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ABSTRACT: The transportation and logistics sectors are major contributors to Greenhouse Gase (GHG) emissions.
Carbon dioxide (CO2) from Light-Duty Vehicles (LDVs) is posing serious risks to air quality and public health.
Understanding the extent of LDVs’ impact on climate change and human well-being is crucial for informed decision-
making and effective mitigation strategies. This study investigates the predictability of CO2 emissions from LDVs
using a comprehensive dataset that includes vehicles from various manufacturers, their CO2 emission levels, and key
influencing factors. Specifically, six Machine Learning (ML) algorithms, ranging from simple linear models to complex
non-linear models, were applied under identical conditions to ensure a fair comparison and their performance metrics
were calculated. The obtained results showed a significant influence of variables such as engine size on CO2 emissions.
Although the six algorithms have provided accurate forecasts, the Linear Regression (LR) model was found to be
sufficient, achieving a Mean Absolute Percentage Error (MAPE) below 0.90% and a Coefficient of Determination (R2)
exceeding 99.7%. These findings may contribute to a deeper understanding of LDVs’ role in CO2 emissions and offer
actionable insights for reducing their environmental impact. In fact, vehicle manufacturers can leverage these insights
to target key emission-related factors, while policymakers and stakeholders in logistics and transportation can use the
models to estimate the CO2 emissions of new vehicles before their market deployment or to project future emissions
from current and expected LDV fleets.

KEYWORDS: CO2 emission; machine learning; modeling; prediction; performance metrics; light-duty vehicles;
climate change; transportation and logistics

1 Introduction

1.1 Problem Statement
With the rapid growth of economic and social activities worldwide, Light-Duty Vehicles (LDVs),

including vans, pickup trucks, and small delivery vehicles, have become essential for passenger mobility
and the sustainable transport of goods [1]. LDVs, typically defined as vehicles with a gross weight rating
of 10,000 pounds or less, play a crucial role in logistics and transportation systems. Their importance has
grown significantly in response to the rise of e-commerce, particularly in last-mile delivery operations,
where timely and high-quality delivery is paramount. However, LDVs are also among the major contributors
to air pollution and environmental degradation [2]. Due to their reliance on internal combustion engines
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(mainly powered by diesel and gasoline), LDVs emit substantial amounts of air pollutants such as particulate
matter (PM2.5 and PM10), carbon monoxide (CO), nitrogen oxide (NOx), unburned hydrocarbons (UHC),
and greenhouse gases (CO2 and N2O) [3]. In urban areas, where LDVs are heavily utilized, elevated CO2
emissions, a dangerous Greenhouse Gas (GHG) and a key driver of climate change, demand urgent attention
from policymakers and environmental stakeholders [4].

1.2 LDVs’ CO2 Emission Modeling
Modeling and assessing CO2 emissions from transportation, as an essential step in the decision-

making process, presents significant complexity due to the multitude of influencing factors [5,6]. Predictive
models for vehicle-related CO2 emissions can generally be categorized into statistical models and Artificial
Intelligence (AI) models. Traditional statistical models, such as Autoregressive-Integrated Moving Average
(ARIMA), Seasonal ARIMA with exogenous factors (SARIMAX), and the Holt-Winters model, are typically
applied to annual datasets, as they primarily capture long-term trends. In addition, these models require
the dataset to be stationary, limiting their flexibility and application [7]. To overcome the limitations of
traditional prediction methods, AI techniques have emerged as an efficient tool offering the ability to model
processes involving vast amounts of data and detect hidden patterns.

Researchers and practitioners have approached the modeling and prediction of CO2 emissions released
by LDVs from two main perspectives, depending on the datasets used and the prediction/modeling tools
adopted. Some studies have focused on vehicle assessment using data collected from Portable Emission
Measurement System (PEMS) devices embedded in those vehicles [8]. In contrast, other studies have utilized
large-scale compiled at national or international levels, encompassing a wide variety of vehicle types and
usage patterns [9]. This latter approach offers the advantage of broader applicability, as similar vehicle models
tend to exhibit consistent CO2 emission patterns across different countries, providing a more generalized
understanding of emission behaviors.

In this context, the main aim of the current study is to help fill the applied research gap by analyzing
and comparing CO2 emissions from various LDVs, thereby enhancing understanding of their impact on
climate change and environmental issues. By utilizing a large-scale dataset that covers LDVs from different
manufacturers and applying multiple ML algorithms under consistent conditions, the study evaluates the
predictive accuracy of various models for CO2 emissions and identifies the most influencing variables. In
practice, such a comparative modeling approach is expected to valuable insights into CO2 emissions across
LDV types and support informed decision-making to reduce emissions in the global vehicle market [10].

1.3 Paper Outline
The remainder of this article is organized as follows. Section 2 includes an extensive literature review

as well as the contributions of the paper. Section 3 explores the dataset used in addition to its exploratory
analysis. Section 4 is allocated to the proposed methodology. In Section 5, the results and their discussion
are provided. Finally, Section 6 includes the conclusions of the study and its perspectives.

2 Literature Review
CO2 emissions from vehicles are classified as among the most significant GHGs and impactful con-

tributors to climate change. Following the Paris agreement, GHG emissions are expected to be reduced by
40%, below 1990 levels by 2030 [11]. Researchers around the world were extensively interested in developing
practical models to predict CO2 emissions as correlated with many attributes, including the fuel type utilized,
the engine size, the number of cylinders, etc. In addition, many CO2 emission related studies were based
on individual vehicles and therefore concentrated on immediate attributes, including driver behavior, road
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conditions, and climatic factors. However, most studies focused on certain types of vehicles seen in their
broader scope. In what follows, the focus will be on the studies that use AI techniques, including the main
classes of methods, namely, Machine Learning (ML) and Deep Learning (DL). The focus will therefore be on
the study objective, the dataset utilized, the models/methods employed, the achieved performance metrics,
as well as their limitations. The main objective of this approach is to be well-situated with the contributions of
the current study against existing ones on the same topic. Earlier research efforts on this topic are thoroughly
summarized hereafter in Table 1.

Table 1: Literature review summary

Ref. Objective Location and dataset Feature
engineering

Methods
techniques

Performance
metrics

Limitations

[8] Estimating CO2
emissions from
light-duty diesel
trucks using ML

algorithms

The dataset was
established using two
LDDTs equipped with

a PEMS and a GPS
(China)

Correlation
analysis

LSTM RMSE and R2 The dataset is not
representative due to

limitations in temporal
and spatial coverage, as

well as insufficient
attributes to account for

factors influencing
emissions.

[9] Estimating CO2
emissions produced
by LDVs using ML

algorithms

The dataset of 7384
cars gathered by the
Chinese government

between 2018 and
2022 (China)

Correlation
analysis

Catboost
(primary)

compared with
Gradient

Boosting and
LightGBM with

Ridge Regression
as a baseline

RMSE, MSE,
MAE and R2

The dataset is not
representative due to

limitations in the
diversity of vehicle

types, fuel consumption
patterns, geographic

regions, and temporal
contexts.

[12] Estimating CO2
emissions in Türkiye’s
transportation sector
using ML algorithms

The dataset is
collected form

Türkiye’s
transportation sector

between 1970 and
2016 (Turkey)

Correlation
analysis

MLP, XGBoost,
and SVM

RMSE, MSE,
MAE and R2

Study focused on a
unique country using
limited-size dataset

(47 observations)
known to be not

well-suited to
data-demanding ML

algorithms.
[13] Development and

evaluation of an
LSTM model for

estimating the
instantaneous CO2

emissions of taxicabs

One-day taxicab
dataset collected

using a PEMS device
(Wuhan, China)

Correlation
analysis

between CO2
emission and

driving
conditions

LSTM DL
algorithm

RMSE Lack of generalizability
since applied to specific

vehicles under
particular driving

conditions.

[14] Estimating CO2
emissions in HVs

using traditional and
advanced ML

algorithms

The dataset comprises
various parameters
collected by CO2

sensors and vehicle’s
electronic control
units. A total of

70,683 samples were
collected from 235
min of driving was
used to build the

models (UK)

Correlation
analysis

LR, RF, XGBoost,
ANN, LSTM, and

New
LSTM-based

model

Adjusted R2,
MAE, MSE, and

RMSE

Case sensitive since it
was applied to a specific

case study. The
accuracy of the sensors

may be a limitation.

(Continued)
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Table 1 (continued)

Ref. Objective Location and dataset Feature
engineering

Methods
techniques

Performance
metrics

Limitations

[15] Developing an
enhanced road

vehicle emission
model via the

integration of ML
with MOVES (a

simulator for
assessing GHGs

emission) for
improving the NO
and CO2 emissions’
prediction accuracy
of LDGVs in China

The dataset is
established from

three LDVs (China)

Feature
Selection
approach

RF R2 and RMSE Difficulty in adapting
MOVES simulator to

the case study of China
since it was designed
for USA conditions.

[16] Estimating CO2
concentration to
support vehicle

certification process
by the specialized

agencies

Dataset collected
from a VCA in UK

Heatmap
correlation

matrix

Various
Regression

models

MAE, RMSE,
MSE and MAPE

Model features are
relatively limited

(Engine power, fuel
consumption and
engine capacity).

[17] Forecasting of
transportation CO2

emission explained by
socio-economic

inputs

Annual data of
socio-economic

factors influencing
CO2 emission

covering 30 countries
classified into 3

classes

Pearson
correlation

analysis

SVM, GBR MAE, nRMSE,
MAPE and R2

Nonlinear correlation
not considered and

limited dataset.

[18] Prediction of
real-driving emission

of two commercial
vehicles using
XG-Boost ML

algorithm

Data collected from
real-time driving

scenarios of 3.5-ton
and 25-ton vehicles

(Korea)

Correlation
analysis

between the
output (CO2

emission)
and inputs
like engine

load, engine
speed,
vehicle

speed, etc.

XGBoost ML
algorithm

R2, RMSE and
MAPE

The study is based on
specific vehicles under
particular conditions.

[19] Use of three ML
algorithms for
modeling CO2

emissions of vehicles
equipped with

start-stop technology
and OBD II system

3000 records from a
real-time (velocity,

acceleration and
instantaneous CO2
emission) test on a

vehicle under various
scenarios (Poland)

No
information

provided

Linear
regression,

random forest
and Gradient

Boosting
algorithm

R2 and MSE The main limitation of
the work is that the

model was developed
based only on the data

of a unique vehicle
equipped with

start-stop technology
which may not reflect

the real-world situation.

Note: DTs: Decision Trees; GPS: Global Positioning System; GBR: Gradient Boosting Regressor; HVs: Hybrid
Vehicles; K-nn: K-nearest neighbors; LDDTs: Light-Duty Diesel Trucks; LSTM: Long Short-Term Memory; LDVs:
Light-Duty Vehicles; LDGVs: Light-Duty Gasoline Vehicles; LightGBM: Light Gradient Boosting Machine; ML:
Machine Learning; MLP: Multi-layer Perceptron; MOVES: MOtor Vehicle Emission Simulator; OBD: On-Board
Diagnostic; PEMS: Portable Emission Measurement System; RF: Random Forest; SVM: Support Vector Machine;
VCA: Vehicle Certification Agency; XGBoost: Extreme Gradient Boosting.

Based on the summarized studies of Table 1, it can be noticed that the problem of CO2 emission
concerns researchers worldwide due to its negative effect on the climate and environment. The conducted
studies have comprehensively concentrated on macroscopic and microscopic levels, respectively, considering
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thorough datasets collected at national or international levels or vehicle-specific datasets collected through
PEMS devices. Among the second class of works, the study in [20] assessed NOx/CO2 emission under
particular driving scenarios. The results were reported to be promising in improving air quality in Wuhan
(China). In the same direction, the study carried out in [21] investigated the ability to estimate the CO2
emissions for two vehicles based on PEMS data and Long Short-Term Memory (LSTM). Although they are
relevant to the current topic, the two research works have the limitation of being applied to specific case
studies and therefore, they lack generalization ability with case-sensitive findings. Moreover, a few studies
have considered annual datasets analyzing the effect of socio-economic factors impacting transportation’s
CO2 emission. A common practice was to consider feature engineering based on the well-known Pearson
(linear) correlation. Meanwhile, none of the studies have considered nonlinear correlation indices such as
Spearman and Kendall. The developed prediction/modeling techniques were found to range from simple
regression to sophisticated ML algorithms. The performance indicators obtained were found to be case-
sensitive depending on the size of the dataset, the techniques/methods employed, and the computational
resources. In terms of limitations, the common one was the special cases of particular vehicles’ difficulty
generalizable to other ones under different conditions. In addition, in most cases, the size of the dataset was
limited which may not provide high accuracy when ML/DL algorithms were employed as they are known to
be data-hungry. In line with the above literature review, the present paper focuses on the prediction/modeling
of LDVs-related CO2 emissions based on six, complementary, ML algorithms and a comprehensive dataset
including several LDVs from various brands and sizes. Therefore, this work aims to fill specific research and
methodological gaps in the literature. Specifically:

1) Various models for CO2 emissions worldwide have been investigated in the literature, ranging from
simple linear to highly non-linear approaches. This work aims to explore the capabilities of six models,
including some additional ones that have not been previously examined.

2) Numerous feature engineering techniques combined with data-driven models have been proposed and
validated in the literature for predicting CO2 emissions worldwide, offering comprehensive frameworks
for tackling this prediction task. This work seeks to contribute to the body of knowledge by introducing
an additional predictive modeling framework that accurately addresses CO2 prediction. It explores
various ML models, ranging from linear to non-linear, that complement those previously studied in the
literature, ensuring proper hyperparameter optimization. Additionally, it incorporates linear and non-
linear correlation (Spearman and Kendall), evaluates performance metrics, and statistically analyzes
the influence of different vehicle attributes on CO2 emissions.

3 Data Description
The dataset, sourced by1, has been investigated in this work to address the work’s objectives. The

dataset was obtained from Kaggle and cross-referenced with the Canadian Government’s open data portal.
The dataset comprises 7385 vehicles, each with various attributes/features relevant to its specification (e.g.,
vehicle manufacturer), performance (e.g., number of cylinders), fuel efficiency (e.g., fuel consumption), and
environmental impact (e.g., CO2 emission).

The dataset used in this study represents a wide range of manufacturers and LDV brands commonly
used worldwide. Our analysis is based on the assumption that, in general, new LDVs exhibit consistent CO2
emission behavior regardless of the location/country in which they are operated. As a common practice, after
a certain period of use, and subsequently at regular intervals, (depending on the country (regional level) local
standards), LDVs undergo inspection, and any violations must be addressed by the vehicle owner according

1https://www.kaggle.com/datasets/debajyotipodder/co2-emission-by-vehicles (accessed on 03 June 2025)

https://www.kaggle.com/datasets/debajyotipodder/co2-emission-by-vehicles
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to the local regulations. Therefore, the dataset is used to model the CO2 emission levels based on the selected
features, assuming that new vehicles have similar emission patterns regardless of location. Local or regional
regulations should be applied systematically and regularly after the LDV is being used. Notably, the dataset
used in this study contains no missing data.

Note here that the dataset does not include the vehicle usage conditions, such as mileage, road conditions
and climate. Although those conditions are known to have a high impact on CO2 emission and this effect
may be explored by collecting real datasets of specific vehicles as carried out in many papers among
those we cited in this paper (examples can be found in [12–14]). However, in the current study, this is
considered a limitation since it covers only specific vehicles under specific conditions which therefore lacks
generalization ability. Meanwhile, our paper covers several brands from many manufacturers while focusing
on the technical specifications of the investigated vehicles as well as their effect on CO2 emission patterns.
This may allow far away better generalization. In conclusion, the vehicle usage conditions, and the vehicle
technical specifications are conceptually different although tackling the same problem of CO2 emission.

For clarity, the attributes/features are detailed in Table 2. The fuel consumption in combined conditions
represents a standardized approximation of an average driver’s typical usage pattern, with a ratio of 55% City
and 45% Highway driving.

Table 2: List of attributes/features available in the dataset under study

Attribute/Feature Notation Unit Description
Vehicle manufacturer VMa – Indicates the vehicle’s brand

Vehicle model VMo – Indicates the vehicle’s specific model
Vehicle class VC – Indicates the vehicle’s size/type
Engine size VES L Indicates the engine’s displacement

Number of cylinders VCY – Indicates the engine’s number of cylinders
Type of transmission VTR – Indicates the vehicle’s gear mechanism

Fuel type FT – Indicates the vehicle’s fuel type
Fuel consumption in city FCC it y L/100 km Indicates the vehicle’s fuel consumption in

urban conditions
Fuel consumption on

highway
FCHi ghw a y L/100 km Indicates the vehicle’s fuel consumption at

steady highway speeds
Fuel consumption in
combined conditions

FCCCL L/100 km
Indicates the vehicle’s fuel consumption
considering both city and highway
conditions

Fuel consumption in
combined conditions

FCCC M mpg*

CO2 emissions ECO2 g/km Indicates the vehicle’s the amount of CO2
produced per kilometer

Note: *mpg: miles per imperial gallon.

Among the 12 available attributes/features, there are 5 categorical variables and 7 numerical variables.
Specifically, the vehicle manufacturer (comprising 42 unique brands), model (comprising 2047 specific
models), class (comprising 16 sizes/types), type of transmission including the number of gears (comprising
27 transmission types), and fuel type (comprising 5 specific fuel types) are categorical variables whereas the
remaining 7 are numerical variables, whose values vary based on the nature of each attribute/feature.
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For instance, among the available categorical variables, examples include ACURA, AUDI, BMW,
VOLVO, and TOYOTA (for the vehicle’s manufacturer); ILX, A4, 320i, CAMRY, and S60 (for vehicle’s model);
COMPACT, MID-SIZE, SUV-SMALL, and FULL-SIZE (for vehicle’s class); Automatic with Select Shift
(AS), Manual (M), and Continuously Variable (AV), including number of gears (from 3 to 10) (for vehicle’s
transmission type); and Regular Gasoline (X), Premium Gasoline (Z), and Diesel (D) (for vehicle’s fuel type).
It is worth mentioning that the categorical attributes were encoded into numeric values using label encoding
to ensure compatibility with the ML models used in the subsequent prediction analysis. For clarity, Figs. 1–5
illustrate the distribution of these five categorical variables in order. Although there are 2047 unique vehicle
models, only the top 50 most frequent ones are shown in Fig. 2 for better readability.

Figure 1: The number of events distributed by vehicle’s manufacturer

Figure 2: The number of events distributed by vehicle model. The highest 50 events are shown for clarity
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Figure 3: The number of events distributed by vehicle’s class

Figure 4: The number of events distributed by vehicle’s transmission type

Figure 5: The number of events distributed by vehicle’s fuel type
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Similarly, among the available numerical variables, the ranges of values include [0.9–8.4] (for engine
size), [3–16] (for number of cylinders), [4.2–30.6] (for fuel consumption in city), [4–20.6] (for fuel consump-
tion on highway), [4.1–26.1] (for fuel consumption in combined conditions, measured in L/100 km), [11–69]
(for fuel consumption in combined conditions, measured in mpg), and [96–522] (for CO2 emissions). For
clarity, Figs. 6–11 illustrate the histograms of these seven numerical variables in order.

Figure 6: The histogram of the “engine size”

Figure 7: The histogram of the “number of cylinders”

Figure 8: The histogram of the “fuel consumption in city”
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Figure 9: The histogram of the “fuel consumption on highway”

Figure 10: The histogram of the “fuel consumption in combined conditions, measured in L/100 km”

Figure 11: The histogram of the “fuel consumption in combined conditions, measured in mpg”

To effectively present the statistical distribution of the available attributes/features, Fig. 12 illustrates the
boxplot of all normalized features in order, including CO2 emissions. From Fig. 12, it is evident that CO2
emissions and the corresponding fuel consumption features exhibit significant variability and numerous
outliers compared to other features, such as engine size. This indicates potential correlations between CO2
emissions and other features, which will be explored later in subsequent sections of this work. To effectively
address the correlations between variables, outliers were eliminated using the Interquartile Range (IQR)
method. Outliers are typically defined as data points that fall below the 1st Quartile (Q1) or above the 3rd
Quartile (Q3) by more than 1.5 times the IQR. As a result, 960 data points were excluded from the subsequent
analysis, leaving a total of 6425 data points.



Comput Model Eng Sci. 2025;143(3) 3593

Figure 12: Boxplots of the whole variables in the dataset

4 The Proposed Methodology
This section presents the methodology proposed in this work to develop a predictive model for the CO2

emissions (g/km) based on the historical recorded vehicle design, models, performance, fuel consumption,
and their associated CO2 emissions of the case under study. The refined version of the dataset, after excluding
the 960 outlier data points and transforming the categorical attributes into numeric format, is referred to as
Xred1 , with a size of 6425 × 12.

Refined Dataset

Step 1: Statistical and 
Correlation Analysis

Step 2: Feature Refinement and 
Dataset Variants Establishment

Step 3: Predictive Model 
Development and Validation

Insights and 
Recommendations

Train-Test (80-20 Rule)

Figure 13: The proposed predictive modelling approach of CO2 emissions

Specifically, the proposed methodology is structured in three systematic and chronological steps, as
depicted in Fig. 13. Specifically, it begins with statistical and correlation analysis to better understand the
association levels and impact of each attribute on CO2 emissions, while also refining the dataset by elimi-
nating potentially redundant or irrelevant features (Step 1). Once these association levels are identified and
the dataset is refined, the methodology progresses to establish dataset variants, aiming to comprehensively
determine the set of attributes that maximize the predictability of CO2 emissions (Step 2). To achieve this,
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the six investigated ML models are developed and properly optimized using each dataset variant while
computing various performance metrics from the literature (Step 3). In detail:

Step 1. Statistical and Correlation Analysis. This step entails statistically analyzing the historically
available dataset to better understand the association level and impact of each attribute on CO2 emissions. To
this aim, the distributions of the emissions per unique values of the input attributes are to be identified and
the correlation (r) between them is to be computed. For this latter, three correlation metrics are employed
to compute the association levels with the emissions, aiming to effectively identify the set of attributes
that largely affect the CO2 emissions while developing the predictive models. Specifically, Pearson [22],
Spearman [23], and Kendall [24] correlation coefficients are investigated to compute the relationships and
gain a comprehensive overview of the interdependencies among the combined categorical and numerical
attributes/features. Practically the Pearson correlation is effectively used for numerical attributes in which
the relationship is crucial, whereas Spearman and Kendall are more suitable for ordinal data or non-
linear relationships, as they assess the strength and direction of monotonic associations. Last, based on the
computed correlation metrics, correlation heatmaps are established to visually interpret the attribute/feature
relationships and to initially identify attributes/features exhibiting high multicollinearity, for establishing
dataset variants (Step 2) aimed at effective CO2 emissions prediction (Step 3).

Step 2. Feature Refinement and Dataset Variants Establishment. Once the correlation metrics are com-
puted in Step 1, the established correlation heatmaps are initially used to visually identify and remove highly
correlated independent attributes/features from the overall dataset. Subsequently, a Variance Inflation Factor
(VIF) analysis is performed on the reduced dataset to confirm that multicollinearity has been effectively
eliminated and that the remaining attributes/features offer independent predictive power. Once the refined
feature set is finalized, one can establish dataset variants to effectively identify the set of attributes/features
that might have an impact on the predictability of CO2 emissions for any type of vehicle. Specifically,
the retained attributes after correlation- and VIF-based filtering are to be used to establish a reduced-
version dataset (Xred1 ). From this reduced-version dataset, additional reduced-version dataset variants are
established by progressively excluding features one by one, i.e., Xred2 , Xred3 , and so on, upon reaching a
dataset that contains the attribute of the largest impact on CO2 emissions. The objective is to establish dataset
variants that strike a balance between feature complexity and the predictive performance of CO2 emissions
in the next step (i.e., Step 3). It is worth mentioning that the categorical attributes were converted to numeric
indices within each dataset variant to ensure their effective utilization in the ML models’ development of of
Step 3.

Step 3. Predictive Model Development and Validation. For each established dataset, a set of data-driven
models are investigated to accurately estimate the CO2 emissions based on a set of selected attributes
identified in each dataset variant. The models range from simple Linear Regression (LR) models to more
advanced non-linear models, including Regression Trees (RTs), Ensemble of Trees (ETs), Kernel Approxi-
mation Models (Kernel), Support Vector Machines (SVMs), and Neural Networks (NNs). The models are
built while investigating various potential configurations to ensure they have the optimal configuration (i.e.,
hyperparameters) of each model. That is, the models are optimized in terms of their internal configurations
(i.e., hyperparameters), resorting to Bayesian Optimization (BO) optimizer. Specifically, Table 3 summarizes
the set of parameters to be optimized while developing the prediction models. The LR models include
identifying the best LR scheme among Linear, Interactions, Robust, and Stepwise LR variants. Last, the
Regression Learner Application available in MATLAB

R©
is being used to devise the models2.

2https://www.mathworks.com/help/stats/regression-learner-app.html (accessed on 03 June 2025)

https://www.mathworks.com/help/stats/regression-learner-app.html
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Table 3: The set of parameters to be optimized for each prediction model

Model Hyperparameters
RTs Minimum Leaf Size

ETs Ensemble Method (Bag and LSBoost) ∣Minimum Leaf Size ∣ Number of Learners ∣
Learning Rate ∣ Number of Predictors to Sample

Kernel
Learner (SVM and Least Squares Kernel) ∣Number of Expansion Dimensions ( [100,

10,000]) ∣ Regularization Strength (i.e., Lambda) ∣ Kernel Scale ( [0.001, 1000]) ∣
Epsilon ∣ Standardize Data (Yes or No)

SVMs Kernel Function (Gaussian, Linear, Quadratic, and Cubic) ∣ Box Constraint ( [0.001,
1000]) ∣ Kernel Scale ( [0.001, 1000]) ∣ Epsilon ∣ Standardize Data (Yes or No)

NNs
Number of Fully Connected Layers (1, 2, or 3) ∣ Layers size ( [1, 300]) ∣ Activation

Function (ReLU, Tanh, Sigmoid, and None) ∣ Regularization Strength (i.e., Lambda)
∣ Standardize Data (Yes or No)

Each dataset variant is divided following 80–20 rule for the train and test portions. The 80% portion
will be subjected to a 5-fold cross validation approach to ensure robustness while developing the prediction
models. The 80–20 portions will be the same among the whole dataset variants for a fair comparison with
the sole difference in the number of attributes to be used as inputs to the prediction models. Furthermore,
the impact of attribute standardization (zero-mean normalization) has also been investigated across the
evaluated models.

Further, the models are compared against each other through a set of standard performance metrics,
including the Root Mean Square Error (RMSE) (in g/km) (Eq. (1)), Mean Absolute Error (MAE) (in g/km)
(Eq. (2)), Mean Absolute Percentage Error (MAPE) (in %) (Eq. (3)), Coefficient of Determination (R2)
(in %) (Eq. (4)), and Computational Time (in seconds).

RMSE =
�
��� 1

n

n
∑
i=1
(Ei

C O2
− Ê i

CO2
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MAE = 1
n

n
∑
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CO2
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R2 = 1 −
∑n

i=1 (Ei
C O2
− Ê i

CO2
)2

∑n
i=1 (Ei

C O2
− ECO2)

2 (4)

where i is a general index of a validation data point (i = 1, . . . , n), n is the total number of validation data
points, Ei

C O2
and Ê i

CO2
are the actual and estimated i-th CO2 emission values, respectively, and ECO2 is the

average value of the actual CO2 emissions across the validation dataset.
The model’s configuration that achieves the best predictability of the CO2 emissions on the 80%

validation portion will be later used to evaluate its goodness and effectiveness on the fixed unseen 20% test
portion. Subsequently, insights can be drawn on each model’s predictability.



3596 Comput Model Eng Sci. 2025;143(3)

5 Results and Discussion
In this section, the application results of the proposed approach to the case study at hand are presented

step-by-step.
The refined dataset that comprises the whole available attributes/features (Xref ) of 6425 data points is

statistically analyzed and the correlation values between the 11 independent attributes to the CO2 emissions
are computed using the three-correlation metrics being investigated in this work (i.e., Step 1).

The Pearson correlation measures the linear association between individual numeric attributes and
CO2 emissions, while the Spearman and Kendall correlations capture monotonic relationships between the
entire set of numeric and encoded categorical attributes and CO2 emissions. For clarity and conciseness,
only the Kendall correlation heatmap is presented in Fig. 14, as the correlation results were found to be
largely consistent across all three correlation methods. For reference, the Pearson and Spearman correlation
heatmaps are provided in Appendix A. From Fig. 14, one can cite the following insights:

- The Vehicle Manufacturer (VMa), Vehicle Model (VMo), Vehicle Class (VC), and the Number of Trans-
mission (VTR) show very weak correlations with each other and with most other attributes, suggesting
that they are largely independent and do not contribute significantly to multicollinearity.

- The Vehicle Engine Size (VES) and Number of Cylinders (VCY ) show moderate correlations with each
other, indicating partial redundancy, i.e., mechanical related attributes, with significant contribution
to multicollinearity.

- The Fuel Consumption (in City (FCC it y), on Highway (FCHi ghw a y), and in Combined Conditions
(FCCCL and FCC M)) show the highest correlations among each other (i.e., > 0.78), indicating high
redundancy, with a significant contribution to multicollinearity.

- The fuel consumption attributes (FCCCL , FCCC M , FCC it y , and FCHi ghw a y), followed by Vehicle Engine
Size (VES), Number of Cylinders (VCY ), Number of Transmission (VTR), Vehicle Class (VC), Fuel Type
(FT), Vehicle Manufacturer (VMa), and Vehicle Model (VMo), show varying degrees of correlation with
CO2 emissions, with corresponding Kendall correlation coefficients of 0.9776, −0.9703, 0.9223, 0.8617,
0.6823, 0.6985, −0.2252, 0.2078, 0.1658, −0.09719, and 0.08034, respectively. In practice:
– Higher fuel consumption is directly associated with higher CO2 emissions.
– Larger engines with large numbers of cylinders consume more fuel, thereby emitting more CO2.
– The Vehicle Class (VC) indirectly affects CO2 emissions by influencing engine size and fuel

consumption.
– The Number of Transmission (VTR) impacts fuel consumption efficiency. For instance, specific

transmission types (e.g., manual) improve fuel efficiency compared to other types (e.g., automatic),
thereby contributing to lower CO2 emissions.

– Fuel Type (FT) reflects differences in combustion properties, which influence fuel efficiency
and emissions.

– Vehicle Manufacturer (VMa) and Vehicle Model (VMo) indicate different vehicle designs,
performance, and technological variations, thereby impacting, indirectly the CO2 emissions.
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Figure 14: Kendall correlation heatmap

To gain deeper insights into the impact of each attribute and its unique values on CO2 emissions
(ECO2 ), Figs. 15–25 illustrate the attributes’ effects, starting with the categorical variables (Figs. 15–19) and
followed by the numerical variables (Figs. 20–25). These figures highlight the average CO2 emissions
(depicted as bars) and their associated standard deviation values (depicted as error bars). From the figures,
the following insights can be drawn:

- It is apparent that BUGATTI vehicles contribute the most to CO2 emissions, with around 500 g/km,
compared to SMART vehicles, which emit approximately 180 g/km. Both brands exhibit minimal
variability in their CO2 emissions. This disparity can be attributed to differences in vehicle design,
performance, and other contributing factors such as engine size, fuel type, and technical specifications.
(Fig. 15). Similarly, individual vehicle models show varying levels of CO2 emissions, with the CHIRON
model exceeding 500 g/km, compared with the other models whose emissions are less than 500 g/km.
Again, this can be attributed to variations in vehicle design, performance, and additional contributing
factors such as engine size, fuel type, and other specifications (Fig. 16).

- In Fig. 17, it is evident that the vehicle class (VC) significantly impacts CO2 emissions. For instance, VAN-
PASSENGER class exhibits the highest average emissions, reaching around 400 g/km. In contrast, the
STATION WAGON-SMALL class has substantially lower emissions, averaging less than 200 g/km. This
variation highlights the importance of vehicle class in determining environmental impact in terms of
CO2 emissions.

- It is apparent that vehicles with A (Automatic), AM (Automated Manual), or AS (Automatic with select
Shift) transmissions generally exhibit higher CO2 emissions compared to those with M (Manual) and AV
(Continuously Variable) transmissions. However, no specific trend is observed for the number of gears,
likely due to the influence of additional attributes (Fig. 18).

- It is apparent that vehicles using E85 (ethanol) and Z (premium gasoline) fuel tend, on average, to exhibit
higher CO2 emissions, followed by X (regular gasoline) and D (diesel) fuel (Fig. 19). This can be justified
by the differences in combustion efficiency and energy content across the five different fuel types as well
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as the number of available events for each fuel type, i.e., 1 event for N (natural gas) fuel, as depicted
in Fig. 5.

- From Fig. 20, as expected, the number of cylinders (VCY ) increases, ranging from 3 to 16 cylinders, and
the CO2 emissions also increase from around 180 g/km to more than 500 g/km of emissions, respectively.

- As the engine size (ES) increases, the CO2 emissions (ECO2 ) also increase, as expected (Fig. 21).
- As long as fuel consumption (FC) (city (FCC it y), highway (FCHi ghw a y), or combined conditions in L/100

km (FCCCL)) increases, the CO2 emissions (ECO2 ) also increase, as expected (Figs. 22–24). Conversely, as
the fuel consumption in combined conditions, measured in mpg (FCCC M), increases the associated CO2
emissions (ECO2 ) decrease, as expected (Fig. 25). The figures illustrate the distribution of CO2 emissions
(ECO2 ) for each fuel consumption value, categorized into intervals.

Figure 15: The distribution of CO2 emissions (ECO2 ) across the available unique vehicle manufacturers (VMa)

Figure 16: The distribution of CO2 emissions (ECO2 ) across the available unique vehicle models (VMo). The highest 50
emissions are shown for clarity
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Figure 17: The distribution of CO2 emissions (ECO2 ) across the available unique vehicle classes (VC)

Figure 18: The distribution of CO2 emissions (ECO2 ) across the available unique vehicle transmission types (VTR)

Figure 19: The distribution of CO2 emissions (ECO2 ) across the available unique fuel types (FT)
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Figure 20: The distribution of CO2 emissions (ECO2 ) across the available unique numbers of cylinders (VCY)

Figure 21: The distribution of CO2 emissions (ECO2 ) across the available unique engine sizes (ES)

Figure 22: The distribution of CO2 emissions (ECO2 ) across the available unique fuel consumption in City (FCCity)
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Figure 23: The distribution of CO2 emissions (ECO2 ) across the available unique fuel consumption on highway
(FCHighway)

Figure 24: The distribution of CO2 emissions (ECO2 ) across the available unique fuel consumption in combined
conditions (L/100 km) (FCCCL)

Figure 25: The distribution of CO2 emissions (ECO2 ) across the available unique fuel consumption in combined
conditions (mpg) (FCCCM)
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Considering the insights drawn above, the following attributes were retained in the dataset, while the
others were excluded due to their significant contributions to multicollinearity. Specifically, FCCCL , VES , VTR ,
VC , FT , VMa , and VMo were retained, as they were considered non-redundant and independent in relation
to CO2 emissions (i.e., Xred1 ).

To ensure that multicollinearity is avoided, the VIF was computed for the retained attributes. As
reported in Table 4, all attributes exhibit VIF values well below the typically accepted threshold of 5. This
confirms that multicollinearity is not a concern in the reduced-version dataset (Xred1 ). Although attributes
VC and FCCCL show moderate VIF values (~3.3), they remain within acceptable limits and do not suggest
exclusion at this stage.

Table 4: VIF for the retained attributes

Attribute VIF value Interpretation
VMo 0.9919 No multicollinearity
VMa 1.0326 No multicollinearity
FT 1.1540 No multicollinearity
VC 3.3736 Moderate correlation (acceptable)

VTR 1.1374 No multicollinearity
VES 0.4707 No multicollinearity

FCCCL 3.3448 Moderate correlation (acceptable)

Following this, the reduced-version dataset and its variants are to be used to devise various prediction
models aiming to accurately estimate the CO2 emissions (i.e., Step 3). Specifically, the following datasets have
been established. The objective is to identify the optimal dataset that comprises the optimal set of attributes
that maximizes the prediction accuracy of the CO2 emissions for any type of vehicle, compromising the
vehicle specificity and fuel consumption generalizability, that is the complexity of the dataset considered
while developing the predictive model:

- Reduced-Version Dataset 1 (Xred1 ). It comprises 8 attributes, including the CO2 emissions after exclud-
ing the multicollinearity significantly contributing attributes. Specifically, the following attributes are
kept as input while developing the predictive model: FCCCL , VES , VTR , VC , FT , VMa , and VMo .

- Reduced-Version Dataset 2 (Xred2 ). It comprises 6 attributes, including the CO2 emissions after
excluding the least two correlated attributes (VMa and VMo) whose Kendall correlation values are−0.0972
and 0.0830). Specifically, the following attributes are kept as input while developing the predictive model:
FCCCL , VES , VTR , VC , and FT .

- Reduced-Version Dataset 3 (Xred3 ). It comprises 5 attributes, including the CO2 emissions after
excluding the least three correlated attributes (FT , VMa , and VMo) whose Kendall correlation values are
0.1658, −0.0972 and 0.0830). Specifically, the following attributes are kept as input while developing the
predictive model: FCCCL , VES , VTR , and VC .

- Reduced-Version Dataset 4 (Xred4 ). It comprises 4 attributes, including the CO2 emissions after
excluding the least four correlated attributes (VC , FT , VMa , and VMo) whose Kendall correlation values
are 0.2078, 0.1658, −0.0972 and 0.0830). Specifically, the following attributes are kept as input while
developing the predictive model: FCCCL , VES , and VTR .

- Reduced-Version Dataset 5 (Xred5 ). It comprises 3 attributes, including the CO2 emissions after exclud-
ing the least five correlated attributes (VTR , VC , FT , VMa , and VMo) whose Kendall correlation values are
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−0.2252, 0.2078, 0.1658, −0.0972 and 0.0830). Specifically, the following attributes are kept as input while
developing the predictive model: FCCCL and VES .

- Reduced-Version Dataset 6 (Xred6 ). It comprises 2 attributes, including the CO2 emissions after
excluding the least six correlated attributes (VES , VTR , VC , FT , VMa , and VMo) whose Kendall correlation
values are 0.6985, −0.2252, 0.2078, 0.1658, −0.0972 and 0.0830). Specifically, the following attributes are
kept as input while developing the predictive model: FCCCL .

Table 5 summarizes the set of attributes considered in input to the predictive model across the dataset
variants, for clarity.

Table 5: Variants of datasets used for predictive modeling of CO2 emissions

Dataset Dataset notation Dataset description Preserved attributes
Reduced 1 Xred1 8 attributes FCCCL , VES , VTR , VC , FT , VMa , and VMo
Reduced 2 Xred2 6 attributes FCCCL , VES , VTR , VC , and FT
Reduced 3 Xred3 5 attributes FCCCL , VES , VTR , and VC
Reduced 4 Xred4 4 attributes FCCCL , VES , and VTR
Reduced 5 Xred5 3 attributes FCCCLand VES
Reduced 6 Xred6 2 attributes FCCCL

Once the dataset variants are established, they have been used to develop various prediction models
investigated in this work, i.e., LR, RTs, ETs, Kernel, SVMs, and NNs (i.e., Step 3). In this regard, each
dataset variant is divided into 80% (5140 data points) and 20% (1285 data points) and the 5-fold cross
validation approach is being employed. Tables 6–11 summarize the optimal models’ configurations and the
corresponding performance metrics on the validation portion of the 5-fold cross validation approach for
Xred1 , Xred2 , Xred3 , Xred4 , Xred5 , and Xred6 , respectively. Indeed, the average computational efforts needed
by the simple models, such as the LR and RTs, are much less than those required by the more advanced
non-linear models, such as the SVMs and NNs, across the whole dataset variants.

Table 6: Performance of predictive models using Reduced Dataset 1 (Xred1 ) on the Validation portion

Model Optimal configuration Performance metrics (Validation)

RMSE (g/km) MAE (g/km) MAPE (%) R2 (%) Time (sec)
LR Interactions 2.55 2.07 0.85 0.997 9.69
RTs Minimum Leaf Size is 8 2.72 2.06 0.84 0.997 68.01

ETs

Ensemble Method is Bag

2.52 1.88 0.77 0.998 252.8
Minimum Leaf Size is 1

Number of Learners is 10
Learning Rate is 0.998

Number of Predictors to
Sample is 6

Kernel

Learner is Least Squares
Kernel

5.678 3.89 1.65 0.987 198.4Number of Expansion
Dimensions is 106

(Continued)
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Table 6 (continued)

Model Optimal configuration Performance metrics (Validation)

RMSE (g/km) MAE (g/km) MAPE (%) R2 (%) Time (sec)
Lambda is 0.18036

Kernel Scale is 0.010286
Standardize Data is Yes

SVM

Kernel Function is Linear

2.76 2.15 0.90 0.997 5.81
Kernel Scale is Auto

Box Constraint is 54.1142
Epsilon is 5.4114

Standardize Data is Yes

ANN

Number of Layers is 2

2.56 2.08 0.85 0.997 717.3
Activation is None
Layers Size is 1 × 3

Lambda is 3.56 × 10−9

Standardize Data is Yes

Table 7: Performance of predictive models using Reduced Dataset 2 (Xred2 ) on the Validation portion

Model Optimal configuration
Performance metrics (Validation)

RMSE
(g/km)

MAE
(g/km)

MAPE
(%)

R2

(%)
Time
(sec)

LR Linear 2.56 2.09 0.85 0.997 4.96
RTs Minimum Leaf Size is 13 2.69 2.06 0.85 0.997 10.41

ETs

Ensemble Method is LSBoost

4.17 2.77 1.15 0.993 78.99
Minimum Leaf Size is 130
Number of Learners is 10
Learning Rate is 0.9345

Number of Predictors to Sample is 5

Kernel

Learner is Least Squares Kernel

6.55 4.09 1.73 0.983 46.99
Number of Expansion Dimensions is 361

Lambda is 1.1145 × 10−5

Kernel Scale is 0.23953
Standardize Data is Yes

SVM

Kernel Function is Linear

2.67 2.03 0.84 0.997 3287Box Constraint is 0.031355
Epsilon is 0.21702

Standardize Data is No

ANN

Number of Layers is 3

2.56 2.09 0.85 0.997 898
Activation is ReLU

Layer Size is 6 × 2 × 6
Lambda is 1.1337 × 10−7

Standardize Data is Yes
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Table 8: Performance of predictive models using Reduced Dataset 3 (Xred3 ) on the Validation portion

Model Optimal configuration
Performance metrics (Validation)

RMSE
(g/km)

MAE
(g/km)

MAPE
(%)

R2 (%) Time
(sec)

LR Linear 2.56 2.09 0.85 0.997 14.26
RTs Minimum Leaf Size is 11 2.67 2.05 0.84 0.997 39.79

ETs

Ensemble Method is LSBoost

9.76 7.09 2.95 0.96 242
Minimum Leaf Size is 1

Number of Learners is 10
Learning Rate is 0.4851

Number of Predictors to Sample is 1

Kernel

Learner is Least Squares Kernel

10.52 5.47 2.31 0.956 118
Number of Expansion Dimensions

is 449
Lambda is 0.0072764
Kernel Scale is 35.2316
Standardize Data is No

SVM

Kernel Function is Linear

2.64 2.14 0.88 0.997 2502Box Constraint is 2.13
Epsilon is 3.9653

Standardize Data is Yes

ANN

Number of Layers is 3

2.56 2.09 0.85 0.997 1367
Activation is None

Layers Size is 3 × 1 × 9
Lambda is 5.9279 × 10−9

Standardize Data is Yes

Table 9: Performance of predictive models using Reduced Dataset 4 (Xred4 ) on the Validation portion

Model Optimal configuration
Performance metrics (Validation)

RMSE
(g/km)

MAE
(g/km)

MAPE
(%)

R2 (%) Time
(sec)

LR Linear 2.57 2.09 0.85 0.997 8
RTs Minimum Leaf Size is 7 2.68 2.05 0.84 0.997 31.9

ETs

Ensemble Method is LSBoost

2.81 2.37 0.96 0.997 289
Minimum Leaf Size is 1

Number of Learners is 30
Learning Rate is 0.1648

Number of Predictors to Sample is 3

(Continued)
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Table 9 (continued)

Model Optimal configuration
Performance metrics (Validation)

RMSE
(g/km)

MAE
(g/km)

MAPE
(%)

R2 (%) Time
(sec)

Kernel

Learner is Least Squares Kernel

6.68 3.23 1.36 0.982 91
Number of Expansion Dimensions is

126
Lambda is 0.14639

Kernel Scale is 0.0018324
Standardize Data is Yes

SVM

Kernel Function is Gaussian

2.58 2.03 0.84 0.997 1797Box Constraint is 947.4246
Epsilon is 1.2928

Standardize Data is No

ANN

Number of Layers is 2

2.68 2.21 0.90 0.997 1060
Activation is None
Layer Size is 4 × 2
Lambda is 10.5122

Standardize Data is No

Table 10: Performance of predictive models using Reduced Dataset 5 (Xred5 ) on the Validation portion

Model Optimal configuration

Performance metrics (Validation)

RMSE
(g/km)

MAE
(g/km)

MAPE
(%)

R2 (%) Time
(sec)

LR Linear 2.56 2.09 0.85 0.997 4.6
RTs Minimum Leaf Size is 2 2.60 2.06 0.84 0.997 9.7

ETs

Ensemble Method is Bag

2.69 2.10 0.86 0.997 68
Minimum Leaf Size is 25

Number of Learners is 499
Learning Rate is 0.553

Number of Predictors to Sample is 2

Kernel

Learner is Least Squares Kernel

3.47 2.28 0.95 0.995 27
Number of Expansion Dimensions is 118

Lambda is 4.3848 × 10−6

Kernel Scale is 0.001001
Standardize Data is No

SVM

Kernel Function is Linear

2.66 1.99 0.82 0.997 1260Box Constraint is 0.05048
Epsilon is 0.133

Standardize Data is No

(Continued)
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Table 10 (continued)

Model Optimal configuration

Performance metrics (Validation)

RMSE
(g/km)

MAE
(g/km)

MAPE
(%)

R2 (%) Time
(sec)

Number of Layers is 2
ANN Activation is ReLU 2.56 2.08 0.85 0.997 367

Layer Size is 11 × 144
Lambda is 4.6675 × 10−9

Standardize Data is Yes

Table 11: Performance of predictive models using Reduced Dataset 6 (Xred6 ) on the Validation portion

Model Optimal configuration
Performance metrics (Validation)

RMSE
(g/km)

MAE
(g/km)

MAPE
(%)

R2 (%) Time
(sec)

LR Linear 2.57 2.09 0.85 0.997 4.88
RTs Minimum Leaf Size is 2 2.57 2.05 0.84 0.997 8.60

ETs

Ensemble Method is LSBoost

2.57 2.06 0.84 0.997 97
Minimum Leaf Size is 2

Number of Learners is 484
Learning Rate is 0.088196

Number of Predictors to Sample is 2

Kernel

Learner is Least Squares Kernel

3.01 2.20 0.91 0.996 17.26
Number of Expansion Dimensions is

1004
Lambda is 0.19211

Kernel Scale is 0.0012527
Standardize Data is Yes

SVM

Kernel Function is Quadratic

2.67 1.99 0.82 0.997 628Box Constraint is 39.5719
Epsilon is 0.064001

Standardize Data is Yes

ANN

Number of Layers is 3

2.56 2.07 0.85 0.997 693
Activation is Sigmoid

Layers Size is 5 × 3 × 231
Lambda is 3.0917 × 10−5

Standardize Data is No

Looking at the tables, one can clearly observe that, across all performance metrics, reducing the number
of attributes/features used to develop the prediction models (i.e., moving from Xred1 to Xred6 ) does not
significantly impact prediction accuracy, except in the case of the Kernel model, where performance appears
to deteriorate as the number of attributes decreases. This suggests that the removed attributes may not provide
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unique predictive information and are likely non-essential or redundant, with their effects already captured
by the most influential attribute, i.e., Fuel Consumption. In fact, the use of a simple LR model may be
sufficient, offering a favorable compromise between predictive accuracy and computational efficiency.

Once the optimal models are identified, they will be used to evaluate the predictability of the CO2
emissions on the 20% test portion. It is crucial to benchmark and compare the developed models under
identical conditions, i.e., using the same test dataset with the same operating settings, to ensure a fair
and meaningful assessment of their performance. In this regard, Tables 12–17 summarize the models’
performance across the dataset variants, reporting the achieved RMSE, MAE, MAPE, and R2 metrics’ values.
Looking at the tables, one can observe that the models’ performance remains nearly consistent across all
performance metrics, except for the Kernel model, whose performance varies between different dataset
variants. Furthermore, the performance metrics align closely with those obtained on the validation set across
all models, indicating that overfitting did not occur on the unseen test set.

Table 12: Performance of predictive models using the reference dataset on the test portion

Model Performance metrics (Test)

RMSE (g/km) MAE (g/km) MAPE (%) R2 (%)
LR 3.45 2.15 0.87 0.995
RTs 3.55 2.11 0.86 0.995
ETs 3.37 1.90 0.78 0.996

Kernel 5.79 3.87 1.63 0.99
SVM 3.57 2.18 0.90 0.995
ANN 3.46 2.17 0.88 0.995

Table 13: Performance of predictive models using Reduced Dataset 2 (Xred2 ) on the Test portion

Model Performance metrics (Test)

RMSE (g/km) MAE (g/km) MAPE (%) R2 (%)
LR 3.46 2.18 0.88 0.995
RTs 3.47 2.12 0.87 0.995

ERTs 4.54 2.78 1.14 0.992
Kernel 6.39 3.81 1.57 0.984
SVM 3.54 2.10 0.86 0.995
ANN 3.46 2.18 0.88 0.995

Table 14: Performance of predictive models using Reduced Dataset 3 (Xred3 ) on the Test portion

Model Performance metrics (Test)

RMSE (g/km) MAE (g/km) MAPE (%) R2 (%)
LR 3.46 2.18 0.88 0.995
RTs 3.54 2.13 0.87 0.995

(Continued)
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Table 14 (continued)

Model Performance metrics (Test)

RMSE (g/km) MAE (g/km) MAPE (%) R2 (%)
ERTs 9.50 7.13 3.05 0.965

Kernel 20.53 11.69 4.86 0.834
SVM 3.49 2.22 0.90 0.995
ANN 3.46 2.18 0.88 0.995

Table 15: Performance of predictive models using Reduced Dataset 4 (Xred4 ) on the Test portion

Model Performance metrics (Test)

RMSE (g/km) MAE (g/km) MAPE (%) R2 (%)
LR 3.46 2.18 0.89 0.995
RTs 3.53 2.12 0.86 0.995

ERTs 3.56 2.45 0.99 0.995
Kernel 4.04 2.54 1.05 0.994
SVM 3.46 2.10 0.86 0.995
ANN 3.48 2.27 0.92 0.995

Table 16: Performance of predictive models using Reduced Dataset 5 (Xred5 ) on the Test portion

Model Performance metrics (Test)

RMSE (g/km) MAE (g/km) MAPE (%) R2 (%)
LR 3.46 2.18 0.89 0.995
RTs 3.45 2.12 0.87 0.995

ERTs 3.53 2.19 0.89 0.995
Kernel 3.08 2.31 0.94 0.996
SVM 3.58 2.09 0.85 0.995
ANN 6.47 2.28 0.93 0.984

Table 17: Performance of predictive models using Reduced Dataset 6 (Xred6 ) on the Test portion

Model Performance metrics (Test)

RMSE (g/km) MAE (g/km) MAPE (%) R2 (%)
LR 3.45 2.18 0.88 0.995
RTs 3.45 2.14 0.87 0.995

(Continued)
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Table 17 (continued)

Model Performance metrics (Test)

RMSE (g/km) MAE (g/km) MAPE (%) R2 (%)
ERTs 3.45 2.14 0.87 0.995

Kernel 3.63 2.27 0.93 0.995
SVM 3.57 2.09 0.85 0.995
ANN 3.44 2.15 0.88 0.995

For further clarity, Fig. 26 shows the actual (solid line) and predicted (solid lines with different markers)
CO2 emissions obtained by the LR on the test portion across the dataset variants. An exact match can be
observed among the estimates obtained while using the different dataset variants.

Figure 26: Examples of actual vs. predicted CO2 emissions obtained by the LR for 50 test vehicles across the dataset
variants

To justify the performance of our models, a careful comparative study to two studies that used the same
dataset was carried out. Based on the Bi-LSTM deep neural network, the performance metrics in terms of
R2 on the testing 20% of the whole dataset was reported to be 93.78% [25]. Therefore, our models yield
substantially better results than those of [25] since they yielded an R2 between 98% and 99% in the out-of-
sample testing datasets. Similarly, the accuracy of the models investigated in [26] was found to be comparable
to our study performance metrics with a superiority to our models since they are simpler and straightforward
against the deep neural networks tested in [26] known to be time-consuming during their training phase.

The findings of our study have shown the proposed models to accurately predict the level of CO2 being
emitted by the investigated LDVs. For instance, using machine learning techniques exhibited significant
implications for both policy and industry applications. Policymakers can benefit from these predictive
models to improve the effectiveness of the regulations and emission standards, ensuring compliance with
environmental goals such as those stated in the Paris Agreement. In addition, the LDVs manufacturers can
use the findings of this study (mainly the features that are the most likely to affect the CO2 emission levels)
to lower the current levels. At the regional level, each country in which the investigated LDVs are used can
inspire those insights to check the expected CO2 levels even before importing any type of the studied vehicles.
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6 Conclusions, Limitations, and Future Directions
In this paper, the predictability of CO2 emissions from Light-Duty Vehicles (LDVs) was investigated

using a comprehensive dataset encompassing LDVs from various manufacturers, their CO2 emissions,
and other critical influencing attributes. Six Machine Learning (ML) models, ranging from simple linear
regression models to highly non-linear regression models, were developed and optimized to estimate CO2
emissions accurately. To facilitate the models’ development stage, a detailed statistical analysis was conducted
to identify the most influential attributes of CO2 emissions. Three correlation metrics, namely Pearson,
Spearman, and Kendall, were employed to compute attribute correlations. Based on the computed correlation
values, different reduced dataset variants were established to optimally identify the set of attributes that
maximize the predictability of CO2 emissions. The effectiveness of the developed ML models was examined
across these dataset variants using well-established performance metrics from the literature. The obtained
results reveal that Fuel Consumption attributes were the most influential on CO2 emissions, as evidenced
by their high correlation values across all three metrics. The investigated models demonstrated consistent
performance across all metrics and dataset variants, with the LR model emerging as the optimal choice
due to its balance between predictive accuracy and computational efficiency. Specifically, the LR model
achieved superior performance, with the Mean Absolute Percentage Error falling below 0.90% and the
Coefficient of Determination exceeding 99.7%. These results were obtained using the 80-20 rule for validation
and test datasets, respectively, and a 5-fold cross validation approach on the validation dataset. While this
work underscores the effectiveness of various ML models, particularly NNs, in accurately estimating CO2
emissions from LDVs, several limitations can be identified, along with recommendations to enhance the
robustness and applicability of the findings:

- The study relies solely on standalone ML models, which may limit predictive performance compared to
hybrid approaches that leverage complementary strengths. Thus, future work can be devoted to exploring
hybrid modeling approaches to further enhance prediction accuracy.

- The dataset used in this study may not fully capture the variability of real-world driving conditions, as
it lacks attributes such as speed variability, driving behavior, fuel quality, and road conditions. Thus,
future work can be devoted to expanding the dataset by the inclusion of such additional attributes
to provide a deeper understanding of the attributes influencing CO2 emissions and improve the
models’ predictability.

- The developed ML models were trained on a static dataset, making the models less adaptable to evolving
conditions experienced by the vehicles over time. Thus, future work can be devoted to integrating
incremental learning methods to allow models to effectively adapt to evolving conditions, ensuring their
long-term applicability.

- Inspired by the work presented in [23] which explored the ability of several statistical and ML models to
forecast annual CO2 emissions of the building sector, the findings can be extended to the transportation
sector to predict the quantity of CO2 expected to be emitted by the LDVs at a country level. To carry out
such research, statistics of the vehicles being used over the past years as well as the distribution of their
brands, manufacturers, average time of annual use, etc. are key information.
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Appendix A
Figs. A1 and A2 show the Pearson and Spearman correlation heatmaps computed on the refined dataset,

using the numeric and numeric and encoded categorical attributes, respectively.

Figure A1: Pearson correlation heatmap
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Figure A2: Spearman correlation heatmap
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