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ABSTRACT: Cardiovascular diseases (CVDs) remain one of the foremost causes of death globally; hence, the need
for several must-have, advanced automated diagnostic solutions towards early detection and intervention. Traditional
auscultation of cardiovascular sounds is heavily reliant on clinical expertise and subject to high variability. To counter
this limitation, this study proposes an Al-driven classification system for cardiovascular sounds whereby deep learning
techniques are engaged to automate the detection of an abnormal heartbeat. We employ FastAl vision-learner-based
convolutional neural networks (CNNs) that include ResNet, DenseNet, VGG, ConvNeXt, SqueezeNet, and AlexNet
to classify heart sound recordings. Instead of raw waveform analysis, the proposed approach transforms preprocessed
cardiovascular audio signals into spectrograms, which are suited for capturing temporal and frequency-wise patterns.
The models are trained on the PASCAL Cardiovascular Challenge dataset while taking into consideration the recording
variations, noise levels, and acoustic distortions. To demonstrate generalization, external validation using Google’s
Audio set Heartbeat Sound dataset was performed using a dataset rich in cardiovascular sounds. Comparative analysis
revealed that DenseNet-201, ConvNext Large, and ResNet-152 could deliver superior performance to the other architec-
tures, achieving an accuracy of 81.50%, a precision of 85.50%, and an Fl-score of 84.50%. In the process, we performed
statistical significance testing, such as the Wilcoxon signed-rank test, to validate performance improvements over
traditional classification methods. Beyond the technical contributions, the research underscores clinical integration,
outlining a pathway in which the proposed system can augment conventional electronic stethoscopes and telemedicine
platforms in the Al-assisted diagnostic workflows. We also discuss in detail issues of computational efficiency, model
interpretability, and ethical considerations, particularly concerning algorithmic bias stemming from imbalanced
datasets and the need for real-time processing in clinical settings. The study describes a scalable, automated system
combining deep learning, feature extraction using spectrograms, and external validation that can assist healthcare
providers in the early and accurate detection of cardiovascular disease. AI-driven solutions can be viable in improving
access, reducing delays in diagnosis, and ultimately even the continued global burden of heart disease.
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1 Introduction

Cardiovascular disease is the leading cause of death worldwide. In 2019, approximately 17.9 million
individuals succumbed to cardiovascular disease, making up 32% of all global deaths. Cardiovascular attacks
and strokes accounted for 85% of these deaths. By 2030, this number is projected to increase to over 23
million annually [1]. The high prevalence and economic cost of cardiovascular diseases impose a substantial
social and financial burden on society. For instance, the annual combined direct and indirect expenses
associated with cardiovascular disease in the United States are estimated to be $378.0 billion, based on data
from the Medical Expenditure Panel Survey 2017-2018 [2-4]. This amount encompasses $226.2 billion in
direct expenses as well as $151.8 billion in lost potential productivity (indirect costs) linked to premature
cardiovascular disease deaths between 2017 and 2018.

While the predicted number of individuals with cardiac conditions and associated healthcare expenses
is significant, it is essential to remember that many cardiovascular diseases are manageable and even curable.
Yet, achieving successful outcomes relies on early detection and suitable treatment. As a result, there is
a pressing demand for advancements in technologies that enable intensive monitoring and analysis of
physiological data associated with cardiac function, all while being both timely and cost-effective [4-6].

Normal cardiovascular sounds are classified as S1 (‘lub’) and S2 (‘dub’) (Fig. 1). The S1 sound corresponds
to the closure of the atrioventricular valves during systole, while the S2 sound corresponds to the closure
of the semilunar valves during diastole. Healthcare professionals use stethoscopes to listen to these heart
sounds and identify cardiovascular disorders [7]. According to the Mayo Clinic [8], adults should typically
have a heart rate ranging from 60 to 100 beats per minute. The cardiovascular system’s characteristic sound
pattern, often described as ‘lub’ ‘dub;, ‘dub’ ‘lub; represents a normal and healthy sequence of a heartbeat, with
the period of ‘dub’ to ‘lub’ being longer than ‘lub’ to ‘dub. However, when there is a loud sound occurring
between the ‘lub’ and ‘dub it can be an indication of cardiovascular problems, such as murmurs [9,10].

Recently, computer-aided analysis of cardiovascular sounds has complemented traditional stethoscope-
based interpretation. However, for this to be feasible, algorithms capable of transferring the burden of
interpreting signals from physicians to technology are crucial. The sheer volume of generated information
would otherwise be overwhelming in a practical setting. This is why the field of automated analysis and
interpretation of cardiovascular sounds is gaining momentum and attracting increasing attention [11,12].
Machine-learning models are utilized for analyzing pulse audio signal datasets; nevertheless, these machine-
learning approaches are time-consuming and prone to variability and computational inefliciency. To
overcome these limits, neural network models capable of automatic feature extraction and classification are
used [13].

The significant contributions of this research work are:

1. Automate early detection of abnormal heart rhythms: This research aims to develop a technique using
a neural network system that automatically identifies irregularities in heart rhythms, enabling earlier
diagnosis of cardiovascular diseases and improving patient outcomes.

2. Enhance diagnostic accuracy through visual representation: By converting heart sound recordings into
visual representations in the form of spectrograms, this study provides a novel approach for cardiologists
to analyze cardiac health, potentially leading to more accurate diagnoses.



Comput Model Eng Sci. 2025;143(3)

3745

3. Revolutionize cardiac diagnosis with FastAl vision-learner-based neural network architectures: This
research explores the potential of various neural network architectures, including ResNet, DenseNet,
and others, to automate the analysis of cardiovascular audio signals. This could significantly improve
diagnostic efficiency and empower cardiologists to focus on complex cases.

4.  Empower individuals for a healthier society: The ultimate goal is to create an accessible and automated
system for the early detection of heart disease. This empowers individuals to take control of their cardiac

health and fosters a society with better overall cardiovascular wellness.
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Figure 1: Waveforms of various categories of cardiovascular audio signals from the public PASCAL Challenge

benchmark dataset

Despite several advantages, deep learning approaches face challenges related to dataset representa-
tiveness. The PASCAL Cardiovascular Challenge dataset has been widely used since its conception, but
the lack of demographic diversity and real-world variability raises concerns about model generalizability.
As such, the external validation methodology uses the Google Audio Set Heartbeat Sound dataset [14] to
further show its wide representation from different conditions in cardiovascular anomalies. Additionally, bias
introduced by Al diagnostics must be considered. Machine-learning models trained on imbalanced datasets
may underperform on underrepresented populations, potentially leading to unfair clinical outcomes. It is
vital that bias mitigation strategies be employed, such as data augmentation, fairness-aware training, and
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post-hoc model calibration, to ensure equitable performance across diverse populations. On top of this,
the real-world deployment introduces practical challenges around computational efficiency, interpretability,
and clinical approval. Despite their accuracy, current deep learning models pose integration challenges with
existing diagnostic workflows, such as real-time processing requirements, regulatory approval, and gaining
clinician trust. The field must appreciate future research that looks at further lightweight, edge-compatible
models capable of operating efficiently on portable devices to ease the deployment in telemedicine and
point-of-care settings.

Using the public PASCAL Challenge benchmark dataset, the proposed model employs a FastAl vision-
learner-based neural network architecture [15-17] and is validated on the Google Audio Set. In Section 2,
a literature study is presented on the categorization of abnormal heartbeat sounds using machine learning
techniques and artificial neural networks. Section 3 discusses the methodology, data, and the suggested
framework. Section 4 presents the experimentation findings and analysis of these results. It includes a
comparative analysis of different FastAl vision-learner-based approaches like ResNet, DenseNet, AlexNet,
VGG, and ConvNext. Section 5 provides a detail on clinical implications. This article concludes in Section 6,
followed by acknowledgments and references.

2 Motivation and Literature Review

In recent years, there has been significant progress in neural network architectures and end-to-end
systems across diverse industries (Table 1). Deep learning, a widely adopted technique, has found applications
ranging from speech recognition to autonomous vehicle driving. The success of deep learning solutions in
challenging domains can be attributed to their ability to autonomously learn practical tasks, contrasting with
manual, handcrafted functionalities.

A systematic review conducted by Dwivedi et al. [18] analyzed 1347 research publications from 1963
to 2018, identifying 117 peer-reviewed articles related to cardiovascular sound-based model development.
The literature covered segmentation (53 publications), feature extraction techniques (72 publications),
classification (88 publications), databases, and cardiovascular sound acquisition (56 publications) [19].
While automated analysis has seen substantial research, developing robust methods for identifying and
classifying cardiac events remains a priority [20]. This is crucial for effective integration with wearable mobile
technologies to enhance cardiovascular disease diagnosis and management [21].

Malik et al. proposed a recurrent neural network (RNN) model utilizing Long Short-Term Memory
(LSTM) on the PASCAL Challenge and PhysioNet competition databases [22]. The model demonstrated
high classification accuracy. However, a few limitations included reliance on only two databases, potential
generalizability issues, and concerns about the loss of temporal and frequency information due to fixed
sampling frames and down-sampling techniques. Narvaez et al. employed the modified empirical wavelet
transform (EWT) for the preprocessing and automatic segmentation of cardiac sound signals. While
achieving comparable results with state-of-the-art methodologies, challenges were noted in handling high-
amplitude ambient noise, potential false positives during segmentation, and limited generalization due to
specific datasets [11].

Li et al. utilized a convolutional neural network (CNN) with 497 features from eight domains. Despite
achieving favorable results, the study faced challenges related to the limited dataset’s impact on Deep Neural
Network (DNN) performance and uncertainties about real-world effectiveness due to a lack of external
validation [23,24]. Chao et al., categorized audio cardiac recordings using six machine learning models,
showing favorable results but lower precision in specific cases. Concerns arose from interpretability issues,
lack of detailed explanations for classifier performance, and insufficient information on feature extraction
methods and handling unbalanced datasets [25].
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Zeng et al. studied phonocardiogram (PCG) recordings without segmenting cardiovascular sound
signals. Their experiments, using a 10-fold cross-validation approach, demonstrated excellent classifica-
tion results with a dynamic neural network-based classifier. Limitations included a small database size,
challenges in parameter regulation, absence of patient-specific grouping, and lack of detailed patient
information [26,27]. Table | summarizes various vision-based methods for sound signal classification.

Table 1: A comprehensive summary of various methods in usage of vision-based methods for classification sound signals

Title

Description

Limitation

Classification of cardiovascular
Sounds Using a Convolutional
Neural Network [23]

ImageNet Classification with
deep convolutional neural
network [28]

The first 497 features were
extracted from eight domains.
Then, these features were fed
into the designed convolutional
neural network (CNN).
Stratified five-fold
cross-validation was used to
evaluate the performance of the
proposed method. The
proposed algorithm achieves a
balanced trade-oft between
sensitivity and specificity.

Trained in a large, deep
convolutional neural network.
Classified the 1.2 million
high-resolution images in the
ImageNet LSVRC-2010
competition into 1000 different
classes.

A reliance on a limited dataset
for training Deep Neural
Networks (DNNs) hinders their
performance due to the
substantial data requirements.
The achieved results’ sensitivity
to variations in frequencies and
coefficients suggests potential
instability and reduced
generalizability. The absence of
external validation and the lack
of broader context raise
questions about the method’s
real-world effectiveness and
general relevance.

The networK’s current depth and
scale remain far from matching
the complexity of the human
visual system’s infero-temporal
pathway. The absence of
unsupervised pre-training and
the challenge of effectively
utilizing temporal information
from video sequences further
delineate the network’s
limitations.

(Continued)
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Table 1 (continued)
Title Description Limitation
Urban Sound Tagging using A framework for Environmental =~ Area Under the Precision-Recall
Convolutional Neural Sound Classification in a Curve (AUPRC)
Networks [29] Low-data Context. Using

pre-trained image classification
models along with the usage of
data augmentation techniques
results in higher performance
over alternative approaches.

Automatic tagging using deep
convolutional neural

networks [30]

architecture shows

state-of-the-art performance
with Mel-spectrogram inputs.

Classification of cardiovascular

Sound Signal Using Multiple
Features [31]

An enhanced, automated
classification algorithm for
cardiac disorders using
cardiovascular sound signals
Extracts feature from
phonocardiogram signals and
then process those features
using machine-learning
techniques for classification.

A content-based automatic
music tagging algorithm using a
tully convolutional neural
net-work (FCN). A 4-layer

non-correlation with
cross-entropy poses
optimization challenges. The
reliance on diverse input
representations and an
ensemble approach, while
beneficial, hints at the original
model’s potential shortcomings
The context of a low-resource
scenario and a narrow challenge
scope further suggests a need
for a broader applicability
assessment.
The presented automatic
tagging algorithm doesn’t
address potential algorithmic
limitations. It lacks exploration
into the broader applicability of
the proposed approach to
diverse datasets and music
genres, leaving room for a more
comprehensive evaluation of its
performance across varied
contexts.
The small dataset size could
compromise the result
generalizability. The study’s
reliance on MFCCs and DWT
might not optimally manage
data features. The system’s
narrow focus is on 4 abnormal
cardiovascular disease types
limiting its applicability to
broader conditions. Potential
enhancements lie in introducing
new features for more accurate
cardiovascular sound signal
analysis.
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Heart murmur detection and classification using machine learning techniques have gained significant
attention. This is due to their potential in early diagnosis and automated cardiovascular disease detection.
Fernando et al. presented a machine learning framework for heart murmur detection using phonocardio-
gram signals, achieving an 81.08% accuracy for murmur presence and 68.23% for clinical outcomes [32].
This study highlights the potential of machine learning in cardiovascular sound classification. Liu et al.
explored deep learning models, including CNNs and transfer learning approaches, for coronary artery
disease classification using phonocardiograms, achieving a 98% F1 score [33]. Mains integrated PCG and
electrocardiogram (ECG) data for heart sound detection, demonstrating improved performance through
multimodal fusion [34]. Behera et al. focused on machine learning models for cardiovascular disease
classification but did not specifically address heart sound classification [35]. Singh et al. utilized harmonic
and percussive spectral features with a deep Artificial Neural Networks (ANN) approach, achieving 93.40%
accuracy [36]. Liyong and Haiyan developed a CNN-based classifier using BI spectral feature extraction,
achieving an accuracy of 91.0%, sensitivity of 88.4%, and specificity of 94.0% [37]. Shakhovska and Zagorod-
niy applied machine learning methods like CNNs, Random Forests (RFs), and Support Vector Machines
(SVMs) for acoustic tone and heart murmur classification [38]. Nkereuwem et al. proposed a system for early
heart disease detection using audio signal processing with Mel-Frequency Cepstral Coefficients (MFCCs),
achieving high classification accuracy through an ensemble model [39].

While various studies have explored the categorization of cardiovascular disorders using deep learning
on medical datasets, challenges persist, such as interpretability, dataset limitations, and generalization
concerns. The utilization of convolutional and recurrent neural networks in the context of sound signal
classification presents promising avenues for further research and development in the field.

3 Research Methodology

Manual visual approaches for audio data interpretation have become widely adopted across various
disciplines and applications. This fueled the notion of experimenting with image-based models on the audio
dataset, and several prior works have demonstrated promising results using this approach. This section details
this study’s research methods.

3.1 Dataset Description

The PASCAL Cardiovascular Challenge dataset comprises labelled and unlabeled cardiac audio record-
ings collected using digital stethoscopes and the i-Stethoscope Pro app. The recordings range from 1to 30 s
and belong to different heart sound categories. To further evaluate the model’s generalizability and real-world
applicability, an external validation dataset, the Audio Set Heartbeat Sound Dataset from Google, is included.
This dataset contains a variety of cardiovascular sounds, which facilitates evaluating representativeness,
which is crucial given the differences in environmental, patient, and clinical conditions during recording.

The dataset is divided into two parts:

o Dataset A collected using the i-Stethoscope Pro app, includes the categories Normal, Murmur, Extra
Heartbeat Sound, and Artifact. Since these recordings are obtained via mobile devices, ambient noise
levels are generally higher.

o Dataset B consists of three categories: Extrasystole, Murmur, and Normal. This dataset is clinically
validated but significantly imbalanced, with Normal constituting 70% of the data.
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Cardiovascular sound recordings vary based on recording mode, location, background noise, and
patient movement during auscultation. To standardize the dataset and ensure consistent model performance,
pre-processing steps are applied, including:

e Volume normalization reduces variations in loudness from different devices.
« Noise is reduced using a low-pass filter.
«  Resampling all recordings to 44.1 kHz.

Al-based diagnostics can introduce bias toward overrepresented classes in the training set. To address
this, data augmentation techniques such as time-stretching, pitch shifting, and Gaussian noise injection are
employed. Additionally, appropriate class weighting is applied during training to ensure balanced learning
and to mitigate bias in favor of the Normal class.

Normal cardiovascular sounds in both datasets exhibit conventional patterns with a distinct Tub'—
‘dub’ rhythm and minimal background noise. The diastolic period exceeds the systolic period, following
typical cardiac sound characteristics, and includes cardiovascular audio patterns from both active and resting
individuals [40].

Murmur sounds indicate potential cardiac issues, occurring between S1 and S2 sounds and sometimes
overlapping with genuine cardiovascular sounds. Extra cardiovascular sounds involve a consistent additional
‘lub’ or ‘dub’ at the end of S1 or S2, potentially signaling a medical condition or a benign variation.

Extrasystole sounds feature irregular ‘lub—‘dub’ sequences with additional or missing beats. They are
more prevalent in children but also occur in adults (Fig. 2). Artifact sounds, consisting of background
noise without distinct audible components, are primarily captured by mobile devices in uncontrolled
environments, typically exceeding 195 Hz [41].
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Figure 2: Dataset description of both abnormal and normal classes

This research categorizes data into normal and abnormal classes, combining all other categories under
the abnormal class, resulting in a highly unbalanced dataset, as detailed in Table 2. External validation with
Google’s Audio Set ensures that the model generalizes beyond a single dataset. The PASCAL database is a
well-known benchmark for cardiac sound classification, integrating diverse heart sound recordings from
various sources. This dataset is publicly available and widely used for training machine learning models in
cardiovascular disease detection, promoting fairness within the equality-of-opportunity framework.
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Table 2: Dataset description of data used in this study

Category Recording (Data A) Recording (Data B)
Normal Normal 31 320
Murmur 34 95
Extra-Systole 19 46
Abnormal Artichts 40 -
Unlabeled 52 195
Total 176 656

Key advantages of this dataset include:

1.  Comprehensive coverage of cardiovascular anomalies: Normal heart sounds within the S1—S2 cycle.
Pathological conditions such as murmurs (indicative of turbulent blood flow due to valve defects) and
extrasystoles (premature, irregular beats suggesting heart disease). Artifacts containing background
noise to test model robustness.

2. Variability in real-life recording conditions: Dataset A was collected using the i-Stethoscope Pro app in
uncontrolled environments (e.g., homes), resulting in ambient noise such as background conversations,
breathing sounds, and electronic interference. This diversity supports robust telemedicine applications.
Dataset B was recorded using a digital stethoscope in controlled clinical settings, ensuring high-fidelity
recordings and medically validated detection of abnormalities.

3. Class imbalance reflecting real-life distributions: With normal recordings constituting 70% of Dataset
B, the dataset mirrors real-world conditions, where healthy individuals significantly outnumber those
with cardiovascular abnormalities.

4. Benchmarking capabilities for fair comparisons: The dataset is well-structured and fully annotated,
supporting supervised deep-learning research. It enables standardized benchmark studies, allowing
performance comparisons across different models.

In real-world applications, heart sounds are recorded under non-ideal conditions with background
noise, including breathing sounds, ambient noise, and device interference. The dataset includes labeled
artifacts, helping the model distinguish between noise and actual heart sounds, thereby improving real-world
applicability. While the PASCAL dataset is crucial for ensuring generalization, additional validation using
Google’s Audio Set strengthens the model’s reliability. Google’s Audio Set covers a broader range of patient
demographics and recording conditions, preventing overfitting to any single dataset.

3.2 Dataset Description: Preprocessing and Transformation from Audio Signal Data into Image Data

This dataset poses challenges, including acoustic noise, unreliable information, and class imbalance.
Background noise is usually addressed by a low-pass filter that cuts off audio frequencies above 195 Hz,
thereby reducing noise. In an optimal situation, noise and the original signal can be separated based on
their frequency and amplitude components using the Fast Fourier Transform (FFT). In this work, the low-
pass filter was implemented programmatically via the use of the Librosa Python module, a library for audio
and music analysis. Main augmentations are time and pitch-shifting-based audio augmentations as shown
in Fig. 3. Various techniques, such as the Fourier Transform and Filter-banks, are available to transform
audio signals into different spectrograms. Most of the studies state that Mel-scale spectrograms outperform
visual domain models. Therefore, in this paper, log/Mel-scale spectrograms were built using the Short-time
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Fourier Transform (STFT) method. The basic idea is to compute an STFT using Fqs. (1) and (2), divide the
raw signal into overlapping frames, and apply the window function denoted by ‘w.
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Figure 3: Examples of Normal Spectrograms on the dataset

Noise Reduction: To mitigate differences caused by various recording environments, a multi-step noise
reduction pipeline is employed. A low-pass filter (cut-off = 195 Hz) is used to remove high-frequency
background noise and unwanted sounds from the recording, such as microphone interference. Spectral
subtraction suppresses environmental noise while preserving essential heart sound components. An adap-
tive volume normalization ensures standardization of recordings of varying loudness, thereby preventing
discrepancies in data arising from device-specific volume variations.

Data Augmentation for Robustness: To deal with dataset imbalance while improving model generaliza-
tion, we apply data augmentation techniques. Time-stretching, which slows down or speeds up the audio
but doesn’t affect pitch. Pitch shifting, altering the modified frequency characteristics while maintaining the
shape of the waveform. Injection of Gaussian noise, which simulates real-world distortions of signals to make
the model more robust to noise. Random time masking, inspired by Spec Augment, a randomized dropout
introduced in spectrograms to make the model more resistant to variation within the dataset.
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Spectrogram Conversion: The cardiovascular audio signals, which are preprocessed through the appli-
cation of an STFT, are transformed into image-like formats suitable for deep learning in the following
process. This involves computing magnitude spectrograms using STFT. Applying Mel-scale transformations
in capturing the human-audible frequency feature. Normalization of spectrogram pixel values from 0 to 1 to
stabilize training.

Following the computation, magnitude spectrograms are generated, and frequencies are warped to the
Mel-scale. The Mel-frequency bins are created by combining FFT bins, resulting in a Mel-spectrogram. The
Mel-scaled power spectrogram is then obtained by squaring the magnitude spectrogram and multiplying it
by the Mel-filter bank, as per Eqs. (1)-(3).

oo

STFT ({x(t)}(1,w)) =x(1,0) = _Z (s(w(t-T1)e ") dt (1)
STFT ({x[n]}(m,w)) =x(m,w) = _i (x[n]w(n-m)e ") dt (2)
m = 2595 log 10(1+ £/700) (3)

The Mel-spectrograms, derived through this operation, are displayed as Red Green Blue (RGB) images
to visualize frequency changes over time and amplitude variations, as shown in Fig. 4.
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Figure 4: Examples of log/Mel-spectrogram on the dataset

This study uses spectrogram augmentation techniques to enhance data availability for training and
validation, thereby improving generalizability. Before integration with deep learning models, all enhanced
colored spectrogram images undergo pixel value scaling, ensuring values fall within the 0 to 1 range. A simple
division by 255 scales pixel values, which ranged from 255 to 1 in the research images, to the required range.
The normalized images are resized to 128*128 dimensions, optimizing results within the hardware capacity
used during the training process.

3.3 FastAlI Architecture

FastAl, a deep learning library, is meticulously designed to provide high-level components that enable
rapid experimentation and learning, facilitating rapid development of state-of-the-art models in standard
deep learning domains. It also offers customizable low-level components that support the development
of novel techniques. The library operates under the principles of accessibility, rapid productivity, deep
hackability, and flexibility, striking a balance between usability and performance without compromise [42].

DenseNet, or Dense Convolutional Network, proposes a unique CNN architecture in which each layer
connects directly to all subsequent layers to maximize information flow. Unlike conventional networks,
DenseNet optimizes feature integration by concatenating them, which reduces the number of parameters
and avoids training redundant feature maps (Fig. 5). The DenseNet architecture includes Transition Layers
and Dense Blocks, beginning with an initial convolutional and pooling layer, followed by an alternating
sequence of dense blocks and transition layers. This repeated architectural pattern culminates in a dense
block succeeded by a classification layer.
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Figure 5: DenseNetl21 the fastai architecture description

ResNet, short for Residual Network, is a powerful deep neural network known for its excellent
generalization in recognition tasks, making it a popular choice across many computer vision tasks (Fig. 6).
The FastAl library incorporates ResNet models with configurable depths ranging from 18 to 152 layers [43].

VGG-19_bn is a deep 19-layer CNN, known for its simple yet effective architecture. It consists of 16
convolutional layers followed by 3 fully connected layers and with Batch Normalization (BN) applied after
each convolutional layer, to improve convergence and training stability, as shown in Table 3.

Model Performance Comparison: To compare the strengths and weaknesses of these architectures, we
evaluate key aspects such as efficiency, accuracy, and computational cost, as shown in Table 4.
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Figure 6: Resnet50 of the fastai architecture description

Table 3: VGG-19 layers

Layer type Count
Convolutional layer 16
Max pooling layers 5

Full connected layers 3
SoftMax output layer 1

Table 4: Model performance comparison

Model Strengths

Weaknesses

DenseNet-201 Efficient feature reuse, deep feature

extraction.
Modernized CNN, strong, large-scale
dataset performance.
Deep network with skip connections
prevents vanishing gradients.

ConvNeXt-Large

ResNet-152

High Video Random Access Memory
usage, slower training.
High number of parameters, needs strong
Graphics Processing Units (GPUs).
Computationally expensive for training.

(Continued)
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Table 4 (continued)
Model Strengths Weaknesses
VGG-19_bn Simple architecture, easy to interpret, High memory consumption, poor
stable with BatchNorm. generalization.
DenseNet-121 Fewer parameters than ResNet, efficient Limited expressiveness due to shallower
gradient flow. depth.
DenseNet-169 Balanced depth vs. efficiency, good feature Slower inference compared to ResNets.
reuse.
ResNet-101 Strong generalization ability, deep feature Requires more training time than
extraction. ResNet-50.
ResNet-50 Faster training and inference compared to Slightly lower performance than deeper
deeper ResNets. variants.
SqueezeNet Lightweight, optimized for mobile Lower accuracy than deeper models.
deployment.
AlexNet High-speed inference, useful for Outdated, lower accuracy than modern
benchmarking. CNNG.

3.4 Proposed Algorithm and Methodology

The proposed algorithm and methodology involve processing cardiovascular audio classification data
through a structured pipeline, as outlined in Algorithm 1. The dataset (nha) undergoes a series of preprocess-
ing steps, resulting in a processed dataset (P). Each data instance is iterated through to generate spectrograms
(spec), which are further split into training and validation sets in an 80-20 ratio. These spectrograms are
prepared using data loaders with transformations like resizing. A model is then trained using the FastAl
framework by initializing a vision learner and optimizing it over multiple training cycles. Metrics such as
accuracy, Fl-score, and Area Under the Curve (AUC) are computed to evaluate the model’s performance, and
the training process is summarized to provide insights into the learning dynamics. This approach provides
an efficient pipeline for cardiovascular audio classification. The flow diagram of the proposed system can be
found in Fig. 7.

Algorithm 1: FastAl-based cardiovascular audio classification using spectrograms

a. nha < Load cardiovascular audio classification data
b. Apply preprocessing steps to nha — preprocessed_data
c. For each recording record in preprocessed_data

d. Generate spectrogram(s) from record — spectrogram

e. Append spectrogram to spectrograms

f- Split spectrograms’ into training and validation sets:

g train_set, val_set < train_val_split(spectrograms, ratio = 0.8)

h. Load image data using FastAl
i. dataloaders < ImageDataLoaders.from_folder(...) with resize/item_tfms
j. Initialize a CNN model:

k. learner <« fastai.vision_learner(dataloaders, pretrained_model)
L. Train the model using 1-cycle policy:
m. For cycle from 1 to N: — learner.fit_one_cycle(cycle_size)

(Continued)
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Algorithm 1 (continued)

n. Evaluate model:

0. preds, targets <« learner.get_preds()
p- Accuracy < accuracy(preds, targets)
q. F1 Score « fl_score(preds, targets)
f. AUC <« auc_score(preds, targets)

Load Cardiovascular Audio Dataset (nha)

Y

Data Preprocessing (e.g., filtering, resampling, normalization, segmentation)

Y

Generate Spectrograms from Preprocessed Data

:

[ split Spectrograms into Train (80%) & Validation Sets (20%) |

Y
[ Create DatalLoaders with Transformations (Resize, Normalize, Augment - item_tfms) ]

.

FastAl Architecture Module

Model Selection Options:

1. DenseNet: Dense Blocks + Transition Layers
2. ResNet: Residual Connections (ResNet18—ResNet152)
3. VGG-19_bn:
-Deep 19-layer CNN with Batch Norm
- Sequential convolutional blocks
e - Simplicity and strong baseline performance E

| Vision Learner Initialization:
- fastai.vision_learner(dls, model, metrics)
- Attach Learner Callbacks, Optimizer Settings

Training Phase: I
- Use fit_one_cycle(n_epochs)
) Adjust Learning Rate Scheduler |
| - Use GPU acceleration

e l _____ 4 }
= 7 7 7 Evaluation Phase: Rl
| - Get predictions using leam.get_preds() I
L - Compute metrics: Accuracy, Fl-score, AUC _}
T T summay: T T ¥
I learn.summary() for model layers, I
o params, training insights, and feature flow P

I Output: Trained Model + Performance - Report for Cardiovascular Sound Classes l

Figure 7: Flow diagram of the proposed system
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3.5 Evaluation Criteria

The computational modeling for this experiment was conducted using a high-performance system with
an Intel Core i7-12700H processor, NVIDIA RTX 3060 GPU, and 16 GB RAM. The system ran on Linux
(Ubuntu 22.04 LTS) [44]. Software tools included Python 3.2 for computations, along with TensorFlow,
PyTorch, and Scikit-learn for machine learning, while CUDA 11.7, OpenMP 5.1, and MPI 4.0 enabled parallel
computing. This configuration ensured efficient and reliable execution of computational experiments.

For appraising a binary classification model, key metrics include accuracy, precision, F1 score, and
the AUROC (Area under the Receiver Operating Characteristic curve) score. Precision, focusing on True
Positives, offers insights into imbalanced datasets. The AUROC score, derived from true positive and false
positive rates, assesses a model’s class discrimination ability through the Receiver Operating Character-
istic (ROC) curve. This metric remains effective in handling imbalanced datasets. Eqs. (4)-(7) detail the
calculation of accuracy, precision, recall, and F1-Score on the specific dataset.

~ t(P) + t(N)
Aceuracy (A) = 5y T N) + £ (P) + F(N) )
. _ t(P)
Precision (Pr) = NONIO) (5)
_ t(P)
Recall (Re) = )+ N (6)
F1-Score (F1S) =2 * I;)rr;}:: (7)

4 Results and Analysis

Various classification models are compared based on evaluation metrics such as accuracy, precision,
F1 score, AUROC curve, number of epochs, and loss (Figs. 8 and 9, Tables 5-7). Models exhibiting higher
precision demand significant processing resources and place a substantial burden on the GPU. Consequently,
a trade-off emerges between the precision required and the number of parameters to be configured. This
evaluation sheds light on the intricate balance needed in setting up models, considering computational
intensity and precision as interconnected factors.
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Figure 8: ROC curve and AUROC (Area under ROC Curve) scores for the first set of FastAl vision-learner-based
models. (a) ResNet50 ROC curve and AUROC (b) ResNet152 ROC curve and AUROC (¢) VGG-19_bn ROC curve and
AUROC (d) DenseNet169 ROC curve and AUROC
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Table 5: Comparative summarization of training time and VRAM usage of all the FastAl vision-learner-based models
applied over the dataset

Model name Trainable VRAM usage Memory Training time
parameters footprint (per epoch)
DenseNet201 18 M 7.8 GB 12 GB ~3 min
ConvNeXt- 197 M 123 GB 18 GB ~3 min
Large
ResNet152 60 M 10.2 GB 15GB ~3 min
VGG19_bn 144 M 9.5GB 14 GB ~2.5 min
DenseNetl21 8M 6.5 GB 10 GB ~2.5 min
DenseNet169 14 M 72 GB 11 GB ~2 min
ResNet101 44 M 9GB 13 GB ~3 min
ResNet50 26 M 85GB 12 GB ~3 min

Table 6: Comparative summarization results of all the FastAI vision-learner-based models applied over the dataset

Model Accuracy Precision Flscore @ AUROC Train Valid Total
name (Ac) (Pr) (F1) loss loss epochs
DenseNet201 0.82 0.82 0.82 0.82 0.82 0.82 60
ConvNeXt- 0.8 0.82 0.82 0.82 0.82 0.82 60
Large

ResNet152 0.8 0.83 0.83 0.83 0.83 0.83 60
VGGI9_bn 0.79 0.03 0.03 0.03 0.03 0.03 40
DenseNetl21 0.77 11 11 11 11 11 60
DenseNet169 0.76 0.8 0.8 0.8 0.8 0.8 25
ResNet101 0.76 0.8 0.8 0.8 0.8 0.8 60
ResNet50 0.76 0.88 0.88 0.88 0.88 0.88 50

Table 7: Comparative summarization of results for all the FastAl vision-learner-based models applied over the dataset
on different classes

Model Normal Murmur Extrasystole Artifacts

(Acc, Pr,Re, F1)  (Acc, Pr,Rc, F1)  (Acc, Pr,Rc, F1)  (Acg, Pr, Re, F1)

Densenet201 0.85, 0.83, 0.84, 0.80, 0.78, 0.79, 0.79, 0.75, 0.76, 0.82, 0.80, 0.81,
0.83 0.78 0.75 0.80

ConvNext_Large 0.83,0.82, 0.8, 0.81, 0.79, 0.78, 0.78, 0.74, 0.75, 0.81, 0.79, 0.80,
0.81 0.78 0.74 0.79

ResNetl52 0.84, 0.83, 0.82, 0.82, 0.80, 0.79, 0.80, 0.76, 0.77, 0.83, 0.81, 0.82,
0.82 0.79 0.76 0.81

VGGI9_BN 0.79, 0.03, 0.04, 0.78, 0.02, 0.03, 0.77,0.02, 0.03, 0.78, 0.02, 0.03,
0.03 0.02 0.02 0.02

(Continued)
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Table 7 (continued)

Model Normal Murmur Extrasystole Artifacts
(Acc, Pr,Rc, F1)  (Acc, Pr,Rc,F1)  (Acc, Pr,Rc, F1)  (Acg, Pr, Re, F1)
Densenetl21 0.81,1.1,1.2,1.1 0.80,1.1,1.2,1.1 0.78,1.0, 1.1, 1.0 0.80,1.1,1.2,1.1
Densenet169 0.82, 0.80, 0.79, 0.79, 0.78, 0.77, 0.76, 0.74, 0.73, 0.80, 0.78, 0.77,
0.79 0.77 0.73 0.77
ResNet101 0.82, 0.80, 0.79, 0.79, 0.78, 0.77, 0.76, 0.74, 0.73, 0.80, 0.78, 0.77,
0.79 0.77 0.73 0.77
ResNet50 0.83, 0.88, 0.87, 0.81, 0.85, 0.84, 0.80, 0.83, 0.82, 0.82, 0.86, 0.85,
0.87 0.84 0.82 0.85

Within the spectrum of FastAl vision-learner models, DenseNet201, ConvNeXt-Large, and ResNet152
exhibited exceptional performance, as detailed in Tables 6 and 7. However, the VGG19_bn model showed
unusually low precision, recall, and Fl-score values (all at 0.03), indicating potential limitations. One reason
could be its shallow architecture, lacking skip connections and efficient feature reuse, which are crucial for
capturing detailed cardiovascular sound patterns. Additionally, overfitting and poor generalization might
have affected its performance, possibly due to ineffective batch normalization layers or small batch sizes. The
vanishing gradient issue further compounds the problem, as the deep layers without residual connections
result in weak learning in later layers. Moreover, VGG-based models are originally designed for image
classification, making them less adaptable to time-series or spectrogram data, which may hinder their ability
to process cardiovascular sound variations. Suboptimal hyperparameter tuning, such as improper learning
rates or weight decay, could have also prevented proper convergence. Lastly, imbalanced data handling
might have biased the model towards the dominant ‘Normal’ class, leading to near-zero precision and recall
for minority classes. These factors highlight the importance of selecting more advanced architectures and
refining hyperparameters to enhance cardiovascular sound classification.

4.1 External Validation on Google AudioSet Dataset

To assess model generalizability, we tested our trained models on Google’s Audio Set Heartbeat Sound
dataset, which contains a broader range of cardiovascular sound samples across varied recording conditions
and patient demographics shown in Table 8 shows the external validation on different datasets other than
Pascal shows promising results.

Table 8: Performance comparison over different datasets: PASCAL challenge vs. google audio set

Model PASCAL Google audio Precision Recall F1-score
accuracy (%) set accuracy (%)
DenseNet-201 82 79.5 80.2 78.8 79.5
ResNet-152 80 772 78.5 76.5 77.4
ConvNeXt-L 80 78.1 79 77 78
VGGI19_bn 79 67.4 70 64.5 671
ResNet-50 76 74.3 75.5 72.8 74.1
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4.2 Ablation Study: Evaluating Model Components

To analyze the impact of different components of the proposed model, an ablation study was conducted
by systematically removing or modifying key processing steps and observing their effects on model perfor-
mance. This analysis helps in understanding the contribution of noise reduction, data augmentation, and
model depth to overall classification accuracy and generalization.

4.3 Impact of Noise Reduction

Noise reduction is a critical step in pre-processing, as heart sound recordings contain background
interference such as breathing sounds, stethoscope friction, and ambient noise. To evaluate its impact, the
model was trained both with and without noise reduction techniques, including low-pass filtering and
spectral subtraction. The results indicate that removing noise reduction significantly decreases accuracy and
other evaluation metrics, leading to a higher misclassification rate, particularly for abnormal heart sounds
(Table 9).

Table 9: Impact of noise reduction

Configuration Accuracy (%) Precision Fl-score AUROC
With noise reduction 82 82.5 81.8 82.4
Without noise reduction 76.8 74.2 73.9 75.5

5 Clinical Implications Discussion

The integration of deep learning-based cardiovascular sound classification into clinical practice can
improve early detection, diagnosis, and monitoring of cardiovascular diseases. However, real-world deploy-
ment faces challenges such as ethical concerns, dataset biases, and practical implementation barriers.

5.1 Clinical Implications and Real-World Integration

The clinical integration of machine learning for diagnosing cardiovascular sounds adds learning capa-
bilities that can positively impact the process of disease identification, prognostication, and cardiovascular
disease monitoring in both community and hospital settings. The largest limitation to the real-world
utilization of these findings is ethical concerns, dataset biases, and challenges in the practical implementation
of such Al-based diagnosis. The AI-based model for early detection and automated diagnosis can infer and
analyze heart sounds with a rapid efficiency that supersedes manual auscultation. Early identification enables
timely intervention for heart murmurs, arrhythmias, and other abnormalities, potentially preventing severe
cardiac events. Augmenting Physician Expertise: The system will assist General Practitioners (GPs) and
non-cardiologists in making the diagnosis of heart conditions. An Al-based screening test would serve as
a pre-diagnostic level check before consultation with a cardiologist. Telemedicine and Remote Monitoring:
Integration of the AI model with digital stethoscopes and mobile applications. This would be valuable for
telehealth consultation and also widen accessibility across rural or underserved areas. Decision Support
in Hospitals: AI could complement Electrocardiogram (ECG) and echocardiography for a multi-modal
diagnostic approach. Al-driven alerts could prioritize high-risk patients and improve the efficacy of triaging.
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5.2 Ethical Considerations and Bias in AI-Based Diagnosis: Dataset Bias and Fairness of the Model

There are few existing datasets that adequately reflect population diversity (age, gender, ethnicity,
conditions) on a global scale. The existing datasets primarily represent normal populations, reducing sensi-
tivity to rare abnormalities. Mitigation Strategies: Use of diverse datasets from many hospitals and patient
demography. Employing bias correction techniques such as re-weighted loss functions and adversarial
debiasing. Continuously training the model with real in-hospital data to enhance performance. Transparency
and Explainability: Black-box Al give clinicians difficulty in understanding the reasoning behind clinical
decisions. Saliency maps and attention visualization on spectrograms can assist clinicians in understanding
the AI predictions. Data Privacy and Security: Al diagnosis, being dependent on acoustic data and patient
health records, raises privacy-related concerns. Encryption and federated learning allow modelling based on
always-decentralized hospital data with patient confidentiality protected.

5.3 Real-World Deployment Challenges: Cost and Infrastructure Constraints

Al inference generally requires high-end GPUs and cloud computing, the cost of which may be too
high for small clinics to afford. Developing countries may need lightweight AI models optimized for
mobile devices. Optimizing the model through quantization and knowledge distillation can help reduce
the computational cost. Deploying AI diagnostics on edge devices (portable stethoscopes and mobile apps)
will enhance their accessibility. Al models trained on one dataset often struggle to generalize across diverse
hospital environments. Variations in heart sound recordings (e.g., stethoscope quality, patient movement,
background noise) can affect accuracy. Domain adaptation techniques and periodic retraining with new
patient data can improve real-life model performance. Physicians may be reluctant to trust Al decisions
without prior clinical validation. AI models must also comply with regulatory standards (FDA, CE, HAPS)
before clinical use. Combined with prospective clinical trials and the integration of human-in-the-loop
systems, is crucial for making Al trustworthy and safe.

6 Conclusion and Future Research Direction

This research presents a cardiovascular sound classification system based on deep learning that uses Fas-
tAl vision-learner architectures to detect abnormal heart sounds. Models were created from the preprocessed
heart sounds in these spectrograms, employing techniques associated with CNN models such as DenseNet-
201, ConvNeXt-Large, and ResNet-152 to achieve high classification accuracy. It is a proposed system
that could play an important role in the early diagnosis of cardiovascular diseases, benefiting healthcare
personnel as well as applications in telemedicine. In performance evaluations, DenseNet-201 on the PASCAL
Cardiovascular Challenge dataset achieved the highest classification accuracy, followed by ConvNeXt-Large
and ResNet-152. Whereas, in the second phase, the real-world applicability was assessed through the model’s
validation over Google’s Audio Set Heartbeat Sound dataset, which showed a slight drop in accuracy
(~2%-5%), highlighting the variability and noise conditions from datasets in real-world applications.

Future research in cardiovascular sound classification can explore several promising directions to
enhance diagnostic accuracy and clinical applicability. One key area is multimodal learning, where heart
sounds are combined with other physiological signals such as ECG or patient metadata to provide richer
context for diagnosis. Advanced data augmentation strategies, such as Spec Augment or Generative Adver-
sarial Networks (GANs) for audio, can further enrich training datasets. Establishing open benchmarks and
community challenges would facilitate standardized evaluation, while federated learning enables privacy-
preserving, distributed model training across institutions. Furthermore, cross-domain generalization and
domain adaptation should be investigated to ensure robustness across diverse clinical environments and
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datasets. Class imbalance can be addressed using techniques like focal loss, or synthetic data generation using
GANSs can improve model fairness.
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