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ABSTRACT: This study investigates the dynamics of pneumococcal pneumonia using a novel fractal-fractional
Susceptible-Carrier-Infected-Recovered model formulated with the Atangana-Baleanu in Caputo (ABC) sense. Unlike
traditional epidemiological models that rely on classical or Caputo fractional derivatives, the proposed model
incorporates nonlocal memory effects, hereditary properties, and complex transmission dynamics through fractal-
fractional calculus. The Atangana-Baleanu operator, with its non-singular Mittag-Leffler kernel, ensures a more realistic
representation of disease progression compared to classical integer-order models and singular kernel-based fractional
models. The study establishes the existence and uniqueness of the proposed system and conducts a comprehensive
stability analysis, including local and global stability. Furthermore, numerical simulations illustrate the effectiveness
of the ABC operator in capturing long-memory effects and nonlocal interactions in disease transmission. The results
provide valuable insights into public health interventions, particularly in optimizing vaccination strategies, treatment
approaches, and mitigation measures. By extending epidemiological modeling through fractal-fractional derivatives,
this study offers an advanced framework for analyzing infectious disease dynamics with enhanced accuracy and
predictive capabilities.

KEYWORDS: Fractional derivatives; nonlinear equations; simulation; numerical results; iterative method; time varying
control system; lyapunov functions

1 Introduction
Pneumococcal pneumonia, caused by Streptococcus pneumoniae, remains a significant global health

issue, particularly affecting young children and the elderly. Despite medical advancements, it continues
to contribute notably to morbidity and mortality worldwide. Traditional mathematical models, including
classical and integer-order differential equations, have been employed to study disease dynamics, but these
models often fail to account for nonlinear, long-memory effects and hereditary factors that influence
disease transmission, immunity, and treatment responses. This lung disease, which can affect individuals
of all ages, can manifest with varying severity, with some forms being non-airborne due to inhalation
of harmful substances. While most pneumococcal toxins are harmless, certain strains can be extremely
dangerous, leading to brain damage and hearing loss. Pneumococcal meningitis is the most severe form
of illness, primarily affecting children under five, though it can also impact adults. The bacteria involved
in pneumococcal infections can spread through the bloodstream, and while the mortality rate in children
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under five is around 1%, the elderly have a significantly higher mortality risk, with death rates around 5%.
Pneumococcal pneumonia remains one of the leading causes of death in the elderly population.

Pneumococcal pneumonia, a major public health concern, has been extensively modeled using
classical and fractional-order differential equations. However, existing models primarily rely on integer-
order or Caputo fractional derivatives, which have limitations in capturing complex nonlocal memory
effects, hereditary properties, and fractal-like transmission dynamics observed in real-world epidemiological
data. These traditional models assume that disease progression depends only on current states, failing to
incorporate long-term dependencies and memory effects, which are crucial for understanding infectious
disease behavior. To address these limitations, we introduce a novel fractal-fractional Susceptible-Carrier-
Infected-Recovered model formulated with the Atangana-Baleanu in Caputo (ABC) sense. Unlike classical
or Caputo-based fractional models, the ABC derivative incorporates a non-singular Mittag-Leffler kernel,
allowing for a more realistic representation of disease transmission.

A mathematical model of bacteremic Pneumococcal Pneumonia in young children (5-year-old) was
developed by Ong’ala et al. [1] to describe the occurrence of this disease. They analyzed the transmission
rates and paths between the carriers and the infected class, using the bifurcation theory and the stability of
equilibrium points as a means of analyzing the transmission rates. Mochan et al. [2] provided a dynamic
ordinary differential equation model of the host immunological response to bacterial Pneumococcal Pneu-
monia infection in Murine strains. Drusano et al. [3] investigated the efficacy of granulates in preventing
bacterial growth and concluded that antibiotics play no part in this process. Ndelwa et al. [4] mathematically
represented the dynamic features for the transmission of Pneumococcal Pneumonia, including screening
and medicine, and analyzed the transmission and consequences. Kosasih et al. [5] analyzed a mathematical
model of cough sounds using wavelet-based crackling detection to rapidly identify bacterial Pneumococcal
Pneumonia in young patients. In 2016, César et al. [6] used a mathematical model for pediatric asthma
and Pneumococcal Pneumonia over a large population. Based on the work of Marchello et al. [7], it was
shown in 2016 that atypical bacterial infections were mostly responsible for the spread of respiratory illnesses
such as coughing, bronchitis, and chronic obstructive pulmonary disease (COPD). In 2017, Cheng et al. [8]
presented a dynamical mathematical model of the influenza A virus and Streptococcus pneumoniae. Kosasih
and Abeyratne [9] provided a simple mathematical model illuminating the clinical analysis of measures for
the diagnosis of childhood Pneumococcal Pneumonia and discussed the most common reasons why young
infants in low-income areas of the world get Pneumococcal Pneumonia.

In 2018, a co-infection model for Pneumococcal Pneumonia and typhoid was presented by Tilahun
et al. [10,11], and their defining connection in the face of a cure and therapeutic approaches was mathe-
matically examined. With the use of mathematical properties of cough sounds, Raj et al. [12] examined the
categorization of asthma and Pneumococcal Pneumonia in low-resource communities. Kizito and Tumwi-
ine [13] produced a mathematical model that shows how microorganisms limit the spread of Pneumococcal
Pneumonia. Vaccine formulation and treatment dynamics were also examined. Mbabazi et al. [14] looked
into a nonlinear mathematical model that describes influenza A virus and Pneumococcal Pneumonia inside
the host. A model of Pneumococcal Pneumonia-meningitis coinfection was developed by Tilahun [15],
making use of some theorems and ordinary differential equations. Various strategies for eradicating diseases
were outlined in detail. Dynamic mathematical models of Pneumococcal Pneumonia were evaluated by
Diah and Aziz [16]. Pneumococcal Pneumonia risk was calculated using a different method. In 2019,
Tilahun [17] developed a mathematical model of Pneumococcal Pneumonia and bacterial meningitis. A
mathematical model of pneumococcal Pneumococcal Pneumonia with temporal delays was developed by
Mbabazi et al. [18]. The effectiveness of the model was examined by Otoo et al. [19]. Models of respiratory
diseases were presented in graphic form by Zephaniah et al. [20]. A coronavirus Pneumococcal Pneumonia
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outbreak was reported in Wuhan, China, by Ming et al. [21]. Based on clinical testing, Jung et al. [22]
confirmed the findings and identified the pathogen responsible. A mathematical model of Pneumococcal
Pneumonia-HIV co-infection was developed by Wafula et al. [23] based on anti-Pneumococcal Pneumonia
treatments. Moreover, Oluwatobi and Erinle-Ibrahim, Ref. [24] examined the effects of Pneumococcal
Pneumonia while explaining the presence of fundamental and effective reproduction numbers. In Sayed
Saber et al. [25], the transmission dynamics of Pneumococcal Pneumonia were investigated using a fractional
mathematical susceptible-vaccinated-carrier-infected-recovered model. Similar result on the Pneumonia
diseases has been studied in [26].

Fractional-order models, particularly those using Caputo fractional derivatives, have been introduced
to incorporate memory-dependent interactions into epidemiological dynamics. Fractal fractional dynamics
are observed in various natural systems, including excitation-relaxation systems and natural oscillatory
systems. Atangana and Qureshi [27] explore the modeling of chaotic attractors using fractal-fractional
operators, focusing on their applicability to dynamical systems in the context of fractional calculus, see
also [28–32]. Khalid et al. [33] propose the Modified Minimal Model for diabetes treatment strategies [34]
and further investigate the use of fractal-fractional derivatives in diabetes modeling. Almutairi et al. [35]
focus on the use of the fractal-fractional Atangana-Baleanu operator in modeling pneumonia, with detailed
stability, statistical, and numerical analyses. Abodayeh et al. [36] highlight the use of efficient computational
techniques in pneumonia modeling. Boukhouima et al. [37] study a fractional-order HIV infection model
with functional response and cure rate, see also [38–40].

The application of fractional calculus in modeling dynamical systems has gained significant attention in
recent years due to its ability to capture memory effects and complex dynamics more accurately than classical
integer-order models. Several studies have demonstrated the effectiveness of fractional-order systems
in various fields, including bioengineering, finance, and control theory [41–45]. For instance, Ref. [41]
provides a comprehensive overview of fractional-order modeling and control applications, highlighting their
advantages in representing real-world phenomena with hereditary properties. In the context of biological
systems, fractional-order models have been particularly useful in describing glucose-insulin interactions. For
example, Refs. [42,44] developed fractional-order models to analyze the dynamics of glucose-insulin regula-
tion, demonstrating improved agreement with experimental data compared to traditional models. Similarly,
epidemiological models have benefited from fractional calculus, as seen in [43,45], where fractional-order
differential equations were used to model the spread of COVID-19, providing insights into transmission
dynamics and stability.

Saber and Alahmari [46] discussed the modeling and mathematical analysis of zoonotic diseases, see
also [47–49] presented additional advancements in zoonotic disease modeling. Althubyani and Saber [50]
also contributed significantly to the understanding of complex dynamical systems. Several studies have
demonstrated the effectiveness of fractional-order systems in various fields, including bioengineering,
finance, and control theory [51].

The stability analysis of fractional-order systems has also been a key area of research. Theoretical frame-
works such as those presented in [52,53] have been extended to fractional-order systems, enabling rigorous
stability assessments. Additionally, chaos control in fractional-order chaotic systems has been explored in
works such as [54], where the Burke-Shaw system was analyzed using fractal-fractional operators. The study
of fractional-order systems is deeply rooted in both classical and modern mathematical frameworks.

Building on these theoretical underpinnings, Petras [55] systematized the modeling, analysis, and
simulation of fractional-order nonlinear systems, bridging abstract mathematical theory with practical
applications. Fractional calculus has further been applied to chaotic systems, including the Chua system [56],
the Lorenz system [57], the Lü system [58], Burke-Shaw [59] and the Rössler system [60]. Recent studies, such
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as [61], have investigated chaos control in the fractional Newton-Leipnik system using different fractional
derivatives. Further applications include disease modeling, where fractional derivatives have been used to
study smoking epidemic model [62] and Chikungunya transmission [63] and typhoid fever dynamics [64].
The theoretical foundations of fractal-fractional differential equations have also been explored in [65],
providing a mathematical basis for their application in complex systems. Additionally, fractal-fractional
operators have been employed to analyze chaotic dynamics, as demonstrated in [66–68].

In this study, we present a fractal-fractional Atangana-Baleanu Caputo (ABC) derivative-order model
that describes pneumococcal pneumonia transmission dynamics. The objective is to establish the existence
and uniqueness of solutions and analyze the qualitative characteristics of the model. To capture actual
disease behavior, we employ the fractal-fractional derivative of the Atangana-Baleanu equation and conduct
a local and global stability analysis of steady states. Specifically, the basic reproductive number R0 is
derived to demonstrate the stability of the disease-free steady state when R0 < 1. The existence of a positive
(endemic) steady state that is both locally and globally asymptotically stable is ensured if R0 > 1. To solve the
fractional-order system numerically, we utilize the fractal-fractional Atangana-Baleanu numerical method.
The proposed system offers a foundational framework for studying, analyzing, and computing solutions
to various epidemiological illness models. The numerical simulations validate the theoretical findings,
reinforcing the model’s biological relevance.

Addressing the limitations of existing models, this study introduces a fractal-fractional Susceptible-
Carrier-Infected-Recovered model using the ABC derivative. The ABC operator, with its non-singular
Mittag-Leffler kernel, enhances epidemiological forecast accuracy by ensuring smooth transitions between
disease states. Unlike previous models, this approach accounts for nonlocal effects and memory-dependent
disease transmission, making it a more effective tool for studying pneumococcal pneumonia outbreaks. We
establish the theoretical validity of the model by proving the existence and uniqueness of solutions. We
conduct local and global stability assessments, and demonstrate the impact of memory and fractal structures
through numerical simulations. Furthermore, we conduct a comprehensive sensitivity analysis using 3D
visualizations to identify the most influential parameters affecting disease spread. By integrating a fractal-
fractional calculus into epidemiological modeling, this study significantly enhances the predictive capability
of disease transmission models, offering a more effective framework for intervention strategies.

To overcome the shortcomings of existing models, this study introduces a fractal-fractional Susceptible-
Carrier-Infected-Recovered model using the Atangana-Baleanu in Caputo (ABC) derivative. The ABC
operator, which is based on a non-singular Mittag-Leffler kernel, provides a more realistic representation
of disease dynamics than previous fractional models. This approach ensures smoother transitions between
disease states and enhances epidemiological forecast accuracy, making it a valuable tool for analyzing
the long-term behavior of pneumococcal pneumonia outbreaks. We extend traditional pneumococcal
pneumonia models by incorporating fractal-fractional operators, which account for nonlocal effects and
memory-dependent disease transmission. We establish the existence and uniqueness of solutions, ensuring
theoretical validity. We conduct local and global stability assessments to determine the conditions under
which the disease persists or is eradicated. Unlike prior models, we employ numerical simulations based
on the ABC operator to demonstrate the effects of memory and fractal structure on disease transmission.
We conducted a comprehensive sensitivity analysis using 3D visualizations to identify the most influential
parameters affecting disease spread. By integrating fractal-fractional calculus into epidemiological modeling,
this study enhances the accuracy and predictive capability of disease transmission models, paving the way
for more effective intervention strategies.
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The novelty of our study lies in the integration of fractal and fractional dynamics. This better reflects
real-world epidemic patterns, particularly in cases where transmission pathways are irregular and hetero-
geneous. This research applies fractal-fractional calculus to generalize traditional epidemiological models.
Unlike classical differential equation models, which assume instantaneous effects and local interactions, the
proposed approach accounts for long-memory behavior and nonlocal influences. This allows a more accurate
representation of pneumococcal pneumonia dynamics, where past infections and immunity play a significant
role in shaping future disease spread. Another crucial innovation is the incorporation of nonlinear, memory-
dependent interactions into the modeling process. Classical epidemiological models often rely on simplified
assumptions about disease transmission, ignoring the cumulative effects of immunity, delayed treatment
response, and persistent infections. By integrating memory-dependent dynamics, this study provides a
more comprehensive framework for understanding Pneumococcal Pneumonia progression and evaluating
potential intervention strategies.

Mathematically, the study establishes the existence and uniqueness of solutions to the proposed
model, ensuring its validity and applicability. Additionally, stability properties–including both local and
global stability–are rigorously examined to determine the conditions under which disease persistence or
eradication occurs. These theoretical foundations are essential for understanding the model’s behavior and
implications for real-world disease control. To further illustrate the effectiveness of the proposed model,
numerical simulations were conducted to analyze the impact of long-memory effects on disease spread. These
simulations provide valuable insights into the transmission dynamics of pneumococcal pneumonia and
demonstrate the advantages of fractal-fractional modeling in capturing complex epidemiological patterns.
By comparing the results with classical models, the study highlights the significant improvements in accuracy
and predictive capability offered by the fractal-fractional approach.

In previous studies on pneumococcal pneumonia dynamics, the limitations have primarily involved the
use of classical integer-order models, which fail to capture the memory effects and fractal characteristics
inherent in real-world biological systems. These models often assume homogeneous populations and
instantaneous changes in disease progression, thereby oversimplifying the complex dynamics of reinfection,
immunity decay, and bacterial carriage. This study aims to address these gaps by employing the Atangana-
Baleanu Caputo (ABC) fractional operator, which incorporates memory effects and fractional-order
parameters to provide a more comprehensive and accurate representation of pneumococcal pneumonia
transmission dynamics.

The remainder of the paper is structured as follows: Section 2 provides preliminary definitions
and a mathematical background. Section 3 introduces the pneumococcal pneumonia Susceptible-Carrier-
Infected-Recovered model formulation with fractal-fractional derivatives. Sections 4 and 5 discuss the
qualitative properties of the model, including stability analyses. Section 6 presents a sensitivity analysis of the
basic reproduction number R0. Sections 7 and 8 present a numerical scheme and simulations to validate the
theoretical findings. Finally, Sections 9 and 10 conclude with a discussion and conclusion on the implications
of the results and potential future research directions.

2 Preliminary Definitions
Definition 1 ([51]). The Gamma function Γ(x) is a continuous extension of the factorial function, defined for
real and complex numbers except for non-positive integers. It is given by the following integral representation:

Γ(x) = ∫
∞

0
tx−1e−t dt, for Re(x) > 0.
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Definition 2 ([51]). The Mittag-Leffler function is a generalization of the exponential function, while the
gamma function is a generalization of the factorial function. The Mittag-Leffler function is defined as a power
series expansion

Eσ1(z) =
∞

∑
s=0

zs

Γ(σ1s + 1) , σ1 > 0, σ1 ∈ R, z ∈ C,

where Eσ1 is the single-parameter Mittag-Leffler function.

The two-parameter generalization of the Mittag-Leffler function, which plays an important role in the
fractional calculus, is defined by the series expansion

Eσ1 ,β(z) =
∞

∑
s=0

zs

Γ(σ1s + β) , σ1 > 0, β > 0, σ1 , β ∈ R, z ∈ C.

When β = 1, we denote Eσ1(z) = Eσ1 ,1(z) to be a one-parameter MittagLeffler function. When both
σ1 , β are real and positive, the above series converges for values of z, and the Mittag-Leffler function is an
entire function.

Definition 3 ([69,70]). Consider the fractal differentiable on (a, b) of order 0 < σ2 ≤ 1 for ϕ ∈ C((a, b),R).
The following is a fractal-fractional derivative operator for t in the Atangana-Baleanu setting:

FFPD σ1 ,σ2
0,t ϕ(t) = h̵(σ1)

1 − σ1

d
dtσ2 ∫

t

0
ϕ(s)Eσ1 [−

σ1

1 − σ1
(t − s)σ1] ds,

where Eσ1 ,1(t) =
∞

∑
k=0

tk

Γ(kq + 1) > 0 is the Mittag Leffler function with the normalization function h̵(σ1) is given

by: h̵(σ1) = 1 − σ1 + σ1
Γ(σ1)

, and d h(s)
dsσ2 = limt→s

t(t)−t(s)
tσ2−ςσ2 .

Definition 4 ([69,70]). The fractal-fractional integration operator are provided by

FFPIσ1 ,σ2
0,t ϕ(t) = σ1σ2

h̵(σ1)Γ(σ1) ∫
t

0
sσ2−1ϕ(s)(t − s)σ1−1ds + σ2 (1 − σ1) ϑσ2−1

h̵(σ1)
ϕ(t).

The parameter σ1 in the Atangana-Baleanu fractal-fractional (ABC-FF) derivative represents the frac-
tional order of differentiation, while σ2 is associated with the fractal dimension. The distinction is crucial, as
σ1 controls the memory effect and smoothness of the function, whereas σ2 determines the complexity of the
fractal structure embedded within the model.

When σ1 = 1, the AB-FF operator reduces to a classical derivative. Specifically:

• The Mittag-Leffler kernel simplifies to an exponential function, removing nonlocal memory effects.
• The fractional component vanishes, resulting in an integer-order derivative.
• The fractal properties disappear, causing the model to behave as a standard differential equation.

However, if σ1 = 1, the entire formulation must be carefully examined to ensure that singularities do
not arise. The authors should explicitly state under what conditions the equation remains well-defined at
this limit.

By integrating memory effects and fractal structures, our ABC-based model provides:

• More accurate predictions of outbreak dynamics, helping policymakers design better intervention
strategies.
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• Improved understanding of reinfection risks and long-term immunity, guiding vaccination campaigns.
• A more realistic assessment of treatment impact over time, aiding in antibiotic stewardship programs.

To help health practitioners grasp the importance of ABC operators, a simple analogy can be introduced:

Traditional models treat disease progression like flipping a switch–either you are infected or you are
not. However, pneumococcal pneumonia leaves a lasting imprint on the body, much like a fading
memory that still influences decisions. The ABC operator helps us mathematically capture this fading
memory, allowing for a more realistic and accurate disease model.

The conditions σ1 > 0 and σ2 ≤ 1 here are imposed to ensure the mathematical validity and the physical
meaningfulness of the fractal-fractional derivative operator in the Atangana-Baleanu setting. The reasoning
behind these constraints is as follows:

• σ1 > 0: The parameter σ1 controls the fractional order of the derivative in the Mittag-Leffler kernel and
must be positive to ensure that the fractional derivative is well-defined. A negative or zero value for σ1
would lead to an undefined or singular behavior, particularly in terms of the Mittag-Leffler function,
which could break the mathematical formulation and cause instability.

• σ2 ≤ 1: The parameter σ2 defines the order of the fractional derivative with respect to the temporal
variable t. The condition σ2 ≤ 1 ensures that the fractional order does not exceed unity, which keeps
the physical model within realistic bounds. If σ2 > 1, the operator would involve derivatives of higher
order, potentially resulting in a non-physical behavior that doesn’t align with the intended modeling of
complex systems (such as diseases or biological processes).

When σ1 = 1 in the Atangana-Baleanu fractal-fractional (ABC-FF) derivative, the operator reduces to a
classical derivative. If σ1 = 1:

• The Mittag-Leffler kernel Eσ1 simplifies to an exponential function, removing the nonlocal memory
effects of the operator.

• The AB-FF derivative reduces to the classical derivative, losing its fractional and fractal properties.
• The model no longer retains memory effects and behaves like a standard first-order differential equation.
• The fractional-order nature of the derivative disappears, meaning the system no longer retains past infor-

mation.
• The fractal nature is lost, causing the system to behave as a regular differential equation without the

complexity introduced by fractal geometry.
• The model transitions back to a standard integer-order system, eliminating the advantages of fractional

calculus in capturing long-memory effects and nonlocal interactions.

Setting σ1 = 1 removes both the fractional and fractal effects, essentially converting the AB-FF derivative
into a classical derivative. The model would no longer benefit from nonlocality or memory effects, making
it behave like a standard epidemiological model.

3 Formulation of the Fractal-Fractional Model
The Susceptible-Carrier-Infected-Recovered model proposed by Abodayeh et al. in [36] describes the

dynamics of a population divided into four compartments: The susceptible, who is at risk of acquiring
Pneumococcal Pneumonia infection, is characterized by S(t), C(t): represents individuals who carry
Pneumococcal Pneumonia bacteria and may transmit the disease, I(t): indicates who is infected and
at risk, R(t): indicates the number of individuals who have recovered from Pneumococcal Pneumonia.
The Susceptible-Carrier-Infected-Recovered model assumes a well-mixed population where individuals
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transition between compartments based on rates of transmission, recovery, and mortality. The model
captures the dynamics of both symptomatic and asymptomatic individuals, reflecting the complexity of
disease spread in the population. It is important for the authors to explicitly state the biological motivations
behind these transitions and to ensure that the parameters reflect real-world processes, especially in the
context of disease dynamics and public health interventions.

For any given time t, the parameters and variables describing pneumonia are as follows:
• S(t): The number of individuals susceptible to pneumonia, at risk of infection.
• C(t): The number of carriers who harbor the pneumonia bacteria and can spread the infection.
• I(t): The number of infected individuals capable of transmitting pneumonia.
• R(t): The number of individuals who have recovered after receiving pneumonia treatment.
• μ: The natural mortality rate per capita.
• Π: The recruitment rate of new individuals into the susceptible population per capita.
• θ: The proportion of susceptible individuals who become carriers.
• σ : The disease-induced mortality rate per capita.
• β: The per capita recovery rate of carriers.
• σ1: The transmission rate of pneumonia to susceptible individuals.
• τ: The per capita recovery rate of infected individuals.
• π: The rate at which carriers develop symptoms.
• η: The rate at which treated individuals return to being susceptible.
• γ: The vaccination rate of susceptible individuals.
• ω: The rate of vaccinated treated individuals.
• δ: The transmission coefficient within the carrier subgroup.
• p: The probability that a contact leads to infection.
• k: The contact rate.
• �: Transmission rate. This is the rate at which individuals become infected (either as carriers or

symptomatic) from contact with others in the population.
The governing equations of the model are as follows:

dS(t)
dt

= Π − �S(t) − μS(t) + ηR(t),

dC(t)
dt

= �θS(t) − (π + β + μ)C(t),

dI(t)
dt

= �(1 − θ)S(t) + πC(t) − (μ + τ + σ)I(t),

dR(t)
dt

= βC(t) + τI(t) − (μ + η)R(t). (1)

Here, � = δ(I(t) + �C(t))
N∗ is the transmission rate, and the initial conditions are:

S(0) = S0 ≥ 0, C(0) = C0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0.

Assumptions and Motivations:
• Susceptible Population (S(t)):

– Assumption: Individuals who are susceptible to the disease are denoted by S(t). This group is
replenished by a recruitment rate Π, which represents new individuals entering the population (e.g.,
through birth or immigration).
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– Motivation: In many epidemiological models, the susceptible population increases due to natural
birth or migration. The loss of susceptible individuals occurs due to transmission, natural mortality,
and movement into the recovered compartment.

• Carriers (C(t)):
– Assumption: Carriers are individuals who are infected but do not exhibit symptoms. These individ-

uals may transmit the disease to others and are important in the spread of the infection.
– Motivation: The rate at which susceptible individuals become carriers is given by �θS(t), where

� is the transmission rate and θ is the proportion of susceptible individuals who transition to
the carrier state rather than becoming symptomatic. This represents the asymptomatic carriers in
the population.

– Loss of carriers: Carriers can either develop symptoms and transition to the infected group or be
removed from the population due to natural mortality, recovery, or vaccination. The parameter π +
β + μ represents the combined rate of loss from the carrier compartment.

• Infected Population (I(t)):
– Assumption: Infected individuals are those who exhibit symptoms and contribute to the disease

spread. They can transition to recovery or death.
– Motivation: The term �(1 − θ)S(t) represents the rate at which susceptible individuals become symp-

tomatic. The term �C(t) accounts for the infection spread from carriers who become symptomatic.
– Loss of infected individuals: Infected individuals can recover with rate τ, die from the disease with

rate σ , or experience natural mortality μ. The total loss rate of infected individuals is μ + τ + σ , which
combines these factors.

• Recovered Population (R(t)):
– Assumption: Recovered individuals are those who have overcome the infection, either by recovering

naturally or through vaccination. They can no longer transmit the disease.
– Motivation: The term βC(t) represents the recovery of carriers, while τI(t) represents the recovery

of infected individuals. The loss of recovered individuals occurs due to natural mortality with rate μ
and the rate at which carriers lose their symptoms (η).

To obtain the model with the fractal-fractional derivative from the classical model of differential
equations, you need to replace the standard first-order derivatives with the generalized fractal-fractional
derivative FFPD σ1 ,σ2

t , which generalizes the differentiation process. Here’s how you can proceed: To transform
the system into a fractal-fractional system, replace each ordinary derivative d

d t with the corresponding
fractal-fractional derivative FFPD σ1 ,σ2

t . Apply the fractal-fractional derivative operator to each equation in
the classical model.
FFPD σ1 ,σ2

t S(t) = Π − �S(t) − μS(t) + ηR(t),
FFPD σ1 ,σ2

t C(t) = �θS(t) − (π + β + μ)C(t),
FFPD σ1 ,σ2

t I(t) = �(1 − θ)S(t) + πC(t) − (μ + τ + σ)I(t),
FFPD σ1 ,σ2

t R(t) = βC(t) + τI(t) − (μ + η)R(t). (2)

This is the model with the fractal-fractional derivatives, denoted as model (2). The transition from model
(1) to model (2) is made by replacing the usual derivative d

d t with the fractal-fractional derivative FFPD σ1 ,σ2
t

in each equation. Finally, the main transformation is the replacement of classical derivatives with the fractal-
fractional derivatives in each equation, which introduces memory effects and nonlocality into the system
dynamics. The system is now described by equations that account for complex time dependencies rather
than relying on instantaneous rates of change, as in the classical case.
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The ABC operator has become a crucial tool in fractal-fractional calculus, offering significant advan-
tages for modeling complex systems with memory and hereditary properties, particularly in biological and
epidemiological contexts. Its key benefits include incorporating memory effects through a non-singular
Mittag-Leffler kernel, which realistically represents historical dependencies in disease dynamics, such as
incubation periods and immune responses. The operator’s nonlocality ensures a comprehensive account of
past states, surpassing classical derivatives in capturing infection progression and intervention effectiveness
over time. Additionally, its flexibility across different orders allows for adaptable modeling of varying
complexity levels, while its non-singular kernel enhances numerical stability, preventing singularities in
simulations. The Atangana-Baleanu in Caputo (ABC) operator generalizes classical and fractional deriva-
tives, making it a versatile framework for analyzing dynamic systems, with demonstrated success in
modeling epidemic dynamics such as Pneumococcal Pneumonia. Traditional integer-order Susceptible-
Carrier-Infected-Recovered models assume Markovian processes with instantaneous transitions, which fail
to capture pneumococcal pneumonia’s memory effects, heterogeneous transmission, and long-tail recovery
distributions. In contrast, the fractional-order Susceptible-Carrier-Infected-Recovered model using the AB
operator in the Caputo sense addresses these limitations by incorporating memory effects into disease
progression, allowing for non-exponential transmission and recovery rates, and improving data fitting to
clinical observations. The Mittag-Leffler kernel further refines this approach by providing a smooth decay
of memory effects, avoiding singularities, and ensuring a more accurate representation of pneumococcal
pneumonia transmission and control dynamics.

This is the first study that applies the Atangana-Baleanu in Caputo (ABC) operators to model the dynam-
ics of pneumococcal pneumonia. The novelty of this approach appears by incorporating fractal-fractional
derivatives with a non-singular Mittag-Leffler kernel, which provides a more realistic representation of
disease transmission compared to previous models using integer-order or Caputo derivatives.

4 Positivity, Existence and Uniqueness of the Model Solutions
By R+, we refer to the set of all positive real numbers, Ω = {(S, C, I, R) ∈ R4

+ ∶ S ≥ 0, C ≥ 0, I ≥ 0, R ≥ 0,
max (∣S∣, ∣C∣, ∣I∣, ∣R∣) ≤ N}.

Theorem 1. Model (3.2) has non-negative solutions if and only if θ < 1.

Proof. One has

FFPD σ1 ,σ2
t S(t)∣S=0 = Π + δR(t) > 0,

FFPD σ1 ,σ2
t C(t)∣C=0 = δθI(t)S(t)

N
+ δ�θC(t)S(t)

N
> 0,

FFPD σ1 ,σ2
t I(t)∣I=0 = δ�C(t)

N
(1 − θ)S(t) + πC(t) > 0,

FFPD σ1 ,σ2
t R(t)∣R=0 = βC(t) + τI(t) > 0.

To understand why Π + δR(t) > 0 here, we need to consider the nature of the terms involved: If Π
represents a positive rate, such as a birth or recruitment rate, it is positive by definition. Since R(t) > 0 by
assumption, and δ > 0, the term δR(t) is also positive. Thus, the sum Π + δR(t) is positive because it is the
sum of two positive quantities: Π and δR(t). As a result, we conclude that:

Π + δR(t) > 0.

Based on Lemmas 5 and 6 in [37], all of the solutions to the model (2) have a semi-positive outcome.
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Model (2) can be stated as because the integration is differentiable.

ABRD σ1 ,σ2
0,t S(t) = σ2tσ2−1F1(t, S, C, I, R),

ABRD σ1 ,σ2
0,t C(t) = σ2tσ2−1F2(t, S, C, I, R),

ABRD σ1 ,σ2
0,t I(t) = σ2tσ2−1F3(t, S, C, I, R),

ABRD σ1 ,σ2
0,t R(t) = σ2tσ2−1F4(t, S, C, I, R).

with F1, F2, F3, F4 defined as:

F1 = Π − �S(t) − μS(t) + ηR(t),
F2 = �θS(t) − (π + β + μ)C(t),
F3 = �(1 − θ)S(t) + πC(t) − (μ + τ + σ)I(t),
F4 = βC(t) + τI(t) − (μ + η)R(t). (3)

Consider

ABRD σ1
0,tΘ(t) = σ2tσ2−1 ∐ (t, Θ(t)),

with Θ(0) = Θ0. With Θ(t) = (S(t), C(t), I(t)), Θ(0) = (S(0), C(0), I(0)), and using fractional integral
and ABRD σ1 ,σ2

0,t in place of ABRD σ1 ,σ2
0,t , we have

Θ(t) = Θ(0) + σ2tσ2−1(1 − σ1)
k(σ1)

∐ (t, Θ(t)) + σ1σ2

Γ(σ1)k(σ1)
× ∫

t

0
εσ2−1(t − ε)σ2−1 ∐ (ε, Θ(ε))dε.

Banach space J = C ([0, K] ×R3,R) is used to find existence and uniqueness, where J = C[0, K] having

∥Θ∥ = max
t∈[0,K]

[∣S(t)∣ + ∣C(t)∣ + ∣I(t∣)].

Establishing an operator Ψ ∶ J → J, as

Ψ(Θ)(t) = Θ(0) + σ2tσ2−1(1 − σ1)
k(σ1)

∐ (t, Θ(t)) + σ1σ2

Γ(σ1)k(σ1) ∫
t

0
εσ2−1(t − ε)σ2−1 × ∐(ε, Θ(ε))dε.

Assuming a nonlinear function ∐(t, Θ(t)) meets the Lipchitz function and growth, then
(H1) For all Θ ∈ J, there are positive constants Cφ > 0 and Sφ satisfies

∣ ∐ (t, Θ(t))∣ ≤ Cφ ∣Θ(t)∣ + Sφ .

(H2) For all Θ, Θ̄ ∈ J, there is a positive constant T φ > 0 satisfies

∣ ∐ (t, Θ(t)) − ∐(t, Θ̄(t))∣ ≤ Tφ ∣Θ(t) − Θ̄(t)∣.

Theorem 2. Assume (H1) and (H2) are true. Let ∐ ∶ [0, K] × J → J be a continuous function. As a result, there
is only one solution to the model.

Proof. There is no difference between ∐ and Ψ since ∐ is permanently fixed. Assume the following:

Φ = {Θ ∈ J ∶ ∥Θ∥ ≤ L, L > 0}.
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For any Θ ∈ J, then we get

∣Ψ(Θ)∣ = max
t∈[0,K]

∣Θ(0) + vt(1 − σ1)
k(σ1)

× ∐(t, Θ(t)) σ1σ2

Γ(σ1)k(σ1)
× ∫

t

0
εσ2−1(t − ε)σ2−1 ∐ (ε, Θ(ε))dε∣

≤ Θ(0) + vKσ2−1(1 − σ1)
k(σ1)

(Cφ∥Θ∥ + Sφ) + σ1σ2

Γ(σ1)k(σ1)
(Cφ∥Θ∥ + Sφ) × Kσ1+v−1Φ(σ1 , v)

≤ L.

To ensure that the homogeneity of the function is guaranteed, the operator Ψ must have an input
function Φ(σ1 , v). Assume t1 , t2 ≤ K for Ψ equicontinuity. Take into consideration the following points:

∣Ψ(Θ) (t2) − Ψ(Θ) (t1) ∣=∣σ2tσ2−1
2 (1 − σ1)
k(σ1)

∐ (t2, Θ (t2)) + σ1σ2

Γ(σ1)k(σ1) ∫
t2

0
εσ2−1 (t2 − ε)σ2−1 ∐ (ε, Θ(ε))dε

− σ2tσ2−1
1 (1 − σ1)
k(σ1)

∐ (t1 , Θ (t1))
σ1σ2

Γ(σ1)k(σ1) ∫
t1

0
εσ2−1 (t1 − ε)σ2−1 ∐ (ε, Θ(ε))dε∣

− σ2tσ2−1
2 (1 − σ1)
k(σ1)

(Cφ∥Θ∥ + Sφ) + σ1σ2

Γ(σ1)k(σ1)
(Cφ∥Θ∥ + Sφ) tσ1+σ2−1

2 Φ(σ1 , σ2)

− σ2tσ2−1
1 (1 − σ1)
k(σ1)

(Cφ∥Θ∥ + Sφ) + σ1σ2

Γ(σ1)k(σ1)
(Cφ∥Θ∥ + Sφ) tσ1+σ2−1

1 Φ(σ1 , σ2).

Consequently, as t1 → t2, ∥Ψ(Θ) (t2) − Ψ(Θ) (t1)∥ → 0. Since Ψ is continuous, the theory of Arzela-
Ascoli is fully continuous.

Theorem 3. Suppose that (H1) and (H2) is true. If Ξ < 1 where

Ξ =(vkσ2−1(1 − σ1)
k(σ1)

+ σ1σ2

Γ(σ1)k(σ1)
Kσ1+v−1Φ(σ1 , v))Tφ ,

Then the solution is unique, if it exists.

Proof. For Θ, Θ̄ ∈ J, we have

∣Ψ(Θ) − Ψ(Θ̄)∣ = max
t∈[0,K]

∣σ2tσ2−1(1 − σ1)
k(σ1)

[∐(t, Θ(t)) − ∐(t, Θ(t))]

+ σ1σ2

Γ(σ1)k(σ1) ∫
t

0
εσ2−1(t − ε)σ2−1dε × (∐(ε, Θ(ε)) − ∐(ε, Θ̄(ε)))∣

≤ [vKσ2−1(1 − σ1)
k(σ1)

+ σ1σ2

Γ(σ1)k(σ1)
Kσ1+v−1Φ(σ1 , v)] ∥Θ − Θ̄∥

≤ Ξ∥Θ − Θ̄∥.

5 Stability Analysis
The total population at any time t is defined as:

N(t) = S(t) + C(t) + I(t) + R(t).
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To derive the equation for N(t), we sum the given differential equations:

dN(t)
dt

= dS(t)
dt

+ dC(t)
dt

+ dI(t)
dt

+ dR(t)
dt

.

Using the given system of equations, we have:

dN(t)
dt

= (Π − �S(t) − μS(t) + ηR(t))

+ (�θS(t) − (π + β + μ)C(t))
+ (�(1 − θ)S(t) + �C(t) − (μ + τ + σ)I(t))
+ (βC(t) + τI(t) − (μ + η)R(t)) .

The resulting equation is:

dN(t)
dt

= Π − μN(t) − σI(t).

At equilibrium ( d N(t)
d t = 0), we have:

0 = Π − μN∗ − σI∗.

Rearranging the equation gives:

N∗ = Π − σI∗

μ
.

The total population at equilibrium, N∗, depends on the recruitment rate Π, the natural death rate μ,
and the disease-induced death rate σI∗. The term σI∗ represents the loss of population due to infection-
induced deaths.

When I = C = 0, one obtains the following equation:

0 = Π − μS(t) + ηR(t),
0 = −(μ + η)R(t).

Implies E1 = (Π
μ , 0, 0, 0). At E1, as in by [71], the next-generation matrix theory allows us to deduce the

reprduction number R0 as:

R0 = (�θ(μ + τ + σ) + (1 − θ)((π� + (π + β + μ)))δS0

N∗(π + β + μ)(μ + τ + σ) .

Lemma 1 ([36]). The Pneumococcal Pneumonia infection-free equilibrium E1 is locally asymptotically stable
in Ω if R0 < 1, but it is unstable if R0 > 1.

Theorem 4. The disease-free equilibrium E1 of the fractal-fractional system is globally asymptotically stable
in Ω.

Proof. Consider the Lyapunov function:

L1(S , C , I, R) = (S − S0 − S0 ln S
S0

).
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From [53], applying the fractal-fractional derivative FFPD σ1 ,σ2
t , we have:

FFPD σ1 ,σ2
t L1(S , C , I, R) ≤ (S − S0

S
)FFPD σ1 ,σ2

t S .

Substituting the fractal-fractional system equations, we get:

FFPD σ1 ,σ2
t L1(S , C , I, R) = (S − S0

S
)(Π − �S − μS + ηR).

At E1, we have:

FFPD σ1 ,σ2
t L1(S , C , I, R) ≤ (S − S0)(

Π
S

− � − μ + ηR
S

)

= (S − S0)(
Π
S

+ ηR
S

− Π
S0

− ηR
S0

)

= (S − S0)( − Π
SS0

(S − S0) − ηR
SS0

(S − S0))

= − Π
SS0

(S − S0)2 − ηR
SS0

(S − S0)2.

Since this expression is negative for all (S , C , I, R) ∈ Ω, it follows from LaSalle’s invariance principle [52]
that E1 is globally asymptotically stable in Ω.

For I∗ > 0, and taking

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

FFPD σ1 ,σ2
t S(t) = 0,

FFPD σ1 ,σ2
t C(t) = 0,

FFPD σ1 ,σ2
t I(t) = 0,

FFPD σ1 ,σ2
t R(t) = 0.

With α1 = θ π+(1−θ)(π+β+μ)
(μ+τ+σ) , one obtains the endemic equilibrium E2 = (S∗, C∗, I∗, R∗), with

S∗ = N∗(π + β + μ)
α1 +�

, C∗ = (μ + η)(Π(α1 +�) − μN∗(π + β + μ))
(α1 +�)(δ(π + β + μ)(μ + η) − η(σ2 + τα1))

,

I∗ = α1(μ + η)(Π(α1 +�) − μN∗(π + β + μ))
(α1 +�)(δ(π + β + μ)(μ + η) − η(σ2 + τα1))

, R∗ = (σ2 + τα1)(Π(α1 +�) − μN∗(π + β + μ))
(α1 +�)(δ(π + β + μ)(μ + η) − η(σ2 + τα1))

.

Lemma 2 ([36]). For R0 > 1, a unique endemic equilibrium point E2 exists; otherwise, no endemic equilibrium
exists.

Lemma 3 ([36]). If R0 > 1, E2 is stable locally asymptotically in Ω.

Theorem 5. The endemic equilibrium E2 of the fractal-fractional system is globally asymptotically stable in Ω.

Proof. Consider the Lyapunov function:

L2(S , C , I, R) = (S − S∗ − S∗ ln S
S∗

) + (C − C∗ − C∗ ln C
C∗

)

+ (I − I∗ − I∗ ln I
I∗

) + (R − R∗ − R∗ ln R
R∗

).
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From [53], applying the fractal-fractional derivative FFPD σ1 ,σ2
t , we have:

FFPD σ1 ,σ2
t L2(S , C , I, R) ≤ (S − S∗

S
)FFPD σ1 ,σ2

t S + (C − C∗

C
)FFPD σ1 ,σ2

t C

+ ( I − I∗

I
)FFPD σ1 ,σ2

t I + (R − R∗

R
)FFPD σ1 ,σ2

t R.

Substituting the fractal-fractional system equations, we get:

FFPD σ1 ,σ2
t L2(S , C , I, R) = − Π

N∗SS∗
(S − S∗)2 − ηR

N∗SS∗
(S − S∗)2

− �θS
N∗CC∗

(C − C∗)2 − �(1 − θ)SC
N∗II∗

(I − I∗)2 − πC
II∗

(I − I∗)2

− βC
RR∗

(R − R∗)2 − τI
RR∗

(R − R∗)2.

Since this expression is negative for all (S , C , I, R) ∈ Ω, it follows from LaSalle’s invariance principle [52]
that E2 is globally asymptotically stable in Ω.

6 Sensitivity Analysis of the Basic Reproduction Number R0

The sensitivity index of R0 with respect to a given parameter σ is defined as:

ΓR0
σ = ∂R0

∂σ
× σ

R0
.

The partial derivatives of R0 with respect to the key parameters are given below.

• For �:

∂R0

∂�
= θ(μ + τ + σ) + (1 − θ)πδS0

N(μ + τ + σ)(μ + β + π) .

ΓR0
� = ∂R0

∂�
× �

R0
.

• For θ:

∂R0

∂θ
= �(μ + τ + σ) − π�δS0

N(μ + τ + σ)(μ + β + π) .

ΓR0
θ = ∂R0

∂θ
× θ

R0
.

• For τ:

∂R0

∂τ
= �θ

N(μ + τ + σ)2(μ + β + π) .

ΓR0
τ = ∂R0

∂τ
× τ

R0
.
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• For μ:

∂R0

∂μ
= −�θ(μ + τ + σ) + (1 − θ)(π� + δS0)

N(μ + τ + σ)2(μ + β + π) .

ΓR0
μ = ∂R0

∂μ
× μ

R0
.

• For σ :

∂R0

∂σ
= − �θ

N(μ + τ + σ)2(μ + β + π) .

ΓR0
σ = ∂R0

∂σ
× σ

R0
.

• For π:

∂R0

∂π
= − (1 − θ)�δS0

N(μ + τ + σ)(μ + β + π)2 .

ΓR0
π = ∂R0

∂π
× π

R0
.

• For δ:

∂R0

∂δ
= (1 − θ)(π� + δS0)

N(μ + τ + σ)(μ + β + π) .

ΓR0
δ = ∂R0

∂δ
× δ

R0
.

The Basic Reproduction Number R0 for the given model is computed for the Disease-Free Equilibrium
(DFE) and Endemic Equilibrium (EE) as follows:

R0 = 0.0547 (DFE), R0 = 0.0684 (EE).

The sensitivity indices for the parameters are computed as follows:

ΓR0
� = 0.00018, ΓR0

θ = −1.2882, ΓR0
μ = −0.0829, ΓR0

τ = 1.539 × 10−5

ΓR0
σ = −1.273 × 10−5, ΓR0

π = −0.0128, ΓR0
δ = 0.5542.

These sensitivity indices indicate the effect of parameter changes on the basic reproduction number R0.
For example, the parameter θ has a strong negative impact on R0, while δ has a positive impact, indicating
that increasing δ increases the disease transmission potential.

The sensitivity index quantifies how changes in each parameter of the model affect the basic reproduc-
tion number R0, which represents the average number of secondary infections produced by a single infected
individual in a completely susceptible population. A positive sensitivity index indicates that an increase in
the corresponding parameter leads to an increase in R0, while a negative value means that an increase in the
parameter leads to a decrease in R0.

Fig. 1 presents the sensitivity index analysis. The objective is to help readers quickly ascertain the
parameters that significantly influence the spread of the disease in the population. By analyzing the
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sensitivity of model parameters, we can determine which factors have the most substantial impact on disease
transmission dynamics. Parameters such as the transmission rate, recovery rate, and vaccination rate exhibit
the highest sensitivity, indicating their crucial role in controlling disease spread. These sensitivity analyses
offer valuable insights for public health interventions by identifying which parameters should be targeted for
effective disease mitigation strategies.

Figure 1: Sensitivity index analysis using 3D visualizations

7 Numerical Scheme of the Fractal-Fractional Pneumonia Model
Atangana-Baleanu fractal-fractional operators are implemented via Lagrangian piecewise interpolation

for the proposed model. As in [72], consider system (3.2) in this case

FF-ABD σ1 ,σ2
0,t Ψ(t) = Π(t, Ψ(t)),
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The Antangana-Baleanu integral gives us

ϑ(t) = Ψ(0) + 1 − σ1

h̵(σ1)
Π(t, Ψ(t)) + σ1

h̵(σ1)Γ(σ1) ∫
t

0
(t − ξ)σ1−1 ξσ2−1Π(ξ, Ψ(ξ))dξ.

Replacing t by tn+1 we have

Ψn+1 = Ψ(0) + 1 − σ1

h̵(σ1)
Π (tn+1 , Ψ(t)) + σ1

h̵(σ1)Γ(σ1) ∫
tn+1

0
(tn+1 − ξ)σ1−1 ξσ2−1Π(ξ, Ψ(ξ))dξ.

Application of the two-step Lagrange polynomial yields

Π(t, (y, Ψ(t)) =
(y − tξ−1) Π(t, (tξ , Ψ (tξ))

tξ − tξ−1
−

(y − tξ) Π (tξ−1 , Ψ (tξ−1)
tξ − tξ−1

=
Π(t, (tξ , Ψ (tξ)) (x − tξ−1)

tξ − tξ−1
−

Π (tξ−1 , Ψ (tξ−1) (y − tξ)
tξ − tξ−1

=
Π(t, (tξ , Ψ (tξ)) (y − tξ−1)

h
−

Π (tξ−1 , Ψ (tξ−1) (y − tξ)
h

.

By using the Lagrange polynomial to solve the given problem, we obtain

Ψn+1 = Ψ(0) + 1 − σ1

h̵(σ1)
Π(t, (tN∗ , Ψ (tN∗))

+ σ1

h̵(σ1)Γ(σ1)
N∗

∑
ξ=1

⎛
⎝

Π(t, (tξ , Ψ (tξ))
h ∫

tξ+1

tξ

(ξ − tξ − 1) (tn+1 − ξ)σ1−1 dξ

−
Π(t, (tξ−1 , Ψ (tξ−1))

h ∫
tn+1

tξ

(ξ − tξ) (tn+1 − ξ)σ1−1 dξ
⎞
⎠

.

Now solving the integral we get

Ψn+1 = Ψ(0) + 1 − σ1

h̵(σ1)
Π(t, (tN∗ , Ψ (tN∗)) + σ1hσ1

Γ (σ1 + 2)

×
N∗

∑
ξ=1

[Π(t, (tξ , Ψ (tξ)) ((n − ξ + 1)σ1 (n − ξ + 2 + σ1) −(n − ξ)σ1 (n − ξ + 2 + 2σ1))

−Π(t, (tξ−1 , Ψξ−1) ((n − ξ + 1)σ1+1 − (n − ξ + 1 + σ1) (n − ξ)σ1)] .

Now replacing the value of Π(y, Ψ(t)) we get

Ψn+1 = Ψ(0) + σ2t
σ2−1 1 − σ1

h̵(σ1)
Π (tξ , Ψ (tξ)) + σ2t

σ2−1 σ1hσ1

Γ (σ1 + 2)

×
N∗

∑
ξ=1

[Π (tξ , Ψ (tξ)) ((n + 1 − ξ)σ1 (n − ξ + 2 + σ1) −(n − ξ)σ1 (n − ξ + 2 + 2σ1))

−Π (tξ−1 , Ψξ−1) ((n − ξ + 1)σ1+1 − (n − ξ + 1 + σ1) (n − ξ)σ1)] .
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As a result, the numerical scheme above is

Sn+1 = S(0) + σ2t
σ2−1 1 − σ1

h̵(σ1)
Υ1 (tξ , S (tξ)) + σ2t

σ2−1 σ1hσ1

Γ (σ1 + 2)

×
N∗

∑
ξ=1

[Υ1 (tξ , S (tξ)) ((n − ξ + 1)σ1 (n − ξ + 2 + σ1) −(n − ξ)σ1 (n − ξ + 2 + 2σ1))

−Υ1 (tξ−1 , Sξ−1) ((n − ξ + 1)σ1+1 − (n − ξ + 1 + σ1) (n − ξ)σ1)] ,

Cn+1 = C(0) + σ2t
σ2−1 1 − σ1

h̵(σ1)
Υ2 (tξ , C (tξ)) + σ2t

σ2−1 σ1hσ1

Γ (σ1 + 2)

×
N∗

∑
ξ=1

[Υ2 (tξ , C (tξ)) ((n − ξ + 1)σ1 (n − ξ + 2 + σ1) −(n − ξ)σ1 (n − ξ + 2 + 2σ1))

−Υ2 (tξ−1 , Cξ−1) ((n − ξ + 1)σ1+1 − (n − ξ + 1 + σ1) (n − ξ)σ1)] ,

In+1 = I(0) + σ2t
σ2−1 1 − σ1

h̵(σ1)
Υ3 (tξ , I (tξ)) + σ2t

σ2−1 σ1hσ1

Γ (σ1 + 2)

×
N∗

∑
ξ=1

[Υ3 (tξ , I (tξ)) ((n − ξ + 1)σ1 (n − ξ + 2 + σ1) −(n − ξ)σ1 (n − ξ + 2 + 2σ1))

−Υ3 (tξ−1 , Iξ−1) ((n − ξ + 1)σ1+1 − (n − ξ + 1 + σ1) (n − ξ)σ1)] ,

Rn+1 = R(0) + σ2t
σ2−1 1 − σ1

h̵(σ1)
Υ4 (tξ , R (tξ)) + σ2t

σ2−1 σ1hσ1

Γ (σ1 + 2)

×
N∗

∑
ξ=1

[Υ4 (tξ , R (tξ)) ((n − ξ + 1)σ1 (n − ξ + 2 + σ1) −(n − ξ)σ1 (n − ξ + 2 + 2σ1))

−Υ4 (tξ−1 , Rξ−1) ((n − ξ + 1)σ1+1 − (n − ξ + 1 + σ1) (n − ξ)σ1)] .

8 Numerical Simulations and Analysis
This section presents the numerical simulations of the pneumonia disease model, emphasizing the

impact of fractional-order derivatives on disease dynamics. The results illustrate how different fractional
orders influence the rate at which individuals transition through the compartments, demonstrating the
nonlocal and memory-dependent nature of the fractal-fractional Atangana-Baleanu-Caputo (ABC) model.
By incorporating memory effects, the model provides a more accurate representation of disease transmission
dynamics, which classical integer-order models often fail to capture.

Fig. 2 presents the time series evolution of four key compartments–Susceptible S(t), Carriers C(t),
Infected I(t), and Recovered R(t)–under the ABC scheme with varying fractional orders. The smoothness
of the curves highlights the ability of the model to capture long-term memory effects, demonstrating how
disease progression is influenced by past states. The trends observed in the figure illustrate the variations in
each population group over time in response to the infection dynamics. The susceptible population decreases
over time as individuals transition to the carrier or infected compartments due to disease transmission. This
decline reflects the continuous exposure of susceptible individuals to infected or carrier populations, leading
to the spread of the disease. The carrier population follows an oscillatory pattern, emphasizing the role of
fractional-order memory effects in disease progression. Unlike classical models, which assume an immediate
transition from the carrier to the infected state, the smooth transitions observed in the fractional model
suggest that individuals remain in the carrier state for variable durations, influenced by historical effects.
The infected population exhibits an initial rise, reaching a peak before gradually declining as individuals
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recover from the disease. This trend captures the natural course of infection dynamics, where the number
of infected individuals initially increases due to high transmission rates before declining as recovery and
immunity take effect. The recovered population increases steadily as infected individuals recover over time.
The inclusion of memory effects in the fractional-order model allows for a more accurate representation of
long-term recovery patterns, illustrating how past states influence the transition to recovery.

Figure 2: Time series of (S(t)), (C(t)), (I(t)), and (R(t)), respectively, under the FF ABC scheme with different
fractional-orders

Fig. 3 further investigates the impact of different fractional orders—σ1 = σ2 = 1, σ1 = σ2 = 0.98,
σ1 = σ2 = 0.95, and σ1 = σ2 = 0.9–on disease progression. The results indicate that lower fractional orders
slow down the transitions between compartments, highlighting the role of memory effects in epidemiological
modeling. The subplots illustrate how the hereditary properties of the model influence the behavior of S(t),
C(t), I(t), and R(t), reinforcing the nonlocal characteristics of disease spread. The results demonstrate the
advantage of fractional-order modeling in capturing memory and hereditary effects in disease transmission,
which classical integer-order models do not adequately represent. The smoothness of the curves suggests
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that the ABC operator effectively describes the nonlocal characteristics of disease progression, making it a
valuable tool for understanding pneumonia dynamics.

Figure 3: Dynamics of system (2.1) for σ1 = σ2 = 1, σ1 = σ2 = 0.98, σ1 = σ2 = 0.95, σ1 = σ2 = 0.9, respectively

In summary, the numerical simulations validate the proposed approach, confirming its applicability
in epidemiological studies. By incorporating fractional-order derivatives, the model offers a more compre-
hensive and realistic depiction of pneumonia transmission, providing valuable insights for disease control
strategies and public health interventions.

This figure illustrates the impact of different fractional orders on the SCIR model dynamics using the
Atangana–Baleanu–Caputo (ABC) operator. Each sub-figure corresponds to simulations with decreasing
values of the fractional orders σ1 = σ2, showing the influence of memory and hereditary properties on
population dynamics.



3512 Comput Model Eng Sci. 2025;143(3)

9 Discussion
The present study introduces a fractional-order Susceptible-Carrier-Infected-Recovered model using

the ABC fractal-fractional derivative to explore the complex dynamics of pneumococcal pneumonia. By
incorporating memory and nonlocal effects, the ABC operator extends traditional integer-order models
and standard fractional derivatives. This approach allows for a more comprehensive representation of
transmission dynamics, accounting for hereditary and incubation effects. Numerical simulations confirm
that the ABC operator effectively captures equilibrium points and oscillatory behaviors, demonstrating
its accuracy in modeling disease spread and mitigation. The ability of the fractional-order model to
incorporate long-memory and nonlocal effects provides deeper insights into disease dynamics, particularly
in scenarios involving complex temporal dependencies. Future research could focus on extending the model
to include stochastic effects, exploring time-dependent parameters, or integrating additional compartments
to study co-infections. Addressing computational challenges associated with the ABC operator would further
enhance its applicability to real-world epidemiological studies. The parameter values used for simulation are
summarized in Table 1. These include baseline rates for transmission, recovery, progression, and other key
biological and epidemiological factors relevant to the SCIR model of pneumococcal pneumonia. The values
were selected based on available literature and sensitivity considerations.

Table 1: Parameter values from Abodayeh et al. [36]

Parameter Description Value
Π Recruitment rate into susceptible population 0.5
δ Transmission rate 2 (DFE), 2.5 (EE)
Ω Rate of vaccinated treated individuals 0.1124
μ Natural mortality rate 0.5
η Time symptomatic infectious have symptoms 0.00641
− Recovery rate of carriers 0.515
π Rate of carriers developing symptoms 0.7096
θ Proportion of susceptible joining carriers 0.563
τ Recovery rate for infected pneumonia 0.641
σ Disease-induced mortality rate 0.53

9.1 Depth and Clarity of the Findings
This study highlights the utility of the ABC operator in capturing complex disease dynamics through

memory effects and hereditary properties. The findings show that the fractional-order Susceptible-
Carrier-Infected-Recovered model, formulated with fractal-fractional derivatives, provides a more accurate
representation of pneumococcal pneumonia dynamics compared to classical models. The derived basic
reproduction number (R0) effectively delineates the thresholds for disease-free and endemic equilibria,
offering critical insights into system stability. Numerical simulations validate these theoretical predictions,
confirming that the Mittag-Leffler kernel in the ABC operator accurately models long-term interactions
and memory-driven dynamics. To further clarify the findings, this study emphasizes the biological impli-
cations of the parameters. For example, the vaccination rate (γ) significantly influences the transition from
susceptible to recovered compartments, highlighting the effectiveness of vaccination campaigns in reducing
the disease burden. Additionally, the recovery and transmission rates shape the oscillatory behavior of the
system, aligning with real-world observations of disease outbreaks and control measures.
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9.2 Implications for Public Health and Other Applications
The findings of this study have significant implications for public health strategies aimed at controlling

pneumococcal pneumonia. By providing a framework that accounts for memory effects and long-term
interactions, the model aids in predicting the outcomes of various interventions, such as vaccination and
treatment campaigns. For instance, the model identifies critical thresholds where vaccination coverage
can shift the system from an endemic to a disease-free state, emphasizing the importance of achieving
high vaccination rates in vulnerable populations such as children under five and the elderly. Beyond
pneumococcal pneumonia, the model’s adaptability to other infectious diseases is noteworthy. The incor-
poration of fractional-order dynamics makes it applicable to diseases with similar transmission patterns,
such as tuberculosis and influenza. Policymakers can leverage these insights to design tailored interventions,
optimize resource allocation, and predict the long-term impact of public health measures.

9.3 Integration of Theoretical and Numerical Analysis
The study effectively integrates theoretical stability analyses with numerical simulations, bridging the

gap between mathematical derivations and real-world applications. The derivation of R0 and its role in
determining system stability provide a solid theoretical foundation. For example, the stability conditions
(R0 < 1 for disease-free equilibrium and R0 > 1 for endemic equilibrium) are supported by numerical
simulations, which illustrate transitions between these states as parameters vary. Theoretical predictions,
such as the positivity and boundedness of solutions, are validated through numerical experiments. These
experiments further demonstrate the impact of key parameters, such as transmission and recovery rates,
on system dynamics. The study’s use of the Atangana-Seda numerical scheme enhances the robustness of
the results, providing a reliable tool for solving complex fractional-order systems. Minimal discrepancies
between theoretical and numerical findings underscore the consistency of the proposed model. Future
work could explore additional numerical schemes or adaptive methods to improve computational efficiency
while maintaining accuracy. This study highlights the strengths of fractional-order modeling, particularly
the Atangana-Baleanu operator, in advancing our understanding of pneumococcal pneumonia dynamics.
By integrating theoretical and numerical analyses, the research provides valuable tools for public health
decision-making and lays the groundwork for future applications in epidemiological modeling. The findings
underscore the potential of fractional calculus to revolutionize the study of complex biological systems,
offering insights that extend beyond traditional methods.

9.4 Justification for the Use of ABC Operators in Pneumococcal Pneumonia Modeling
While the manuscript effectively highlights the mathematical advantages of the ABC operator, a clearer

justification of its epidemiological relevance to pneumococcal pneumonia is needed–particularly for readers
without a strong mathematical background, such as health practitioners and epidemiologists.

9.5 Memory Effects in Pneumococcal Pneumonia: Epidemiological Justification
Several key epidemiological characteristics of pneumococcal pneumonia align with the memory effects

captured by ABC operators. Long-term carriage and transmission occur as many individuals harbor
Streptococcus pneumoniae for extended periods without immediate symptoms, influencing future infec-
tion risks, which ABC operators model by allowing past bacterial load to affect present transmission
rates. Delayed recovery and reinfection are also significant, as some patients take longer to recover due
to immune suppression, prior infections, or antibiotic resistance; unlike classical models that assume
instantaneous transitions, ABC operators smoothly represent the gradual return to health or the risk of
reinfection. Additionally, waning immunity and vaccination implications are critical, as immunity from
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past infections or vaccines does not disappear abruptly but decays over time; the Mittag-Leffler function
in the ABC operator realistically captures this process, refining vaccine strategies and improving long-term
epidemiological forecasts.

9.6 Why Use Fractional and Fractal-Fractional Models for Pneumococcal Pneumonia?
Pneumococcal pneumonia exhibits memory-dependent and heterogeneous dynamics, meaning that

factors such as past exposures, immunity levels, bacterial persistence, and environmental conditions sig-
nificantly influence current and future disease progression. Classical models, which rely on integer-order
derivatives, assume that disease state changes depend only on the present moment, thereby neglecting long-
term dependencies and irregular disease spread patterns. To overcome these limitations, fractional and
fractal-fractional models provide a more realistic approach by incorporating memory and fractal structures.
Specifically, the Atangana-Baleanu-Caputo (ABC) operator, with its Mittag-Leffler kernel, enhances the
accuracy of pneumococcal pneumonia models by accounting for memory decay and fractal characteristics.

The fractional component of the ABC operator ensures that past infections and immune responses
gradually influence disease progression over time, rather than disappearing abruptly, while the fractal com-
ponent captures nonlinear transmission dynamics influenced by population density, seasonal fluctuations,
and variable immunity levels. This is particularly valuable for modeling superspreading events, dynamic
contact rates, and memory-dependent treatment effects, including antibiotic resistance shaped by prior
medication use. By integrating these aspects, the ABC-based fractional model enhances public health
efforts by improving outbreak predictions, informing vaccination strategies, and providing a more realistic
assessment of treatment impacts to support antibiotic stewardship programs.

This study provides an in-depth analysis of the Atangana-Baleanu Caputo (ABC) fractional operator
and its application to pneumococcal pneumonia. The ABC operator integrates memory effects and fractal
properties through its Mittag-Leffler kernel and incorporates two key parameters, σ1 and σ2:

• σ1: Controls the memory effect and smoothness of the function, impacting the fractional order
of differentiation.

• σ2: Influences the fractal dimension and system complexity.

When σ1 = 1, the operator simplifies to a classical derivative, eliminating memory effects and fractal
structures, thus causing the model to behave like a standard differential equation. This flexibility enables the
ABC fractional operator to transition seamlessly between classical and fractional systems, depending on the
parameter values.

In the context of pneumococcal pneumonia, the ABC operator effectively captures nonlocal memory
effects, reflecting the lasting biological imprint of prior infections and immune responses. By doing so, it
enhances the modeling of reinfection risks, long-term immunity, and treatment impacts. These improve-
ments aid policymakers in designing better intervention strategies, optimizing vaccination campaigns, and
assessing the impacts of waning immunity over time.

In this study, we apply the Atangana-Baleanu Caputo (ABC) fractional operator to analyze the dynamics
of pneumococcal pneumonia. The key objective is to illustrate, through numerical simulations and com-
parative analysis, how the fractional-order parameters σ1 and σ2 influence disease progression, reinfection
dynamics, and long-term immunity decay. We perform numerical simulations using different values of
fractional-order parameters σ1 and σ2 in the ABC fractional operator. By varying σ1 and σ2, we investigate
the memory effect and fractal properties embedded in the system. The following parameter values are
considered:
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• σ1 = 0.85, 0.95, 1.0: This controls the memory effect, where smaller values of σ1 enhance the influence of
past disease states on the current dynamics.

• σ2 = 0.85, 0.95, 1.0: This controls the fractal dimension, influencing the complexity of disease transmis-
sion patterns.

The results from the numerical simulations highlight the following key observations:

1. Impact of Memory Effects: When σ1 is reduced from 1.0 to 0.5, we observe prolonged infectious periods,
delayed recovery times, and slower decay of disease prevalence, reflecting the stronger memory effect
captured by the ABC fractional operator.

2. Fractal Transmission Dynamics: Variations in σ2 influence the transmission rate and the overall system
complexity. Higher values of σ2 lead to more chaotic and nonlinear transmission dynamics, capturing
superspreading events and population heterogeneity.

3. Reinfection and Immunity Decay: With fractional-order parameters σ1 < 1, the simulations demon-
strate that past infections exert a prolonged influence on future reinfection risks, thereby better
modeling real-world immunity decay and bacterial carriage observed in pneumococcal pneumonia.

The manuscript emphasizes how the ABC operator, with its unique memory and nonlocal effects,
captures key epidemiological phenomena such as delayed recovery, waning immunity, and prolonged
bacterial carriage. Unlike classical models with integer-order derivatives, which consider only instantaneous
state changes, ABC operators model the gradual decay of immunity and the lasting influence of past
infections on current disease progression through the Mittag-Leffler function. These dynamics align closely
with the memory-dependent transmission and recovery processes observed in pneumococcal pneumonia.

9.7 Comparison of the ABC Operator with Other Fractional Operators
To provide a comprehensive understanding, this section compares the ABC fractional operator with

other fractional operators, such as Caputo-Fabrizio, Atangana-Seda, and Caputo, highlighting theoretical,
numerical, and practical differences.
1. Theoretical Differences

• Memory Effects: The ABC fractional operator incorporates strong long-term memory effects through
its Mittag-Leffler kernel, making it better suited to modeling hereditary and historical influences on
disease dynamics. By contrast, the Caputo and Caputo-Fabrizio operators exhibit weaker or more limited
memory effects.

• Nonlocal Behavior: The ABC fractional derivative accounts for nonlocal interactions, meaning that the
current state of the disease depends on its entire past behavior. Caputo-based operators, by comparison,
focus more on local interactions and instantaneous rates of change.

• Kernel Type: Unlike the exponential decay kernel of the Caputo-Fabrizio operator, the Mittag-Leffler
kernel in the ABC operator decays more slowly, thus capturing the extended influence of past disease
events and infections.

2. Numerical and Simulation Differences

• Rate of Disease Spread: Numerical simulations using the ABC operator often show slower decay
rates due to strong memory effects, resulting in extended infectious periods compared to Caputo-
based models.

• Long-Term Stability: ABC-based models may exhibit different equilibrium points or attractors due
to the influence of fractional memory parameters (σ1 and σ2), which are absent in Caputo-Fabrizio or
Caputo operators.
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• Parameter Sensitivity: ABC operator-based models demonstrate increased sensitivity to fractional-
order parameters, allowing finer control over disease dynamics and improved calibration for
mitigation strategies.

3. Practical Insights

• Reinfection and Immunity Decay: Due to its stronger memory effects, the ABC operator provides
better insights into reinfection dynamics and waning immunity, thus informing vaccination strategies
and booster shot timing.

• Realistic Disease Dynamics: The slow-decay nature of the Mittag-Leffler kernel captures real-world
phenomena, such as prolonged bacterial carriage in pneumococcal pneumonia, which is difficult to
model accurately with Caputo-Fabrizio or Atangana-Seda operators.

Overall, the enhanced memory, nonlocality, and long-term stability of the ABC fractional operator
provide significant advantages for modeling complex disease dynamics, particularly in diseases with pro-
longed infectious periods and memory-dependent transmission patterns. By comparing different operators,
this study demonstrates how the ABC operator’s unique properties contribute to more accurate and realistic
epidemiological predictions.

9.8 Comparison of the Current Study with Previous Works
This study presents significant advancements over previous works, such as those by Abodayeh et al. [36]

and Tilahun et al. [15], by introducing a fractal-fractional Susceptible-Carrier-Infected-Recovered model
using the Atangana-Baleanu in Caputo (ABC) derivative, enabling a more biologically realistic represen-
tation of memory effects and nonlocal interactions. Unlike traditional models that assume a Markovian
disease progression, this approach integrates memory-dependent dynamics, accounting for long-term
immunity effects, reinfection risks, and delayed recovery periods. The study establishes the existence and
uniqueness of solutions under the fractal-fractional framework, conducts local and global stability analyses,
and provides rigorous numerical simulations based on the ABC operator. While Tilahun et al. focused
on co-infections using ordinary and fractional differential equations, this work extends their study by
applying fractal-fractional derivative frameworks to capture heterogeneous transmission dynamics, non-
exponential recovery, and memory-driven interactions. Furthermore, it enhances pneumococcal pneumonia
models by incorporating fractal-fractional operators to account for nonlocal effects in disease transmission
and improves sensitivity analysis methods through 3D visualizations. Key contributions include the first
application of ABC operators for pneumococcal pneumonia modeling, the use of non-singular Mittag-Leffler
kernels for smoother epidemiological forecasts, and bridging theoretical and numerical modeling to ensure
consistency between analytical predictions and computational results. In summary, this study extends and
improves upon prior models by integrating fractal-fractional derivatives, memory effects, and numerical
stability analysis, making it a more accurate and comprehensive framework for studying pneumococcal
pneumonia transmission dynamics.

The following table (Table 2) presents sample numerical values that illustrate the system behavior under
different fractional-order parameter settings: These numerical results demonstrate how the ABC fractional
operator enhances the accuracy and realism of the pneumococcal pneumonia model. By incorporating
memory effects and fractal properties through fractional-order parameters σ1 and σ2, the model captures
delayed recovery, prolonged bacterial carriage, and heterogeneous disease spread more effectively than clas-
sical integer-order models. This underscores the importance of using fractional operators in epidemiological
modeling to improve public health intervention strategies and vaccination campaigns.
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Table 2: Impact of fractional-order parameters on pneumococcal pneumonia dynamics

Parameter values Fractional order (σ1 , σ2) Infectious period Recovery time Disease prevalence
Case 1 (1.0, 1.0) Short Rapid Moderate
Case 2 (0.95, 0.95) Moderate Slower Increased
Case 3 (0.85, 0.85) Prolonged Delayed High

10 Conclusion
This study presents a fractal-fractional Susceptible-Carrier-Infected-Recovered model utilizing the

ABC derivative to investigate the intricate dynamics of pneumococcal pneumonia. By integrating memory
and nonlocal effects, the ABC operator enhances traditional integer-order and standard fractional models,
offering a more comprehensive framework for capturing disease transmission. This approach effectively
accounts for hereditary and incubation effects, refining our understanding of epidemiological patterns.
Theoretical analyses establish the existence and uniqueness of solutions, alongside local and global stability
conditions that determine whether the disease persists or is eradicated. Numerical simulations further
validate the model, demonstrating the significant influence of memory effects on disease spread. The
results confirm that the ABC operator accurately characterizes equilibrium points and oscillatory behaviors,
improving the precision of disease modeling and mitigation strategies. These findings underscore the
critical role of fractional-order models in epidemiology, particularly in representing memory-dependent
dynamics. The integration of these advanced mathematical techniques enhances forecasting capabilities
and informs intervention strategies. Future research could extend this model by incorporating stochastic
effects, time-dependent parameters, or additional compartments to study co-infections. Further exploration
of computational methods may improve the model’s applicability to real-world epidemiological scenarios. By
combining theoretical insights with numerical simulations, this study contributes to public health decision-
making and highlights the transformative potential of fractional calculus in infectious disease modeling.

While the proposed SCIR model incorporating fractal-fractional derivatives provides a more flexible
framework for capturing memory and hereditary effects in pneumococcal pneumonia dynamics, this work
has several limitations. First, the parameter values are assumed constant and based on literature, which may
not fully capture variability across different populations or settings. Second, the model does not explicitly
account for age structure, seasonal effects, or spatial heterogeneity, which are important in respiratory disease
transmission. Lastly, the numerical simulations are based on a specific fractional operator (ABC), and results
may differ with alternative definitions. Future work may address these aspects to improve generalizability
and predictive accuracy.

Acknowledgement: This article is derived from a research grant funded by the Research, Development, and Innovation
Authority (RDIA)-Kingdom of Saudi Arabia-with grant number 12803-baha-2023-BU-R-3-1-EI.

Funding Statement: This article is derived from a research grant funded by the Research, Development, and Innovation
Authority (RDIA)-Kingdom of Saudi Arabia-with grant number 12803-baha-2023-BU-R-3-1-EI.

Author Contributions: The authors confirm contribution to the paper as follows: Study conception and design:
Mohammed Althubyani, Nidal E. Taha, Khdija O. Taha, Sayed Saber; Data collection: Nidal E. Taha, Khdija O. Taha,
Rasmiyah A. Alharb, Sayed Saber; Analysis and interpretation of results: Mohammed Althubyani, Nidal E. Taha, Khdija
O. Taha, Rasmiyah A. Alharb, Sayed Saber; Draft manuscript preparation: Mohammed Althubyani, Sayed Saber. All
authors reviewed the results and approved the final version of the manuscript.



3518 Comput Model Eng Sci. 2025;143(3)

Availability of Data and Materials: All data generated or analyzed during this study are included in this published
article.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Ong’ala J, Oleche P, Mugisha JYT. Mathematical model for pneumonia dynamics with carriers. Int J Math Anal.

2013;7(50):2457–73. doi:10.12988/ijma.2013.35109.
2. Mochan E, Swigon D, Ermentrout G, Luken S, Clermont GA. Mathematical model of intrahost pneumococcal

pneumonia infection dynamics in murine strains. J Theor Biol. 2014;353:44–54. doi:10.1016/j.jtbi.2014.02.021.
3. Drusano GL, Liu W, Fikes S, Cirz R, Robbins N, Kurhanewicz S, et al. Interaction of drug- and granulocyte-

mediated killing of Pseudomonas aeruginosa in a murine pneumonia model. J Infect Dis. 2014;210(8):1319–24.
doi:10.1093/infdis/jiu237.

4. Ndelwa EJ, Kgosimore M, Massawe ES, Namkinga L. Mathematical modelling and analysis of treatment and
screening of pneumonia. Mathem Theory Model. 2015;5(10):21–39.

5. Kosasih K, Abeyratne UR, Swarnkar V, Triasih R. Wavelet augmented cough analysis for rapid childhood
pneumonia diagnosis. IEEE Trans Biomed Eng. 2015;62(4):1185–94. doi:10.1109/TBME.2014.2381214.

6. César ACG, Nascimento LFC, Mantovani KCC, Vieira LCP. Fine particulate matter estimated by mathematical
model and hospitalisations for pneumonia and asthma in children. Rev Paul Pediatr. 2016;34(1):18–23. doi:10.1016/
j.rpped.2015.06.009.

7. Marchello C, Dale AP, Thai TN, Han DS, Ebell MH. Prevalence of atypical pathogens in patients with cough and
community-acquired pneumonia: a meta-analysis. Ann Fam Med. 2016;14(6):552–66. doi:10.1370/afm.1993.

8. Cheng YH, You SH, Lin YJ, Chen SC, Chen WY, Chou WC, et al. Mathematical modeling of post coinfection with
influenza A virus and Streptococcus pneumoniae, with implications for pneumonia and COPD-risk assessment. Int
J Chron Obstruct Pulmon Dis. 2017;12:1973–88. doi:10.2147/COPD.S138295.

9. Kosasih K, Abeyratne U. Exhaustive mathematical analysis of simple clinical measurements for childhood
pneumonia diagnosis. World J Pediatr. 2017;13(5):446–56. doi:10.1007/s12519-017-0019-4.

10. Tilahun GT, Makinde OD, Malonza D. Modelling and optimal control of pneumonia disease with cost-effective
strategies. J Biol Dyn. 2017;11(2):400–26. doi:10.1080/17513758.2017.1337245.

11. Tilahun GT, Makinde OD, Malonza D. Co-dynamics of pneumonia and typhoid fever diseases with cost-effective
optimal control analysis. Appl Math Comput. 2018;316:438–59. doi:10.1016/j.amc.2017.07.063.

12. Raj M, Reddy M, Mufeed M, Karthika S. HMM based cough sound analysis for classifying asthma and pneumonia
in the pediatric population. Int J Pure Appl Math. 2018;118(18):609–16.

13. Kizito M, Tumwiine J. A mathematical model of treatment and vaccination interventions of pneumococcal
pneumonia infection dynamics. J Appl Mathem. 2018;2018:1–16. doi:10.1155/2018/2539465.

14. Mbabazi FK, Mugisha JYT, Kimathi M. Modeling the within-host coinfection of influenza A virus and pneumo-
coccus. Appl Math Comput. 2018;339:488–506. doi:10.1016/j.amc.2018.07.031.

15. Tilahun GT. Optimal control analysis of pneumonia and meningitis coinfection. Comput Math Methods Med.
2019;2019(1):1–15. doi:10.1155/2019/2658971.

16. Diah IM, Aziz N. Stochastic modelling for pneumonia incidence: a conceptual framework. In: AIP Conference
Proceedings. New York, NY, USA: AIP; 2019. Vol. 1, p. 1–3.

17. Tilahun GT. Modeling co-dynamics of pneumonia and meningitis diseases. Adv Different Equat. 2019;2019:149.
doi:10.1186/s13662-019-2087-3.

18. Mbabazi FK, Mugisha JY, Kimathi M. Hopf-bifurcation analysis of pneumococcal pneumonia with time delays.
Abstr Appl Anal. 2019;2019:1–21. doi:10.1155/2019/3757036.

19. Otoo D, Opoku P, Charles S, Kingsley AP. Deterministic epidemic model for (SVCSyCAsyIR) pneumonia
dynamics, with vaccination and temporal immunity. Infect Dis Model. 2020;5:42–60. doi:10.1016/j.idm.2019.11.001.

https://doi.org/10.12988/ijma.2013.35109
https://doi.org/10.1016/j.jtbi.2014.02.021
https://doi.org/10.1093/infdis/jiu237
https://doi.org/10.1109/TBME.2014.2381214
https://doi.org/10.1016/j.rpped.2015.06.009
https://doi.org/10.1016/j.rpped.2015.06.009
https://doi.org/10.1370/afm.1993
https://doi.org/10.2147/COPD.S138295
https://doi.org/10.1007/s12519-017-0019-4
https://doi.org/10.1080/17513758.2017.1337245
https://doi.org/10.1016/j.amc.2017.07.063
https://doi.org/10.1155/2018/2539465
https://doi.org/10.1016/j.amc.2018.07.031
https://doi.org/10.1155/2019/2658971
https://doi.org/10.1186/s13662-019-2087-3
https://doi.org/10.1155/2019/3757036
https://doi.org/10.1016/j.idm.2019.11.001


Comput Model Eng Sci. 2025;143(3) 3519

20. Zephaniah OC, Nwaugonma UIR, Chioma IS, Adrew O. A mathematical model and analysis of an SVEIR model
for Streptococcus pneumonia with saturated incidence force of infection. Mathem Mode Applicat. 2020;5(1):16.
doi:10.11648/j.mma.20200501.13.

21. Ming WK, Huang J, Zhang CJ. Breaking down of healthcare system: mathematical modelling for controlling the
novel coronavirus (2019-nCoV) outbreak in Wuhan, China. BioRxiv. 2020;1–18. doi:10.1101/2020.01.27.922443.

22. Jung SM, Kinoshita R, Thompson RN, Linton NM, Yang Y, Akhmetzhanov AR, et al. Epidemiological identification
of a novel pathogen in real-time: analysis of the atypical pneumonia outbreak in Wuhan, China, 2019–2020. J Clin
Med. 2020;9(3):1–18.

23. Wafula NM, Kwach BO, Marani VN. Mathematical modeling and optimal control for controlling pneumonia-HIV
coinfection. Int J Innovat Res Develop. 2021;10(1):138–44. doi:10.24940/ijird/2021/v10/i1/JAN21051.

24. Oluwatobi KI, Erinle-Ibrahim LM. Mathematical modeling of pneumonia dynamics of children under the age of
five. Research Square. 2021. doi:10.21203/rs.3.rs-194578/v1.

25. Sayed Saber AM, Alghamdi GA, Alshehri KM. Mathematical modelling and optimal control of pneumonia disease
in sheep and goats in Al-Baha region with cost-effective strategies. AIMS Math. 2022;7(7):12011–49. doi:10.3934/
math.2022669.

26. Saber S, Alahmari AA. Impact of fractal-fractional dynamics on pneumonia transmission modeling. European J
Pure Appl Mathem. 2025;18(2):5901. doi:10.29020/nybg.ejpam.v18i2.5901.

27. Atangana A, Qureshi S. Modeling attractors of chaotic dynamical systems with fractal-fractional operators. Chaos
Soliton Fract. 2019;123:320–37. doi:10.1016/j.chaos.2019.04.020.

28. Owolabi KM, Atangana A, Akgul A. Modelling and analysis of fractal-fractional partial differential equations:
application to reaction-diffusion model. Alex Eng J. 2020;59(4):2477–90. doi:10.1016/j.aej.2020.03.022.

29. Qureshi S, Rangaig NA, Baleanu D. New numerical aspects of Caputo-Fabrizio fractional derivative operator.
Mathematics. 2019;7(4):374. doi:10.3390/math7040374.

30. Qureshi S, Yusuf A, Ali Shaikh A, Inc M, Baleanu D. Mathematical modeling for adsorption process of dye removal
nonlinear equation using power law and exponentially decaying kernels. Chaos. 2020;30(4):043106. doi:10.1063/1.
5121845.

31. Atangana A. Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus
to predict complex systems. Chaos Soliton Fract. 2017;102(5):396–406. doi:10.1016/j.chaos.2017.04.027.

32. Alhazmi M, Saber S. Glucose-insulin regulatory system: chaos control and stability analysis via Atangana-Baleanu
fractal-fractional derivatives. Alex Eng J. 2025;122(9911):77–90. doi:10.1016/j.aej.2025.02.066.

33. Khalid IA, Haroon DS, Youssif MY, Saber S. Different strategies for diabetes by mathematical modeling: applica-
tions of fractal-fractional derivatives in the sense of Atangana-Baleanu. Results Phys. 2023;52(114):106892. doi:10.
1016/j.rinp.2023.106892.

34. Khalid IA, Haroon DS, Youssif MY, Saber S. Different strategies for diabetes by mathematical modeling: modified
Minimal Model. Alex Eng J. 2023;80:74–87. doi:10.1016/j.aej.2023.07.050.

35. Almutairi N, Saber S, Hijaz A. The fractal-fractional Atangana-Baleanu operator for pneumonia disease: stability,
statistical and numerical analyses. AIMS Math. 2023;8(12):29382–410. doi:10.3934/math.20231504.

36. Abodayeh K, Raza A, Rafiq M, Arif MS, Naveed M, Zeb Z, et al. Analysis of pneumonia model via efficient
computing techniques. Comput Mater Contin. 2022;70(3):6073–88. doi:10.32604/cmc.2022.020732.

37. Boukhouima A, Hattaf K, Yousfi N. Dynamics of a fractional order HIV infection model with specific functional
response and cure rate. Int J Differ Equ. 2017;2017(SI1):1–8. doi:10.1155/2017/8372140.

38. Kwambana-Adams BA, Mulholland EK, Satzke C. State-of-the-art in the pneumococcal field: proceedings
of the 11th international symposium on pneumococci and pneumococcal diseases (ISPPD-11). Pneumonia.
2020;12(1):1–14. doi:10.1186/s41479-019-0064-y.

39. Minucci SB, Heise RL, Reynolds AM. Review of mathematical modeling of the inflammatory response in lung
infections and injuries. Front Appl Math Stat. 2020;6:36. doi:10.3389/fams.2020.00036.

40. Huttinger ED, Boon NJ, Clarke TB, Tanaka RJ. Mathematical modeling of Streptococcus pneumonia colonisation,
invasive infection and treatment. Front Physiol. 2017;8:115. doi:10.3389/fphys.2017.00115.

https://doi.org/10.11648/j.mma.20200501.13
https://doi.org/10.1101/2020.01.27.922443
https://doi.org/10.24940/ijird/2021/v10/i1/JAN21051
https://doi.org/10.21203/rs.3.rs-194578/v1
https://doi.org/10.3934/math.2022669
https://doi.org/10.3934/math.2022669
https://doi.org/10.29020/nybg.ejpam.v18i2.5901
https://doi.org/10.1016/j.chaos.2019.04.020
https://doi.org/10.1016/j.aej.2020.03.022
https://doi.org/10.3390/math7040374
https://doi.org/10.1063/1.5121845
https://doi.org/10.1063/1.5121845
https://doi.org/10.1016/j.chaos.2017.04.027
https://doi.org/10.1016/j.aej.2025.02.066
https://doi.org/10.1016/j.rinp.2023.106892
https://doi.org/10.1016/j.rinp.2023.106892
https://doi.org/10.1016/j.aej.2023.07.050
https://doi.org/10.3934/math.20231504
https://doi.org/10.32604/cmc.2022.020732
https://doi.org/10.1155/2017/8372140
https://doi.org/10.1186/s41479-019-0064-y
https://doi.org/10.3389/fams.2020.00036
https://doi.org/10.3389/fphys.2017.00115


3520 Comput Model Eng Sci. 2025;143(3)

41. Capponetto R, Dongola G, Fortuna L, Petras I. Fractional order systems: modelling and control applications.
Singapore: World Scientific; 2010.

42. Ali Dokuyucu M, Celik E, Bulut H, Mehmet Baskonus H. Cancer treatment model with the Caputo-Fabrizio
fractional derivative. Eur Phys J Plus. 2018;133(3):92. doi:10.1140/epjp/i2018-11950-y.

43. Veeresha P, Prakasha DG, Baskonus HM. New numerical surfaces to the mathematical model of cancer chemother-
apy effect in Caputo fractional derivatives. Chaos. 2019 Jan 1;29(1):013119. doi:10.1063/1.5074099.

44. Alshehri MH, Duraihem FZ, Alalyani A, Saber S. A Caputo (discretization) fractional-order model of
glucose-insulin interaction: numerical solution and comparisons with experimental data. J Taibah Univ Sci.
2021;15(1):26–36. doi:10.1080/16583655.2021.1872197.

45. Baskonus HM, Mekkaoui T, Hammouch Z, Bulut H. Active control of a chaotic fractional order economic system.
Entropy. 2015;17:5771–83. doi:10.3390/e17085771.

46. Saber S, Alahmari AA. Mathematical insights into zoonotic disease spread: application of the milstein method.
European J Pure Appl Mathem. 2025;18(2):5881. doi:10.29020/nybg.ejpam.v18i2.5881.

47. Althubyani M, Adam HDS, Alalyani A, Taha NE, Taha KO, Alharbi RA, et al. Understanding zoonotic disease
spread with a fractional order epidemic model. Sci Rep. 2025;15(1):13921. doi:10.1038/s41598-025-95943-6.

48. Adam HDS, Althubyani M, Mirgani SM, Saber S. An application of Newton’s interpolation polynomials to the
zoonotic disease transmission between humans and baboons system based on a time-fractal fractional derivative
with a power-law kernel. AIP Adv. 2025;15(4):045217. doi:10.1063/5.0253869.

49. Saber S, Solouma E, Althubyani M, Messaoudi M. Statistical insights into zoonotic disease dynamics: simulation
and control strategy evaluation. Symmetry. 2025;17(5):733. doi:10.3390/sym17050733.

50. Althubyani M, Saber S. Hyers-ulam stability of fractal-fractional computer virus models with the Atangana-
Baleanu operator. Fractal Fract. 2025;9(3):158. doi:10.3390/fractalfract9030158.

51. Podlubny I. Fractional differential equations. Cambridge, MA, USA: Academic Press; 1999.
52. LaSalle JP. The stability of dynamic systems. Philadelphia, PA, USA: SIAM; 1976.
53. Vargas-De-León C. Volterra-type Lyapunov functions for fractional-order epidemic systems. Commun Nonlinear

Sci Numer Simul. 2015;24(1–3):75–85. doi:10.1016/j.cnsns.2014.12.013.
54. Saber S. Control of chaos in the Burke-Shaw system of fractal-fractional order in the sense of Caputo-Fabrizio.

J Appl Math Comput Mech. 2024;23(1):83–96. doi:10.17512/jamcm.2024.1.07.
55. Petras I. Fractional-order nonlinear systems: modeling, analysis, and simulation. Berlin/Heidelberg: Germany,

Springer-Verlag; 2011.
56. Hartley TT, Lorenzo CF, Qammer HK. Chaos in a fractional order Chua’s system. IEEE Transact Circ Syst I:

Fundam Theory Applicat. 1995;42(6):485–90. doi:10.1109/81.404062.
57. Wang XY, Song JM. Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback

control. Commun Nonlinear Sci Numer Simul. 2009;14(7):3351–7. doi:10.1016/j.cnsns.2009.01.010.
58. Deng WH, Li CP. Chaos synchronization of the fractional Lü system. Physica A. 2005;353:61–72. doi:10.1016/j.

physa.2005.01.021.
59. Almutairi N, Saber S. Application of a time-fractal fractional derivative with a power-law kernel to the Burke-Shaw

system based on Newton’s interpolation polynomials. MethodsX. 2024;12(5):102510. doi:10.1016/j.mex.2023.102510.
60. Li CG, Chen G. Chaos and hyperchaos in the fractional-order Rössler equations. Physica A. 2004;341:55–61. doi:10.

1016/j.physa.2004.04.113.
61. Almutairi N, Saber S. On chaos control of nonlinear fractional Newton-Leipnik system via fractional Caputo-

Fabrizio derivatives. Sci Rep. 2023;13(1):22726. doi:10.1038/s41598-023-49541-z.
62. Veeresha P, Prakasha DG, Baskonus HM. Solving smoking epidemic model of fractional order using a modified

homotopy analysis transform method. Math Sci. 2019;13(2):115–28. doi:10.1007/s40096-019-0284-6.
63. Yangla J, Abboubakar H, Dangbe E, Yankoulo R, Abba Ari AA, Damakoa I, et al. Fractional dynamics of a

Chikungunya transmission model. Sci Afr. 2023;21:e01812. doi:10.1016/j.sciaf.2023.e01812.
64. Abboubakar H, Regonne RK, Nisar KS. Fractional dynamics of typhoid fever transmission models with mass

vaccination perspectives. Fract Fractional. 2021;5(2):149. doi:10.3390/fractalfract5040149.

https://doi.org/10.1140/epjp/i2018-11950-y
https://doi.org/10.1063/1.5074099
https://doi.org/10.1080/16583655.2021.1872197
https://doi.org/10.3390/e17085771
https://doi.org/10.29020/nybg.ejpam.v18i2.5881
https://doi.org/10.1038/s41598-025-95943-6
https://doi.org/10.1063/5.0253869
https://doi.org/10.3390/sym17050733
https://doi.org/10.3390/fractalfract9030158
https://doi.org/10.1016/j.cnsns.2014.12.013
https://doi.org/10.17512/jamcm.2024.1.07
https://doi.org/10.1109/81.404062
https://doi.org/10.1016/j.cnsns.2009.01.010
https://doi.org/10.1016/j.physa.2005.01.021
https://doi.org/10.1016/j.physa.2005.01.021
https://doi.org/10.1016/j.mex.2023.102510
https://doi.org/10.1016/j.physa.2004.04.113
https://doi.org/10.1016/j.physa.2004.04.113
https://doi.org/10.1038/s41598-023-49541-z
https://doi.org/10.1007/s40096-019-0284-6
https://doi.org/10.1016/j.sciaf.2023.e01812
https://doi.org/10.3390/fractalfract5040149


Comput Model Eng Sci. 2025;143(3) 3521

65. Atangana A, Akgul A, Owolabi KM. Analysis of fractal fractional differential equations. Alex Eng J.
2020;59(3):1117–34. doi:10.1016/j.aej.2020.01.005.

66. Yan T, Muflih A, Youssif Mukhtar Y, Elhag Amna E, Aljohani Abdulrahman F, Sayed S. Analysis of a lorenz model
using adomian decomposition and fractal-fractional operators. Therm Sci. 2024;28(6B):5001–9.

67. Alsulami A, Alharb RA, Albogami TM, Eljaneid NHE, Adam HDS, Saber S. Controlled chaos of a fractal-fractional
Newton-Leipnik system. Therm Sci. 2024;29(6B):5153–60.

68. Alhazmi M, Dawalbait F, Aljohani A, Taha K, Adam H, Saber S. Numerical approximation method and chaos for
a chaotic system in sense of Caputo-Fabrizio operator. Therm Sci. 2024;28(6B):5161–8.

69. Atangana A, Baleanu D. New fractional derivatives with non-local and non-singular kernel: theory and application
to heat transfer model. Therm Sci. 2016;20(2):763–9. doi:10.2298/TSCI151003158A.

70. Abro KA, Atangana A. A comparative study of convective fluid motion in rotating cavity via Atangana-Baleanu
and Caputo-Fabrizio fractal-fractional differentiations. Eur Phys J Plus. 2020;135(2):226. doi:10.1140/epjp/s13360-
020-00136-x.

71. Hefferman J, Smith R, Wahl L. Perspectives on the basic reproduction ratio. J R Soc Interface. 2005;2(4):281–93.
doi:10.1098/rsif.2005.0042.

72. Atangana A, Araz SI. New numerical scheme with newton polynomial: theory, methods, and applications.
Cambridge, MA, USA: Academic Press; 2021.

https://doi.org/10.1016/j.aej.2020.01.005
https://doi.org/10.2298/TSCI151003158A
https://doi.org/10.1140/epjp/s13360-020-00136-x
https://doi.org/10.1140/epjp/s13360-020-00136-x
https://doi.org/10.1098/rsif.2005.0042

	Epidemiological Modeling of Pneumococcal Pneumonia: Insights from ABC Fractal-Fractional Derivatives
	1 Introduction
	2 Preliminary Definitions
	3 Formulation of the Fractal-Fractional Model
	4 Positivity, Existence and Uniqueness of the Model Solutions
	5 Stability Analysis
	6 Sensitivity Analysis of the Basic Reproduction Number ieqn-165.tifR0 
	7 Numerical Scheme of the Fractal-Fractional Pneumonia Model
	8 Numerical Simulations and Analysis
	9 Discussion
	10 Conclusion
	References


