several points

(p, c, α) = {(2, 1.8, 0.4), (8, 1.6, 0.6), (20, 1.1, 0.5)}
p = 2, c = 1.8, α = 0.4 p = 8, c = 1.6, α = 0.6

η Ω1 Ω2 Ω3 Ω4 Ω1 Ω2 Ω3 Ω4

0.1 0.0320 0.0161 0.0123 0.0066 0.1006 0.0505 0.0386 0.0207
0.2 0.0477 0.0239 0.0183 0.0098 0.1097 0.0550 0.0420 0.0226
0.3 0.0622 0.0312 0.0238 0.0128 0.1154 0.0579 0.0442 0.0238
0.4 0.0768 0.0385 0.0294 0.0158 0.1197 0.0600 0.0459 0.0247
0.5 0.0919 0.0461 0.0352 0.0190 0.1231 0.0618 0.0472 0.0254
0.6 0.1077 0.0540 0.0413 0.0222 0.1262 0.0633 0.0484 0.026
0.7 0.1242 0.0623 0.0476 0.0256 0.1290 0.0647 0.0495 0.0266
0.8 0.1414 0.0709 0.0542 0.0291 0.1318 0.0661 0.0505 0.0272
0.9 0.1592 0.0798 0.0610 0.0328 0.1348 0.0676 0.0517 0.0278
1 0.1776 0.0891 0.0681 0.0366 0.1381 0.0693 0.0529 0.0285

p = 20, c = 1.1, α = 0.5

η Ω1 Ω2 Ω3 Ω4

0.1 0.0998 0.0500 0.0382 0.0206
0.2 0.1036 0.0520 0.0397 0.0214
0.3 0.1062 0.0533 0.0407 0.0219
0.4 0.1084 0.0544 0.0416 0.0224
0.5 0.1104 0.0554 0.0423 0.0228
0.6 0.1123 0.0563 0.0430 0.0231
0.7 0.1140 0.0572 0.0437 0.0235
0.8 0.1156 0.0580 0.0443 0.0238
0.9 0.1171 0.0587 0.0449 0.0241
1 0.1186 0.0595 0.0455 0.0244
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Figure 8: The visual analysis of χ1 , χ2 , χ3 , χ4 has been investigated to check that the mathematical model (7) is (UH)
stable. In certain cases, where α ∈ (0, 1], c > 1 and 1 ≤ p < ∞, it is implied that the condition for stability is satisfied,
when a) p = 2, c = 1.5, α = 0.3; b) p = 3, c = 1.95, α = 0.2; c) p = 4, c = 1.2, α = 0.25

Figure 9: Graphical representation of the parameters χ1,2,3,4 is provided to verify the Ulam-Hyers and Ulam-Hyers
Rassias stability of the solution to the mathematical model at α ∈ (0, 1], p = 2 and c = 1.6 a) χ1; b) χ2; c) χ3; d) χ4

Figure 10: Shows the values χ1,2,3,4 < 1 on η ∈ [0, 1] for various α ∈ (0, 1] at p = 8 and c = 1.2. a) χ1; b) χ2; c) χ3; d) χ4

Figure 11: To clarify the stability in the sense of (UH) − (UHR), a graphical representation is provided to show the
behavior of χ1,2,3,4 < 1 for α ∈ (0, 1] with p = 13, and c = 1.9 a) χ1; b) χ2; c) χ3; d) χ4
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Table 6: Verifying the stability of the solution to the mathematical model and ensuring that the condition χ1,2,3,4 < 1 are
satisfied, computational results for χ1,2,3,4 at several selected points of p, c, α are provided

p = 2, c = 1.65, α = 0.4 p = 3, c = 1.35, α = 0.75

η χ1 χ2 χ3 χ4 χ1 χ2 χ3 χ4

0.1 0.0041 0.0010 0.0006 0.0002 0.0105 0.0026 0.0015 0.0004
0.2 0.0094 0.0024 0.0014 0.0004 0.0213 0.0054 0.0031 0.0009
0.3 0.0163 0.0041 0.0024 0.0007 0.0323 0.0081 0.0047 0.0014
0.4 0.0248 0.0062 0.0036 0.0011 0.0435 0.0109 0.0064 0.0018
0.5 0.0353 0.0089 0.0052 0.0015 0.0549 0.0138 0.0081 0.0023
0.6 0.0477 0.0120 0.0070 0.0020 0.0664 0.0167 0.0098 0.0028
0.7 0.0623 0.0157 0.0092 0.0026 0.0781 0.0197 0.0115 0.0033
0.8 0.0792 0.0199 0.0116 0.0034 0.0900 0.0226 0.0132 0.0038
0.9 0.0983 0.0247 0.0144 0.0042 0.1020 0.0257 0.0150 0.0043
1 0.1198 0.0302 0.0176 0.0051 0.1141 0.0287 0.0168 0.0048

p = 4, c = 1.95, α = 0.9

η χ1 χ2 χ3 χ4

0.1 0.0015 0.0001 0.0004 0.0007
0.2 0.0030 0.0002 0.0008 0.0013
0.3 0.0045 0.0003 0.0012 0.0020
0.4 0.0060 0.0004 0.0016 0.0026
0.5 0.0075 0.0005 0.0020 0.0033
0.6 0.0090 0.0006 0.0024 0.0039
0.7 0.0105 0.0007 0.0028 0.0046
0.8 0.0120 0.0008 0.0033 0.0053
0.9 0.0135 0.0009 0.0037 0.0059
1 0.0150 0.0010 0.0041 0.0066

Figure 12: The graphical representation demonstrates that χ1,2,3,4 < 1 at 1 < c ≤ 2, α ∈ (0, 1], confirming that the
conditions of Theorems (18) and (17) are hold. As a result, the solution of the mathematical model is (UH) − (UHR)
stable. a) p = 2, η = 0.2; b) p = 3, η = 0.9 c) p = 4, η = 0.5
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9 Conclusion
Public health interventions that focus on improving sanitation, access to clean water, and health

education are crucial in reducing the burden of ascariasis in this region. A total of 400 people participated,
including 270 with asthma and 130 controls, who visited general hospitals in Duhok City, Iraq. The results
indicate that the presence of ascariasis reduced lung function and was associated with a higher prevalence
of asthma among the participants. In addition, the findings emphasize the need to investigate the effects of
helminth infections on long-term lung health worldwide. Additionally, mathematical analysis of the solution
for the fractal-fractional mathematical model for the four stages of the life cycle of Ascaris lumbricoides
has been conducted in the sense of the Caputo-Fabrizio derivative. The uniqueness theorem is proved
using Banach’s contraction mapping with the Hölder inequality, and the Krasnosel’skii fixed-point theorem
is used in proving the existence of the solution. To understand the behavior of the solution, the (Ulam-
Hyers, Ulam-Hyers-Rassias) stability is also discussed in Łp-space. In future work, the mathematical model
can be extended to include more fractional derivatives, evaluate the equilibrium points, and analyze the
stability of the system. Numerical simulations will help to understand the outbreak of ascariasis and develop
control strategies.

There are some limitations in this study. Firstly, it is confined to Duhok City, Iraq, which limits the
generalizability of the findings to other regions or populations. Secondly, it was difficult to follow up with
the patients to fully understand the exact mechanism of the pathogenicity of Ascaris lumbricoides in causing
asthma. Thirdly, it was unable to find patients under the age of 15.
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