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ABSTRACT: In 2022, Leukemia is the 13th most common diagnosis of cancer globally as per the source of the
International Agency for Research on Cancer (IARC). Leukemia is still a threat and challenge for all regions because
of 46.6% infection in Asia, and 22.1% and 14.7% infection rates in Europe and North America, respectively. To study
the dynamics of Leukemia, the population of cells has been divided into three subpopulations of cells susceptible cells,
infected cells, and immune cells. To investigate the memory effects and uncertainty in disease progression, leukemia
modeling is developed using stochastic fractional delay differential equations (SFDDEs). The feasible properties of
positivity, boundedness, and equilibria (i.e., Leukemia Free Equilibrium (LFE) and Leukemia Present Equilibrium
(LPE)) of the model were studied rigorously. The local and global stabilities and sensitivity of the parameters around
the equilibria under the assumption of reproduction numbers were investigated. To support the theoretical analysis of
the model, the Grunwald Letnikov Nonstandard Finite Difference (GL-NSFD) method was used to simulate the results
of each subpopulation with memory effect. Also, the positivity and boundedness of the proposed method were studied.
Our results show how different methods can help control the cell population and give useful advice to decision-makers
on ways to lower leukemia rates in communities.

KEYWORDS: Leukemia disease; stochastic fractional delayed model; stability analysis; Grunwald Letnikov Nonstan-
dard Finite Difference (GL-NSFD); computational methods

1 Introduction
Leukemia is one of the very significant global public health problems that cut across all demographics.

This disease results from abnormal or premature white blood cells, which grow unsymmetrical in the blood
and interfere with the normal functioning of healthy cells. This therefore impairs immunity to infections
and general well-being [1]. In [2], the authors analyzed new pharmacodynamic parameters associated
with ibrutinib responses in chronic lymphocytic leukemia by prospective study in real-world patients.
Mathematical modeling is integrated to predict treatment outcomes. In [3], the authors develop nonlinear
Ordinary Differential Equation (ODE) models describing the population dynamics of leukemic cells as
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functions of differences in feedback configurations and kinetic properties like self-renewal differentiation
and division probabilities, proliferation, and death rates. The proposal extends to how these factors impact
the course of leukemia. In [4], the authors attempted to mathematically describe the progression dynamics
of chronic myeloid leukemia by providing a mathematical model of cloned hematopoiesis through nonlinear
systems of differential equations. In [5], the authors integrated pharmacokinetic-pharmacodynamic (PKPD)
models used to assess the clonal reduction potential of promising candidate drugs compared to high-
dose cytarabine in the consolidation therapy of Acute Myeloid Leukemia (AML). Since the goal is to
discover better alternatives. In [6], the authors described a simple model that describes an interface between
leukemic cells and the body’s autologous immune response in the chronic phase of chronic myelogenous
leukemia (CML). The model attempts to capture the dynamic behavior of the growth of leukemic cells
coupled with the immune system response over time. In [7], the authors studied a mathematical model
describing Chimeric Antigen Receptor T (CAR-T) cells, leukemia tumors, and B cell competition. All
interactions are studied in detail to understand the essence of their behavior. In [8], the authors presented
and discussed an autologous tumor-immune response model for CML. The paper advances toward a
mathematical modeling understanding of the dynamics of CML. In [9], the authors looked at a mathematical
myeloid leukemia model, emphasizing the existence and stability of trivial and nontrivial equilibrium points.
Stability analysis is given for the equilibrium states. In [10], the authors developed a mathematical model
to analyze the interactions between leukemia stem cells with the bone marrow microenvironment. This
model enables the simulation of some dynamics in the course of chronic myeloid leukemia progression
dynamics. In [11], the authors presented a novel two-parameter discrete distribution by combining Poisson
and Quasi-Shanker distributions. This new distribution offers enhanced modeling capabilities. In [12], the
authors analyzed Leukemia as a blood cancer characterized by an excess number of white blood cells. If
identified at any stage with accuracy, the treatment would be effective. In [13], the authors contributed to
the improvement of further knowledge, and accuracies in diagnostic methods, and also play an important
role in present times for the diagnosis and treatment of acute leukemia. In [14], the authors demonstrated
how to infer from experimental measurements with live cell fluorescence labeling and flow cytometry on
the growth regime and division strategy of leukemia cell populations an analytical model for which cell
growth and division rates depend on powers of the size. In [15], the authors develop a mathematical model
to describe the acute lymphoblastic leukemia (ALL) behavior, which includes the evolution of a leukemic
clone during the treatment process. In [16], the authors implemented a new model, simulating the evolution
of cancerous cells in patients with chronic lymphocytic leukemia receiving chemotherapy treatment, to
capture the dynamics of treatment response and disease progression. In [17], the authors introduced a
nonlinear leukemia dynamical system using a piecewise modified ABC fractional-order derivative. Conduct
both theoretical and computational analyses of the model, specifically regarding crossover effects. In [18],
the authors explored Chronic lymphocytic leukemia (CLL) protein-protein interaction networks using a
new approach where both statistical thermodynamics and systems biology are brought together to identify
proteins integral to the onset of the disease. In [19], the authors proposed an approach to the pattern
recognition of ALL through the application of advanced computational deep learning techniques. Advanced
computational deep learning, in this case, will focus on improving the outcome of leukemia diagnosis with
complex algorithms aimed at detecting and classifying abnormal cell patterns. In [20], the authors discussed
optimal control in a reaction-diffusion leukemia immune model that captures the interactions and dynamics
between leukemia cells, normal cells, and CAR-T cells, including how to control leukemia growth, enhance
CAR-T therapy efficacy, and preserve healthy cell populations. In [21], the authors provided a comprehensive
introduction to the mechanistic mathematical and computational modeling of blood cell formation depicting
aspects of both normal and pathological processes, involving basic principles and applications of modeling
techniques concerning disorders related to hematopoiesis. Alsakaji et al. studied a stochastic tumor-immune
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interaction model with external treatments and time delays, which is an optimal control problem [22]. Rihan
et al. studied a fractional order delay differential model of a tumor-immune system with vaccine efficacy:
stability, bifurcation, and control [23].

The stochastic fractional delayed methodology has significant scientific benefits because it combines
stochastic processes, fractional calculus, and temporal delays to mimic complex systems more precisely. This
approach uses fractional derivatives to capture memory effects, which is important in fields like biology
and economics since it accounts for past effects on current conditions. Temporal delays are incorporated
to provide a realistic depiction of the lag between cause and effect, while the stochastic component handles
the inherent randomness in systems. Together, these elements enhance the models’ predictive power and
robustness across multiple domains, rendering them more realistic representations of real-world dynamics.

For the computational modeling of the study on leukemia, stochastic fractional delay differential
equations (SFDDEs) were used and implemented in MATLAB software with fractions calculus and stochastic
modules. To solve the computational challenges, adaptive step-sizing and parallel processing were added
while maximizing speed but maintaining stable solutions. The model was validated by comparing it with
analytical solutions for simplified cases, ensuring the results are robust and reliable.

The structure of the paper is as follows: Section 1 provides an overview and a detailed examination
of leukemia-like diseases that have been reported in the literature. Section 2 examines the construction of
the stochastic fractional delayed leukemia disease model, the resulting mathematical analysis, and the local
and global levels of the model’s equilibria, reproduction number, and stability analysis. The reproduction
number sensitivity that we obtain from the Section 3 SFDDEs for the system. In Section 4, the stochastic
fractional delayed model was examined using the Grunwald Letnikov Nonstandard Finite Difference (GL-
NSFD) approach. In Section 5, the positivity and boundedness of the GL-NSFD were analyzed. In Section 6,
the explicit focus is on numerical simulations and the results displayed. Final opinions offer a comprehensive
synopsis of the work completed under Section 7.

2 Model Formulation
In this paper, we discussed a model that shows how leukemia spreads through three subgroups of cells.

These groups are susceptible cells (S), infected cells (I), and immune cells (W). The susceptible group (S)
includes cells that can get leukemia but don’t have it yet. The infected group (I) has cells that have leukemia
and can spread it. The immune group (W) includes cells that have recovered from leukemia and are now
immune, meaning they can’t get it again. Further, let Λ be the rate at which the susceptible blood cells enter
the circulatory blood from compartments like bone marrow, lymph nodes, and thymus. Parameters μ, γ, and
b are the natural mortality rates of susceptible blood cells, infected cells, and immune cells, respectively. The
parameter β is the infection rate of susceptible blood cells. The rate at which the infected cells are recovered
due to encounters with immune cells is denoted by ε.

A flow diagram of the model has been provided in Fig. 1. The basic structure for the investigations is
the deterministic model introduced in [1], whereby the first-order temporal derivatives are substituted by
fractional Caputo derivatives of order α. We believe that such an adjustment provides a more appropriate
picture of the diffusion of leukemia disease. In the model analysis, Caputo fractional derivatives are employed
to include memory on the fact that the system depends on previous user behavior, and it seems to store this
information in long-term memory about other cases of leukemia. From this modification, one can see that
the model is well suited to representing the processes of leukemia disease, especially over some time due to
the non-linearity. The random or stochastic disturbances are incorporated to provide for the random nature
and variation that is present in the systems under study. These stochastic components can facilitate and
consider the complex spread of disease, as well as the unpredictable dynamics visible in the actual utilization
of leukemia disease.
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c
0Dα

t [S] = Λα − βα S (t − τ) I (t − τ) e−(μα+γα)τ − μα S + σ α
1 SdB (t), (1)

c
0Dα

t [I] = βα S (t − τ) I (t − τ) e−(μα+γα)τ − (γα + εα) I + σ α
2 IdB (t), (2)

c
0Dα

t [W] = εα I − bα W + σ α
3 WdB (t) . (3)

Figure 1: Flow diagram of leukemia disease

The nonnegative (initial) conditions for the system (1)–(3) are

S (0) ≥ 0, I (0) ≥ 0, W (0) ≥ 0, t ≥ 0, τ < t,

and

N = S + I +W .

This strategy indicates how the random disturbances in the system can be represented by the stochastic
fluctuations σ α

i ; i = 1, 2, 3. Let B(t) be Brownian motion, a continuous stochastic process for time t ≥ 0. The
parameter τ acts as a time delay to the system provided that τ < t also so that the effect of the delayed feedback
is visible only after a time interval.

Preliminaries: In the conceptualization of Caputo, the following foundational preliminary definitions
are crucial for a deep and thorough understanding of the fractional derivative concept:
Definition 1: For a function ∈ Cn , the Caputo fractional derivative of order α ∈ ( − 1, ), ∈ N is

c
0Dα

t (t) =
1

Γ ( − α) ∫
t

0

(T) dT
(t −T)α+1− .

Definition 2: For thefunction (t), the expression describes the equivalent fractional integral with order α > 0.

Iα
t (t) =

1
Γ (α) ∫

t

0
(t −T)α−1 (T) dT.

where “Γ” is the gamma function displayed.



Comput Model Eng Sci. 2025;143(3) 3415

2.1 Existence and Uniqueness of the Stochastic Fractional Delayed Model
This section of the paper establishes the stochastic fractional delayed model’s existence and uniqueness.

Apply the fractional integral in this case, assuming σ α
i = 0; i = 1, 2, 3, under the system (1)–(3) starting

condition.

S (t) = S0 +
1

Γ (α) ∫
t

0
(t − s)α−1 h̷1 (s, S) dS , (4)

I (t) = I0 +
1

Γ (α) ∫
t

0
(t − s)α−1 h̷2 (s, I) ds, (5)

W (t) =W0 +
1

Γ (α) ∫
t

0
(t − s)α−1 h̷3 (s, W) ds. (6)

The functions defined under the integral in system (4)–(6) are

h̷1 (t, F) = Λα − βα SIe−(μα+γα)τ − μα S , (7)

h̷2 (t, I) = βα SIe−(μα+γα)τ − (γα + εα) I, (8)
h̷3 (t, P) = εα I − bα W . (9)

Furthermore, it is assumed that E1 ,E2, and E3 exist as positive constants and that
S (t), I (t), and W (t) are non-negative limiting functions, such that

∥S (t)∥ ≤ E1 , ∥I (t)∥ ≤ E2, ∥W (t)∥ ≤ E3.

Theorem 1: The function h̷i for i = 1, 2, 3 fulfills the Lipshitz requirement and are contraction mappings by
assuming σ α

i = 0; i = 1, 2, 3, if the condition 0 ≤W = max {1, 2, 3} < 1 is true.
Proof: First, we consider the function h̷1. Examine the subsequent S and S1:

∥h̷1 (t, S) − h̷2 (t, S1)∥ = ∥βα (S − S1) Ie−(μα+γα)τ + μα (S − S1)∥,

∥h̷1 (t, S) − h̷2 (t, S1)∥ ≤ ∥βα (S − S1) Ie−(μα+γα)τ∥ + ∥μα (S − S1)∥,

∥h̷1 (t, S) − h̷2 (t, S1)∥ ≤ (βα (S − S1) e−(μα+γα)τ ∥I∥ + μα) ∥S − S1∥,

∥h̷1 (t, S) − h̷2 (t, S1)∥ ≤ (βα e−(μα+γα)τE2 + μα) ∥S − S1∥,

∥h̷1 (t, S) − h̷2 (t, S1)∥ ≤ ξ1 ∥S − S1∥ . (10)

In this instance, ξ1 = (βα e−(μα+γα)τE2 + μα). Lipshitz’s condition is satisfied. This method may also be
used to meet the Lipschitz criteria for h̷i , i = 2, 3. Additionally, if 0 ≤W = max{1, 2, 3} < 1, then the functions
are contractions. Furthermore, there is constant writing in the system (7)–(9).

Sn (t) =
1

Γ (α) ∫
t

0
(t − s)α−1 h̷1 (s, Sn−1) ds, (11)

In (t) =
1

Γ (α) ∫
t

0
(t − s)α−1 h̷2 (s, In−1) ds, (12)

Wn (t) =
1

Γ (α) ∫
t

0
(t − s)α−1 h̷3 (s, Wn−1) ds. (13)
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The two terms’ variation is represented by the following in (11)–(13):

ψn−1 (t) = (Sn (t) − Sn−1 (t)) =
1

Γ (α) ∫
t

0
(h̷1 (s, Sn−1) − h̷1 (s, Sn−2)) ds, (14)

φn−1 (t) = (In (t) − In−1 (t)) =
1

Γ (α) ∫
t

0
(h̷2 (s, In−1) − h̷2 (s, In−2)) ds, (15)

ϑn−1 (t) = (Wn (t) −Wn−1 (t)) =
1

Γ (α) ∫
t

0
(h̷3 (s, Wn−1) − h̷3 (s, Wn−2)) ds. (16)

Therefore, we have

Sn (t) = ∑
n
i=0 ψi (t), (17)

In (t) = ∑
n
i=0 φi (t), (18)

Wn (t) = ∑
n
i=0 ϑi (t) . (19)

Let,

∥ψn (t)∥ = ∥Sn (t) − Sn−1 (t)∥,

∥ψn (t)∥ =
1

Γ (α) ∫
t

0
(h̷1 (s, Sn−1) − h̷1 (s, Sn−2)) ds,

∥ψn (t)∥ =
ξ1

Γ (α) ∫
t

0
∥Sn (t) − Sn−1 (t)∥ ds,

∥ψn (t)∥ =
ξ1

Γ (α) ∫
t

0
ψn−1 (t) ds. (20)

The remaining equations in the system (15) and (16) might be solved using the same method to get

∥φn (t)∥ =
ξ2

Γ (α) ∫
t

0
φn−1 (t) ds, (21)

∥ϑn (t)∥ =
ξ3

Γ (α) ∫
t

0
ϑn−1 (t) ds. (22)

As required. ◻
Theorem 2: Show that (i)The system (14)–(16) has a specified uniform function. (ii) If there is a t∗ > 1 such
that ξ1

Γ(α) < 1. Assuming σ α
i = 0; i = 1, 2, 3, the model system has at least one solution if ξ1

Γ(α) < 1 for i = 1, 2, 3.

Proof: Since each kernel h̷1 for i = 1, 2, 3, satisfies the Lipschitz condition and the functions
S (t), I (t), and W (t) are bounded, the following relations may be determined.

∥ψn (t)∥ ≤ ∥S (0)∥∥
ξ1

Γ (α) (t)∥
n

, (23)

∥ϑn (t)∥ ≤ ∥I (0)∥∥
ξ2

Γ (α) (t)∥
n

, (24)

∥ψn (t)∥ ≤ ∥W (0)∥∥
ξ3

Γ (α) (t)∥
n

. (25)
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In the system (23)–(25) figure, it is demonstrated that the function given in (17)–(19) exists and is
consistent. It is necessary to show that S (t), I (t), and W (t) converge to the system of solutions of (1)–(3)
to prove (ii). To do this, we define the remaining terms after n changes as An (t), Bn (t), and Cn (t). Thus,

S (t) − S (0) = Sn (t) − An (t), (26)
I (t) − I (0) = In (t) − Bn (t), (27)
W (t) −W (0) =Wn (t) − Cn (t) . (28)

By using the ξ1 Lipschitz condition and the triangle inequality, we obtain to determine that

∥An (t)∥ =
1

Γ (α) ∫
t

0
(h̷1 (s, Sn−1) − h̷1 (s, Sn−2)) ds,

∥An (t)∥ ≤
ξ1

Γ (α) ∥Sn (t) − Sn−1 (t)∥ . (29)

When the process in (29) is repeated, we obtain

∥An (t)∥ ≤ ∥
ξ1

Γ (α) (t)∥
n+1

E1 . (30)

Next, at t∗, one acquires

∥An (t)∥ ≤ ∥
ξ1

Γ (α) (t∗)∥
n+1

E1 . (31)

Assuming n →∞ as the limit,

limn→∞ ∥An (t)∥ ≤ limn→∞ ∥
ξ1

Γ (α) (t∗)∥
n+1

E1 . (32)

By applying the hypothesis ξ1
Γ(α) (t∗) < 1, we have from (32) yield.

limn→∞ ∥An (t)∥ = 0. (33)

By using the same process as for n→∞, we get

∥Bn (t)∥ → 0, (34)
∥Cn (t)∥ → 0. (35)

As a result, there must be only one solution.
As desired. ◻

Theorem 3: If (1 − ξ1
Γ(α) (t)) > 0 for the assumption σ α

i = 0; i = 1, 2, 3, then the system (1)–(3) has a unique
solution.
Proof: Consider that another collection of solutions to (1)–(3) is represented by the sets S1 , I1 , and W1.

∥S (t) − S1 (t)∥ =
1

Γ (α) ∫
t

0
(h̷1 (s, Sn−1) − h̷1 (s, Sn−2)) ds,
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∥S (t) − S1 (t)∥ ≤
ξ1

Γ (α) ∥S (t) − S1 (t)∥ . (36)

If the terms in (36), are rearranged, one gets

(1 − ξ1

Γ (α) (t)) ∥S (t) − S1 (t)∥ ≤ 0, (37)

By applying the hypothesis (1 − ξ1
Γ(α) (t)) > 0, we have from (37) yield.

∥S (t) − S1 (t)∥ = 0. (38)

It follows from this because S (t) = S1 (t). Applying the identical process to every solution for i = 2, 3,
we arrive at

I (t) = I1 (t), (39)
W (t) =W1 (t). (40)

Hence proved. ◻
Theorem 4: For the initial conditions with assumption σ α

i = 0; i = 1, 2, 3, prove that the stochastic fractional
delayed model (1)–(3) has a positive solution in R

+3.
Proof: The feasible situation must be non-negative across the system to be considered under the initial
condition. We obtain
c
0Dα

t [S (t)]∣S=0 = Λα > 0, c
0Dα

t [I (t)]∣I=0 = βα SIe−(μα+γα)τ > 0, c
0Dα

t [W (t)]∣W=0 = εα I > 0,
hence, the stochastic fractional delayed model (1)–(3) has a positive solution, when the initial condition falls
inside the feasible region. ◻
Theorem 5: The system (1)–(4) in the feasible region G = {(S (t), I (t), W (t)) ∈ R+3; 0 < N ≤ Λα

μα ,∀t ≥ 0,

τ < t}; (where N (t) = S (t) + I (t) +W (t)) at any given time t. The initial condition is bounded with the
assumption that σ α

i = 0; i = 1, 2, 3.
Proof: The total sum of plant population can be written as

c
0Dα

t N (t) ≤ Λα − μα N (t).

After resolving the inequality above, we obtain

N (t) ≤ Λα

μα + (N (0) − Λα

μα ) e−μα t .

Using Grown’s inequality

limt→∞ SupN (t) ≤ Λα

μα . (41)
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Therefore, the epidemiologically feasible region for the propagation of cassava mosaic disease is
provided by (41).

G = {(S (t), I (t), W (t)) ∈ R+3; 0 < N ≤ Λα

μα ,∀t ≥ 0, τ < t} . (42)

The stochastic fractional delayed model (1)–(3) is both positively invariant and realistic from an epi-
demiological point of view concerning the transmission of leukemia disease (42). Hence, the system (1)–(3)
is bounded under the initial conditions. ◻

2.2 Model Equilibria and Reproduction Number
In this part, we examine the different states of the stochastic fractional delayed model (1)–(3) with the

propagation of leukemia disease dynamics. It allows the analysis of the system behavior and how the system
behaves at the free and present state of the leukemia equilibrium. It also provided information on how the
fractional order, delays, and stochastic parameters behave and control the transmission of leukemia disease
using different numerical techniques. Therefore,

Leukemia Free Equilibrium = LFE = 0 = (S0, I0, W0) = (
Λα

μα , 0, 0), (43)

Leukemia Present Equilibrium = LPE = ∗ = (S∗, I∗, W∗), (44)

S∗ = (γα + εα)
βα e−(μα+γα)τ , I∗ = Λα βα e−(μα+γα)τ − μα (γα + εα)

βα e−(μα+γα)τ (γα + εα)
, W∗ = εα

bα I∗

In epidemiology, the basic reproduction number is an important parameter. This suggests whether or
not the disease is prevalent in the general population. If the value of it is less, then the disease is not spreading
in the population, otherwise, the disease is present in the population. For the evaluation of the reproduction
number using the Next-generation method. The largest eigenvalue or spectral radius of, at leukemia-free
equilibrium (43) called reproduction number as follows:

R0 =
Λα βα e−(μα+γα)τ

μα (γα + εα) . (45)

Theorem 6: Assuming σ α
i = 0; i = 1, 2, 3, the leukemia-free equilibrium (43) is locally asymptotically stable for

α ∈ (0, 1) if R0 < 1.
Proof: By linearizing the stochastic fractional delayed model (1)–(3) about (43) a 3 × 3 dimensional Jacobian
matrix with negative real components and eigenvalues is obtained.
λ1 = −μα , λ2 = −bα , λ3 = −(γα + εα) (1 − R0).

As a result, the leukemia-free equilibrium of the provided stochastic fractional delayed model (1)–(3) is
locally stable if R0 < 1. If R0 > 1, then (43) is unstable in the local sense. ◻
Theorem 7: Assuming σ α

i = 0; i = 1, 2, 3, the stochastic fractional delayed model (1)–(3) is globally asymptoti-
cally stable (GAS) at leukemia-free equilibrium, 0 if R0 < 1.
Proof: Define the Lyapunov function L∶G→ R defined as

L (t) = [S − S0 − S0 log S
S0
] + I +W ,
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c
0Dα

t L (t) = [
S − S0

S
]Dα

t S + Dα
t I + Dα

t W ,

c
0Dα

t L (t) = [
S − S0

S
] (Λα − βα SIe−(μα+γα)τ − μα S) + (βα SIe−(μα+γα)τ − (γα + εα) I) + (εα I − bα W),

c
0Dα

t L (t) ≤ −Λα (S − S0)2

SS0
− γα I (1 − βα Se−(μα+γα)τ

γα ) − bα W .

This implies that c
0Dα

t L ≤ 0 if R0 < 1 and c
0Dα

t L = 0 if S (t) = S0, I (t) =W (t) = 0. Therefore, 0 is
globally asymptotically stable. ◻
Theorem 8: Assuming σ α

i = 0; i = 1, 2, 3, the leukemia-present equilibrium (44) is locally asymptotically stable
for α ∈ (0, 1) if R0 > 1.
Proof: By linearizing the stochastic fractional delayed model (1)–(3) about (44) a 3 × 3 dimensional Jacobian
matrix with negative real components and eigenvalues is obtained.

λ1 = −bα ,
λ2 + a1 λ + a0 = 0,

a1 = μα + βα S∗e−(μα+γα)τ , a0 = μα (γα + εα) (R0 − 1) + (γα + εα) (2μα + βα I∗e−(μα+γα)τ).

As a result, the leukemia-present equilibrium of the provided stochastic fractional delayed model (1)–(3)
is locally stable if R0 > 1. If R0 < 1, then (1)–(3) is unstable in the local sense. ◻
Theorem 9: Assuming σ α

i = 0; i = 1, 2, 3, 4, the stochastic fractional delayed model (1)–(4) is globally asymptot-
ically stable (GAS) at leukemia present equilibrium, ∗ if R0 > 1.
Proof: Define the Lyapunov function Z∶G→ R defined as

Z = k1 (S − S∗ − S∗ ln( S
S∗
)) + k2 (I − I∗ − I∗ ln( I

I∗
)) + k3 (W −W∗ −W∗ ln( W

W∗
)).

Given positive constants ki(i = 1, 2, 3), we can express the following equation:

c
0Dα

t Z = k1 [
S − S∗

S
]Dα

t S + k2 [
I − I∗

I
]Dα

t I + k3 [
W −W∗

W
]Dα

t W ,

c
0Dα

t Z = −k1Λα (S − S∗)2

SS∗
− k2βα SIe−(μα+γα)τ (I − I∗)2

II∗
− k3εα I (W −W∗)2

WW∗
.

If we choose ki where (i = 1, 2, 3)

c
0Dα

t Z = −Λα (F − F∗)2

FF∗
− βα SIe−(μα+γα)τ (I − I∗)2

II∗
− εα I (W −W∗)2

WW∗
.

c
0Dα

t Z ≤ 0, for R0 > 1 and c
0Dα

t Z = 0 if and only if S = S∗, I = I∗, W =W∗. Hence by Lasalle’s invariance
principle (44) is globally asymptotical stable. ◻

3 Sensitivity Analysis
In this section, we examine the behavior of model parameters concerning reproduction number R0.

Examine the transmission and spread of disease with the sensitive analysis of the model. Preliminary: The
formalized sensitivity index of a variable ℮, that depends differentiable on a parameter �:
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E℮
� =

�

℮
× ∂℮

∂ �
.

In spatial terms, determine the sensitive indices of parameters concerning the reproduction number R0.

VΛα = Λα

R0
× ∂R0

∂Λα = 1 > 0, Vβα = βα

R0
× ∂R0

∂βα = 1 >, Vμα = μα

R0
× ∂R0

∂μα = −
1

μα < 0,

Vγα = γα

R0
× ∂R0

∂γα = −
1

(γα + εα) < 0, Vεα = εα

R0
× ∂R0

∂εα = −
1

(γα + εα) < 0.

Tables 1 and 2 provide the values of the sensitivity indicators together with the uncertainty indicators.
All the parameters (Λα , βα) have positive sensitivity values. This means that the parameters have raised the
value of R0 it becomes possible to make it high, hence making the system out of control. These parameters
could represent transmission rates or factors that enhance the spread of the condition. The parameters
(μα , γα , εα) associated with negative sensitivity values suggest that a higher value of these parameters results
in a lower R0. These parameters probably measure natural mortality rates of susceptible blood cells, infected
cells, and infected cells recovered due to encounters with immune cells which decrease the persistence or
spread of the condition. For instance, if μα = −2, γα = −1.996, εα = −1.9996, the model also illustrates that
such parameters’ increase would imply a remarkably reduced reproduction number, which underlines the
importance of recovery or intervention mechanisms. Fig. 2 shows how different parameters affect R0. When
increased, the parameters with negative sensitivity like (μα , γα , εα) decrease R0, and therefore the spread of
the disease can be minimized if either recovery improves, or transmission is less. Conversely, those factors
that lead to higher values of sensitivity parameters (Λα , andβα) are indicative of factors that raise the value
of R0.

Table 1: Parameters sensitivity signs

Parameters Signs
Λα Positive
βα Positive
μα Negative
γα Negative
εα Negative

Table 2: Parameters sensitivity values

Parameters Values
Λα 1
βα 1
μα −2
γα −1.996
εα −1.996
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Figure 2: Sensitivity indices of reproduction number (R0)

4 Stochastic Fractional Delayed GL-NSFD Method
This section presents a numerical method for the stochastic fractional delayed model (1)–(3) that

underlies it. Another instance of the stochastic fractional delayed system is provided.

c
0Dα

t [S] ∣t=tn = Λα − βα Sn+1In e−(μα+γα)τ − μα Sn+1 + σ α
1 SndB (t), (46)

c
0Dα

t [I] ∣t=tn = βα Sn+1In e−(μα+γα)τ − (γα + εα) In+1 + σ α
2 IndB (t), (47)

c
0Dα

t [W] ∣t=tn = εα In+1 − bα Wn+1 + σ α
3 WndB (t). (48)

First, the Grunwald-Letnikove approach, or GL is explained:

c
0Dα

t υ (t) ∣t=tn =
1

(K (Δt))α (Kn+1 −∑
n+1
i=1 νiKn+1−i − ρn+1K0), (49)

here,

νi = (−1)i−1 ( α
i ) ν1 = α,

ρi =
i−α

Γ (1 − α) ; i = 1, 2, 3, . . . , n + 1.

Now, the outcome that follows helps verify some other hypotheses.
NSFD rules are added to the GL approach, making the discrete model for susceptible cells as

1
(K (h))α (Sn+1 −∑

n+1
i=1 νi Sn+1−i − ρn+1S0) = Λα − βα Sn+1In e−(μα+γα)τ − μα Sn+1 + σ α

1 Sn ΔBn, (50)

Sn+1 =
∑n+1

i=1 νi Sn+1−i − ρn+1S0 + (K (h))α (Λα + σ α
1 Sn ΔBn)

1 + (K (h))α (βα In e−(μα+γα)τ + μα)
. (51)
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Additionally, the latent and breaking out susceptible GL-NSFD scheme as

In+1 =
∑n+1

i=1 νi In+1−i + ρn+1I0 + (K (h))α (βα Sn+1In e−(μα+γα)τ + σ α
2 In ΔBn)

1 + (K (h))α (γα + εα)
, (52)

Wn+1 =
∑n+1

i=1 νi Wn+1−i + ρn+1W0 + (K (h))α (εα In+1 + σ α
3 WnΔBn)

1 + (K (h))α (bα)
. (53)

5 Positivity and Boundedness of Stochastic Fractional Delayed GL-NSFD
The positivity and boundedness of the solution for the systems (1)–(3) are confirmed by the follow-

ing theorem.
Theorem 10: Suppose that S0 ≥ 0, I0 ≥ 0, W0 ≥ 0, Λα ≥ 0, βα ≥ 0, μα ≥ 0, γα ≥ 0, εα ≥ 0, bα ≥ 0 then Sn ≥
0, In ≥ 0, Wn ≥ 0, for all n = 1, 2, 3, . . . with assumption of ΔBn = 0.
Proof: For this, by using the Induction method we get

For n = 0,

S1 =
ν1S0 + ρ1S0 + (K (h))α (Λα)

1 + (K (h))α (βα I0e−(μα+γα)τ + μα)
≥ 0,

I1 =
ν1I0 + ρ1I0 + (K (h))α (βα S1I0e−(μα+γα)τ)

1 + (K (h))α (γα + εα)
≥ 0,

W1 =
ν1W0 + ρ1W0 + (K (h))α (εα I1)

1 + (K (h))α (bα)
≥ 0.

For n = 1,

S2 =
ν1S1 + ν2S0 + ρ2S0 + (K (h))α (Λα)
1 + (K (h))α (βα I1e−(μα+γα)τ + μα)

≥ 0,

I2 =
ν1I1 + ν2I0 + ρ2I0 + (K (h))α (βα S2I1e−(μα+γα)τ)

1 + (K (h))α (γα + εα)
≥ 0,

W2 =
ν1W1 + ν2W0 + ρ2W0 + (K (h))α (εα I2)

1 + (K (h))α (bα)
≥ 0.

For n = 2,

S3 =
ν1S2 + ν2S1 + ν3S0 + ρ3S0 + (K (h))α (Λα)

1 + (K (h))α (βα I2e−(μα+γα)τ + μα)
≥ 0,

I3 =
ν1I2 + ν2I1 + ν3I0 + ρ3I0 + (K (h))α (βα S3I2e−(μα+γα)τ)

1 + (K (h))α (γα + εα)
≥ 0,

W3 =
ν1W2 + ν2W1 + ν3W0 + ρ3W0 + (K (h))α (εα I2)

1 + (K (h))α (bα)
≥ 0.

Suppose that for n = 1, 2, 3, . . . , n − 1, Sn ≥ 0, In ≥ 0, and Wn ≥ 0,
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thus for n = n,

Sn+1 =
∑n+1

i=1 νi Sn+1−i − ρn+1S0 + (K (h))α (Λα)
1 + (K (h))α (βα In e−(μα+γα)τ + μα)

,

In+1 =
∑n+1

i=1 νi In+1−i + ρn+1I0 + (K (h))α (βα Sn+1In e−(μα+γα)τ)
1 + (K (h))α (γα + εα)

,

Wn+1 =
∑n+1

i=1 νi Wn+1−i + ρn+1W0 + (K (h))α (εα In+1)
1 + (K (h))α (bα)

.

As required. ◻
Theorem 11: Suppose that S0 + I0 +W0 = 1, Λα ≥ 0, βα ≥ 0, μα ≥ 0, γα ≥ 0, εα ≥ 0, bα ≥ 0 and (K (h))α ≥ 0
then Sn , In , Wn are all bounded for all n = 1, 2, 3, . . . , n with assumption of ΔBn = 0.
Proof: For this,

Sn+1 + (K (h))α (βα In e−(μα+γα)τ + μα) Sn+1 + In+1 + (K (h))α (γα + εα) In+1 +Wn+1 + (K (h))α (bα)Wn+1

= ∑n+1
i=1 νi Sn+1−i − ρn+1S0 + (K (h))α (Λα) +∑n+1

i=1 νi In+1−i + ρn+1I0 + (K (h))α (βα Sn+1In e−(μα+γα)τ)

+∑n+1
i=1 νi Wn+1−i + ρn+1W0 + (K (h))α (εα In+1),

(1 + (K (h))α (βα In e−(μα+γα)τ + μα)) Sn+1 + (1 + (K (h))α (γα + εα)) In+1 + (1 + (K (h))α (bα))Wn+1

= ∑n+1
i=1 νi (Sn+1−i + In+1−i +Wn+1−i) + ρn+1 (S0 + I0 +W0) + (K (h))α (Λα + βα Sn+1In e−(μα+γα)τ + εα In+1).

Next, we use the Induction method to evaluate the further iteration then.
For n = 0,

(1 + (K (h))α (βα I0e−(μα+γα)τ + μα)) S1 + (1 + (K (h))α (γα + εα)) I1 + (1 + (K (h))α (bα))W1

= ν1 (S0 + I0 +W0) + ρ1 + (K (h))α (Λα + βα S1I0e−(μα+γα)τ + εα I1)

= ν1 +
1

Γ (1 − α) + (K (h))
α (Λα + βα S1I0e−(μα+γα)τ + εα I1) = Υ1,

(1 + (K (h))α (βα I0e−(μα+γα)τ + μα)) S1 ≤ ν1 +
1

Γ (1 − α) + (K (h))
α (Λα + βα S1I0e−(μα+γα)τ + εα I1),

(1 + (K (h))α (γα + εα)) I1 ≤ ν1 +
1

Γ (1 − α) + (K (h))
α (Λα + βα S1I0e−(μα+γα)τ + εα I1),

(1 + (K (h))α (bα))W1 ≤ ν1 +
1

Γ (1 − α) + (K (h))
α (Λα + βα S1I0e−(μα+γα)τ + εα I1),

S1 (t) ≤
Υ1

(1 + (K (h))α (βα I0e−(μα+γα)τ + μα))
,

I1 (t) ≤
Υ1

(1 + (K (h))α (γα + εα))
,
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W1 (t) ≤
Υ1

(1 + (K (h))α (bα))
,

S1 (t) ≤ Υ1, I1 (t) ≤ Υ1, R1 (t) ≤ Υ1.

For n = 1,

(1 + (K (h))α (βα I1e−(μα+γα)τ + μα)) S2 + (1 + (K (h))α (γα + εα)) I2 + (1 + (K (h))α (bα))W3

= ν1 (S1 + I1 +W1) + ν2 (S0 + I0 +W0) + ρ2 + (K (h))α (Λα + βα S2I1e−(μα+γα)τ + εα I2) ≤ α (1)

+ α (Υ1 + Υ1 + Υ1) +
1

Γ (1 − α) + (K (h))
α (Λα + βα S2I1e−(μα+γα)τ + εα I2) ≤ α + 3αΥ1 +

1
Γ (1 − α)

+ (K (h))α (Λα + βα S2I1e−(μα+γα)τ + εα I2)Υ2,

(1 + (K (h))α (βα I1e−(μα+γα)τ + μα)) S2 ≤ α + 3αΥ1 +
1

Γ (1 − α) + (K (h))
α (Λα + βα S2I1e−(μα+γα)τ + εα I2),

(1 + (K (h))α (γα + εα)) I2 ≤ α + 3αΥ1 +
1

Γ (1 − α) + (K (h))
α (Λα + βα S2I1e−(μα+γα)τ + εα I2),

(1 + (K (h))α (bα))W2 ≤ α + 3αΥ1 +
1

Γ (1 − α) + (K (h))
α (Λα + βα S2I1e−(μα+γα)τ + εα I2),

S2 (t) ≤
Υ2

(1 + (K (h))α (βα I1e−(μα+γα)τ + μα))
,

I2 (t) ≤
Υ2

(1 + (K (h))α (γα + εα))
,

W2 (t) ≤
Υ2

(1 + (K (h))α (βα
2 I1e−μα

2 τ + μα
2 ))

,

S2 (t) ≤ Υ2, I2 (t) ≤ Υ2, W2 (t) ≤ Υ2.

Now, consider that

Sn (t) ≤ Υn , In (t) ≤ Υn , Wn (t) ≤ Υn ,

here,

Υn = α + 3α (Υn−1 ,+Υn−2, . . . .Υ2 + Υ1) +
1

Γ (1 − α) + (K (h))
α (Λα + βα Sn+1In e−(μα+γα)τ + εα In+1).

For n = n,

(1 + (K (h))α (βα In e−(μα+γα)τ + μα)) Sn+1 + (1 + (K (h))α (γα + εα)) In+1 + (1 + (K (h))α (bα))Wn+1

= ∑n+1
i=1 νi (Sn+1−i + In+1−i +Wn+1−i) + ρn+1 (S0 + I0 +W0) + (K (h))α (Λα + βα Sn+1In e−(μα+γα)τ + εα In+1)

= ν1 (Sn + In +Wn) + ν2 (Sn−1 + In−1 +Wn−1) + ν3 (Sn−2 + In−2 +Wn−2) + . . . + νn (S1 + I1 +W1)
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+ νn+1 (S0 + I0 +W0) + ρn+1 + (K (h))α (Λα + βα Sn+1In e−(μα+γα)τ + εα In+1) ≤ α (3Υn) + α (3Υn−1)

+ α (3Υn−2) + . . . + α (3Υ2) + α (3Υ1) + α(1) + 1
Γ (1 − α) + (K (h))

α (Λα + βα Sn+1In e−(μα+γα)τ + εα In+1)

≤ α + 1
Γ (1 − α) + 3α (Υn−1 ,+Υn−2, . . . , Υ2 + Υ1) + (K (h))α (Λα + βα Sn+1In e−(μα+γα)τ + εα In+1) = Υn+1 ,

(1 + (K (h))α (βα In e−(μα+γα)τ + μα)) Sn+1 ≤ α + 1
Γ (1 − α) + 3α (Υn−1 ,+Υn−2, . . . , Υ2 + Υ1)

+ (K (h))α (Λα + βα Sn+1In e−(μα+γα)τ + εα In+1),

(1 + (K (h))α (γα + εα)) In+1 ≤ α + 1
Γ (1 − α) + 3α (Υn−1 ,+Υn−2, . . . , Υ2 + Υ1)

+ (K (h))α (Λα + βα Sn+1In e−(μα+γα)τ + εα In+1),

(1 + (K (h))α (bα))Wn+1 ≤ α + 1
Γ (1 − α) + 3α (Υn−1 ,+Υn−2, . . . , Υ2 + Υ1)

+ (K (h))α (Λα + βα Sn+1In e−(μα+γα)τ + εα In+1),

Sn+1 ≤
Υn+1

(1 + (K (h))α (βα In e−(μα+γα)τ + μα))
,

In+1 ≤
Υn+1

(1 + (K (h))α (γα + εα))
,

Pn+1 ≤
Υn+1

(1 + (K (h))α (bα))
,

Sn+1 ≤ Υn+1 , In+1 ≤ Υn+1 , Wn+1 ≤ Υn+1 ,

As required. ◻

6 Numerical Simulations
The simulation parameter is explained in this section. The primary features of the simulated graphs are

examined using the set of parametric variables given in Table 3. Furthermore, these graphs are created at
the time when the disease is broadly exposed in the population and finally achieves a stable, present form.
Appropriate values of α are selected at the current equilibrium to examine the dynamics of the disease.
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Table 3: Values and description of variables and parameters

Variables/
Parameters

Descriptions Values/Units Source [1–24]

S Susceptible cells at any time t ≥0 Assumption
I Infected cells at any time t ≥0 Assumption

W Immune cells at any time t ≥0 Assumption
Λ The rate at which the susceptible blood

cells enter into the circulatory blood.
0.5 cells−1day−1 (The number of

cells per microliter per day)
Estimated

μ Mortality rates of susceptible blood
cells.

0.5 day−1 Fitted

β Infection rate 1.05 cells−1day−1 (The number
of cells per microliter per day)

Estimated

ε Recovery rate 0.001 cells−1day−1 (The number
of cells per microliter per day)

Fitted

γ Mortality rates of infected cells. 0.5 day−1 Fitted
b Mortality rates of immune cells 0.03 day−1 Estimated
σi Rate of randomness in states variables 0 ≤ i ≤ 1 Fitted

Discussion
This section gives a detailed explanation of the graphs comparing the stochastic fractional delayed

leukemia disease model for different values of the fractional order (α)with time delay (τ = 0.1), as discussed
in the compartments like susceptible blood cells S(t), infected cells I(t), and immune cells W(t). Fig. 3
depicts susceptible blood cell dynamics over time as a function of various values of fractional order (α). As
shown in the figure for decreasing values of (α) from 0.9 to 0.5, it is slower because memory effects become
dominant. For more significant values of (α), near 0.9, it reveals that susceptible blood cells decline more
rapidly since they are transformed into infected cells. As (α) is decreased, past state effects increase and the
susceptible blood cells grow infected with a delayed time period, while decline decreases in a more sustained
way. It implies that lower fractional orders of response in the system introduce more delayed responses,
simulating the slow onset of leukemia if historical states, or past immune responses and treatments, play a
significantly higher role. Fig. 4 illustrates the dynamics of the infected cells versus time using several values of
the fractional order (α). The dynamics of the infected cell population depend on (α) and are quite different at
different values for (α). If the fractional order is fairly higher, say (α = 0.9), then the infected cell population
is growing at a much higher rate and peaking to more pronouncedly higher values before stabilizing or
decreasing. As (α) goes down, the rise in infected cells is more gradual. The peak values decrease if (α) is
lower, indicating a delayed spread of infection. Lower values of (α) correspond to greater memory effects
and a more drawn-out development of infected cells. This would therefore mean that when the value of
(α) is lower, the disease develops slower, which might represent a delayed onset of leukemia because of
the body’s previous immunity responses or drug treatments. Fig. 5 depicts the dynamics of the immune
cells for different values of the fractional order (α). The response curve of the immune system expressed
through immune cells W(t) is very much dependent on (α). When the value of (α) becomes higher, then
the immune response will be quicker and more powerful, with immune cells building up a lot faster in a
smaller amount of time to defeat the invading pathogens. When the value of (α) decreases, then the response
of the immune system will be slower and even more feeble, producing fewer immune cells over time. That
means the lower the fractional order, the later the response of the immune system: that is the influence of
the progression of the disease and the memory of the immunity. It models the impact of past infection states
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or treatments on the timing and the strength of the response from the immune system against leukemia. In
higher fractional orders (α = 0.9), these models have faster dynamics; susceptible cells become infected more
rapidly, infection spreads quickly, and immune response is stronger as well as faster. This could thus describe
an aggressive progression of leukemia with a robust initial immune response. At lower fractional orders
(α = 0.5), these models seem to reflect slower dynamics in which the progression of infected cells and the
response by the immune system are postponed, indicating that memory effects from former immune activity
or treatments are more important. This could be seen in some way as chronic or slow-moving leukemia
in which the immune system takes a lot longer to react and the infection progresses slowly over time. The
delay in the model and fractional orders highlights the effect of past behaviors and immune responses on
the process of leukemia progression. Lower fractional orders reflect a more memorable system that delays
transitions among states, such as susceptible to infection, causing the disease course to be much longer. It can
be deduced that earlier interventions or immune responses may be the key to managing leukemia effectively.
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Figure 3: The susceptible blood cells are shown graphically for different values of fractional order (α)
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Figure 4: The infected cells are shown graphically for different values of fractional order (α)
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Figure 5: The immune cells’ graphical behavior for different values of fractional order (α)

7 Conclusion
In this article, we have developed a stochastic fractional delayed model to examine the dynamics of

leukemia. Thus, it provides significant insights into both the progression of the disease and its control
mechanisms. The model (which is quite complex) is specifically designed to capture the intricate dynamics
related to leukemia progression. It integrates delays and stochastic processes to address the variability that
is inherent in the disease’s advancement. A crucial aspect of this research involves identifying and analyzing
both free and present equilibrium points, respectively. The computation of the reproduction number is
essential for understanding the threshold behavior that determines whether the disease will persist or
decline within a population. The stability of these equilibrium points (both locally and globally) is examined
rigorously. Local stability, however, ensures the immediate response of the system around an equilibrium
point. Global stability guarantees the system’s long-term behavior. Interestingly, the results reveal critical
conditions under which leukemia can be controlled or even eradicated. Although some parameters influence
this stability, the underlying mechanisms remain complex. This complexity is vital because it shapes our
understanding of potential therapeutic approaches. Sensitivity analysis further enhances these findings by
identifying the key parameters that have the most significant influence on disease dynamics. This is crucial
for developing targeted interventions (to effectively control the spread of leukemia). The GL-NSFD method
is utilized for numerical simulations; it ensures the model’s positivity and boundedness are both essential
for maintaining biological relevance. The GL-NSFD method guarantees that solutions stay within realistic
bounds, thus avoiding unphysical behavior in the simulation. However, graphical simulations are employed
to substantiate the numerical findings, providing a visual representation of the model’s behavior under
various conditions. These simulations not only confirm the theoretical results but also demonstrate the
practical applicability of the model for understanding leukemia dynamics. Although this research contributes
valuable insights into leukemia modeling, it offers potential avenues for more effective treatment (and disease
management strategies) because it lays the groundwork for future investigations.
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