
Computer Modeling in
Engineering & Sciences

echT PressScience

Doi:10.32604/cmes.2025.064886

ARTICLE

A Shuffled Frog-Leaping Algorithm with Competition for Parallel Batch
Processing Machines Scheduling in Fabric Dyeing Process

Mingbo Li and Deming Lei*

School of Automation, Wuhan University of Technology, Wuhan, 430070, China
*Corresponding Author: Deming Lei. Email: deminglei11@163.com
Received: 26 February 2025; Accepted: 22 April 2025; Published: 30 May 2025

ABSTRACT: As a complicated optimization problem, parallel batch processing machines scheduling problem
(PBPMSP) exists in many real-life manufacturing industries such as textiles and semiconductors. Machine eligibility
means that at least one machine is not eligible for at least one job. PBPMSP and scheduling problems with machine
eligibility are frequently considered; however, PBPMSP with machine eligibility is seldom explored. This study
investigates PBPMSP with machine eligibility in fabric dyeing and presents a novel shuffled frog-leaping algorithm with
competition (CSFLA) to minimize makespan. In CSFLA, the initial population is produced in a heuristic and random
way, and the competitive search of memeplexes comprises two phases. Competition between any two memeplexes
is done in the first phase, then iteration times are adjusted based on competition, and search strategies are adjusted
adaptively based on the evolution quality of memeplexes in the second phase. An adaptive population shuffling is given.
Computational experiments are conducted on 100 instances. The computational results showed that the new strategies
of CSFLA are effective and that CSFLA has promising advantages in solving the considered PBPMSP.

KEYWORDS: Batch processing machines; shuffled frog-leaping algorithm; competition; parallel machines scheduling

1 Introduction
Batch processing is a typical production mode and has been widely applied in the manufacturing

processes of textiles, chemicals, minerals, pharmaceuticals, semiconductors, and others. Batch processing
machines (BPM) can simultaneously process multiple jobs in a batch. Parallel batch and serial batch are often
considered, the processing time of the former being the maximum processing time of all jobs in a batch and
the processing time of the latter being the sum of the processing time of all jobs in a batch. BPM scheduling
problems have attracted much attention [1–5].

Parallel batch processing machines scheduling problem (PBPMSP) is an extended version of the parallel
machines scheduling problem [6] and has attracted much attention in the past decades. Koh et al. [7]
designed a genetic algorithm (GA) for the problem in a multi-layer ceramic capacitor production line. Su
and Wang [8] proposed weighted nested partitions based on differential evolution (DE) for the problem
in semiconductor production lines. Zhou et al. [9] developed a multi-objective DE algorithm to solve the
problem considering electricity cost. Zhang et al. [10] solved the problem in cloud manufacturing with an
efficient algorithm and improved particle swarm optimization (PSO). Gahm et al. [11] handled parallel serial-
batch processing machine scheduling by using some heuristics. Zhang et al. [12] presented a mixed integer
linear programming (MILP) model and an improved biased random key GA for the problem with two-
dimensional bin packing constraints. Ou et al. [13] considered an efficient polynomial time approximation

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2025.064886
https://www.techscience.com/doi/10.32604/cmes.2025.064886
mailto:deminglei11@163.com


1790 Comput Model Eng Sci. 2025;143(2)

scheme with near-linear-time complexity. Uzunoglu et al. [14] provided a new multi-start construction
heuristic with controlled batch urgencies and a local search mechanism with advanced termination criteria
for solution improvement. Kucukkoc et al. [15] dealt with the problem of batch delivery by using a discrete
DE algorithm hybridized with GA.

There are some works on uniform PBPMSP. Jula and Leachman [16] gave three algorithms based
on linear programming, integer programming, and heuristic for solving the problem in semiconductor
manufacturing. Li et al. [17] proposed several heuristics, including an algorithm batching rule and a heuristic
assignment rule, to solve the problem of dynamic job arrivals. Some meta-heuristics are applied, which are
the Pareto-based ant colony system (Xu et al. [18]), non-dominated sorting genetic algorithm-II (NSGA-II),
and multi-objective imperialist competitive algorithm [19], DE [20], ant colony optimization [21,22], artificial
immune system [23] and evolutionary algorithm [24].

Non-identical PBPMSP is also solved by PSO [25], GA [26], and fruit fly optimization algorithm [27].
Many results on unrelated PBPMSP were also obtained. Shahidi-Zadeh et al. [28] presented a multi-objective
harmony search algorithm. Lu et al. [29] developed a hybrid ABC with tabu search for the problem with
maintenance and deteriorating jobs. Zhou et al. [30] solved the problem with different capacities and
arbitrary job sizes by a random key GA. Sadati et al. [31] proposed fuzzy multi-objective discrete teaching
learning-based optimization and fuzzy NSGA-II. Zarook et al. [32] constructed a MILP model and provided
six heuristics and a random key GA. Fallahi et al. [33] studied the problem in production systems under
carbon reduction policies, presented a MILP model, NSGA-II and multi-objective gray wolf optimizer.
Kong et al. [34] applied a shuffled frog-leaping algorithm (SFLA) with variable neighborhood search for the
problem with nonlinear processing time. Xiao et al. [35] proposed a tabu-based adaptive large neighborhood
search algorithm, which updates the best-known solutions of 55 instances.

PBPMSP is widely found in various manufacturing processes such as casting [36], food and chemical
production [37], semiconductors [38], metal packaging [39], and others. In recent years, PBPMSP in the
fabric dyeing process has also received some attention. Zhang et al. [40] proposed a multi-objective artificial
bee colony algorithm with an elite retention strategy to simultaneously minimize total tardiness and total
completion time. Huynh and Chien [41] studied a hybrid multi-subpopulation GA with heuristic rules. Li
et al. [42] proposed a two-objective evolutionary algorithm with the constructive generation of an initial
solution and cluster-based environmental selection strategy. Demir [43] developed a lexicographic multi-
objective GA to simultaneously minimize total tardiness, total washing times, and total machine fixed
costs. Srinath et al. [44] proposed two meta-heuristics to solve multi-objective problems considering SDST
and preferences.

Machine eligibility is often investigated in parallel machine scheduling problems [45–47], and there are
limited works on PBPMSP with machine eligibility. Li et al. [48] presented a hybrid DE algorithm with chaos
theory and two local search algorithms for the problem considering different colors, sequence-dependent
setup time (SDST), and machine eligibility. Wang et al. [49] solved a fuzzy energy-efficient problem with
machine eligibility and SDST by using a dynamic teaching-learning-based optimization. Lei and Dai [50]
dealt with the problem of machine eligibility in the fabric dyeing process by using an adaptive SFLA.

Accordingly, PBPMSP has been studied fully in the last three years, and most of the existing works are
related to the usage of heuristics and meta-heuristics; however, PBPMSP with machine eligibility is seldom
considered [48–50]. Machine eligibility often exists in real-life manufacturing processes such as fabric dyeing
and PBPMSP, with machine eligibility often exhibiting different features compared to the classical PBPMSP.
For example, a machine set is used when a machine assignment is done for a job. The inclusion of machine
eligibility can make PBPMSP closely resemble the actual situations of manufacturing processes. As a result,



Comput Model Eng Sci. 2025;143(2) 1791

the corresponding optimization results hold high application value, so it is necessary to focus on PBPMSP
with machine eligibility in fabric dyeing shops.

Compared to PSO, DE, and GA, SFLA has fast convergence speed and effective algorithm structure
containing local search and global information exchanges; in addition, as an effective method for BPM
scheduling [34,50], distributed scheduling [51,52], flexible job shop scheduling [53], and flow shop schedul-
ing [54], SFLA has been successfully applied to solve PBPMSP [34,50] and the corresponding results show
that has advantages on solving PBPMSP. On the other hand, the integration of new optimization mechanisms
and SFLA is an effective way to intensify the search ability of SFLA. Q-learning and cooperation are proven
to be useful mechanisms and can improve search advantages of SFLA [52,53]; however, competition among
memeplexes is seldom considered. After the competition is added to SFLA, parameters or search strategies
can be adjusted in the search process, the search ability can be intensified effectively, and optimization results
on PBPMSP can be significantly improved. The advantages of SFLA on PBPMSP and the great impact of
competition demonstrate that the shuffled frog-leaping algorithm with competition (CSFLA) is particularly
suited for PBPMSP, so it is necessary to focus on CSFLA.

This study considers PBPMSP with machine eligibility in the fabric dyeing process, and a new CSFLA
is presented to minimize makespan. The competitive search of memeplexes is composed of two phases
to produce high-quality solutions, and the initial population is produced in a heuristic and random way.
Competition between any two memeplexes is executed in the first phase, then iteration times are adjusted
based on competition, and search strategies are adjusted adaptively based on the evolution quality of
memeplexes. An adaptive population shuffling is given. Several computational experiments are conducted
on 100 instances. The computational results demonstrate that the new strategies of CSFLA are effective and
that CSFLA has promising advantages in solving the PBPMSP considered.

The remaining parts of the paper are organized as follows. The problem description is given in Section 2.
CSFLA for PBPMSP is shown in Section 3. Computational results and analyses are provided in Section 4.
The conclusions are drawn, and the future research topics are reported in the final section.

2 Problem Description
PBPMSP in fabric dyeing process is composed of n jobs J1 , J2, . . . , Jn and m BPM M1 , M2, . . . , Mm .
Each Mk has a capacity Qk . There are F families for n jobs in terms of the dyeing color. wi , di , Θ i and

fi are weight, due date, the set of machines and job family for Ji . All jobs with the same family have the
same processing time, pg indicates processing time of each job in family g. Machine eligibility is considered,
which means that at least one machine is not eligible for at least one job, that is, at least one job Ji has Θ i ⊂
{M1 , M2, . . . , Mm}.

All jobs in a batch are processed simultaneously on BPM. Families are incompatible, and jobs within
different families cannot be processed in the same batch. Each batch is formed with jobs in the same family.
When jobs of family g are applied to form a batch allocated on Mk , job Ji with Mk ∈ Θ i can be chosen and
added into batch Bh if the following condition is met.

wi +∑ j∈Bh
w j ≤ Qk

The above equation is used described capacity constraint, that is, the sum of weight of job Ji and all jobs
in batch Bh cannot exceed Qk .

All jobs in the same batch are processed with the same beginning time and completion time. When BPM
is required to switch from one batch with family g to other batch with family h, setup time is incurred because
dyeing machines need cleaning before a different color is handled. stgh indicates setup time between families,



1792 Comput Model Eng Sci. 2025;143(2)

which means that after a batch of family g is processed, the cleaning time is required to process a batch of
family h, if two adjacent batches belong to the same family, that is, g = h, BPM does not need cleaning.

There are some constraints on jobs and machines.
Each BPM can only process one batch at a time.
No job can be processed in different batches on more than one BPM.
Operations cannot be interrupted.
All BPMs and jobs are always available.
The goal of the problem is to minimize makespan when all constraints are satisfied and three sub-

problems are solved.

Cmax =max {Ci ∣i = 1, 2, . . . , n}

where Ci is completion time of Ji and Cmax is maximum value of C1 , C2, ⋅ ⋅ ⋅ , Cn .
The above formula is applied to compute Cmax.
Table 1 lists an illustrative example with 10 jobs, 3 job families and 3 BPMs, Q1 = 40, Q2 = 70, Q3 = 90,

p1 = 5, p2 = 10, p3 = 15. The setup time matrix is shown below.

(stge)3×3 =
⎡⎢⎢⎢⎢⎢⎣

0 1 3
4 0 2
5 1 0

⎤⎥⎥⎥⎥⎥⎦

In the above equation, st12 = 1, this setup time exists for the batch of family 1 and batch of family 2, after
batch of family 1 is processed, the setup time on batch of family 2 is st12.

Table 1: Related data of example

J i wi f i Θi J i wi f i Θi

J1 50 2 {M3} J6 20 3 {M1}
J2 10 1 {M3} J7 40 2 {M1 , M3}
J3 20 2 {M2, M3} J8 30 3 {M3}
J4 60 1 {M1 , M2} J9 10 2 {M2, M3}
J5 70 3 {M2} J10 80 2 {M1 , M3}

3 CSFLA for PBPMSP in the Fabric Dyeing Process
There are s memeplexesM1 ,M2, ⋅ ⋅ ⋅ ,Ms in SFLA and the search within each memeplex is implemented

independently in most of the previous SFLAs [35,48]. In this study, competition among memeplexes is added,
and CSFLA is presented to PBPMSP in the fabric dyeing process.

3.1 Initialization
Zhang et al. [40] presented a two-string representation. For PBPMSP with n jobs, m BPM and F

families, its solution is represented as a scheduling string [π1 , π2, . . . , πn] and a machine assignment string
[θ1 , θ2, . . . , θn] for batches, where πi ∈ {1, 2, . . . , n}, θi ∈ {1, 2, . . . , m}.



Comput Model Eng Sci. 2025;143(2) 1793

With respect to [θ1 , θ2, . . . , θn], if η (<n) batches are formed, then only θ1 , θ2, . . . , θη are used, other
elements are not considered; however, the number of the formed batches is not fixed, so a string with the
length of n is used and optimized.

The decoding procedure of [40] is directly adopted. For the example in Table 1, a possible solution
is [10, 1, 8, 4, 9, 6, 2, 5, 3, 7] and [2, 1, 3, 3, 2, 3, 3, 1, 1, 2]. After two strings are decoded, a schedule
in Fig. 1 is obtained. B1 = {J1 , J9}, B2 = {J8}, B3 = {J10}, B4 = {J2, J4}, B5 = {J5}, B6 = {J6}, B7 = {J3, J7}.
The processing sequence of batches on each BPM is shown in Fig. 1.

Figure 1: A schedule of the example

Initial population P is composed of x1 , x2, ⋅ ⋅ ⋅ , xN . For each xi , i = 1, 2, ⋅ ⋅ ⋅ , n, if random number
rand < ε, then xi is produced randomly; otherwise, xi is obtained by using a heuristic, where ε is probability,
rand follows uniform distribution on [0, 1].

The heuristic is shown below.

(1) Produce scheduling string by sorting all jobs in the ascending order of wi .
(2) Calculate the average weight w of all jobs, let t = 1.
(3) Repeat the following steps until t > n/2: stochastically generate an integer 1 ≤ r ≤ m, if Qr > w, then

let θt = r; otherwise, randomly chose one from m, m − 2, m − 1 with the same probability, and let θt
be the chosen one, t = t + 1.

(4) Repeat the following steps until t > n: randomly select an integer from [1, m] and let θt be the chosen
one, t = t + 1.

As stated above, jobs with smaller weight are given higher priority to be assigned into the first half
of scheduling string, machines with Qr > w are given bigger probability to be allocated in the first half
of machine assignment string, so jobs with smaller weight can be formed into a batch and processed on
machine with bigger capacity, as a result, the number of the formed batches can be diminished, so maximum
completion time can be improved.

Population division is an important step of SFLA. In this study, population P is divided into s
memeplexes in the following way: sort all solutions in P in the descending order of Cxi

max, suppose that Cx1
max ≤

Cx2
max ≤ ⋅ ⋅ ⋅ ≤ CxN

max, then allocate each xi , i = 1, 2, ⋅ ⋅ ⋅ .n into memeplex i (mods) + 1, finally, s memeplexes
M1 ,M2, ⋅ ⋅ ⋅ ,Ms are formed, where i (mods) is the remainder of i/s, Cxi

max is makespan of xi .
Initially, P = P, N = N , s = s.



1794 Comput Model Eng Sci. 2025;143(2)

3.2 Search Operators
Three global search operators GS1 , GS2, GS3 are used. GS1 is described below. For solutions x , y,

randomly select k1 , k2 ∈ [1, n] , k1 < k2, machines between positions k1 , k2 on machine assignment string
of y substitute for those at the same position on machine assignment string of x. GS2 is shown as follows.
For solutions x , y, order crossover [51] is performed on scheduling string of x , y. GS3 is depicted below. For
solutions x , y, GS1 , GS2 are executed sequentially.

For solution x with η batches, six neighborhoods’ structures are used. Neighborhood structure N1 is
described below: randomly select a πg and insert it into a newly decided position. N2 is insertion operator
on machine assignment string as done in N1 N3,N4 are swap operator on scheduling string and machine
assignment string, respectively. N5 is inversion operator for those genes of scheduling string between two
randomly decided k1 , k2, k1 < k2.N6 is described below. Decide a machine Mk with the biggest completion
time, for each θl , l = 1, 2, ⋅ ⋅ ⋅ , η, if θl = k, then a randomly chosen integer from [1, m] substitutes for θl .

Three search strategies SO1 , SO2, SO3 are produced by using global search operators and neighborhood
search operators. SO1 is described below. For solutions x , y, perform GS1 between x , y and obtain a new
solution z1, if z1 is better than x, then x = z1, else if z1 is better than y, then y = z1, else produce z2 ∈N1 (z1),
then compare z2 with x , y and replace x or y with the above procedure on z1 , x , y, if z2 cannot substitutes for
y, then generate z3 ∈N1 (z2), compare z2 with x , y and replace x or y with the above procedure on z1 , x , y.
WhereNg (x) indicates the set of neighborhood solutions of x produced byNg.

When GS2,N3,N4 are replaced with GS1 ,N1 ,N2 in the above procedure, SO2 is obtained. SO3 is also
similar with SO1; however, in SO3, GS3,N5,N6 are used sequentially like GS1 ,N1 ,N2 of SO1.

The initial set S of search strategies consists of SO1 , SO2, SO3. The alternate set AS is empty.

3.3 Competitive Search of Memeplexes
In existing SFLAs [34,53], search within memeplex is often done independently; in CSFLA, the

competitive search of memeplexes is composed of two phases. In the first phase, any two memeplexes
compete with each other. The second phase is done based on the data from the first phase and the adaptive
adjustment of search strategies.

Algorithm 1 describes competitive search of memeplexes, where xnearb , i is the best solution of
Mi/ {xb , i}, xb , i is the best solution ofMi , Mei indicates solution quality ofMi .

Mei = ∑x∈Mi
∣{y ∈ P ∣Cx

max < Cy
max }∣

In the above equation, for each x ∈Mi , the number of solutions of P with smaller Cmax than x is
computed, then all numbers of all solutions ofMi are added together and Mei is obtained.

Algorithm 1: Competitive search of memeplexes
1: for i = 1 to s
2: let Ri = ri = 0
3: end for
4: Ω1 = Ω2 = Ω3
5: for i = 1 to s
6: construct a set B = {1 ≤ j ≤ s ∣ j ≠ i }
7: end for

(Continued)



Comput Model Eng Sci. 2025;143(2) 1795

Algorithm 1 (continued)
8: for each j ∈ B
9: decide the best solution xb , i (xb , j) ofMi (M j) and xnearb , i (xnearb , j), execute SO1 , SO2, SO3 on
xb , i , xnearb , i sequentially, perform SO1 , SO2, SO3 on xb , j , xnearb , j sequentially, calculate cnti , cnt j and
update Ω l for SOl .
10: end for
11: Sort SO1 , SO2, SO3 in the descending order of Ω l , suppose that Ω1 ≤ Ω2 ≤ Ω3.
12: Sort all memeplexes in the descending order of cnti , suppose that cnt1 ≤ cnt2 ≤ ⋅ ⋅ ⋅ ≤ cnts , calculate
solution quality Mei for each Mi , then Υl = SO1 and compute
It1 = 2 (μ − 3 (s − 1)) ×Me1/ (Me1 +Mes) Υs = SO3 and compute
Its = 2 (μ − 3 (s − 1)) ×Mes/ (Me1 +Mes); for other Mi , i ≠ 1, s, Its = μ − 3 (s − 1) Υi = SO2
13: let t = 1
14: While t ≤ It1
15: for each Mi , if t ≤ Iti , then decide xb , i , xnearb , i and perform Υi on xb , i , xnearb , i , when is
applied, if a new solution is obtained, ri = ri + 1 if xb , i is updated with the new solution, Ri = Ri + 1
16: for each memeplex Mi , compute evi = ri/Ri , decide evmin, evmax, ev, suppose that
evi = evmax, ev j = evmin
17: if evmax − evmin ≤ α × ev, then
18: Υ1 = SO1 , Υs = SO3, Υi = SO2, i ≠ 1, s
19: end if
20: if α × ev < evmax − evmin ≤ ev, then
21: S = S ∪ AS
22: if Υi and Υj are different
23: swap them
24: else
25: Υi = SO3, Υj = SO1
26: end if
27: end if
28: if ev < evmax − evmin, then
29: let S = {SO1 , SO3}, AS = {SO2}, Υj = SO1, Υl = SO3, l ≠ j,
30: end if
31: t = t + 1
32: end while
33: if AS is not empty
34: S = S ∪ AS and let AS be empty
35: end if

In line 9, ForMi ,M j, let γi = γ j = 0, when SOl is executed on xb , i (xb , j) and xb , i (xb , j) is updated with
new solution produced by SOl , γi = γi + 1 (γ j = γ j + 1), after SO1 − SO3 are executed, if γi < (>) γ j, then
cnti = cnti + 1, cnt j = cnt j − 1 (cnt j = cnt j + 1, cnti = cnti − 1).

In line 9, with respect to Ω l , when SOl acts on xb , i and xb , i is updated with new solution, then Ω l =
Ω l + 1.

In line 12,M1 is given more iteration times by using some iteration times ofMs becauseM1 wins in the
first phase, which is shown in line 9, the search strategy with biggest Ω1 is used forM1.



1796 Comput Model Eng Sci. 2025;143(2)

In lines 17–27, when conditions in lines 17 or 20 are met, evolution difference among memeplexes occurs
and is avoided by adjusting search strategies for memeplexes.

In the above procedure, competition can lead to more iteration times and SO1 with the biggest Ω1 for
M1, the extra iteration times comes from memeplexMs , as a result,M1 is used fully and the usage ofMs is
limited, however, in the second phase beginning with line 13, the adjustment on search operator is done to
diminish evolution difference among memeplexes, and global search can be improved.

3.4 Algorithm Description
The detailed steps of CSFLA are described as follows.

(1) Produce initial population by using heuristic and random way, for each memeplexMi , cnti = 0.
(2) Execute population division.
(3) Perform a competitive search of memeplexes.
(4) Execute adaptive population shuffling.
(5) If the termination condition is not met, then go to step (2); otherwise, stop the search.

The flowchart of CSFLA is shown in Fig. 2.

Figure 2: Flowchart of CSFLA

As the main step of SFLA, population shuffling is utilized to form a new population by using all
memeplexes, and it is done in each generation. Adaptive population shuffling is proposed and described
below. Compute Mei for each memeplexMi , i = 1, 2, ⋅ ⋅ ⋅ , s, suppose that memeplexM1 has the highest Mei ,
then let cnti = 0 for each memeplexMi , i ≠ 1, construct a population P with all memeplexes exceptM1.

In the above process, a memeplex is decided with Mei and excluded from population P and not all
memeplexes are utilized to form a new population.

Unlike the existing SFLA [51–54], CSFLA has the following features: (1) Each memeplexMi is assigned
evi , cnti , and each strategy SOl is given Ω l , these data are utilized to adjust iteration times and search strategy



Comput Model Eng Sci. 2025;143(2) 1797

in an adaptive way. (2) Search procedure of memeplexes is composed of two phases, and the results of the first
phase affect the second phase. Competition is implemented in the first phases, and then excessive evolution
differences among memeplexes are avoided. (3) An adaptive population shuffling is performed by excluding
memeplexes with the highest Mei .

Competition, Ω l on SOl , evi , cnti for Mi are added to improve performance of CSFLA, so the
implementation of CSFLA using programming language will become more difficult; however, the increasing
of implementation difficulty is limited because the newly added things of CSFLA are easily achieved.

4 Computational Experiments
Extensive experiments are conducted to test the performance of CSFLA for the considered PBPMSP.

Experiments are implemented by using Microsoft Visual C++ 2019 and run on 8.0 G RAM 2.4 GHz CPU PC.

4.1 Instances and Comparative Algorithms
One hundred instances are generated based on the data refined from the dyeing factory in China.

The related data are shown below. n ∈ {100, 200, 300, 400, 500}, m ∈ {5, 7, 9, 11, 13}, F ∈ {6, 9, 12, 15}, pg ∈
[15, 45], stgh ∈ [4, 9], wi ∈ [15, 75], Qk = 50 + 10k. Each instance is indicated as n × F ×m. Table 2 describes
information on instances.

Table 2: Information on instances

Notation No. Notation No. Notation No.
n × 6 × 5 1, 21, 41, 61, 81 n × 9 × 9 8, 28, 48, 68, 88 n × 12 × 13 15, 35, 55, 75, 95
n × 6 × 7 2, 22, 42, 62, 82 n × 9 × 11 9, 29, 49, 69, 89 n × 15 × 5 16, 36, 56, 76, 96
n × 6 × 9 3, 23, 43, 63, 83 n × 9 × 13 10, 30, 50, 70, 90 n × 15 × 7 17, 37, 57, 77, 97
n × 6 × 11 4, 24, 44, 64, 84 n × 12 × 5 11, 31, 51, 71, 91 n × 15 × 9 18, 38, 58, 78, 98
n × 6 × 13 5, 25, 45, 65, 85 n × 12 × 7 12, 32, 52, 72, 92 n × 15 × 11 19, 39, 59, 79, 99
n × 9 × 5 6, 26, 46, 66, 86 n × 12 × 9 13, 33, 53, 73, 93 n × 15 × 13 20, 40, 60, 80, 100
n × 9 × 7 7, 27, 47, 67, 87 n × 12 × 11 14, 34, 54, 74, 94

CSFLA is compared to three existing methods, which are the random key genetic algorithm
(RKGA, [30]), RKGA [32], and orthogonal biased random-key genetic algorithm (OBRKGA, [12]) to show
the search advantages of CSFLA. RKGA (Zhou et al. [30]) is called as RKGA1, and RKGA (Zarook et al. [32])
as RKGA2 for convenience. These GAs are utilized to solve PBPMSP with the minimization of makespan and
can be directly applied to solve the PBPMSP; in addition, three GAs have promising advantages on solving
the problems in references [12,30,32], so they are chosen.

SFLA was constructed to show the impact of new strategies of CSFLA on its performance. The steps of
SFLA are identical with the general SFLA, when memeplex search is done, one of SO1 , SO2, SO3 is randomly
selected as search strategy between two solutions, for example, xw , xb . Where xw , xb are the worst solutions
and the best ones in a memeplex.

4.2 Parameter Settings
CSFLA has the following parameters: N , s, μ, α and stopping condition. In this study, CPU time is used

as a stopping condition. The study found through experiments that CSFLA, SFLA, and three comparative



1798 Comput Model Eng Sci. 2025;143(2)

algorithms can converge fully on all instances when 0.05 × n s CPU time reaches, so this CPU time is used
as a stopping condition.

Taguchi method [55] is applied to obtain the settings of parameters. Instance 50 is used. Table 3 describes
the levels of each parameter. The orthogonal array L16 (44) is executed. 16 parameter combinations are tested.
CSFLA with each parameter combination runs 10 times for the chosen instance.

Table 3: Parameter level

Parameter Factor level

1 2 3 4
N 30 60 90 120
s 3 5 6 10
μ 20 30 40 50
α 0.2 0.4 0.6 0.8

Fig. 3 shows the results of MIN and S/N ratio, which is defined as −10 log10 (MIN2). CSFLA runs 10
times for the selected instance. In the run, an elite solution is obtained. MIN is the best one of 10 elite solutions
obtained in 10 runs. Fig. 3 indicates that CSFLA with following combination N = 90, s = 10, μ = 50, α = 0.2
can obtain better results than CSFLA with other combinations, so the above parameter settings are used.

Figure 3: Main effect plot for MIN and S/N ratio

SFLA has N = 90, s = 10, μ = 50 and the above stopping condition.



Comput Model Eng Sci. 2025;143(2) 1799

With respect to RKGA1, RKGA2, and OBRKGA, their parameter settings, except the stopping condition,
are directly used in this study. The experimental results show that these settings of each comparative
algorithm are still effective, so they are kept. Three GAs are given the same stopping condition as CSFLA.

4.3 Results and Analyses
CSFLA, SFLA, and three RKGA are compared, each of which randomly runs 10 times on each instance.

In a run, an elite solution is obtained, MAX indicates the worst one of 10 elite solutions, and AVG denotes
the average value of 10 elite solutions. Tables 4–6 show the computational results of five algorithms. CS, SF,
RK1, RK2, OB indicate CSFLA, SFLA, RKGA1, RKGA2, OBRKGA. Fig. 4 describes the convergence curves
of all algorithms, and Fig. 5 provides a box plot.

Table 4: Computational results of five algorithms on metric MIN

No. CS SF RK1 RK2 OB No. CS SF RK1 RK2 OB
1 535 532 532 646 563 51 1552 2440 2435 1572 1645
2 906 909 1132 1714 997 52 2320 3329 2411 3228 2347
3 1126 1389 1401 1474 1561 53 2952 3926 3791 3042 3018
4 922 1142 1047 1102 1074 54 3291 4247 4201 3581 3559
5 783 791 813 774 869 55 3636 4613 4526 4078 4192
6 566 568 570 624 658 56 2345 2381 2408 2462 2467
7 852 867 878 1017 1035 57 3105 3181 3179 3389 3347
8 1040 1062 1134 1241 1278 58 3717 3731 3760 4091 3758
9 676 691 684 688 734 59 4214 4244 4276 4768 4477
10 545 587 600 591 614 60 4627 4625 4442 5249 4535
11 478 490 487 541 585 61 2191 2639 1714 2568 1709
12 803 819 760 772 835 62 2734 3681 2879 3694 3481
13 505 531 544 518 518 63 3493 4633 3623 4595 4459
14 604 643 618 630 605 64 4150 5213 4232 5006 5050
15 716 719 729 742 717 65 4612 5766 4731 5820 5664
16 516 543 529 615 559 66 2803 2990 2811 2810 2829
17 790 855 833 834 840 67 3923 4174 4222 4085 4016
18 902 941 927 940 940 68 4815 5138 4851 4953 4846
19 841 871 903 861 860 69 5356 5745 5520 5611 5563
20 959 1117 963 1092 1092 70 5798 6067 5927 6080 6160
21 1068 1083 1068 1124 1118 71 3252 3361 3206 3197 2966
22 1618 1714 1665 1774 1860 72 4198 4580 4273 4326 4365
23 2001 2172 2097 2765 2709 73 5036 5468 5238 5093 5102
24 2287 2463 2471 2453 2566 74 5543 6028 5742 5739 5770
25 2612 2650 2625 2637 2749 75 6015 6491 6080 6240 6326
26 909 937 950 929 981 76 3216 3292 3003 3152 3037
27 1462 1479 1565 1594 1892 77 4333 4458 4421 4428 4368
28 1832 1849 1849 2190 2178 78 4954 5226 5038 5278 5044
29 2179 2093 2150 2429 2478 79 5532 5771 5659 5807 6050
30 2080 2186 2243 2139 2221 80 6087 6314 6263 6246 6497

(Continued)



1800 Comput Model Eng Sci. 2025;143(2)

Table 4 (continued)

No. CS SF RK1 RK2 OB No. CS SF RK1 RK2 OB
31 1153 1284 1158 1167 1271 81 3779 4023 3877 3890 3908
32 1744 1926 1755 1864 2248 82 5305 5133 5130 5223 5212
33 2094 2359 2176 2903 2347 83 6036 6203 6156 6137 6321
34 2404 2681 2456 2418 2684 84 6808 7036 6949 6873 6895
35 1818 1863 1881 1880 1875 85 7344 7319 7454 7531 7324
36 923 963 953 951 985 86 3703 3955 3766 3903 4087
37 1531 1593 1560 1793 1614 87 4985 5361 5264 5122 5022
38 1943 1943 1968 2478 2159 88 5904 6400 6071 5945 6513
39 2284 2313 2319 2471 2756 89 6543 6959 6751 7085 6602
40 1902 1911 1980 1905 2010 90 7139 7635 7500 7018 7133
41 1485 1535 1536 1504 1490 91 3427 3746 3796 3594 3571
42 2197 2427 2343 2456 2391 92 4734 5116 4970 4844 5074
43 2767 2867 2899 2934 3009 93 5537 6154 5876 6115 5720
44 3250 3385 3354 3445 3307 94 6572 7001 6687 6598 6583
45 3637 3647 3557 3681 3586 95 6921 7401 7131 7263 7129
46 1351 2121 1968 1376 1699 96 3694 4076 3903 3892 3806
47 2124 2154 2790 2902 2547 97 5063 5573 5223 5288 5168
48 2807 2808 3378 3579 3523 98 6102 6550 6252 6425 6269
49 3071 3913 3760 3368 3326 99 7023 7399 7233 7031 7029
50 3671 4335 4402 4733 3988 100 7571 7939 7765 7530 7536

Table 5: Computational results of five algorithms on metric MAX

No. CS SF RK1 RK2 OB No. CS SF RK1 RK2 OB
1 553 566 575 677 654 51 1636 2486 2659 2530 2413
2 964 925 1863 2162 1694 52 2459 3362 3409 3477 2828
3 1355 1466 1745 1599 1738 53 3089 4130 3931 3153 3578
4 1302 1394 1428 1437 1680 54 3321 4265 4404 3851 3660
5 831 873 902 926 1021 55 3710 4664 4630 4256 4287
6 585 588 592 648 705 56 2405 2405 2514 2578 2715
7 925 930 898 1600 1573 57 3200 3247 3285 3566 3425
8 1121 1156 1474 1377 1363 58 3817 3851 3875 4230 3917
9 721 756 732 779 822 59 4299 4307 4350 4911 4618
10 629 694 686 663 742 60 4703 4801 4739 5608 4916
11 511 590 591 561 641 61 2546 2694 2852 2624 2667
12 837 849 846 855 964 62 3721 3865 3853 3778 3764
13 571 628 579 624 566 63 4508 4691 4604 4649 4645
14 673 691 731 716 691 64 5096 5287 5232 5305 5612
15 760 821 775 816 833 65 5510 5818 5776 5877 6563
16 555 568 598 657 659 66 3060 3067 2915 2844 2989
17 851 902 871 903 957 67 4039 4295 4341 4221 4077

(Continued)



Comput Model Eng Sci. 2025;143(2) 1801

Table 5 (continued)

No. CS SF RK1 RK2 OB No. CS SF RK1 RK2 OB
18 1023 1088 963 1015 1057 68 5169 5161 4923 5010 5100
19 1030 1083 1136 1181 1124 69 5548 5912 5807 5781 5747
20 1201 1283 1335 1219 1268 70 5946 6174 6027 6244 6272
21 1082 1119 1107 1152 1215 71 3326 3423 3432 3299 3234
22 1754 1757 1703 1955 2437 72 4300 4681 4417 4459 4625
23 2114 2211 2162 3050 3046 73 5215 5534 5351 5226 5594
24 2440 2482 2594 2711 2785 74 5709 6052 5861 5796 6089
25 2716 2732 2837 2761 2830 75 6162 6608 6242 6549 6529
26 988 1565 987 964 1498 76 3336 3408 3090 3278 3132
27 1511 2120 1646 1630 1956 77 4398 4636 4482 4611 4432
28 1875 2545 1876 2522 2767 78 5137 5341 5475 5414 5163
29 2328 2484 2377 3052 3206 79 5737 6024 5819 5913 6104
30 2249 2354 2573 2622 2343 80 6228 6405 6349 6556 6623
31 1199 1674 1272 1206 1378 81 4012 4057 4044 4089 4093
32 1756 2278 1871 1949 2545 82 5371 5297 5342 5324 5324
33 2251 2766 2280 3005 2479 83 6161 6263 6269 6262 6391
34 2497 3134 2663 2521 3062 84 6973 7295 7010 6999 7240
35 2000 2085 2075 2061 2127 85 7469 7837 7557 7616 7776
36 966 1069 1057 1067 1138 86 3865 4214 4016 4046 4128
37 1585 1646 1652 1839 1958 87 5147 5451 5483 5517 5380
38 1989 2003 2079 2681 2414 88 6089 6535 6246 6126 6547
39 2412 2440 2538 3068 3169 89 6725 7275 6867 7369 7238
40 2142 2214 2260 2306 2115 90 7414 7758 7658 7775 7506
41 1538 1562 1639 1563 1789 91 3547 3761 3816 3719 3613
42 2363 2464 2385 2498 2673 92 4907 5253 5101 4983 5138
43 2804 2911 2926 3056 3116 93 5808 6255 5966 6398 6243
44 3283 3453 3468 3568 3483 94 6602 7072 6772 6876 6759
45 3654 3841 3721 4010 3769 95 7583 7519 7273 7329 7427
46 2003 2244 2254 2238 2113 96 3752 4125 4050 4117 4004
47 2837 2951 2963 2978 2876 97 5104 5698 5327 5417 5224
48 3425 3534 3620 3774 3961 98 6349 6714 6548 6631 6370
49 3268 4137 3936 4333 3712 99 7079 7530 7349 7092 7340
50 4353 4459 4792 5023 4489 100 7677 8015 7925 7857 7759

Table 6: Computational results of five algorithms on metric AVG

No. CS SF RK1 RK2 OB No. CS SF RK1 RK2 OB
1 545.4 550.7 562.5 660.2 580.3 51 1562.5 2457.6 2505.3 1724.7 1828.1
2 938.3 916.4 1838.0 1984.1 1650.1 52 2442.5 3351.8 3398.9 3378.0 2570.5
3 1221.3 1423.5 1643.9 1576.1 1702.9 53 3010.6 4023.5 3816.7 3064.8 3471.0
4 1041.4 1353.3 1209.8 1264.2 1574.3 54 3300.1 4255.6 4288.3 3820.7 3598.6

(Continued)



1802 Comput Model Eng Sci. 2025;143(2)

Table 6 (continued)

No. CS SF RK1 RK2 OB No. CS SF RK1 RK2 OB
5 808.1 809.5 872.4 811.4 952.4 55 3666.0 4643.0 4564.2 4174.6 4246.5
6 576.7 578.0 580.6 636.0 687.1 56 2358.0 2393.3 2470.7 2479.3 2505.2
7 865.5 901.1 888.5 1390.2 1129.0 57 3143.6 3198.8 3258.6 3523.3 3397.9
8 1104.4 1075.1 1269.2 1356.9 1352.0 58 3762.0 3761.2 3811.5 4215.7 3904.9
9 711.8 729.9 719.4 728.3 808.5 59 4276.2 4281.2 4338.9 4890.0 4533.8
10 592.8 610.5 671.3 602.9 723.5 60 4658.3 4776.6 4643.9 5295.5 4754.9
11 497.8 580.3 508.3 551.9 617.8 61 2215.1 2681.8 2371.9 2601.6 1886.3
12 820.4 830.1 829.1 840.0 948.4 62 3015.8 3831.5 3277.1 3759.4 3590.0
13 558.6 586.6 569.0 542.0 535.9 63 4478.5 4648.3 4531.5 4629.8 4480.1
14 620.2 656.3 638.7 654.2 624.6 64 4825.4 5250.2 4402.6 5254.4 5090.2
15 732.2 781.3 743.3 791.3 822.6 65 4928.9 5798.3 4846.4 5859.2 6171.8
16 526.1 555.4 560.7 644.3 577.3 66 2942.6 3031.8 2894.3 2820.8 2841.8
17 819.6 877.4 857.0 882.3 893.0 67 3962.9 4185.1 4242.8 4168.4 4038.0
18 934.5 1049.2 945.4 982.9 958.1 68 5072.3 5151.7 4883.3 4993.9 4867.2
19 864.1 1039.0 1126.8 893.5 908.4 69 5445.0 5798.3 5552.4 5688.9 5681.9
20 1155.8 1212.2 1111.4 1146.1 1104.8 70 5846.3 6113.6 5972.8 6234.3 6262.5
21 1075.0 1099.2 1089.3 1142.8 1183.3 71 3260.6 3390.7 3354.0 3240.3 3014.8
22 1729.0 1725.2 1679.7 1816.4 2073.9 72 4254.8 4612.4 4344.2 4344.7 4407.1
23 2026.0 2185.0 2118.0 3020.3 2745.1 73 5061.2 5518.1 5258.2 5166.1 5436.4
24 2388.8 2477.1 2551.0 2629.3 2753.2 74 5557.3 6041.8 5787.3 5755.3 5897.1
25 2630.1 2716.2 2722.7 2660.1 2820.8 75 6059.2 6543.9 6225.9 6353.8 6454.1
26 955.8 982.5 967.4 945.9 1377.8 76 3328.5 3328.4 3044.3 3204.0 3054.6
27 1488.1 1985.2 1616.2 1609.0 1914.8 77 4380.4 4523.4 4444.7 4555.0 4415.1
28 1862.1 2485.4 1865.1 2253.8 2489.7 78 5076.5 5298.9 5176.2 5362.9 5118.5
29 2261.1 2224.2 2346.9 2792.5 3074.3 79 5640.6 5814.3 5672.8 5889.0 6077.4
30 2166.8 2298.0 2399.0 2261.8 2258.9 80 6130.4 6343.2 6307.2 6307.6 6573.1
31 1189.8 1491.9 1204.1 1195.1 1283.2 81 3802.9 4043.7 4025.1 3941.0 4069.9
32 1749.1 2202.8 1820.2 1884.2 2336.8 82 5341.6 5174.6 5257.9 5296.8 5247.2
33 2147.2 2731.8 2234.8 2932.0 2426.6 83 6115.2 6226.4 6256.0 6161.6 6337.4
34 2432.3 2875.0 2584.0 2498.7 3047.0 84 6884.9 7256.7 6968.3 6920.0 7064.0
35 1847.0 1928.2 1978.7 2047.3 1886.9 85 7387.1 7503.0 7499.9 7606.8 7614.3
36 938.1 1015.7 1046.9 1007.8 1076.4 86 3739.6 4082.5 3919.7 4027.7 4112.9
37 1540.9 1610.0 1594.3 1827.1 1644.7 87 5004.3 5389.0 5374.6 5334.8 5298.6
38 1955.6 1966.7 2009.2 2585.8 2255.5 88 5990.4 6477.5 6098.2 6031.7 6523.9
39 2307.1 2422.1 2439.3 2805.1 2976.8 89 6627.9 7176.2 6763.2 7294.5 6612.4
40 2025.4 2084.1 2057.7 2290.7 2093.8 90 7405.1 7710.3 7538.1 7593.3 7447.6
41 1527.3 1547.3 1574.2 1540.9 1501.6 91 3518.9 3752.2 3806.9 3658.6 3587.6
42 2285.9 2440.7 2356.2 2469.1 2528.7 92 4839.1 5202.7 5083.3 4940.2 5111.1
43 2782.0 2897.2 2909.5 2977.8 3057.7 93 5741.2 6174.9 5921.8 6236.3 5988.5
44 3269.7 3415.8 3389.0 3529.4 3327.4 94 6595.5 7048.8 6736.1 6664.0 6692.3
45 3647.3 3665.3 3586.1 3892.3 3725.0 95 7226.7 7509.5 7150.6 7286.0 7204.1

(Continued)



Comput Model Eng Sci. 2025;143(2) 1803

Table 6 (continued)

No. CS SF RK1 RK2 OB No. CS SF RK1 RK2 OB
46 1924.4 2188.4 2181.8 1953.8 2027.0 96 3709.1 4102.7 4032.2 4096.2 3844.0
47 2183.5 2347.7 2877.2 2944.5 2818.8 97 5071.0 5686.9 5258.7 5361.2 5203.7
48 3339.8 3326.1 3594.9 3644.1 3863.3 98 6257.6 6702.1 6530.1 6474.0 6360.3
49 3259.4 4061.0 3837.8 3833.8 3490.6 99 7049.9 7449.1 7285.1 7066.8 7240.2
50 3881.7 4391.1 4766.8 4747.8 4117.9 100 7649.6 7961.2 7885.4 7822.2 7546.4

Figure 4: Convergence curves of five algorithms

Table 4 indicates that CSFLA obtains a smaller MIN than SFLA on 94 instances, and the MIN of CSFLA
is bigger than that of SFLA just on 5 instances; in addition, the MIN of CSFLA is less than by at least 100 on
57 instances. CSFLA significantly outperforms SFLA on convergence. The convergence curves in Fig. 4 and
RPDmin in Fig. 5 also reveal that CSFLA converges better than SFLA.



1804 Comput Model Eng Sci. 2025;143(2)

Figure 5: Box plot of all algorithms

Tables 5 and 6 indicate that CSFLA performs better than SFLA on MAX and AVG. SFLA just produces
a smaller MAX than CSFLA in 4 instances, and there are differences between the MAX of CSFLA and SFLA.
CSFLA obtains smaller AVG on 93 instances. The performance advantages of CSFLA on MAX and AVG also
can be observed in Fig. 5. The above analyses show new strategies.

When CSFLA is compared to RKGA1, it can be found that CSFLA produces better results than RKGA1.
RKGA1 obtains a smaller MIN than CSFLA in six instances; however, the MIN of RKGA1 is worse than that
of CSFLA in 94 of 100 instances. Obviously, CSFLA converges better than RKGA1.

Competition and excessive evolution differences really have a positive impact on the performance of
CSFLA. Thus, these new strategies are effective.

Convergence differences between CSFLA and RKGA1 also can be observed in Figs. 4 and 5. Tables 5
and 6 indicate that CSFLA performs better than RKGA1 on MAX, AVG, MAX of CSFLA is less than that of
RKGA1 by at least 100 on 54 instances, and CSFLA also obtains smaller AVG than RKGA1 on 93 instances.

Tables 4–6 exhibit that CSFLA has a smaller MIN than RKGA2 and OBRKGA on 89 instances, the
MAX of CSFLA is smaller than that of RKGA2 and OBRKGA on 91 instances, and CSFLA has better average
results than RKGA2 and OBRKGA more than 85 instances. CSFLA really performs better than RKGA2 and



Comput Model Eng Sci. 2025;143(2) 1805

OBRKGA, and this conclusion can also be concluded from Figs. 4 and 5. Based on the above analyses, it can
be concluded that CSFLA outperforms three GAs on three metrics.

The above analyses show that the superiority of CSFLA lies in the performance between CSFLA and
its comparative algorithm. The advantage of CSFLA results from its adaptive adjustment of search strategies
and iteration times by using competition and avoiding excessive evolution differences. With the inclusion of
these new strategies, global search ability can be intensified, and a good solution structure can be kept in the
memeplex. As a result, search efficiency is significantly improved. Thus, CSFLA is a competitive method for
solving PBPMSP.

5 Conclusion
This study considers PBPMSP with machine eligibility in the fabric dyeing process and presents a new

algorithm called CSFLA to minimize makespan. Population initialization is implemented in a heuristic and
random way. A competitive search of memeplexes is composed of two phases. Competition between any two
memeplexes is done in the first phase, then iteration times are adjusted based on competition, and search
strategies are adjusted adaptively based on the evolution quality of memeplexes. An adaptive population
shuffling is also given. Computational experiments are conducted, and experimental results validate the
effectiveness of new strategies and the promising advantages of CSFLA in solving the considered PBPMSP
in the fabric dyeing process.

BPM extensively exists in many real-life manufacturing industries, and the BPM scheduling problem
has higher complexity than the classical scheduling problem. Shortly, it will focus on PBPMSP, a hybrid
flow shop scheduling problem with BPM. In recent years, learning, cooperation, feedback, and competition
have been included in meta-heuristics. Meta-heuristics with new optimization mechanisms for scheduling
problems are also future research topics.

Acknowledgement: Thanks to anonymous reviewers and the editors for providing valuable suggestions for the paper.

Funding Statement: This work was supported by the National Natural Science Foundation of China (Grant Number
61573264).

Author Contributions: The authors confirm their contribution to the paper as follows: Conceptualization: Deming
Lei; methodology, formal analysis, original draft preparation: Mingbo Li; writing—review and editing: Deming Lei. All
authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The data generated in this paper are available from the corresponding author upon
reasonable request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Azizoglu M, Webster S. Scheduling a batch processing machine with non-identical job sizes. Int J Prod Res.

2000;38(10):2173–84. doi:10.1080/00207540050028034.
2. Shi ZS, Huang ZW, Shi LY. Customer order scheduling on batch processing machines with incompatible job

families. Int J Prod Res. 2018;56(1–2):795–808. doi:10.1080/00207543.2017.1401247.
3. Trindade RS, de Araujo OCB, Fampa MHC, Muller FM. Modelling and symmetry breaking in scheduling problems

on batch processing machines. Int J Prod Res. 2018;56(22):7031–48. doi:10.1080/00207543.2018.1424371.

https://doi.org/10.1080/00207540050028034
https://doi.org/10.1080/00207543.2017.1401247
https://doi.org/10.1080/00207543.2018.1424371


1806 Comput Model Eng Sci. 2025;143(2)

4. Zheng SX, Xie NM, Wu Q, Liu CJ. Novel mathematical formulations for parallel-batching processing machine
scheduling problems. Comput Oper Res. 2025;173(20):106859. doi:10.1016/j.cor.2024.106859.

5. Wang J, Lei DM, Tang HT. A multi-objective dynamical artificial bee colony for energy-efficient fuzzy hybrid flow
shop cheduling with batch processing machines. Expert Syst Appl. 2025;259(2):125244. doi:10.1016/j.eswa.2024.
125244.

6. Esfandiari S, Mashreghi H, Emami S. Coordination of order acceptance, scheduling, and pricing decisions in
unrelated parallel machine scheduling. Int J Ind Eng Prod Res. 2019;30(2):195–205.

7. Koh SG, Koo PH, Ha JW, Lee WS. Scheduling parallel batch processing machines with arbitrary job sizes and
incompatible job families. Int J Prod Res. 2004;42(19):4091–107. doi:10.1080/00207540410001704041.

8. Su GJ, Wang XH. Weighted nested partitions based on differential evolution (WNPDE) algorithm-based schedul-
ing of parallel batching processing machines (BPM) with incompatible families and dynamic lot arrival. Int J
Comput Integ Manuf. 2011;24(6):552–60. doi:10.1080/0951192X.2011.562545.

9. Zhou SC, Li XL, Du N, Pang Y, Chen HP. A multi-objective differential evolution algorithm for parallel batch
processing machine scheduling considering electricity consumption cost. Comput Oper Res. 2018;96(1):55–68.
doi:10.1016/j.cor.2018.04.009.

10. Zhang H, Li K, Chu CB, Jia ZH. Parallel batch processing machines scheduling in cloud manufacturing for
minimizing total service completion time. Comput Oper Res. 2022;146(2):105899. doi:10.1016/j.cor.2022.105899.

11. Gahm C, Wahl S, Tuma A. Scheduling parallel serial-batch processing machines with incompatible job families,
sequence-dependent setup times and arbitrary sizes. IntJ Prod Res. 2022;60(17):5131–54. doi:10.1080/00207543.
2021.1951446.

12. Zhang XP, Shan MJ, Zeng J. Parallel batch processing machine scheduling under two-dimensional bin-packing
constraints. IEEE Trans Reliab. 2023;72(3):1265–75. doi:10.1109/TR.2022.3201333.

13. Ou JW, Lu LF, Zhon XL. Parallel-batch scheduling with rejection: structural properties and approximation
algorithms. Euro J Oper Res. 2023;310(3):1017–32. doi:10.1016/j.ejor.2023.04.019.

14. Uzunoglu A, Gahm C, Wahl S, Tuma A. Learning-augmented heuristics for scheduling parallel serial-batch
processing machines. Comput Oper Res. 2023;151(3):106122. doi:10.1016/j.cor.2022.106122.

15. Kucukkoc I, Keskin GA, Karaoglan AD, Karadag S. A hybrid discrete differential evolution—genetic algorithm
approach with a new batch formation mechanism for parallel batch scheduling considering batch delivery. Int J
Prod Res. 2024;62(1–2):460–82. doi:10.1080/00207543.2023.2233626.

16. Jula P, Leachman RC. Coordinated multistage scheduling of parallel batch-processing machines under multire-
source constraints. Oper Res. 2010;58(4):933–47. doi:10.1287/opre.1090.0788.

17. Li XL, Chen HP, Du B, Tan Q. Heuristics to schedule uniform parallel batch processing machines with dynamic
job arrivals. Int J Comput Integ Manuf. 2013;26(5):474–86. doi:10.1080/0951192X.2012.731612.

18. Xu R, Chen HP, Li XP. A bi-objective scheduling problem on batch machines via a Pareto-based ant colony system.
Int J Prod Econo. 2013;145(1):371–86. doi:10.1016/j.ijpe.2013.04.053.

19. Abedi M, Seidgar H, Fazlollahtabar H, Bijani R. Bi-objective optimisation for scheduling the identical parallel
batch-processing machines with arbitrary job sizes, unequal job release times and capacity limits. Int J Prod Res.
2015;53(6):1680–711. doi:10.1080/00207543.2014.952795.

20. Zhou SC, Liu M, Chen HP, Li XP. An effective discrete differential evolution algorithm for scheduling uniform
parallel batch processing machines with non-identical capacities and arbitrary job sizes. Int J Prod Econo.
2016;179(1):1–11. doi:10.1016/j.ijpe.2016.05.014.

21. Jia ZH, Yan JH, Leung JYT, Li K, Chen HP. Ant colony optimization algorithm for scheduling jobs withfuzzy
processing times on parallel batch machines with different capacities. Appl Soft Comput. 2019;75(9–10):548–61.
doi:10.1016/j.asoc.2018.11.027.

22. Jia ZH, Huo SY, Li K, Chen HP. Integrated scheduling on parallel batch processing machines with non-identical
capacities. Eng Optim. 2020;52(4):715–30. doi:10.1080/0305215X.2019.1613388.

23. Li CH, Wang F, Gupta JND, Chung T. Scheduling identical parallel batch processing machines involving incom-
patible families with different job sizes and capacity constraints. Comput Ind Eng. 2022;169(5):108115. doi:10.1016/
j.cie.2022.108115.

https://doi.org/10.1016/j.cor.2024.106859
https://doi.org/10.1016/j.eswa.2024.125244
https://doi.org/10.1016/j.eswa.2024.125244
https://doi.org/10.1080/00207540410001704041
https://doi.org/10.1080/0951192X.2011.562545
https://doi.org/10.1016/j.cor.2018.04.009
https://doi.org/10.1016/j.cor.2022.105899
https://doi.org/10.1080/00207543.2021.1951446
https://doi.org/10.1080/00207543.2021.1951446
https://doi.org/10.1109/TR.2022.3201333
https://doi.org/10.1016/j.ejor.2023.04.019
https://doi.org/10.1016/j.cor.2022.106122
https://doi.org/10.1080/00207543.2023.2233626
https://doi.org/10.1287/opre.1090.0788
https://doi.org/10.1080/0951192X.2012.731612
https://doi.org/10.1016/j.ijpe.2013.04.053
https://doi.org/10.1080/00207543.2014.952795
https://doi.org/10.1016/j.ijpe.2016.05.014
https://doi.org/10.1016/j.asoc.2018.11.027
https://doi.org/10.1080/0305215X.2019.1613388
https://doi.org/10.1016/j.cie.2022.108115
https://doi.org/10.1016/j.cie.2022.108115


Comput Model Eng Sci. 2025;143(2) 1807

24. Li K, Zhang H, Chu CB, Jia ZH, Chen JF. Abi-objective evolutionary algorithm scheduled on uniform parallel
batch processing machines. Exp Syst Appl. 2022;204(6):117487. doi:10.1016/j.eswa.2022.117487.

25. Liu M, Chu F, He JK, Yang DP, Chu CB. Coke production scheduling problem: a parallel machine scheduling with
batch preprocessings and location-dependent processing times. Comput Oper Res. 2019;104(7):37–48. doi:10.1016/
j.cor.2018.12.002.

26. Hulett M, Damodaran P, Amouie M. Scheduling non-identical parallel batch processing machines to minimize
total weighted tardiness using particle swarm optimization. Comput Ind Eng. 2017;113(8):425–36. doi:10.1016/j.cie.
2017.09.037.

27. Wang R, Jia ZH, Li K. Scheduling parallel-batching processing machines problem with learning and deterioration
effect in fuzzy environment. J Intel Fuzzy Syst. 2021;40(6):12111–24. doi:10.3233/JIFS-210196.

28. Shahidi-Zadeh B, Tavakkoli-Moghaddam R, Taheri-Moghadam A, Rastgar I. Solving a bi-objective unrelated
parallel batch processing machines scheduling problem: a comparison study. Comput Oper Res. 2017;88(6):71–90.
doi:10.1016/j.cor.2017.06.019.

29. Lu SJ, Liu XB, Pei J, Thai MT, Pardalos PM. A hybrid ABC-TS algorithm for the unrelated parallel-
batching machines scheduling problem with deteriorating jobs and maintenance activity. Appl Soft Comput.
2018;66(2):168–82. doi:10.1016/j.asoc.2018.02.018.

30. Zhou SC, Xie JH, Du N, Pang Y. A random-keys genetic algorithm for scheduling unrelated parallel batch
processing machines with different capacities and arbitrary job sizes. Appl Math Comput. 2018;334(8):254–68.
doi:10.1016/j.amc.2018.04.024.

31. Sadati A, Moghaddam RT, Naderi B, Mohammadi M. Abi-objective model for a scheduling problem of unrelated
parallel batch processing machines with fuzzy parameters by two fuzzy multi-objective meta-heuristics. Iran J
Fuzzy Syst. 2019;16(4):21–40.

32. Zarook Y, Rezaeian J, Mahdavi I, Yaghini M. Efficient algorithms to minimize makespan of the unrelated parallel
batch-processing machines scheduling problem with unequal job ready times. Performa Analy Intel Syst Oper.
2021;55(3):1501–22. doi:10.1051/ro/2021062.

33. Fallahi A, Shahidi-Zadeh B, Niaki STA. Unrelated parallel batch processing machine scheduling for production sys-
tems under carbon reduction policies: nSGA-II and MOGWO metaheuristics. Soft Comput. 2023;27(22):17063–91.
doi:10.1007/s00500-023-08754-0.

34. Kong M, Wang WZ, Deveci M, Zhang YJ, Wu XZ, Coffman D. A novel carbon reduction engineering method-
based deep Q-learning algorithm for energy-efficient scheduling on a single batch-processing machine in
semiconductor manufacturing. Int J Prod Res. 2024;62(18):6449–72. doi:10.1080/00207543.2023.2252932.

35. Xiao X, Ji B, Yu SS, Wu GH. A tabu-based adaptive large neighborhood search for scheduling unrelated
parallel batch processing machines with non-identical job sizes and dynamic job arrivals. Flex Serv Manuf J.
2024;36(2):409–52. doi:10.1007/s10696-023-09488-9.

36. Zhang W, Tang HT, Wang WY, Zhuang M, Lei D, Wang XV. A multi-objective hybrid algorithm for the casting
scheduling problem with unrelated batch processing machine. Compl Syst Model Simul. 2024;4(3):236–57. doi:10.
23919/CSMS.2024.0011.

37. Mageed G, Sharareh T. Dynamic shop-floor scheduling using real-time information: a case study from the
thermoplastic industry. Comput Oper Res. 2023;152(4):106134. doi:10.1016/j.cor.2022.106134.

38. Hu KX, Che YX, Ng TS, Deng J. Unrelated parallel batch processing machine scheduling with time requirements
and two-dimensional packing constraints. Comput Oper Res. 2024;162(3):106474. doi:10.1016/j.cor.2023.106474.

39. Fu LL, Aloulou MA, Triki C. Integrated production scheduling and vehicle routing problem with job splitting and
delivery time windows. Int J Prod Res. 2017;55(20):5942–57. doi:10.1080/00207543.2017.1308572.

40. Zhang R, Chang PC, Song SJ, Wu C. A multi-objective artificial bee colony algorithm for parallel batch-processing
machine scheduling in fabric dyeing processes. Knowl-Based Syst. 2017;116(7):114–29. doi:10.1016/j.knosys.2016.10.
026.

41. Huynh NT, Chien CF. A hybrid multi-subpopulation genetic algorithm for textile batch dyeing scheduling and an
empirical study. Comput Ind Eng. 2018;125(2):615–27. doi:10.1016/j.cie.2018.01.005.

https://doi.org/10.1016/j.eswa.2022.117487
https://doi.org/10.1016/j.cor.2018.12.002
https://doi.org/10.1016/j.cor.2018.12.002
https://doi.org/10.1016/j.cie.2017.09.037
https://doi.org/10.1016/j.cie.2017.09.037
https://doi.org/10.3233/JIFS-210196
https://doi.org/10.1016/j.cor.2017.06.019
https://doi.org/10.1016/j.asoc.2018.02.018
https://doi.org/10.1016/j.amc.2018.04.024
https://doi.org/10.1051/ro/2021062
https://doi.org/10.1007/s00500-023-08754-0
https://doi.org/10.1080/00207543.2023.2252932
https://doi.org/10.1007/s10696-023-09488-9
https://doi.org/10.23919/CSMS.2024.0011
https://doi.org/10.23919/CSMS.2024.0011
https://doi.org/10.1016/j.cor.2022.106134
https://doi.org/10.1016/j.cor.2023.106474
https://doi.org/10.1080/00207543.2017.1308572
https://doi.org/10.1016/j.knosys.2016.10.026
https://doi.org/10.1016/j.knosys.2016.10.026
https://doi.org/10.1016/j.cie.2018.01.005


1808 Comput Model Eng Sci. 2025;143(2)

42. Li K, Zhang H, Chu CB, Jia ZH, Wang Y. A bi-objective evolutionary algorithm for minimizing maximum lateness
and total pollution cost on non-identical parallel batch processing machines. Comput Ind Eng. 2022;172(3):108608.
doi:10.1016/j.cie.2022.108608.

43. Demir Y. An efficientlexicographic approach to solve multi-objective multi-port fabric dyeing machine planning
problem. Appl Soft Comput. 2023;144(2):110541. doi:10.1016/j.asoc.2023.110541.

44. Srinath N, Yilmazlar IO, Kurz ME, Taaffe K. Hybrid multi-objective evolutionary meta-heuristics for a parallel
machine scheduling problem with setup times and preferences. Comput Ind Eng. 2023;185(5–6):109675. doi:10.
1016/j.cie.2023.109675.

45. Lee DH, Park IB, Kim K. An incremental learning approach to dynamical parallel machine scheduling with
sequence-dependent setups and machine eligibility restrictions. Appl Soft Comput. 2024;164(21):112002. doi:10.
1016/j.asoc.2024.112002.

46. Santoro MC, Junqueira L. Unrelated parallel machine scheduling models with machine avaiability and eligibility
constraints. Comput Ind Eng. 2023;179(1–2):109219. doi:10.1016/j.cie.2023.109219.

47. Zheng FF, Jin KY, Xu YF, Liu M. Unrelated parallel machine scheduling with processing cost, machine eligibility
and order splitting. Comput Ind Eng. 2022;171(3):108483. doi:10.1016/j.cie.2022.108483.

48. Li DB, Wang J, Qiang R, Chiong R. A hybrid differential evolution algorithm for parallel machine scheduling
of lace dyeing considering colour families, sequence-dependent setup and machine eligibility. Int J Prod Res.
2021;59(9):2722–38. doi:10.1080/00207543.2020.1740341.

49. Wang J, Li DB, Tang HT, Li XX, Lei DM. A dynamical teaching-learning-based optimization algorithm for
fuzzy energy-efficient parallel batch processing machines scheduling in fabric dyeing process. Appl Soft Comput.
2024;167(9):112413. doi:10.1016/j.asoc.2024.112413.

50. Lei DM, Dai T. An adaptive shuffled frog-leaping algorithm for parallel batch processing machines scheduling
with machine eligibility in fabric dyeing process. Int J Prod Res. 2024;62(21):7704–21. doi:10.1080/00207543.2024.
2324452.

51. Cai JC, Lei DM. A cooperated shuffled frog-leaping algorithm for distributed energy-efficient hybrid flow shop
scheduling with fuzzy processing time. Comple Intel Syst. 2021;7(5):2235–53. doi:10.1007/s40747-021-00400-2.

52. Cai JC, Lei DM, Wang J, Wang L. A novel shuffled frog-leaping algorithm with reinforcement learning for
distributed assembly hybrid flow shop scheduling. Int J Prod Res. 2022;61(4):1233–51. doi:10.1080/00207543.2022.
2031331.

53. Yang YF, Song YH, Guo WF, Lei Q, Sun AH, Fan LH. Guided shuffled frog-leaping algorithm for flexible job shop
scheduling with variable sublots and overlapping in operations. Comput Ind Eng. 2023;180(19):109209. doi:10.1016/
j.cie.2023.109209.

54. Wu PL, Yang QY, Chen WB, Mao BY, Yu HN. An improved genetic-shuffled frog-leaping algorithm for
permutation flowshop scheduling. Complexity. 2020;1(14):3450180. doi:10.1155/2020/3450180.

55. Taguchi G. Introduction to quality engineering: designing quality into products and processes. Tokyo, Japan: Asian
Productivity Organization; 1986. 191 p.

https://doi.org/10.1016/j.cie.2022.108608
https://doi.org/10.1016/j.asoc.2023.110541
https://doi.org/10.1016/j.cie.2023.109675
https://doi.org/10.1016/j.cie.2023.109675
https://doi.org/10.1016/j.asoc.2024.112002
https://doi.org/10.1016/j.asoc.2024.112002
https://doi.org/10.1016/j.cie.2023.109219
https://doi.org/10.1016/j.cie.2022.108483
https://doi.org/10.1080/00207543.2020.1740341
https://doi.org/10.1016/j.asoc.2024.112413
https://doi.org/10.1080/00207543.2024.2324452
https://doi.org/10.1080/00207543.2024.2324452
https://doi.org/10.1007/s40747-021-00400-2
https://doi.org/10.1080/00207543.2022.2031331
https://doi.org/10.1080/00207543.2022.2031331
https://doi.org/10.1016/j.cie.2023.109209
https://doi.org/10.1016/j.cie.2023.109209
https://doi.org/10.1155/2020/3450180

	A Shuffled Frog-Leaping Algorithm with Competition for Parallel Batch Processing Machines Scheduling in Fabric Dyeing Process
	1 Introduction
	2 Problem Description
	3 CSFLA for PBPMSP in the Fabric Dyeing Process
	4 Computational Experiments
	5 Conclusion
	References


