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ABSTRACT: Internet of things networks often suffer from early node failures and short lifespan due to energy limits.
Traditional routing methods are not enough. This work proposes a new hybrid algorithm called ACOGA. It combines
Ant Colony Optimization (ACO) and the Greedy Algorithm (GA). ACO finds smart paths while Greedy makes quick
decisions. This improves energy use and performance. ACOGA outperforms Hybrid Energy-Efficient (HEE) and
Adaptive Lossless Data Compression (ALDC) algorithms. After 500 rounds, only 5% of ACOGA’s nodes are dead,
compared to 15% for HEE and 20% for ALDC. The network using ACOGA runs for 1200 rounds before the first nodes
fail. HEE lasts 900 rounds and ALDC only 850. ACOGA saves at least 15% more energy by better distributing the load. It
also achieves a 98% packet delivery rate. The method works well in mixed IoT networks like Smart Water Management
Systems (SWMS). These systems have different power levels and communication ranges. The simulation of proposed
model has been done in MATLAB simulator. The results show that that the proposed model outperform then the
existing models.

KEYWORDS: Energy management; IoT networks; ant colony optimization (ACO); greedy algorithm; hybrid optimiza-
tion routing algorithms; energy efficiency; network lifetime

1 Introduction
Internet of Things (IoT) is an inter-connective network system with sensors, actuators, and smart objects

to collect, share and process information’s. Most of the time these devices are deployed in power-sensitive
scenarios with limited power, computational power, and bandwidth [1]. IoT networks are extensively being
established in different businesses such as smart cities, industries, health care, and farming among others
where the ability to gather and process real-time information is crucial. However, what is essential for a
network of connected things is how data is transmitted from one device to another, this is even looking at the
large scale deployments where power consumption and operational life span of the network is of paramount
importance [2].

Routing in IoT networks is crucial as it affects directly the network’s energy consumption, reliability
and performance. A good routing algorithm helps in preventing the data frame from passing through
unnecessary nodes hence helping reduce the energy used by nodes in transmission and reception [3]. It is
important to note that most IoT devices are powered through battery which makes energy efficient routing
protocols very vital for the network lifetime. In addition, dependency on a dependable routing improves the
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rate of data delivery, cuts down on latency, and minimizes packet loss so that the IoT applications can run
optimally. Hence, efforts to build strong and flexible routing methodologies that meet objective IoT goals are
critical for the sustainability of the IoT networks’ application in practical environments [4].

The routing algorithms used in conventional IoT networks have some drawbacks mainly due to the
characteristics of resource-constraint IoT settings. Standard protocols such as Distance Vector Routing or
Link State Routing are developed for the general-purpose network and do not take into consideration the
limitation in energy on the IoT devices [5]. Thus, these algorithms usually result in high energy demands
and energy depletion to the sensor nodes’ batteries. Also, these algorithm may not be able to easily cope with
the dynamic characteristics of IoT networks where devices can frequently come into the network or leave
or may change their places (mobility). Another disadvantage is their scalability with the size of the network
they might communicate; route discovery as well as maintenance becomes resource demanding hence slow
and costly for a large network [6].

The conventional algorithms fail to address the issue of dynamism in the nodes that mainly control IoT
devices as some of the nodes demands may require higher computations, or reserve energy, or even possess
better communication interfaces as compared to others [7]. Additionally, they do not take into account
relevant features that characterise nodes in an IoT network, such as mobility or the dynamics of traffic,
or requirements for real-time transfers of data. Because of these constraints, there has been a continuous
realization of the need to develop new, sophisticate, energy-sensitive and adaptive routing protocols that
address the need of IoT networks in terms of performance and energy consumption. In the process of
addressing the energy optimization in IoT network there are several approaches have been proposed in
the past literature. The proposed or existing algorithms can be segregated into multiple types such as
deterministic, meta-heuristic, hierarchical, etc. [8].

1.1 Deterministic Routing Algorithms
Deterministic routing algorithms also has its benefits especially for IoT networks; this is because

deterministic routing algorithms will provide pre-calculated and determined paths for data to be routed.
While probabilistic solutions have recourse to probability factors to select routes, deterministic algorithms
have system specific objectives such as shortest path or minimum energy [9]. This makes it systematic in the
sense that it will be in a position to control the network traffic hence reducing on extra transmission and low
packets drop. In IoT networks where the concerned of devices are limited by their energy and computing
capability, deterministic routing ensures each node in the network contributes and is constructive to the
network, and thus improving the network lifetime [10].

Furthermore, deterministic routing algorithms are ideal for time-constrained IoT applications since
they offer relatively lower latency as well as more instantiate predictability and reliability by minimizing
or excluding the regular route discovery or maintenance procedures that are characteristic of adaptive
or reactive protocols. As the flows create proper and effective channels it also enhances overall network
throughput and QoS which is significant in smart city or industrial IoT applications where data is collected
in real-time and then processed. They are deterministic, thus suitable for IoT large scale networks where
performance is standardizing with the optimization of energy, resources and communication [11].

1.2 Meta-Heuristic Routing Algorithms
Meta-heuristic solutions have become popular ways of handling energy problems in IoT networks due

to the optimization problem that is normally associated with multifaceted and complex IoT networks. Unlike
conventional algorithms, meta-heuristic methods such as ACO, GA and PSO are algorithms derived from
natural behavior and are more optimal in exploring large solution spaces [12]. These approaches are more
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suitable for the IoT networks due to the fact that they may offer nearly optimal solutions to IoT energy-
efficient routing, clustering, and resource management under consideration of the IoT devices’ dynamics
and heterogeneity.

Meta-heuristic algorithms are friendly in controlling energy since they allow the search for new paths
to their optimal consumption while frequently employing the efficient paths in such a fashion that does
not overwhelm them and exhaust their energy source in the process. These algorithms can detect structural
changes of the nets and their traffic, that is why it is efficient when use in vast IoT ventures [13]. As far as
routing path, communication overhead and selection of energy-aware node for data transfer meta heuristics
enhances the life time of the network as well as throughput and energy. Thus, they play a role that is rather
indicative - recently becoming decisive forms of controlling the energy constraints, which determine the IoT
networks deployment and operation [14].

1.3 Hybrid Approach
The proposed deterministic approach combined with the meta-heuristic algorithm to perform the

energy management of the IoT networks are more efficient and effective than the individual system
as the proposed system comprises all the characteristics of the IoT network. As a result of centralized
and predictable nature of these algorithms, pre-defined rules or criteria are used in an effort to provide
deterministic routing paths, low latency, and predictable transmission of data. However, they may not be able
to adapt quickly to changes in the IoT network environment where conditions change frequently including
node failure, mobility and fluctuations in traffic loads. On the other hand metaheuristic algorithms such as
ACO or GA are more suitable for discrete state space solution methods that allow the algorithm to fine-tune
an optimal solution for energy efficient routing and resource allocation in large networks and conditions that
are volatile to change. Fig. 1 illustrate the layout of the proposed approach.

Figure 1: Layout of the proposed approach
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Combining the two approaches helps IoT networks to have a deterministic routing mechanism for the
specific activities with low overhead, while the meta-heuristic part offers the competitiveness of creating the
routing efficiency in the light of the real time states including energy levels in the nodes and overall traffic
within the network and many other factors. This hybrid approach ensures that the energy efficient routing is
used throughout the routing regardless of the complexity or dynamism of a network, thus ensuring that the
nodes that are overused are either slowed down or depleted of energy fast. Overall, the combined approach
leads to longer network lifetime, lower energy consumption and better data delivery all being an optimal or
a well-balanced solution to the energy dilemma of IoT networks.

1.4 IoT Sensor Types and Application Domains
In modern IoT deployments, a wide variety of sensors are deployed depending on the application

domain. These sensors differ in function, energy consumption, and communication requirements, which
directly affect the need for efficient resource management.

• Temperature and Humidity Sensors: Used extensively in environmental monitoring, smart agriculture,
and industrial automation. These sensors transmit frequent but lightweight data packets and are sensitive
to power constraints.

• Motion and Proximity Sensors: Commonly deployed in smart homes, surveillance systems, and
healthcare monitoring. They require real-time responsiveness, which demands efficient routing and
low latency.

• Gas and Chemical Sensors: Employed in air quality monitoring, industrial safety, and medical diagnos-
tics. These sensors operate in critical scenarios where energy efficiency is crucial for prolonged operation.

• Pressure and Water Flow Sensors: Used in smart water management systems, oil pipelines, and struc-
tural health monitoring. These often involve distributed sensing in remote areas, making energy-aware
communication strategies essential.

• Camera and Image Sensors: Widely used in smart cities, surveillance, and traffic monitoring systems.
These are energy-intensive and generate large data volumes, requiring intelligent data transmis-
sion mechanisms.

The proposed ACOGA algorithm is designed to optimize energy usage and routing decisions irrespec-
tive of sensor type. Its adaptability makes it suitable for heterogeneous IoT networks. By considering the
specific data rate, update frequency, and energy profile of different sensors, ACOGA ensures prolonged
network lifetime and efficient resource utilization. The main contributions of this paper are as follows:

1. We propose a novel hybrid ACO-Greedy (ACOGA) algorithm that leverages the exploration capabilities
of Ant Colony Optimization and the fast, heuristic-driven decisions of the Greedy approach to enhance
routing in IoT networks.

2. A comprehensive energy model is integrated into the routing process to reflect realistic node-level
energy consumption.

3. The proposed approach is implemented and evaluated using MATLAB simulations, comparing HEE
and ALDC algorithms to assess performance trade-offs.

4. We further analyze network longevity by introducing dead node ratio tracking across different rounds
(first node dead, half node dead, and all nodes dead).

5. Simulation results demonstrate that ACOGA significantly outperforms conventional routing methods
in terms of energy efficiency, network lifetime, and dead node management.

The presentation of the proposed work has been divided into six main sections. Section 2: Literature
Review, gathers research works related to the topic under study and points out the main findings and research
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gaps. Formulation of the problem occurs in Section 3, whereby the objectives as well as constraints pertinent
to the research are specified. Section 4: Titled implementation of the Hybrid Methodology, presents the
application of the proposed hybrid approach as well as a discussion of its logic behind. Section 5 is labelled as
Results and Discussion that involves presenting and explaining the results obtained in the study. Last but not
the least, Section 6: Conclusion and Future Work, previews the conclusion of the paper, explains significance
of the research and offers some suggestions for future works followed by the references.

2 Literature Review
Energy management in IoT networks has become an important research direction as most IoT devices

are energy-limited devices. Such devices commonly work with limited battery energy, hence the efficient
energy use is vital in these devices’ performance and durability [15]. Several research works have been done
concerning how to conserve energy in different ways such as in routing algorithms and protocols. Solutions
including adaptive transmission power control and sleep mode management have been proposed in order to
prolong battery lifespan. This literature review focuses on reviewing the above approaches and their efficiency
in enhancing energy efficiency in IoT network [16].

Scholars have exploited one of the several important properties of IoT nodes to advance energy
efficiency. A salient feature is the node’s state to be in several power modes inclusive of active, sleep, and
idle states. It should be noted that these motes may be switched dynamically according to the traffic of the
network so that energy is reduced [17]. Further, poor processing capability and memory of the IoT node
are used to adopt fewer computational strategies that will somehow decrease power consumption [18]. The
behaviours of the data patterns in space and time domain, obtained from the IoT nodes, can also be leverages
to inform the best approaches to communications, for instance, avoiding unnecessary re-emission of data.
Additionally, using geographical information of the node researchers are able to incorporate the best routing
algorithms, hence minimising the distance and energy through which the data will pass through [19]. These
properties form the core in establishing policies that maintain an optimal rate between energy usage and
network achievement [20].

Smart IoT systems in today’s society are contributing to the interconnectivity of devices and appropriate
systems with the aim of sharing important data besides improving automation. In smart homes, IoT devices
keep control over the home’s lighting, heating, and security so that living becomes more comfortable. In
health care, gadgets that are worn track physiological information and inform clinicians of changes or triggers
enhancing health outcomes. The IoT networks also help to run industries efficiently through recording of the
working status of machines and determining the time that it would require to have the machines serviced. In
the practice of agriculture, IoT sensors detect the state of the soil and the crops to provide the farmers with
the best practices concerning irrigation and fertilization. In general, IOT networks improve efficiency and
inter connectivity of most industries and activities, and contribute to making these activities much easier
to attain.

Wireless Sensor Networks (WSNs) are important in data acquisition in IoT devices comprising of small
sensors which are battery operated and work in synergy [21]. As already mentioned, in densely deployed IoT
networks based on WSNs, sensors may duplicate their data, which makes it difficult to address the problem
of resource limitation, most notably energy. To overcome this, the proposed EFUCSS protocol incorporates
energy efficient fuzzy based unequal clustering with sleep scheduling. This approach helps in increasing
the Network life span and at the same time minimizing energy consumption in clustering; scheduling and
transmission of data. Algorithms show that the advantage of using EFUCSS in the network is a twofold
increase in energy storage retention as well as an Increase in the network life cycle compared to the traditional
policies [22]. Authors also have focused on the energy consumption during state transition where it has
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been found that substantial amount of energy getting consumed during the on/off and sleep-mode energy
management schemes [23]. The rise in the adoption of IoT devices both themselves and diverse and energy-
constrained has driven an increased awareness of the need to be more vigilant about data security in IoT
environments. In order to solve this problem, the authors of [24] have extended light-weight encryption-
based solutions using traditional algorithms. The study presents a new IoT paradigm developed through the
integration of lightweight crypto-graphic ciphers and Autonomic Computing by saving energy and providing
different protection levels suitable to IoT application requirements and device behavior [25].

In this line of context, localization is one of the proven method for energy management in IoT network.
The selection of appropriate mobile technique improves energy efficiency, enlarges sensor lifetime and
consequently enables precise location-aware IoT applications, however open research challenges still must
be addressed in face of new needs [26]. Table 1 presents the critical analysis of the proposed routing protocol
against existing deterministic approaches. Energy optimization can also be effectively achieved by accurate
localization estimation.

Table 1: Analysis of existing meta-heuristic routing protocols

Deadlock Traffic Self-adaptive Fault-tolerance Localization Positioning Multi-Criteria
[27] ✓ ✓ ✓
[28] ✓ ✓
[29] ✓ ✓ ✓
[30] ✓ ✓ ✓ ✓
[31] ✓ ✓
[32] ✓ ✓ ✓
[33] ✓ ✓ ✓
[34] ✓ ✓ ✓
[35] ✓ ✓ ✓
[36] ✓ ✓ ✓
[37] ✓ ✓
[38] ✓ ✓ ✓

Proposed ✓ ✓ ✓ ✓ ✓ ✓

This paper [39] presents a cluster-based routing protocol and Modified Bat for Node Optimization
to improve the coverage of nodes in terms of redundancy and energy-efficient symmetrical localization.
A reinforcement-based Q-learning algorithm constructs, optimizes, and localizes the unknown nodes in
a local fashion [40]. This work aims at improving the accuracy estimation between anchor nodes and
their neighboring nodes, in order to optimize coverage of nodes and improve localization across the
network [41]. Energy-efficient protocols are more vital as the number of sensor nodes rises. In particular,
wireless communication typically has high energy costs. In this paper [42], a routing algorithm is proposed
to reduce the energy consumption of the network by exploiting both localization and clustering. Table 2
presents the critical analysis of the proposed routing protocol against existing metaheuristic approaches.
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Table 2: Analysis of conventional routing protocols

Algorithm Distance Topology Residual energy Data aggregation Node density Sensor mobility
[43] ✓ ✓ ✓
[31] ✓ ✓ ✓
[44] ✓ ✓ ✓
[45] ✓ ✓ ✓
[46] ✓ ✓ ✓
[47] ✓ ✓ ✓
[48] ✓ ✓ ✓
[34] ✓ ✓ ✓
[38] ✓ ✓ ✓
[49] ✓ ✓ ✓ ✓
[50] ✓ ✓ ✓
[51] ✓ ✓ ✓ ✓

Proposed ✓ ✓ ✓ ✓ ✓ ✓

The current work focuses on reducing sensor energy consumption in IoT networks to extend network
lifetime. It employs a hybrid metaheuristic algorithm combining Whale Optimization Algorithm (WOA)
with Simulated Annealing (SA) to select the optimal Cluster Head (CH) [52]. IoT-enabled Wireless Sensor
Networks are increasingly used for disaster management in smart cities, including applications like emer-
gency medical services and flood control. However, these networks face challenges such as high energy
consumption from communication, cluster overlapping, and large communication distances, which make
efficient data collection difficult. To address the mentioned issues, an integrated modified Genetic Algorithm
(GA) for Cluster Head (CH) election in wireless sensor networks (WSNs) is proposed, known as ModifyGA,
which aims to maximize network lifetime [53].

To achieve the optimization of a set of design variables this research combines a meta-heuristic approach
with a deterministic approach that is the proposed method. The following Fig. 2 shows the classification
of algorithms that are exist in the past literature. In the previous works several deterministic approaches
have been premeditated in order to carry out improved energy management in IoT network. This is the
Deterministic Energy-efficient Clustering protocol (DEC), a self organizing and adaptive method to min-
imize energy quality consumed in networks while choosing CHs, relative to residual energy. Nevertheless,
problems arise with DEC that includes a failure to account for intra-cluster distance and node degree. In
order to overcome these drawbacks, this paper presents PSO based Deterministic Energy Efficient Clustering
(PSO-DEC) protocol by incorporating PSO to make the existing protocol more efficient [54].
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Figure 2: Classification of approaches

3 Proposed Method: Mathematical Formulation
The provisioned hybrid algorithm mainly targets the identification of better routes in both global and

local arenas. This target is achieved by utilizing the IoT nodes’ properties in global and local space using
meta-heuristic approach in harmony with the deterministic approach. The choice of ACO is, doing what ants
do, find the shortest path when looking for a food source they drop pheromone trails. When employed in an
IoT network, ACO can help locate the best path between nodes, and simultaneously, share the energy usage
load among nodes. Agents are ants, the search is the path, and pheromone is the marking of good low-energy
paths for future reference. In incorporation with Greedy Algorithm its next step best decision is taken to be
the locally optimum one like choosing the next node with maximum residual energy or minimum distance
from the source. As much as it is efficient and fast it does not guarantee optimization right from the global
level down to the individual networks. The combination of these two, ACO can be used for global search and
optimization, the GA provides for rapid, local decision making. This integrated approach is useful to explore
and exploit knowledge to prevent convergence to local optima early on in the process.

As energy consumption of individual nodes has to be minimized in an IoT network, routing is the most
critical factor affecting how much energy their data consumes. Here, the ACO provides the envisioned way
of how to look for energy-efficient paths, and GA contributes toward choosing the nodes in a short amount
of time with more energy left or shorter paths to the destination. In the long run, the two guarantees that the
network load is equally distributed hence enhancing the network durability. The total energy consumed in
the IoT network can be represented as Eq. (1):

Etotal =
N
∑
i=1

Pi × Ei (1)

where:
Etotal∶ Total energy consumed
N∶ Number of nodes in the network
Pi∶ Probability of choosing the ith node (determined by ACO)
Ei∶ Energy consumed by the ith node
This Eq. (1) shows the total energy which is consumed in an IoT network where a large number of nodes

are participating to have transmission of data in that network, ETotal shown as the total energy consumed by
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all the nodes in the network, where N is the total number of nodes in that network. In IoT networks, nodes
can be sensors, actuators or any of the devices that get connected to others. Pi represents the probability of
choosing the i-th node to forward or transmit data in the entire network, which is the sum of the energy
consumed by individual nodes. N denoted the number of nodes in the network. In IoT networks, nodes can
be sensors, actuators, or any device communicating with others. Pi denoted the This is the probability of
selecting the i-th node for data routing or transmission. In an ACO framework this probability is defined
with reference to the pheromones deposited with relation to this node and the heuristic values which exist
with reference to this node. Ei refers to the total energy expended by the i-th node for its data transmission
or data processing. Specifically the energy consumed by a node depends on a number of factors including
the distance over which the nodes communicates and its residual energy.

Pi =
[τi]α × [ηi]β

∑ j∈S[τ j]α × [η j]β
(2)

where:
τi ∶ Pheromone level on the path to node i
ηi ∶ Heuristic value (e.g., inverse of distance or residual energy)
α ∶ Parameter controlling the influence of pheromone factor
β ∶ Parameter controlling the influence of heuristic factor
S ∶ Set of available nodes
The probability Pi of choosing the node i in ACO is given by Eq. (2). Calculate the probability Pi of

the path leading to node i in ACO for routing purposes. Where τi mean the pheromonetrail strength on
the path that leads to the node i. In ACO, the pheromone is a grephererpherereal agent that leaves scent
by ants on the paths to be used, and the magnitude of the pheromone determines the number of times the
path has been used. In IoT networks, the level of the pheromone is higher in the path (or node) that has
been successful in terms of energy efficiency and reliability is identified by ηi which indicates the heuristic
value for node i. This heuristic could mean that the path between the nodes is shortest or the remaining
energy of a node and so on. The greater the residual energy or distance of the node, the higher the heuristic
values. The pheromone levels τi and heuristic values ηi are the factors with the tuning parameters α and β,
respectively. If α is high, then pheromone’s strength dominates; if β is high, then heuristic value takes the
precedence∑ j∈S[τ j]α × [η j]β the denominator is used to normalize the probability.mone is a substance that
ants deposit on the paths they travel, and the strength of the pheromone represents how often that path has
been used. In IoT networks, higher pheromone levels indicate that a path (or node) has been successful in
terms of energy efficiency and reliability. ηi represents the heuristic value for node i. This heuristic could
be the inverse of the distance between nodes (i.e., shorter paths are preferred) or it could depend on other
factors like the remaining energy of a node. Nodes with more residual energy or closer proximity have higher
heuristic values. α and β are the tunning parameters that control the influence of the pheromone levels τi and
heuristic values ηi , respectively. If α is high, the pheromone’s influence dominates; if β is high, the heuristic
value is prioritized. ∑ j∈S[τ j]α × [η j]β the denominator ensures that the probability is normalized. It adds
the pheromone and heuristic values of all nodes available in the set S so as to normalize the final probability
Pi between 0 and 1.

The Greedy selection rule determines inext through Eq. (3), while inext is the next node in the route
and determined by the GA. arg min This notation stand for “argument of the minimum” here it means that
the selected node is the one that minimize the expression that is inside the parenthesis D(i , j)—This is the
distance between the current node i and the candidate node j. In IoT networks, minimizing the distance
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between nodes is important because long distance transmission will consume more energy. Eresidual( j) refers
to the energy that is left in node j. The greedy algorithm selects nodes with relatively high residual energy
in order to avoid overloading particular nodes which will quickly get depleted and create partitions in a
network.

inext = arg min( D(i , j)
Eresidual( j)) (3)

where:
D(i , j)∶ Distance between nodes i and j
Eresidual( j)∶ Residual energy of node j
Eq. (3) is used to determine the next node that has the least distance and within that least energy. The

algorithm identifies the node j with the shortest distance to the node i and node j has enough energy level.
That is how the Greedy Algorithm selects the nodes: in such a manner to distribute the energy intake the
most and not let nodes exhaust their energy sources too quickly, thus extending the lifetime of the network.

3.1 Energy Consumption for Transmission ET x and Reception ERx

Energy consumption during transmission and reception is critical in IoT networks. The total energy
consumed by a node depends on both the data it transmits and receives. The first level of energy modeling
can be expressed as Eqs. (4) and (5):

Etx(i) = Eelec × k + εamp × k × dn
i j (4)

Erx(i) = Eelec × k (5)

where, Etx(i): Energy consumed by node i during data transmission. Erx(i): Energy consumed by node i
during data reception. Eelec: Energy consumed by the electronics circuitry to transmit or receive 1 bit of data.
k: Number of bits transmitted or received. εamp: Energy dissipated by the transmission amplifier (dependent
on the distance and medium). di j: Distance between the transmitting node i and receiving node j. n: Path loss
exponent (typically 2 for free-space, 4 for multi-path). The total energy consumed by a node is a combination
of transmission and reception energy calculated by using Eq. (6):

Etotal node(i) = Etx(i) + Erx(i) (6)

This allows dissipation to be measured in terms of distance of energy transmissions as well as the actual
number of bits within the program. Pheromone levels are the key factor that is used by ACO in order to
ensure the correct optimization. The pheromone update equation means that paths that would lead to better
routing are bound to be strengthened while the others lose pheromone levels they ought to.

τi j(t + 1) = (1 − ρ) × τi j(t) + Δτi j(t) (7)

where, τi j(t + 1): Updated pheromone level on the path between nodes i and j at time step t+ 1. ρ: Pheromone
evaporation rate (controls how quickly pheromones decay, to avoid over-exploitation of certain paths).
Δτi j(t): Pheromone deposited on the path between nodes i and j at time step t, influenced by the quality
of the route (e.g., based on energy efficiency and path length). The amount of pheromone deposited can be
modeled as in Eq. (8).

Δτi j(t) =
Q

Epath
(8)
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where, Q is a scale factor associated with the pheromone update value. Epath is the total energy despite the
path which is used by all nodes. The generic algorithms avoid the construction of solutions that are energy-
intensive and provide a low profit, by depositing higher concentrations of pheromones on such efficient
paths. This pheromone update rule ensures that there is a positive bias towards paths which are more energy
efficient over longer periods of time while less efficient paths become positively influenced and therefore less
attractive due to pheromone trail decay. So as to force the selection of nodes with higher residual energy, a
measure for the remaining energy of the nodes should be included into the equation. The residual energy
after each communication round can be given as Eq. (9).

Eresidual(i) = Einitial(i) − ∑
rounds

(Etx(i) + Erx(i)) (9)

where, Eresidual(i): Residual energy of node i after multiple rounds of transmission and reception. Einitial(i):
Initial energy of node i.∑rounds (Etx(i) + Erx(i)) is the total energy consumed by node i across all commu-
nication rounds. This method is useful in inclining on nodes which have more energy to in transmitting the
data because the energy load is more balanced and some nodes do not get exhausted early.

To justify the proposed method in terms of overall network performance, an objective function that
minimizes energy consumption and maximizes network lifetime should be defined. A possible optimization
objective can be presents as in Eq. (10).

Minimize
N
∑
i=1
(Etotal node(i)

Eresidual(i)
) (10)

where, Etotal node(i) is the objective function propose that we want to minimize the total overall energy
consumption of all the nodes in N bearing in mind the energy left in each node Eresidual(i). Reducing this
ratio, the algorithm achieves load balancing of the energy consumption among nodes, providing the nodes
with higher residual energy and enhancing the lifetime of the network.

The number of communication rounds until the first node dies is used as network lifetime, a useful
measure for comparing the efficiency of the ACOGA method described in the paper, as shown in Eq. (11).

Tnetwork lifetime =min( Einitial(i)
Etotal node(i)

) (11)

where, Tnetwork lifetime is the total number of operational time or number of rounds where the network can
carry out its functions before the first node exhausts all its energy. This is done in order to find the lifetime
of the network; this is the node with the least value of initial energy divided by total energy expended. This
node will be the first to die hence defining the lifetime of the network. For an analysis of the energy per
packet delivered successfully in the network, one can postulate the following equation in Eq. (12).

Eefficiency =
Etotal

Pdelivered
(12)

where, Eefficiency is the energy efficiency per data packet delivered. Etotal is the total energy being used by
the network. Pdelivered is the number of successfully transmitted packets at the destination-node. As Eq. (12)
shows, it calculates the energy utilization rate of the network to deliver packets. Alternatively, the value of
Energy Efficiency Index (EEI) in Eq. (6) may be used to find a building’s Energy Efficiency Ratio, or EER:
A lower value gives higher energy efficiency. The hybrid method should effectively use energy and achieve
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the technical goal of low network latency at the same time. This give us the network delay for data packet
delivery as defined in Eq. (13).

Dtotal =
H
∑
i=1

Di (13)

where, Dtotal is the total end-to-end delay in the network for a packet. H is equal to the number of hops
starting from the source node to the destination node. In this sense Di for every hop i is equal to the,
transmission delay or propagation delay and processing or queuing delay. By reducing the total delay Dtotal,
the hybrid method helps in completing the delivery of packets at the right time and boost the efficiency
of the IoT network. Some nodes should not consume energy much faster than others, and for this reason,
load balancing is very important. It is possible to introduce a load flow coefficient that specifies how well the
energy consumption loads is balanced across the network nodes is described in Eq. (14).

Lbalance =
1
N

N
∑
i=1
(Einitial(i) − Eresidual(i))2 (14)

where, Lbalance is load factor of consuming energy for load balancing to show how effectively electrical energy
has been distributed among all the nodes. Einitial(i) is the initial energy of node i. Eresidual(i) is the residual
energy of the node i. N denote the total number of node. The Lbalance value showing the distribution of energy
consumption should be small; it is an indication that no node is over drained than the other node. It assists
in extending the life span of the network. The average path length was measured to represent the number of
step that a packet has to transverse to get to the final destination. This metric matters because short paths
entail that less energy is used and that delays are minimized. It may be calculated as Eq. (15).

Lavg =
1

Pdelivered

Pdelivered

∑
p=1

Hp (15)

where, Lavg is the average path length (average number of hops), Hp is the number of hops for the packet p.
Pdelivered is the total number of delivered packets.d. As can be observed from the figures, shorter distances
require fewer transmissions and therefore less energy is needed. With reference to the hybrid method, it
should be noted that the objective should be to reduce Lavg in order to get the best performance. To further
refine the ACO-based path selection, we have added a factor in the pheromone update rule to promote energy
balancing between nodes. This modified pheromone update Eq. (16) can penalize paths that pass through
nodes with low residual energy.

Δτi j(t) =
Q

Epath + λ × (Emin − Eresidual(i))
(16)

where, λ is the weight factor that control the influence of the residual energy penalty Emin, minimum
acceptable residual energy for a node Eresidual(i) residual energy of node i on the path. This equation
discourages selection of paths which has nodes with low residual energy, which helps to overcome problem of
network partition and early dead nodes. The value of λ needs to be decided so that a balance can be obtained
between how much importance the algorithm pays to energy balancing. To provide a more granular view
of energy consumption, we have calculated the energy cost per hop in the network. This Eq. (17) models the
energy consumed to send a packet over a single hop:

Ehop(i , j) = Etx(i) + Erx( j) (17)
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where, Ehop(i , j): Energy consumed when transmitting a packet from node i and j. Etx(i): Energy consumed
by node i to transmit the packet. Erx( j): Energy consumed by node j to receive the packet. Summing up
the energy consumption over all hops along the path gives a more detailed analysis of how much energy
is used during packet transmission. To ensure that the selected paths are not only energy-efficient but also
reliable, we have defined a path reliability factor by using Eq. (18) that considers the probability of successful
transmission over all hops.

Rpath =
H
∏
i=1

ri (18)

where, Rpath is reliability of the path from source to the destination. ri is the reliability of hop i which could
be defined as the probability that node i is was successfully transmitted to node i+1. H is the number of
hops on the path. Optimizing Rpath guarantees that the algorithm chooses robust paths with minimal packet
loss as well as re-transmissions, which are energy consumptive. Through put assess the data accepted passed
through and transformed in the network in a time frame. Thus, to assess the efficiency of the hybrid approach
in the context of the data delivery Eq. (19) are used.

Tthroughput =
Pdelivered × k

T
(19)

where, Tthroughput is the throughput in the network. Pdelivered is the number of packets successfully delivered,
k the number of bits per packet and T the total time period over which the data was delivered. Higher
throughput means better network performance, and this method ought to maximize Tthroughput without
compromising for energy usage. To ensure convergence of the optimization process and avoid divergence, the
following strategies are adopted within the ACOGA framework: The pheromone update is bounded within
a fixed range:

τ ∈ [τmin, τmax] (20)

This avoids excessive accumulation or evaporation and prevents the algorithm from being trapped in
local optima or diverging. In each iteration, the best solutions are reinforced using both the ACO pheromone
trails and the greedy selection criterion. This dual mechanism maintains a balance between exploration and
exploitation. The optimization continues until either the best path remains unchanged for a fixed number of
iterations or the improvement in energy consumption falls below a defined threshold. This is expressed as:

If ∣Eprev − Ecurrent∣ ≤ ε for k consecutive iterations, stop optimization (21)

where, Eprev = Energy value from the previous iteration, Ecurrent = Current energy value, ε = Small positive
threshold (e.g., 0.001), k = Number of consecutive stable iterations. Parameters such as the evaporation rate
ρ, initial pheromone level τ0, and the greedy bias factor are empirically tuned through simulation to ensure
consistent convergence.

4 Deployment and Simulation
The use of the proposed hybrid approach to prolong the IoT network lifetime follows several main

activities. When comparing the efficiency of the method, input parameters for the algorithms which are
implemented are assessed in addition to various deployment scenarios. The present section discusses the
requirements of the data set, the network architecture, and the validation.
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4.1 Simulation Setup and Environment Details
To ensure reproducibility and clarity of experimental results, detailed simulation settings are out-

lined below. The proposed ACO-Greedy hybrid algorithm was evaluated using MATLAB in a controlled
simulation environment designed to mimic realistic IoT network conditions.

• Network Area: The simulation area was set to 100 m × 100 m for baseline tests. Larger areas such as
100 m × 100 m were used for scalability analysis.

• Node Distribution: IoT nodes (ranging from 50 to 200) were randomly deployed following a uni-
form distribution.

• Sink Node Location: The sink node was placed at the center.
• Energy Model: A first-order radio model was used. Transmission and reception energy were set as Etx =

50 nJ/bit and Erx = 50 nJ/bit. Amplifier energy was Eam p = 100 pJ/bit/m2.
• Initial Energy: Each node was initialized with 0.5 J of energy.
• Packet Size: The data packet size was fixed at 4000 bits per transmission round.
• Channel Model: A simple free-space propagation model was used. Channel noise was considered

negligible for this simulation phase.
• Simulation Duration: Each run was executed until the network reached 1000 rounds or until 90% of

nodes were dead, whichever occurred earlier.
• Mobility and Dynamics: Static nodes were considered for the primary evaluation. In later scenarios,

node failures and dynamic topology changes were introduced at fixed intervals to analyze robustness.

These configurations help replicate the network conditions under which the proposed hybrid method
was tested, and form a baseline for future real-world or emulated deployments.
Network Topology and Node Distribution

The presented deployment considers a general multi-hop IoT network having N nodes randomly
deployed in the two-dimensional area. The network employs wireless communication in which nodes
transmit data to neighboring nodes or sink nodes (gateway). Concentrated topology can be of random or
grid type, depending on the specific scenario for its use. Table 1 below captures the parameters used in the
simulation. In the deployment phase, the power consumed during transmission and reception are obtained
using the Eqs. (4) and (5). This guarantees that the energy needed to perform each communicating stage
accurately determines the nodes to be selected in both ACO and GA.
Network Topology and Node Distribution

The presented deployment considers a general multi-hop IoT network having N nodes randomly
deployed in the two-dimensional area. The network employs wireless communication in which nodes
transmit data to neighboring nodes or sink nodes (gateway). Concentrated topology can be of random or
grid type, depending on the specific scenario for its use. Table 3 below captures the parameters used in the
simulation. In the deployment phase, the power consumed during transmission and reception are obtained
using the Eqs. (4) and 5. This guarantees that the energy needed to perform each communicating stage
accurately determines the nodes to be selected in both ACO and GA.

Table 3: Input parameters for the IoT network simulation

Parameter Notation Definition Value
Number of nodes N Total number of nodes in the IoT network 50, 75, 100

Initial energy Einitial Initial energy of each node 0.5 J

(Continued)
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Table 3 (continued)

Parameter Notation Definition Value
Energy per bit (Tx/Rx) Eelec Energy consumed per bit for

transmission/reception
50 nJ/bit

Amplification energy εamp Transmission amplifier energy for
long-range communication

100 pJ/bit/m2

Data packet size k Size of data packets transmitted per node 4000 bits
Pheromone evaporation

rate
ρ Rate of pheromone decay in ACO 0.1 to 0.5

Heuristic importance β Importance of heuristic information in
ACO

2.0

Pheromone importance α Importance of pheromone in ACO
probability

1.0

Path loss exponent n Models signal attenuation with distance 2 (free-space), 4
(multipath)

Distance between nodes di j Distance between nodes i and j Calculated
dynamically

Pheromone deposit
constant

Q Determines amount of pheromone
deposited

1.0

Minimum residual
energy

Emin Minimum energy before penalizing a
node’s pheromone

0.05 J

Transmission range rrx Maximum range a node can transmit data 20 m

Note: All parameters are assumed for simulation in Matlab R2022b.

Ant Colony Optimization (ACO) Setup
Initially each possible path from node to node is attributed the same amount of pheromones. Every ant,

or better say every packet, builds a path where they choose nodes in random but their decision is influenced
by the pheromone level and the heuristic (distance or energy). In visualizing the data on paper, in the chosen
paths, after each round of communication is over, the amount of pheromone is modified as per the Eq. (7).
While the Greedy algorithm finds the next node inext by dividing the ratio of distance by the remaining energy
using Eq. (3). This enables choices to be made on which nodes have the greatest residual energy with shortest
communication distance hence enabling the load balance within the network. Algorithm 1 depicts the overall
procedure of the present work. Initialization: The algorithm includes an initialization of pheromone levels,
node energies, and location of the sink node. Ant Colony Optimization: The ACO builds energy efficient
path probabilistically choosing nodes according to pheromone and heuristic information of distance and
energy. Pheromone Update: New values of pheromones are determined by the energy-efficiency of the paths
chosen by the ants. Greedy Node Selection: For every node in the route, the next node in the route is chosen
using a greedy approach of the ratio of distance and residual energy. Energy Update: Each node’s remaining
energy is changed depending on the energy used for transmission and reception. Termination: The Markov
chain algorithm stops running when the maximum number of iterations is achieved or an event such as the
first node death occur.
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The Algorithm 1 adapts to choose low power consumption paths with a nice trade off between
pheromone quality and heuristic factor (node energy and distance). The Greedy algorithm implemented
improves the selection of nodes with higher residual energy, avoiding the early exhaustion of some nodes.
The method is extendable to larger networks since it is flexible to accommodate different numbers of nodes
and structures The combined solution prolongs the network duration by maintaining optimal methods for
choosing the shortest path as well as avoiding rapid discharge of nodes’ power sources. Fig. 3 illustrates the
deployment stage, where the IoT-nodes with sink are used for data transmission.

Algorithm 1: ACOGA algorithm for energy efficiency in IoT networks
1: Input: Number of nodes N, Initial energy of each node Einitial, Packet size k, Pheromone parameters α,

β, ρ, Node distances dij
2: Output: Energy-efficient paths, Residual energy of each node
3: Initialization:
4: Set initial pheromone levels τi j(0) for all edges (i,j) and set residual energy of each node

Eresidual(i) = Einitial(i)
5: Set maximum number of iterations maxIter and set the sink node at a fixed location
6: for each iteration t = 1 to maxIter do
7: ACO Path Construction:
8: for each ant a = 1 to m do
9: Randomly place ant a on a source node

10: for each hop until ant reaches the sink node do
11: Calculate transition probability Pij using:

Pi j =
τi j(t)α ⋅ ηβ

i j

∑ j∈N(i) τi j(t)α ⋅ ηβ
i j

where ηi j is the heuristic information (e.g., inverse distance or residual energy)
12: Ant selects the next node j based on Pij
13: end for
14: Record the path and energy consumption for ant a
15: end for
16: Pheromone Update:
17: for each path traversed by ant a do
18: Update pheromone levels using:

τi j(t + 1) = (1 − ρ) ⋅ τi j(t) + Δτi j(t)
19: Calculate pheromone increment Δτi j(t) based on the energy efficiency of the path
20: end for
21: Greedy Node Selection:
22: for each node i in the path do
23: Select the next node inext based on the greedy criterion:

inext = arg min( D(i , j)
Eresidual( j))

where D(i, j) is the distance between nodes i and j
24: end for
25: Energy Update:

(Continued)
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Algorithm 1 (continued)
26: for each node i in the network do
27: Update residual energy Eresidual(i) based on transmission/reception:

Eresidual(i) = Eresidual(i) − Etx/rx(i)
28: end for
29: Check for termination:
30: if termination criteria (e.g., maximum number of iterations or first node death) is met then
31: Terminate the algorithm
32: end if
33: end for
34: Return: Optimal paths, Updated residual energy of nodes

Figure 3: Deployment of sensor nodes

Fig. 3 illustrates the placement of IoT nodes initially done on a 2D area. The nodes are deployed
randomly for example in a 100 m × 100 m area while there is a sink node in the middle of the area. Nodes
have a certain amount of energy at the start and the plot there provides a first look on the geographical
positioning of the nodes for multi-hop communication. Without this plot one does not understand how the
communication paths will be built because distances between the nodes must have implications into energy
consumption. Architecture also lays the groundwork upon which the algorithm provision of path finding
and energy consumption will be based.

This is reflected in Fig. 4 prove paths chosen by ants during the first iteration for applying ACO
algorithm. In this case, every ant stands for a possible route of transmitting packets from source nodes to
sink node. These paths are chosen stochastically in accordance with the initial grade of pheromone trails
and heuristic knowledge of the problem domain including distance and energy storage. At this early stage,
the paths selected are not very rich, for the pheromone trail has not been strengthened much yet. Special
reference to this plot will make it easier to explain how the initial communication paths are established
by considering a balance between distances between the nodes and their energy. From the formula for
transition probability pi j, we are able to see both the distance heuristic ηi j and the pheromone level τi j play
an important role in path choices.
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Figure 4: ACO path-Iteration 1

Fig. 5 also labels thicker lines or more intensive colors between some node pairs where paths are used
more often because of their energy optimal. The pheromone update formula given by Eq. (7) plays an
important role here. Those with less energy or shorter distances get more pheromone added with every
iteration than the other paths, and hence, incoming iterations will try to follow the paths preferentially.

Figure 5: Pheromone level

As shown in Fig. 6, it is expected that the nodes that were involved in the communication in one way or
the other, by transmitting or forwarding packets, will have low residual energy than those nodes that did not
participate in the communication. According to the Greedy algorithm the nodes closest to the base station
are selected with more remaining energy, thus avoiding early death of nodes and prolonging the network
life time.
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Figure 6: Residual energy of the participated node

The final path chosen for data transmission from source nodes to the sink node using the equally tuned
ACOGA algorithm is depicted in the Fig. 7. In addition to it, the plot may display energy consumption of
the network depending on the path. Appearing as straight lines running between nodes symbolizing the
pathways which were active during the communication in the last phase. Nodes may or may not be colour
coded or zoomed based on the residual amount of energy so that we can determine which nodes has used up
more power or less power. It demonstrates the performance improvement brought about by the hybrid case,
where both energy-efficient routes are chosen and nodes with higher residual energy are used for packet
forwarding. The energy consumption profile assists in assessing the manner in which the load is distributed
as well as the network lifetime that the algorithm offered. It shows that the ACO path reinforcement works
well and that the Greedy approach is selecting energy-aware nodes.

Figure 7: Final path proposed by hybrid approach
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5 Result and Discussion
The ACOGA algorithm yields a minimum dead node ratio and therefore proves that it is more energy

efficient since less number of nodes exhaust their energy. However, the ratio of that algorithm is lower than
the Hybrid energy-efficient (HEE) algorithm [55] and ALDC algorithm [56], which suggests that these two
algorithms achieve less efficient energy distribution. The evaluation of the proposed algorithm shows that
it increases the network lifetime more than HEE and ALDC causing the first node die after a significantly
large time. This is because the ACO selects the path out of the two available paths and the Greedy algorithm
concentrates on the equal energy consumption. The proposed algorithm also denotes a higher capability
in the preservation of a functional network relative to HEE and ALDC in that fifty percent of nodes live
longer than their counterparts in those algorithms. This has proven the fact that hybrid architecture has
better load balancing and energy saving mechanisms compared to the other options out of the four. ACOGA
algorithm consumes 15% less energy than HEE illustrating optimization in path selection and the minimum
number of transmissions. However, even better than ALDC, which outperforms HEE, the proposed method
is better. ALDC performs marginally better in the realm of delay due to the fact that the proposed method
was designed to compress data for efficient time transfer. But the presented ACOGA approach proposed
compromise delay of 1.5 s although it balances energy usage and enhances network live time. Routing of
a call is more inefficient in HEE case and hence the delays tend to be higher than when using intelligent
electronic agent.

In the Greedy selection, the proposed algorithm guarantees that nodes utilize nearly an equal energy
until the battery is depleted. While HEE delivers moderate performance, ALDC exhibits energy load
imbalance where few nodes drain energy more quickly because of uneven compression loads. This proposed
method a PDR of almost 98 % which shows that reliable packet delivery of packets is highly probable. HEE
and ALDC PDR values are significantly lower than the other values because they encounter node failures
more often, and paths are selected less efficiently. A major advantage of the proposed ACOGA algorithm is
the path selection strategy, where the ACO showed the probabilistic path selection, while Greedy algorithm
provided the optimal energy nodes selection. While implementing energy-awareness tasks, HEE shows
reasonably good results but still cannot reach the level of optimization provided by ACO. ALDC optimizes
the data compression field over routing which makes the path selection process less efficient. According to
the analysis based on the significant industry parameters, it is clear that the proposed ACOGA algorithm is
better than both HEE and ALDC in terms of network lifetime, dead node ratio, total energy consumption and
path selection ratio. With a slight lower delay because of its compression, it causes less foldability in energy
efficiency and network durability in ALDC. HEE had also been less optimal in terms of both energy and
delay and hence the proposed method outperforms in enhancing energy efficiency in IoT networks. Table 4
presents the trade-off between proposed and existing methods.

Table 4: Trade-off between proposed and existing methods

Performance Factor Proposed Hybrid
ACO-Greedy

Hybrid
Energy-Efficient

(HEE)

Adaptive Lossless Data
Compression (ALDC)

Dead node ratio (after
500 rounds)

5% 15% 20%

Network lifetime
(rounds until first

node dies)

1200 rounds 900 rounds 850 rounds

(Continued)
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Table 4 (continued)

Performance Factor Proposed Hybrid
ACO-Greedy

Hybrid
Energy-Efficient

(HEE)

Adaptive Lossless Data
Compression (ALDC)

Network lifetime
(rounds until 50% of

nodes die)

1500 rounds 1150 rounds 1100 rounds

Overall energy
consumption (Joules)

15% lower Baseline 10% lower

Delay (time per
round, in seconds)

1.5 s 2.0 s 1.3 s

Energy balance across
nodes

Highly balanced Moderately Balanced Imbalanced (some nodes
deplete energy faster)

Packet Delivery Ratio
(PDR)

98% 92% 90%

Path selection
efficiency

Highly efficient (ACO
& Greedy-based)

Moderate
(Energy-aware)

Low (Focuses on
Compression rather than

Routing)

The composite graph in Fig. 8 provides a visual comparison of the proposed ACOGA algorithm against
the HEE and ALDC algorithms across key performance factors: as primary features of comparison - Dead
Node Ratio, Network Lifetime, Energy Consumption, and Delay per Round. In the Dead Node Ratio subplot
the energy efficient algorithm proposed proved to be more efficient where only 5% were dead after certain
rounds while in HEE and ALDC 15% and 20% respectively were dead. This could be explained by the fact that
the distribution of energy consumption across the proposed algorithm is also very efficient. The Network
Lifetime subplot shows that the proposed algorithm significantly outperforms in both metrics: the first node
dies after passing 1200 rounds, the probabilities of 50% of nodes surviving reach up to 1500 rounds while
nodes in HEE and ALDC fail early. This means that proposed method has longer operating cycle of network
as compared to the traditional method of merging.

Based on Energy Consumption, the proposed ACOGA algorithm outperforms the baseline (HEE) with
15% less energy consumption as compared to ALDC with a lower energy consumption profiling. This case
of reduction in the energy utilization is an indication of the efficiency that is realized by the hybrid mode of
operation. Lastly, the Delay per Round subplot represents the last aspect with ALDC having the lowest delay
(1.3 s) however, the proposed method yields a good balance of mean delay (1.5 s). While HEE has higher
delays of 2.0 s, thus it is less efficient than ACOGA. On the whole, the supplied composite graph evidently
shows that the proposed ACOGA algorithm outperforms the other algorithms with respects to the energy
efficiency factor, network lifetime, and energy consumption factor and similarly in a manner as far as, delay
factor is concerned.
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Figure 8: Trade-off between proposed and existing algorithms

5.1 Parameter Sensitivity Analysis
To evaluate the robustness and adaptability of the proposed ACO-Greedy algorithm, a parameter

sensitivity analysis was performed. The focus was on three critical parameters: the pheromone evaporation
rate (ρ), pheromone influence (α), and heuristic influence (β). Each parameter plays a vital role in shaping
the search behavior and convergence characteristics of the ACO-based optimization process.

5.1.1 Impact of Pheromone Evaporation Rate (ρ)
The pheromone evaporation rate governs how quickly the influence of past paths fades. A low value

of ρ retains past knowledge longer, while a high value prioritizes recent exploration. As shown in the
graph, increasing ρ from 0.1 to 0.9 leads to an initial improvement in network lifetime, peaking around
ρ = 0.5, beyond which performance declines. This trend indicates that moderate pheromone decay allows
the algorithm to balance between exploration and exploitation effectively.

5.1.2 Impact of Pheromone Influence (α)
The parameter α determines the emphasis on pheromone intensity during path selection. The anal-

ysis reveals that as α increases from 0.5 to 2.5, network lifetime improves until α ≈ 1.5, after which the
performance begins to degrade. This demonstrates that too much reliance on pheromone trails can lead
to premature convergence and stagnation, whereas too little undermines the learning effect of previous
good paths.
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5.1.3 Impact of Heuristic Influence (β)
The heuristic influence β highlights the importance of domain-specific knowledge such as residual

energy or proximity in routing decisions. The experiment shows that increasing β positively influences
network lifetime up to a threshold (β ≈ 2). Beyond this, excessive dependence on heuristics leads to under
utilization of pheromone learning, reducing performance.

The sensitivity analysis in Fig. 9 confirms that the ACO-Greedy algorithm is sensitive to the proper
tuning of its control parameters. The best performance was observed when ρ = 0.5, α = 1.5, and β = 2.0.
These values offer a balanced trade-off between exploration of new paths and exploitation of learned optimal
routes, leading to an extended network lifetime and efficient resource utilization.

Figure 9: Variations in the α, β and ρ impact on the average network lifetime through proposed ACO-Greedy algorithm

5.2 Scalability and Real-World Applicability of ACOGA
While the current simulation focuses on small to medium-sized IoT networks to validate the algorithmic

behavior and performance, the ACOGA algorithm is designed with scalability in mind.

5.2.1 Scalability Considerations
• Distributed Decision-Making: ACOGA uses localized pheromone updates and greedy selection strate-

gies, which limit the scope of decision-making to immediate neighborhoods. This reduces computational
overhead and communication cost, making it scalable to larger networks.

• Cluster-Based Deployment: For very large-scale networks, ACOGA can be applied hierarchically by
clustering nodes and executing the algorithm within each cluster. Inter-cluster communication can be
managed via selected gateway nodes.

• Adaptive Parameters: The pheromone evaporation rate and greedy selection threshold can be dynam-
ically adjusted based on network size and traffic load to maintain convergence in larger deployments.

5.2.2 Handling Network Heterogeneity
Real-world IoT networks often consist of heterogeneous devices with varying energy profiles, commu-

nication capabilities, and sensing intervals. ACOGA addresses heterogeneity through:

• Energy Weighting: The fitness function of ACOGA includes an energy-awareness factor that prioritizes
nodes with higher residual energy, regardless of device type.
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• Device Profiling: Devices can be profiled based on sensing type, energy budget, and criticality. These
profiles help in defining customized routing paths that balance performance and longevity.

• Mobility and Topology Updates: For dynamic networks, ACOGA can be extended with periodic
topology updates and pheromone reinforcement mechanisms that respond to node movement or failure.

6 Case Study of Smart Water Management System (SWMS) Using ACOGA Algorithm for IoT-Based
Water Distribution Networks

In the contemporary society especially in both urban and rural areas, the proactivity of SWMS are
mostly desirable in that they help in preventing wastage of water. These systems are based on IoT technology
including sensors and intelligent devices for continual observation and data gathering for wise decision
making. One of the primary issues in such systems is to transmit data between the IoT devices in an energy
efficient manner so that the sensor nodes are not depleted often and need replacement of batteries frequently.
Based on the proposed ACOGA algorithm, it can work on the routing paths with an optimal manner to
allocate the energy and network lifetime and that’s why is suitable for SWMS.

The ACOGA algorithm is developed here through combining the Ant Colony Optimization (ACO)
technique and Greedy algorithm for the detection of data routing between IoT sensors used in a water man-
agement network. The ACO component guarantees that all the paths around the world for communication
are explored and the Greedy Algorithm used will select the node according to energy available in that node
thus helping in equal energy distribution around the network.

Table 5 formulated by the ACOGA algorithm the optimization of energy consumption and network
lifetime is highly efficient for the SWMS. Its service of carrying loads of data also prolongs the functional years
of the network and perpetuates data stream from the peripheral nodes such as the sensors to the hub node.

Table 5: Performance of SWMS with ACOGA algorithm

Performance metric ACOGA HEE ALDC
Network lifetime (rounds) 1200 900 850

Energy consumption (Joules) 85% of initial 100% 90%
Average delay (seconds) 1.5 2.0 1.3

Dead node ratio after 500 rounds 5% 15% 20%

7 Conclusions and Future Scope
IoT networks face major challenges in energy efficiency, network lifetime, and reliable data delivery. To

address this, we proposed the ACOGA algorithm. Compared to HEE and ALDC, ACOGA delivers better
results in several key areas. As per results, the dead node ratio stays below 5% even after 500 rounds. In
contrast, HEE and ALDC show 15% and 20%, respectively. The network lifetime is also extended, with the
first node dying after 1200 rounds. HEE and ALDC show lifespans of 900 and 850 rounds. This is mainly due
to balanced energy use in ACOGA, leading to a 15% drop in total energy consumption. It also achieves a high
packet delivery rate of 98%. Despite these strong results, the current work has limitations. The experiments
use small, static networks. Real-world IoT networks are larger and more dynamic. The model also assumes
ideal conditions, ignoring interference, packet loss, and node diversity. In the future, we plan to make the
algorithm more dynamic using machine learning. This will help in predicting traffic, node failures, and
adapting to changes. ACOGA can also be extended for heterogeneous IoT systems, where nodes differ in
energy and communication range. Real-time data compression could further reduce energy use and delay.
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Another direction is adding adaptive mechanisms that adjust to network density and mobility. We also aim
to test ACOGA on larger platforms like iFogSim or Cooja to study its behavior under real-world conditions.
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