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ABSTRACT: An optimal fuzzy tracking synthesis for nonlinear discrete-time descriptor systems is discussed through
the Parallel Distributed Compensation (PDC) approach and the Proportional-Difference (P-D) feedback framework.
Based on the Takagi-Sugeno Fuzzy Descriptor Model (T-SFDM), a nonlinear discrete-time descriptor system is
represented as several linear fuzzy subsystems, which facilitates the linear P-D feedback technique and streamlines
the fuzzy controller design process. Leveraging the P-D feedback fuzzy controller, the closed-loop T-SFDM can be
transformed into a standard system that guarantees non-impulsiveness and causality for the nonlinear discrete-time
descriptor system. In view of the disturbance problems, a passive performance constraint is incorporated into the
fuzzy tracking synthesis to achieve dissipativity of disturbance energy. To achieve a better balance between state and
control responses, the H2 performance requirement is considered and a minimization constraint is applied to optimize
the H2 index. It is observed that there is a lack of research focusing on both disturbance and control input issues in
nonlinear descriptor systems. Extending the Lyapunov theory, a stability analysis method is proposed for the tracking
purpose with the combination of the free-weighting matrix to relax the analysis process while complying multiple
performance constraints. Finally, two simulation examples are presented to demonstrate the feasibility and applicability
of the proposed approach in practical control scenarios for nonlinear descriptor systems.

KEYWORDS: Nonlinear descriptor system; takagi-sugeno fuzzy model; H2 performance; passive performance; robust-
ness; fuzzy tracking syhthesis

1 Introduction
Over the past few decades, the control problem of nonlinear systems has been extensively addressed [1].

In practical systems, there are often inherent nonlinearities that must be considered to more precisely
describe the dynamics of control systems. Additionally, systems in descriptor form have been shown to
provide a powerful tool for enhancing the completeness in describing practical control systems [2,3]. It
is worth noting that not only is the implicit relation included to represent the interrelations in many
systems, but there also exist purely static relations featuring identity correlations among different dynamic
variables. Because of this reason, the description of descriptor systems includes both differential and algebraic
equations, thus being referred to as differential-algebraic systems [4]. Descriptor systems can also be applied
to situations involving singularities, singular perturbations, and noncausalities. Notably, singular systems
have been widely discussed due to their use in various control scenarios, such as acceleration and its
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derivative, autonomous ships, as well as bio-economic systems [5–7]. However, the algebraic constraints
in descriptor systems also lead to the issue of infinite poles and impulse behaviors [8,9], as the static
relationships must be satisfied at a given instant. Taking advantage of large-scale systems, the control
and analysis of nonlinear descriptor systems have attracted significant attention [10]. Nevertheless, the
nonlinearities and algebraic constraints still pose formidable challenges to the development of controller
design approaches.

Consequently, ensuring the absence of impulse modes has emerged as a critical consideration in the
controller design of nonlinear descriptor systems. To address this issue, a proportional and derivative
feedback concept has been introduced to transform the closed-loop system into a regular system [11,12]. That
is, the feedback signal guarantees non-impulsiveness and causality for the system. For discrete-time systems,
this concept is referred to as Proportional-Difference (P-D) feedback [13]. Due to the nonlinearities, the
development of controller design approaches for nonlinear descriptor systems is confronted with significant
challenges and complexities. Over the past decades, the Takagi-Sugeno Fuzzy Model (T-SFM) has proven to
be a powerful tool for tackling the control problem of nonlinear systems [14]. By characterizing a nonlinear
system as several linear subsystems, the controller design problem is efficiently reduced to a linear problem.
In other words, the linear P-D feedback technique can be utilized in the control problem of nonlinear
descriptor systems. Leveraging the T-SFM and Parallel Distributed Compensation (PDC) framework,
some researchers have successfully developed fuzzy P-D controllers to stabilize the nonlinear descriptor
systems [15,16]. Moreover, some simulations have been implemented to explore practical applications
[17–18]. Nevertheless, disturbance and uncertainty issues must be resolved to enhance the reliability of the
control approach. The trade-off between convergence rate and control cost should also be considered while
meeting practical control requirements.

In most industrial systems, external disturbances, such as power quality disturbances for generators [19],
road roughness for electric power steering systems [20], and winds and waves for ships [21], are inevitable and
persistent factors. In view of disturbance problem, many researchers have contributed to the development of
anti-disturbance control approaches for nonlinear descriptor systems [22,23]. From the energy perspective,
passive performance has been introduced to achieve the dissipativity of external energy [24]. A system
can be called a dissipative system because the energy dissipated inside is less than the energy supplied
by the external source [24,25]. Therefore, several researchers have successfully extended the concept of
dissipativity to the disturbance problem, where disturbance energy is regarded as external energy [25,26].
In [25,27], the researchers have also presented the energy supply function such that the system consumption
energy is always greater than the external energy to achieve this disspativity. Passivity theory has long been
recognized as an effective tool for the analysis of electrical networks and nonlinear systems. It is worth
noting that the passive performance constraint provides a general framework for various considerations,
including H∞, strictly input passivity, and other related forms, depending on the setting of the energy
supply function. Moreover, uncertainties pose a significant challenge in enhancing control performance
for practical applications [28,29]. Fuzzy theory is widely recognized as an effective approach to addressing
uncertainties in daily life and engineering systems [30]. Nevertheless, the T-SFM constructed for actual
nonlinear systems may involve modeling errors [31]. Based on the T-SFM, some researchers have improved
the identification and control issues using adaptive control under system uncertainties [32]. Extending the
control issue, some researchers have also solved the controller design problem for uncertain nonlinear
descriptor systems [33]. By employing proportional and derivative feedback techniques, fuzzy controllers
have also been successfully developed to handle uncertainty and disturbance issues [34]. However, the
development of tracking controllers using the P-D fuzzy control scheme for discrete-time descriptor systems
remains an unresolved challenge.
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More importantly, the control effort required to ensure both the passive constraint and robustness
may increase significantly. For specific objectives such as trajectory tracking, the responses of the con-
trolled variables could become excessively drastic, which is not suitable for practical control applications.
Furthermore, the control cost could potentially exceed practical requirements, leading to inefficiency. The
H2 performance index has been introduced to evaluate the energy of state and input [35]. It has also been
recognized as a powerful performance metric in the control of autonomous vehicles [36]. The application
of the H2 performance index is often accompanied by a minimization constraint, which aims to optimize
the energy associated with the index. Nowadays, some researchers have successfully extended the H2/H∞
constraint to the fuzzy controller design for the tracking problem in nonlinear systems under the T-S fuzzy
model framework [37]. Based on the descriptor form, the T-S Fuzzy Descriptor Model (T-SFDM) based fuzzy
controller design have been investigated with disturbance and uncertainty problems in several papers [38].
Considering the control efficiency while affected by the external disturbances, an input shaping approach
has been developed under H∞ performance for the fuzzy tracking control problem [39]. Nonetheless,
there is lack of existing papers discussing the multiple-performance-constrained problem for discrete-time
nonlinear descriptor systems, even for their tracking issue. However, the difficulty of the tracking controller
design problem subject to multiple constraints increases significantly due to the nonlinearities and descriptor
form. By leveraging the linear representation of subsystems in T-SFDM, the complexity of the design process
can be effectively reduced.

The reason outlined above motivated this research to propose a fuzzy tracking synthesis for discrete-
time nonlinear descriptor systems that satisfies multiple performance criteria, including robustness, passivity,
and optimal H2. First, the T-SFDM is established for a class of nonlinear descriptor systems. Considering the
existence of modeling errors, the T-SFDM is also constructed for the target trajectory with uncertain factors.
Next, the T-S Fuzzy Descriptor Error Model (T-SFDEM) is derived by subtracting the target model from
the T-SFDM. With the same premise as the T-SFDEM, a PDC-based fuzzy controller is developed using the
P-D error feedback signals. For the closed-loop T-SFDEM, a definition is provided to examine the regularity
and causality. Additionally, the constraints of robust control, passive performance, and H2 performance
are introduced separately. Based on the multiple performance constraints and Lyapunov theory, a stability
criterion is proposed to ensure the stability of the error dynamics and achieve the trajectory tracking
objective. It is worth noting that the free-weighting matrix technique is integrated into the analysis process
to further reduce the conservativeness caused by the multiple constraints, particularly the minimization of
H2 performance. Consequently, the stability criteria are derived into the Linear Matrix Inequality (LMI)
problem, enabling efficient solutions via computational tools. Finally, two simulation examples, including
a nonlinear DC-motor system and a ship steering system, are provided to demonstrate the feasibility and
effectiveness of the proposed P-D fuzzy tracking controller.

This paper is organized as follows. In Section 2, the T-SFDM and the corresponding T-SFDEM are
obtained. In Section 3, a P-D feedback fuzzy tracking synthesis is proposed for the tracking purpose.
In Section 4, two simulation examples, including a nonlinear DC motor system and a ship steering system,
are provided. Based on the results, some conclusions are given in Section 5.

2 System Description and Problem Statement
In this section, the T-SFDMs of nonlinear descriptor systems and target trajectory are respectively

established. Then, the T-SFDEM is obtained from two T-SFDMs. According to the PDC design concept, the
P-D fuzzy tracking controller is presented. Some definitions and lemmas related to multiple performance
requirements are also introduced. First, the T-SFDM is presented as follows.
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Model Rules α:
If ϑ1 (k) is ϕα1 and ϑ2 (k) is ϕα2 and. . .and ϑ� (k) is ϕα�, then

⎧⎪⎪⎨⎪⎪⎩

⌢

Tα (k) x (k + 1) =
⌢

Aα (k) x (k) +
⌢

Bα (k)u (k) + Wαw (k)
y (k) = Cα x (k) + Vαw (k)

(1)

where model matrices
⌢

Tα (k) = Tα + ΔTα (k),
⌢

Aα (k) = Aα + ΔAα (k),
⌢

Bα (k) = Bα + ΔBα (k) are con-
structed with the time-varying uncertainties, x (k) ∈ Rs , u (k) ∈ Ri , y (k) ∈ Ro and w (k) ∈ Rd respectively
are the system’s state, input, output and disturbance vectors, ϑ1 (k) to ϑ� (k) are the premise variables, ϕα1 to
ϕα� are the fuzzy sets, α = 1, 2, . . . , τ and ς = 1, 2, . . . , � are the numbers of premise variables and fuzzy rules.
Note that the matrix Tα , with or without full rank, can be used to describe the singular and typical systems
in descriptor form.

In the T-SFDM (1), ΔTα (k), ΔAα (k) and ΔBα (k) represent the time-varying uncertain factors that
may arise from modeling parameter errors and other relevant factors. Then, these matrices are further
decomposed into the following structure.

ΔTα (k) = Hα Δα (k)RTα , ΔAα (k) = Hα Δα (k)RAα , andΔBα (k) = Hα Δα (k)RBα (2)

where Δα (k) denotes the time-varying uncertain item, Hα , RTα , RAα and RBα denote the structure of
uncertainties, with appropriate dimensions.

Then, the following overall T-SFDM is obtained by blending with all fuzzy subsystems in (1) with
membership functions.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

τ
∑
α=1

Φα (ϑ (k)){
⌢

Tα (k) x (k + 1)} =
τ
∑
α=1

Φα (ϑ (k)){
⌢

Aα (k) x (k) +
⌢

Bα (k)u (k) + Wαw (k)}

y (k) =
τ
∑
α=1

Φα (ϑ (k)) {Cα x (k) + Vαw (k)}
(3)

where Φα (ϑ (k)) = ∏�
ς=1 ϕας (ϑς (k)) /∑τ

α=1 ∏�
ς=1 ϕας (ϑς (k)), which satisfies the situation

∑τ
α=1 Φα (ϑ (k)) > 0 and Φα (ϑ (k)) ≥ 0, ς = 1, 2, . . . , � is the number of premise variables. To simplify the

expressions in this research, the time-varying terms involving premise variables and uncertainties, denoted
as
⌢

Tα (k),
⌢

Aα (k),
⌢

Bα (k), Φα (ϑ (k)), are reduced to
⌢

Tα ,
⌢

Aα ,
⌢

Bα and Φα throughout the remainder of
this paper.

For the tracking purpose, the T-SFDM is also constructed as follows, with consideration of the
parameter uncertainty caused by modeling errors, similar to the process described in Eqs. (1)–(3).

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

τ
∑
α=1

Φα {
⌢

Tα xd (k + 1)} =
τ
∑
α=1

Φα {
⌢

Aα xd (k)}

yd (k) =
τ
∑
α=1

Φα {Cα xd (k)}
(4)

where xd (k) and yd (k) denote the desired state and output trajectories.
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Then, the tracking T-SFDEM is obtained as follows from (3) and (4).

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

τ
∑
α=1

Φα {
⌢

Tα ex (k + 1)} =
τ
∑
α=1

Φα {
⌢

Aα ex (k) +
⌢

Bαu (k) + Wαw (k)}

ey (k) =
τ
∑
α=1

Φα {Cα ex (k) + Vαw (k)}
(5)

where ex (k) = x (k) − xd (k) and ey (k) = y (k) − yd (k) are the tracking errors of the system’s states
and outputs.

According to the T-SFDEM (5), the following P-D error feedback fuzzy controller is developed by the
PDC framework to complete the tracking task.

u (k) =
τ
∑
α=1

Φα {Tp
α ex (k) − Td

α ex (k + 1)} (6)

where Tp
α and Td

α are the gains for the proportional and difference feedback terms. It is observed that Φα
of the premise part is designed in the same way as the T-SFDEM (5) to comply with the PDC concept. To
make the application of P-D feedback concept more meaningful, Remark 1 is presented to illustrate the use
of feedback signals.
Remark 1. Building on the results of research on linear discrete-time descriptor systems, including but not limited
to [40,41], k + 1 is considered the current time instant, which can be derived from the previous time instant k
when there is a design of the state observer. However, observer design is not the primary focus of this research;
the main discussion is centered on the design of the multi-performance P-D fuzzy tracking controller. For this
reason, all states of the control systems are assumed to be available for the implementation of the P-D feedback
technique.

Therefore, the following closed-loop T-SFDEM is obtained by substituting the P-D fuzzy tracking
controller (6) into T-SFDEM (5).

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

τ
∑
α=1

τ
∑
β=1

ΦαΦβ {
⌢

Q
d

αβ ex (k + 1)} =
τ
∑
α=1

τ
∑
β=1

ΦαΦβ {
⌢

Q
p

αβ ex (k) + Wαw (k)}

ey (k) =
τ
∑
α=1

Φα {Cα ex (k) + Vαw (k)}
(7)

where
⌢

Q
d

αβ =
⌢

Tα +
⌢

BαTd
β and

⌢

Q
p

αβ =
⌢

Aα +
⌢

BαTp
β are the closed-loop matrices.

Conducting an examination of regularity and causality, Definition 1 is presented for the T-SFDEM.
Definition 1. If the following situations are satisfied, the regularity and causality of the closed-loop T-SFDEM (7)
are guaranteed, and the system’s responses will be impulsive-free.

(a) The system is said to be regular when det (z
⌢

Tα −
⌢

Aα) ≠ 0.

(b) The system is said to be causal when deg (det (z
⌢

Tα −
⌢

Aα)) = rank (
⌢

Tα).

where det (⋅) and deg (⋅) denote the determinant and its degree.

It is obvious that the two situations are certainly ensured for the typical system, where
⌢

Tα is of full rank.
With the P-D fuzzy tracking controller (6), the conditions in Definition 1 can also be guaranteed for the
closed-loop T-SFDEM (7) even when

⌢

Tα is a singular matrix. The P-D feedback technique can effectively



1438 Comput Model Eng Sci. 2025;143(2)

transform the singular system into a regular form by ensuring that the matrix
⌢

Q
d

αβ is of full rank. Aiming to
address the uncertainty problems, an inequality for robust control is introduced in Lemma 1.
Lemma 1. [42]. For a scalar ω, the following result is satisfied by assigning the constant matrices H and R of
appropriate dimension.

HΔ (k)R + RTΔT (k)HT ≤ ωHHT + ω−1RTR (8)

where time-varying uncertain term Δ (k) satisfies Δ (k)ΔT (k) ≤ I.
In the context of the energy concept, the following passive performance constraint in Lemma 2 is

employed to achieve disturbance dissipativity by appropriately selecting the parameters for the general form
in [25].
Lemma 2. The T-SFDEM (7) is called strictly input passive if the following relationship is satisfied with a positive
scalar μ provided.

2
kT

∑
k=0

eT
y (k)w (k) > μ

kT

∑
k=0

wT (k)w (k) (9)

where kT denotes the terminal time.
Therefore, the energy consumption of the T-SFDEM (7) is greater than the disturbance energy by

ensuring the relationship (9). However, the control effort is expected to increase significantly when the
inequality conditions in (8) and (9) must be satisfied simultaneously. Considering practical control scenarios,
the trade-off between state and input responses should also be carefully evaluated. Therefore, the optimal H2
performance index is stated in Definition 2.
Definition 2. If the following condition is satisfied for the energy of state errors and control inputs, the H2
performance index is optimized.

mink {
kT

∑
k=0

eT
x (k)Ωe ex (k) + uT (k)Ωuu (k)} (10)

where Ωe and Ωu are the index matrices whose dimensions correspond to the states and inputs.
Thus, the control effort for the tracking purpose of the T-SFDEM (7) can be ensured not to become

excessively large when multiple performance requirements are met. Therefore, the main tracking problem of
nonlinear descriptor systems is to ensure the asymptotic stability of the tracking error ex (k) by applying the
PDC-based P-D fuzzy tracking controller (6). Based on the closed-loop T-SFDEM (7), stability criteria can
be proposed for the purpose l imk→∞ex (k) = 0 so that the system state x (k) of nonlinear descriptor systems
can approach the desired state xd (k). Moreover, the disturbance dissipativity is guaranteed while achieving
a better balance between tracking performance and control effort by satisfying the passivity constraint (9)
and minimizing the H2 performance (10) in the criteria.

The following section presents the P-D fuzzy tracking synthesis and stability analysis process for
nonlinear descriptor systems.

3 Stability Criteria and Proportional-Difference Fuzzy Tracking Synthesis
By incorporating the robust control stated in Lemma 1, the passive constraint stated in Lemma 2, and

the minimized H2 performance stated in Definition 2, the stability criteria are proposed based on Lyapunov
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theory and the closed-loop T-SFDEM (7). First, the sufficient conditions are derived in the following theorem
to ensure the tracking objective and multiple performances.
Theorem 1. The T-SFDEM (7) achieves the asymptotical stability, passive constraint (9) and minimization of
H2 performance (10) if there exist the positive definite matrices P, Ωe , Ωu , the free-weighting matrices Ξp, Ξd
and the minimized scalar ρ such that the following sufficient conditions are satisfied with the given positive
scalar μ.

⎡⎢⎢⎢⎢⎢⎣

Ψ11 Ψ12 ΞpWα − CT
α

∗ Ψ22 Ξd Wα
∗ ∗ μ − Vα − VT

α

⎤⎥⎥⎥⎥⎥⎦
< 0 f or β = α = 1, 2, . . . , τ (11)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ̃11 Ψ̃12 Ξp (
Wα + Wβ

2 ) − (Cα + Cβ
2 )

T

∗ Ψ̃22 Ξd (
Wα + Wβ

2 )

∗ ∗ μ − (Vα + Vβ
2 ) − (Vα + Vβ

2 )
T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 f or β > α (12)

[−ρ eT
x (0)

∗ −P−1 ] < 0 (13)

where * denotes the transpose item in the matrix inequalities, sym {Λ} denotes the sum of a matrix and its
transpose Λ + ΛT, and the symbols in the conditions (11) and (12) are stated below.

Ψ11 = −P + sym {Ξp
⌢

Q
p

αα} + Ωe + TpT

α ΩuTp
α , Ψ12 = −Ξp

⌢

Q
d

αα +
⌢

Q
pT

αα ΞT
d − TpT

α ΩuTd
α ,

Ψ22 = P − sym{Ξd
⌢

Q
d

αα} + TdT

α ΩuTd
α , Ψ̃11 = −P + sym{Ξp (

⌢

Q
p

αβ +
⌢

Q
p

βα
2 )} + Ωe +

TpT
α Ωu Tp

α + TpT

β Ωu Tp
β

2 ,

Ψ̃12 = −Ξp (
⌢

Q
d

αβ +
⌢

Q
d

βα
2 ) + (

⌢

Q
p

αβ +
⌢

Q
p

βα
2 )

T

ΞT
d −

TpT
α Ωu Td

α + TpT

β Ωu Td
β

2 ,

and Ψ̃22 = P − sym{Ξd (
⌢

Q
d

αβ +
⌢

Q
d

βα
2 )} + TdT

α Ωu Td
α + TdT

β Ωu Td
β

2 .

Proof of Theorem 1. To implement the stability analysis, the Lyapunov function is selected as

V (k) = eT
x (k)Pex (k) (14)

Thus, the first forward difference of the Lyapunov function (14) is derived with the following process.

ΔV (k) = eT
x (k + 1)Pex (k + 1) − eT

x (k)Pex (k) (15)

It is well known that the Lyapunov function (14) is defined in terms of the energy of the tracking error.
As a result, the energy change is expressed by the derivative in (15). The stability analysis aims to achieve the
tracking purpose by ensuring a negative energy change for (15). In addition, the technique of free-weighting
matrix is also considered in the analysis process of this research to reduce the conservativeness. The equation
for the free-weighting matrix is defined according to closed-loop T-SFDEM (7) as follows:

0 = 2 (eT
x (k)Ξp + eT

x (k + 1)Ξd)
⎛
⎝

τ
∑
α=1

τ
∑
β=1

Φα Φβ {−
⌢

Q
d

αβ ex (k + 1) +
⌢

Q
d

αβ e (k) + Wαw (k)}
⎞
⎠

(16)
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Then, the following results are obtained by integrating (15) with the free-weighting Eq. (16).

τ
∑
α=1

τ
∑
β=1

Φα Φβ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

eT
x (k)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P + sym {Ξp
⌢

Q
p

αβ} −Ξp
⌢

Q
d

αβ +
⌢

Q
pT

αβ ΞT
d ΞpWα

∗ P − sym{Ξd
⌢

Q
d

αβ} Ξd Wα

∗ ∗ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ex (k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17)

where ex (k) = [ex (k) ex (k + 1) w (k)]T.
With respect to the strictly input passive constraint (9), the cost function for the passivity analysis is

defined as follows:

C (k) =
kT

∑
k=0

(μwT (k)w (k) − 2eT
y (k)w (k)) (18)

Considering ΔV (k) derived in the form of (17), the following relationship is obtained from the cost
function (18) and the H2 performance constraint under the zero-initial condition.

C (k) =
kT

∑
k=1

(μwT (k)w (k) − 2eT
y (k)w (k) + ΔV (k)) − V (kT)

≤
kT

∑
k=0

(μwT (k)w (k) − 2eT
y (k)w (k) + ΔV (k))

≤
kT

∑
k=0

(wT (k)w (k) − 2eT
y (k)w (k) + ΔV (k) + eT

x (k)Ωe ex (k) + uT (k)Ωuu (k)) (19)

Based on the P-D fuzzy tracking controller (6), the following result is obtained from the right-hand side
ofinequality (19).

τ
∑
α=1

τ
∑
β=1

Φα Φβ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eT
x (k)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P + sym {Ξp
⌢

Q
p

αβ} + Ωe

+TpT

β ΩuTp
β

−Ξp
⌢

Q
d

αβ +
⌢

Q
pT

αβ ΞT
d − TpT

β ΩuTd
β ΞpWα − CT

α

∗ P − sym{Ξd
⌢

Q
d

αβ} + TdT

β ΩuTd
β Ξd Wα

∗ ∗ μ − Vα − VT
α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ex (k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(20)

It is obvious that (20) becomes negative definite if the conditions (11) and (12) are satisfied by Theorem
1 according to the PDC concept. Then, the following results are also derived for the stability, passivity and
H2 performance.

From the relationship in (19), the cost function can be made negative (C (k) < 0) when (20) is ensured to
be negative definite. Compared with the strictly passive constraint in Lemma 2, the inequality (9) is satisfied
accordingly. This also means that the T-SFDEM (7) has the ability to dissipate external disturbance energy.
Then, the asymptotic stability can be proved by considering w (k) = 0. Therefore, Eq. (20) is reduced to the
following form based on the setting.
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τ
∑
α=1

τ
∑
β=1

Φα Φβ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ ex (k)
ex (k + 1)]

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P + sym {Ξp
⌢

Q
p

αβ}

+ Ωe + TpT

β ΩuTp
β

−Ξp
⌢

Q
d

αβ +
⌢

Q
pT

αβ ΞT
d

−TpT

β ΩuTd
β

∗
P − sym{Ξd

⌢

Q
d

αβ}

+ TdT

β ΩuTd
β

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[ ex (k)
ex (k + 1)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21)

It is observed that the negative definite of (21) also can be guaranteed by the conditions (11)
and (12) in Theorem 1. Based on the properties of the free-weighting Eq. (16), w (k) = 0, and the property
eT

x (k)Ωe ex (k) + uT (k)Ωuu (k) > 0 of H2 performance, the result of ΔV (k) < 0 is thus achieved for (15).
According to the Lyapunov theory, the asymptotic stability of the closed-loop T-SFDEM (7) is proved such
that the convergence of tracking error energy can be achieved.

Consequently, the minimization of H2 performance can be verified as follows. If the stability is ensured
by Theorem 1, the following relationship can be derived from (15), (16) and (21).

ΔV (k) + eT
x (k)Ωe ex (k) + uT (k)Ωuu (k) < 0 (22)

The following result is undoubtedly achieved with (22).

eT
x (k)Ωe ex (k) + uT (k)Ωuu (k) < −ΔV (k) (23)

The following relationship is derived by employing the cumulative sum on both sides of inequality (23)
due to the convergence of the state error dynamic.

kT

∑
k=0

(eT
x (k)Ωe ex (k) + uT (k)Ωuu (k)) < eT

x (0)Pex (0) (24)

Then, the following relationship can be obtained from inequality (24) if the condition (13) is satisfied by
Theorem 1.
kT

∑
k=0

(eT
x (k)Ωe ex (k) + uT (k)Ωuu (k)) < eT

x (0)Pex (0) < min (ρ) (25)

From the relationship in (25), it can be observed that the H2 performance index is minimized under
condition (13) by Theorem 1. This indicates that the trade-off between state and input responses can be
optimized while ensuring stability and disturbance dissipativity. ◻

However, the sufficient conditions in Theorem 1 remain in a non-LMI form and involve time-varying
uncertainties. To transform Theorem 1 into an LMI problem solvable by computational programs, the Schur
complement and Lemma 1 are applied in the following theorem.
Theorem 2. The T-SFDEM (7) achieves the asymptotical stability, passive constraint (9), robustness and
minimization of H2 performance (10) if there exist the positive definite matrices Z, Ω

e , Ω

u , the matrices σ 1,
σ 2, Yβ , Gβ , the positive scalar ω and the minimized scalar ρ such that the following sufficient conditions are
satisfied with the given positive scalar μ.
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Z Θ12 −ZCT
α YT

α σ T
1 Z Θ17

∗ Θ22 −Wα −GT
α σ T

2 0 Θ27
∗ ∗ μ − Vα − VT

α 0 0 0 0
∗ ∗ ∗ −Ω−1

u 0 0 0
∗ ∗ ∗ ∗ −Z 0 0
∗ ∗ ∗ ∗ ∗ −Ω−1

e 0
∗ ∗ ∗ ∗ ∗ ∗ −ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 f or β = α = 1, 2, . . . , τ (26)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Z Θ̃12 −Z (Cα + Cβ
2 )

T
(Yα + Yβ

2 )
T

σ T
1 Z Θ̃17

∗ Θ̃22 −(Wα + Wβ
2 ) −(Gα + Gβ

2 )
T

σ T
2 0 Θ̃27

∗ ∗ μ − (Vα + Vβ
2 ) − (Vα + Vβ

2 )
T

0 0 0 0
∗ ∗ ∗ − Ω

u 0 0 0
∗ ∗ ∗ ∗ −Z 0 0
∗ ∗ ∗ ∗ ∗ − Ω

e 0
∗ ∗ ∗ ∗ ∗ ∗ −ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 f or β > α (27)

[−ρ eT
x (0)

∗ −Z ] < 0 (28)

where Ω

e = Ω−1
e , Ω

u = Ω−1
u , and the symbols in the conditions (26) and (27) are stated below.

Θ12 = −ZAT
α − YT

α BT
α + σ T

1 ET
α , Θ22 = sym {σ T

2 ET
α + GT

α BT
α} + ωHαHT

α ,Θ17 = −ZRT
Aα − YT

α RT
Bα + σ T

1 RT
Tα ,

Θ27 = σ T
2 RT

Tα + GT
α RT

Bα , Θ̃12 = −Z (Aα + Aβ
2 )

T
− (YT

β BT
α + YT

α BT
β

2 ) + σ T
1 (Eα + Eβ

2 )
T

,

Θ̃22 = sym {σ T
2 (Eα + Eβ

2 )
T
+ (GT

β BT
α + GT

α BT
β

2 )} + ω (Hα HT
α + Hβ HT

β
2 ),

Θ̃17 = −Z (RAα + RAβ
2 )

T
− (YT

β RT
Bα + YT

α RT
Bβ

2 ) + σ T
1 (RTα + RTβ

2 )
T

,

Θ̃27 = σ T
2 (RTα + RTβ

2 )
T
+ (GT

β RT
Bα + GT

α RT
Bβ

2 ),Yα = Tp
αZ − Td

α σ 1, Yβ = Tp
βZ − Td

β σ 1, Gα = Td
α σ 2, Gβ = Td

β σ 2, σ 1 =

−Ξ−T
d ΞT

p Z, σ 2 = −Ξ−T
d and Z = P−1.

Proof of Theorem 2. In the proof of Theorem 2, the derivation process for the condition (26) is only presented
as an example. In other words, the condition (27) can be derived through a similar process. According to the
Schur complement lemma, the following inequality is obtained from (26) if the condition (26) is satisfied by
the stability criteria in Theorem 2.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Z Θ12 −ZCT
α YT

α σ T
1 Z

∗ sym {σ T
2 ET

α + GT
α BT

α} −Wα −GT
α σ T

2 0
∗ ∗ μ − Vα − VT

α 0 0 0
∗ ∗ ∗ −Ω−1

u 0 0
∗ ∗ ∗ ∗ −Z 0
∗ ∗ ∗ ∗ ∗ −Ω−1

e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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+ ω

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
Hα
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[0 HT
α 0 0 0 0] + ω−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ17
Θ27
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[ΘT
17 ΘT

27 0 0 0 0] < 0 (29)

Then, the following condition is also satisfied by condition (26) due to (29) and inequality (8) in
Lemma 1.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Z −Z
⌢

Q
pT

αβ + σ T
1
⌢

Q
dT

αβ −ZCT
α YT

α σ T
1 Z

∗ sym{σ T
2
⌢

Q
dT

αβ} −Wα −GT
α σ T

2 0

∗ ∗ μ − Vα − VT
α 0 0 0

∗ ∗ ∗ −Ω−1
u 0 0

∗ ∗ ∗ ∗ −Z 0
∗ ∗ ∗ ∗ ∗ −Ω−1

e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (30)

It is evident that the time-varying terms in the uncertainties of (30) can be successfully transformed
into a constant form in (29) for LMI analysis through Lemma 1. With the application Schur complement, the
condition (30) is further transferred into the following form.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Z + ZΩeZ + σ T
1 Z−1σ 1 + YT

α ΩuYα −Z
⌢

Q
pT

αβ + σ T
1
⌢

Q
dT

αβ + σ T
1 Z−1σ 2 − YT

α ΩuGα −ZCT
α

∗ sym{σ T
2
⌢

Q
dT

αβ} + σ T
2 Z−1σ 2 + GT

α ΩuGα −Wα

∗ ∗ μ − Vα − VT
α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (31)

According to the definitions of Yα , Gα , σ 1, σ 2, and Z, the left-hand side of inequality (31) is obtained
from condition (11) by pre- and post-multiplying the following matrices:

⎡⎢⎢⎢⎢⎢⎣

P−1 −P−1ΞpΞ−1
d 0

0 −Ξ−1
d 0

0 0 I

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

P−1 −P−1ΞpΞ−1
d 0

−Ξ−T
d ΞT

p P−1 −Ξ−T
d 0

0 0 I

⎤⎥⎥⎥⎥⎥⎦
(32)

As a result, it is derived that the condition (11) in Theorem 1 can be satisfied if the inequality (31)
holds, which can be guaranteed by the condition (26) in Theorem 2 following the analysis process from (29)
to (32). Analogously, the condition (12) in Theorem 1 can be ensured by the condition (27) in Theorem 2.
In compliance with the analysis process of Theorem 1 and Lyapunov theory, the asymptotic stability of the
tracking error subject to multiple constraints is achieved by satisfying conditions (11)–(13), which are ensured
by the LMI conditions (26)–(28). ◻

Therefore, it is concluded that the closed-loop T-SFDEM (7) achieves the asymptotic stability, passivity,
robustness and minimized H2 performance simultaneously if the conditions (26)–(28) are all satisfied by
the P-D fuzzy tracking synthesis of Theorem 2. Moreover, the conditions (26)–(28) presented in LMI form
are solved and the feasible solutions are conveniently derived using the convex optimization algorithm in
MATLAB or other software. As a final point, the computational complexity of the proposed design process
is discussed in the following remark.
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Remark 2. The computational complexity of the T-SFDM-based fuzzy control and P-D feedback technique in
tracking synthesis for nonlinear descriptor systems can be summarized in the following points:

• [I] The application of the T-SFDM (1), (2) and T-SFDEM (5) within the T-SFM framework can represent
nonlinear descriptor systems as several linear subsystems. Therefore, the control problem of nonlinear
descriptor systems can be tackled using linear techniques. This feature reduces the complexity and
computational requirements in designing a tracking synthesis.

• [II] Corresponding to the T-SFM, the fuzzy controller is also constructed within a linear framework based
on the PDC concept. It is noted that the PDC-based fuzzy controller are blended to obtain the overall
fuzzy controller (6), which are linear combinations of membership functions and linear sub-controllers.
This advantage enables the fuzzy tracking controller to be applied in a linear framework and reduces the
computational complexity when controlling nonlinear descriptor systems.

• [III] Based on the T-SFDEM (5) and the fuzzy controller (6), the fuzzy tracking synthesis can be conveniently
converted into an LMI problem, as presented in Theorem 2. It is well known that the LMI problem can be
easily solved by the computational program so that the computational complexity of tracking synthesis for
nonlinear descriptor systems can be reduced.

• [IV] The P-D feedback technique, which plays an important role in the fuzzy tracking controller (6),
can efficiently transfer the control problem of systems in descriptor form into a general problem. This
advantage reduces the design complexity of tracking synthesis for nonlinear descriptor systems, as presented
in Theorems 1 and 2.

Although the tracking synthesis under the T-SFM and PDC framework can efficiently reduce the
computational complexity, some questions still remain to be discussed. From [43], it is known that the
computational complexity may gradually increase while ensuring the approximation accuracy. This is due
to the increased number of variables in the antecedent part and fuzzy rules. However, the number of these
factors is often not large for practical nonlinear systems, which is observed in the later section.

Before the simulation begins, the following algorithm is provided to make the application of the
proposed fuzzy tracking synthesis clearer.

From Lemma 2, it can be known that a larger parameter μ leads to a more conservative analysis process,
although better disturbance dissipativity can be achieved. Moreover, the preservation of control effort is
somewhat contrary to the ability to handle disturbance effects. This characterization makes the control
problem in Theorem 2 more difficult to solve. Therefore, the value of the parameter is required to be decreased
if feasible solutions cannot be obtained by the solver in Step 3. Based on the design process introduced
in Algorithm 1, two simulation examples are provided to demonstrate the feasibility and applicability of
Theorem 2.
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Algorithm 1: P-D fuzzy controller design process
Step 1: Check whether the system meets the definitions and assumptions.
Step 2: Selecting the parameter μ for the passive constraint (9), the variables Z, Ω

e , Ω

u , σ 1, σ 2, Yβ , Gβ are
obtained by solving Theorem 2 and minimizing ρ with the minimization solver in LMI toolbox
of MATLAB.

Step 3: Check whether the result is feasible. If not, decrease the value of the parameter μ and return to
Step 2. If it is, the feasible solutions are obtained, and proceed to Step 4.

Step 4: With the definition of Yβ = Tp
βZ − Td

β σ 1 and Gβ = Td
β σ 2 in Theorem 2, the control gains Td

β and Tp
β

can be calculated by using the feasible solutions of variables Z, σ 1, σ 2, Yβ , Gβ .
Step 5: Applying the P-D fuzzy controller (6) with the calculated gains Td

β and Tp
β to the nonlinear descriptor

system, simulation results can be obtained.

4 Simulations and Discussions
The tracking control problem for nonlinear descriptor systems is addressed by a fuzzy tracking synthesis

proposed in Theorem 2, which satisfies multiple requirements, including asymptotic stability, passivity,
robustness, and the optimization between state responses and control efforts. Based on the representation of
the T-SFDEM (7), two simulation examples are provided. The first example involves a singular-type system
based on the equivalent circuit model of a DC motor. Moreover, the comparison results with the existing
research are also provided to demonstrate the effectiveness of combining multiple performance constraints.
To verify the effectiveness of the controller design approach based on descriptor form, the second example
examines a general-type system derived from the discretized ship steering model. First, the simulation results
of the DC motor compared with [44] are provided as follows.
Example 1. Referring to [45,46], the singular nonlinear mathematical model is given as follows for the equivalent
circuit system of the DC motor, with the consideration of uncertainties and disturbances.

(3 + Δe1 (k)) x1 (k + 1) = 2.85x1 (k) + x3 (k) − 2u1 (k) − 0.8w (k) (33)
(3 + Δe2 (k)) x2 (k + 1) = 0.0225x1 (k) x2 (k) + (1.875 + Δa22 (k)) x2 (k) + 3u1 (k) + 0.5w (k) (34)
x3 (k) = (0.03 + Δa32 (k)) x2

2 (k) − 0.8w (k) − u1 (k) − (4 + Δb32 (k))u2 (k) (35)

where x1 (k) is the angular velocity, x2 (k) is the current of equivalent circuit, and the expression x3 (k) =
(Km⋅L f ⋅t

J ) x2
2 (k) − u1 (k) − 4u2 (k) represents the algebraic constraint associated with the current energy

characteristics of the DC motor in [45], Km, L f , t, J respectively denote the torque/back emf constant, the
field winding inductance, the sampling time and the moment of inertia, u1 (k) is the load torque and u2 (k)
is the input voltage.
Remark 3. For the control issue of the nonlinear DC motor (33)–(35), the uncertain factors Δa22 (k) =
0.01875sin (k), Δa32 (k) = 0.0003sin (k), Δb32 (k) = 0.04sin (k) and Δe1 (k) = Δe2 (k) = 0.3sin (k) are
considered to account for the effect of temperature on the circuit’s current. Additionally, the disturbance w (k)
is introduced to represent external influences from the environment or human interaction.

Based on references [45,46] and related research [47], it is known that the mathematical model (33)–(35)
has been established for a series DC motor. This type of motor has been efficiently applied in electric traction
systems, such as electric buses and subways, which require large initial torque. However, these applications
often face uncertainties such as wear and tear, as well as disturbances from rough roads. As a result, the
control efficiency of series DC motors must be improved.
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Considering the operating range x2 (k) ∈ [−3.5, 3.5] for the nonlinearities, the T-SFDM of the nonlinear
descriptor system (33)–(35) is constructed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2
∑
α=1

Φα {
⌢

Tα x (k + 1)} =
2
∑
α=1

Φα {
⌢

Aα x (k) +
⌢

Bαu (k) + Wαw (k)}

y (k) =
2
∑
α=1

Φα {Cα x (k) + Vαw (k)}
(36)

where x (k) = [x1 (k) x2 (k) x3 (k)]T, u (k) = [u1 (k) u2 (k)]T and the model matrices are presented
as follows:

T1 = T2 =
⎡⎢⎢⎢⎢⎢⎣

3 0 0
0 3 0
0 0 0,

⎤⎥⎥⎥⎥⎥⎦
A1 =

⎡⎢⎢⎢⎢⎢⎣

2.85 0 3
0.0788 1.8750 0

0 −0.1050 −1

⎤⎥⎥⎥⎥⎥⎦
, A2 =

⎡⎢⎢⎢⎢⎢⎣

2.85 0 3
−0.0788 1.8750 0

0 0.1050 −1

⎤⎥⎥⎥⎥⎥⎦

B1 = B2 =
⎡⎢⎢⎢⎢⎢⎣

−2 0
3 0
−1 −4

⎤⎥⎥⎥⎥⎥⎦
, C1 = C2 = [0 0 1] , W1 = W2 =

⎡⎢⎢⎢⎢⎢⎣

0.8
0.5
0.8

⎤⎥⎥⎥⎥⎥⎦
and V1 = V2 = 0.

(37)

The uncertain matrices are also constructed with the following components.

H1 = H2 =
⎡⎢⎢⎢⎢⎢⎣

0.1 0 0
0 0.1 0
0 0 0.1

⎤⎥⎥⎥⎥⎥⎦
, RT1 = RT2 =

⎡⎢⎢⎢⎢⎢⎣

3 0 0
0 3 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
, RA1 =

⎡⎢⎢⎢⎢⎢⎣

0 0 0
0 0.1875 0
0 −0.0105 0

⎤⎥⎥⎥⎥⎥⎦
,

RA2 =
⎡⎢⎢⎢⎢⎢⎣

0 0 0
0 0.1875 0
0 0.0105 0

⎤⎥⎥⎥⎥⎥⎦
, RB1 = RB2 =

⎡⎢⎢⎢⎢⎢⎣

0 0
0 0
0 −0.4

⎤⎥⎥⎥⎥⎥⎦
, and Δ1 (k) = Δ2 (k) = sin (k) .

(38)

Obviously, the time-varying uncertain terms Δ1 (k) and Δ2 (k) satisfy the prerequisite specified in
Lemma 1. Based on the operating range of x2 (k), the membership function is given for the T-SFDM
(36)–(38) in Fig. 1.

1

x2(k)-3.5 3.50

2�1�

Figure 1: Membership function of nonlinear DC motor system

With the same membership function in Fig. 1 and the same matrices as (37) and (38), the target model
can also be constructed in the form of (4), along with the target state trajectories for the nonlinear descriptor
DC motor system (33)–(35). Based on the T-SFDM with uncertainties (36)–(38), the comparison results
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between the proposed fuzzy tracking synthesis in Theorem 2 and [44] are provided in solving the typical
convergence issue as follows.

In the simulation of Example 1, the typical convergence benchmark for the DC motor is considered to
more clearly demonstrate the effectiveness of the designed P-D fuzzy controller under multiple performance
criteria. In other words, xd (k) is set to the zero vector. Given the parameter μ = 0.1 and the initial condition
x (0) = [20o/s 0 0]T, the following control gains are obtained by solving the LMI control problem in
Theorem 2 using MATLAB and Algorithm 1.

Tp
1 = [0.6213 −0.0026 −1.8922

1.0440 0.1741 −18.2543] , Tp
2 = [0.5841 0.0234 −2.1361

0.9909 0.1955 −17.2680] ,

Td
1 = [ −9.9094 −1.099 −165.4071

−27.7294 −13.8171 −736.1034] , Td
2 = [−9.5387 −1.1170 −161.4641

−26.1619 −13.017 −693.7475] .
(39)

Moreover, the matrices in the minimized H2 performance (10) is obtained as follows:

Ωe =
⎡⎢⎢⎢⎢⎢⎣

0.0105 0.0003 0.0004
0.0003 0.0085 0.0002
0.0004 0.0002 0.0126

⎤⎥⎥⎥⎥⎥⎦
and Ωu = [0.0109 0.0004

0.0004 0.0122] . (40)

In addition, the control gains and H2 performance matrices are also obtained by [44]. Note that only
the H2 performance is considered in the P-D fuzzy controller design of [44] under uncertainties. Although
the control performance can be ensured while preserving the control effort, the designed fuzzy controller
is insufficient to overcome the disturbance effects due to this preservation. Solving the controller design
problem in [44] with MATLAB, the gains are presented as follows:

Fp
1 = [0.1636 0.0045 0.0462

0.7597 0.0049 0.2134] , Fp
2 = [0.1371 0.0017 0.0381

0.5746 0.0020 0.1539] ,

Fd
1 = [ 5.1556 −0.0411 17.0249

24.3057 −0.3913 79.6177] , Fd
2 = [ 4.3365 −0.0470 14.2765

18.4575 −0.2939 60.4652] .
(41)

The matrices in the minimized H2 performance is presented as follows:

Ωe = 10−3 ×
⎡⎢⎢⎢⎢⎢⎣

0.2604 0.0004 0.0249
0.0004 0.2439 −0.0005
0.0249 −0.0005 0.3070

⎤⎥⎥⎥⎥⎥⎦
and Ωu = [ 0.1478 −0.0072

−0.0072 0.1239 ] . (42)

It should be noted that the symbol F for control gains in (41) is equivalent to the symbol T in this
research since the typical convergence problem is considered. Comparing the results (39), (40) and (41), (42),
it is obvious that the control gains obtained by [44] are smaller than obtained by the proposed fuzzy control
approach. This is because the additional passive constraint must be satisfied in Theorem 2 to achieve the
dissipativity of the disturbance energy. Similarly, the matrices in (42) are smaller than in (40) since the H2
performance index is difficult to be minimized when the passive constraint is considered simultaneously.

To better demonstrate the control performance of the proposed method compared to [44], the distur-
bance is shown in Fig. 2, which includes a square wave and an impulse signal. Therefore, the state responses
are presented in Figs. 3–5 by applying the P-D fuzzy controller respectively with the gains (39) and (41) in
the form of (6) to the nonlinear descriptor DC system (33)–(35).
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Figure 2: Disturbance of nonlinear DC motor system

Figure 3: State x1 (k) responses compared with [44]

Figure 4: State x2 (k) responses compared with [44]
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Figure 5: State x3 (k) responses compared with [44]

From Figs. 3–5, it can be observed that the system states achieve asymptotic stability by using both fuzzy
control methods even under the influence of uncertainties and disturbances. However, the responses affected
by disturbances are more drastic when using the method from [44] in Figs. 3 and 5. This is because only the
minimized H2 performance is considered and results in smaller control effort that cannot effectively handle
the disturbance effects. Note that these drastic changes may cause redundant wear and tear in the equipment.
Although the larger overshoots are caused in Fig. 4 by the P-D fuzzy controller designed in this research,
they are still relatively smaller than the overshoots in Fig. 3 when using [44]. Therefore, it can be said that
the proposed multiple performance-constrained fuzzy control synthesis in Theorem 2 provides more reliable
system responses for practical nonlinear descriptor systems under the effect of singularities, uncertainties,
and disturbances.

To more clearly demonstrate the effectiveness of the proposed method, the comparison results of the
evaluation indices are presented in Table 1. Before the table is given, the following symbols are defined for
the different evaluation indices.

Υpass iv e =
μ

kT

∑
k=0

wT (k)w (k)

2
kT

∑
k=0

eT
y (k)w (k)

, ΥH2 =
kT

∑
k=0

eT
x (k)Ωe ex (k) + uT (k)Ωuu (k)

Υn
MSE = 1

kT

kT

∑
k=0

(xn (k) − xnd (k))2 , Υn
MAE = 1

kT

kT

∑
k=0

∣xn (k) − xnd (k)∣

(43)

where MSE denotes the mean squared error, MAE denotes the mean absolute error, kT denotes the terminal
time which is 20 in this simulation, n = 1, 2, 3 denote the state numbers. Note that xnd (k) are all set as zero
in the typical convergence problem.

Based on the definition (43) and matrices in (42), Table 1 is presented as follows.
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Table 1: Evaluation indices of comparison results

Methods Passivity H2 performance MSE MAE

Proposed method Υpass iv e = 0.07488 ΥH2 = 53.4460
< ρ = 55.2689

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Υ1
MSE = 22.0016

Υ2
MSE = 0.0208

Υ3
MSE = 4.3566 × 10−4

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Υ1
MAE = 1.5678

Υ2
MAE = 0.0477

Υ3
MAE = 0.0053

Method in [44] Υpass iv e = 0.4199 ΥH2 = 27.7940
< ρ = 39.9910

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Υ1
MSE = 38.2502

Υ2
MSE = 9.7740 × 10−4

Υ3
MSE = 4.8480 × 10−4

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Υ1
MAE = 1.9255

Υ2
MAE = 0.0093

Υ3
MAE = 0.0059

From the results in Table 1, it is not difficult to find that the MSE and MAE values of the first and third
states are smaller when applying the method, while those of the second state are larger. This trend is also
observed in Figs. 3–5. Moreover, the value ΥH2 calculated according to the definition of H2 performance (10)
by applying the proposed method is larger than that obtained by applying [44]. This is because the passive
constraint must also be satisfied. According to the passive constraint (9) defined in Lemma 2, the value of
Υpass iv e must be less than 1. It is observed that both P-D fuzzy control methods achieve this goal. However,
the value obtained by the proposed method is smaller, which indicates that the energy consumption relative
to the disturbance input energy is higher compared to the method in [44]. Therefore, the P-D fuzzy controller
designed by Theorem 2 can achieve the better trade-off between the state convergence rate and control effort
when stabilizing the DC motor system (33)–(35) even under the uncertainty and disturbance effects.

In the next example, a nonlinear ship steering system modeled in a typical form is considered for the
simulation to verify the P-D fuzzy tracking synthesis based on the descriptor system.
Example 2. In the second example, the following discretized nonlinear ship steering model is presented by
extending the results from [44] with the additional consideration of uncertainties and disturbances.

x1 (k + 1) = x1 (k) + 0.1cos (x3 (k)) x4 (k) − 0.1sin (x3 (k)) x5 (k) (44)
x2 (k + 1) = x2 (k) + 0.1sin (x3 (k)) x4 (k) + 0.1cos (x3 (k)) x5 (k) (45)
x3 (k + 1) = x3 (k) + 0.1x6 (k) (46)
1.0852x4 (k + 1) = −0.0039x1 (k) + (1.0765 + Δa44 (k)) x4 (k) + (0.1 + Δb41 (k))u1 (k) + 0.01w (k) (47)

2.0575x5 (k + 1) − 0.4087x6 (k + 1) = −0.0027x2 (k) + (2.0499 + Δa55 (k)) x5 (k)
− 0.4238x6 (k) + (0.1 + Δb52 (k))u2 (k) + 0.01w (k) (48)

− 0.4087x5 (k + 1) + 0.2153x6 (k + 1) = −0.4102x5 (k) + (0.2150 + Δa66 (k)) x6 (k)
+ (0.1 + Δb63 (k))u3 (k) + 0.01w (k) (49)

y1 (k) = x3 (k) + w (k) (50)

where x1 (k), x2 (k) and x3 (k) are the X position, Y position and yaw angle on earth-fixed coordinate, x4 (k),
x5 (k) and x6 (k) are the ship body-fixed coordinate-based surge motion, sway motion and yaw angular
velocity, u1 (k), u2 (k) and u3 (k) are the control force and moment provided by the thrusters, the detailed
modeling process for (44)–(50) can be found in [44].
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Remark 4. The uncertain factors are considered for the nonlinear ship steering system (44)–(50)
as Δa44 (k) = 0.1085sin (k), Δa55 (k) = 0.2058sin (k), Δa66 (k) = 0.0215sin (k), Δb41 (k) = Δb52 (k) =
Δb63 (k) = 0.01sin (k), Δe1 (k) = 0.1085sin (k), Δe2 (k) = 0.2058sin (k) and Δe3 (k) = 0.0215sin (k). These
factors may be caused by rust, corrosion, wear and tear, and the biofoulings adhering to the ship hull, which
deteriorates the control performance. Moreover, the disturbance is considered to account for sea waves, currents,
and winds generated by the external complex ocean environment. It should be noted that the effects of these
factors on the X and Y position dynamics of the ship are relatively small. Therefore, the uncertainties and
disturbances are incorporated into the velocity equations in (47)–(49).

In the research [48], the author presents a comprehensive discussion of the modeling and control
problem of practical ship steering systems. Moreover, this type of mathematical model has been widely
used in modeling practical ships. It is worth noting that the ship steering system (44)–(49) is also derived
from [48]. Additionally, uncertainty and disturbance factors are included in this research, which are
inevitable and more significant for ship steering systems.

Referring to [44], the operating range is considered within the control scenario of x3 (k) ∈ [−90o, 90o].
Accordingly, the T-SFDM of the nonlinear ship steering system and corresponding membership function
are presented as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3
∑
α=1

Φα {
⌢

Tα x (k + 1)} =
3
∑
α=1

Φα {
⌢

Aα x (k) +
⌢

Bαu (k) + Wαw (k)}

y (k) =
3
∑
α=1

Φα {Cα x (k) + Vαw (k)}
(51)

where x (k) = [x1 (k) x2 (k) x3 (k) x4 (k) x5 (k) x6 (k)]T, u (k) = [u1 (k) u2 (k) u3 (k)]T, and
the model matrices are presented as follows:

T1 = T2 = T3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1.0852 0 0
0 0 0 0 2.0575 −0.4087
0 0 0 0 −0.4087 0.2153

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0.1 −0.1ε1 0
0 1 0 0.1ε1 0.1 0
0 0 1 0 0 0.1

−0.0039 0 0 1.0765 0 0
0 −0.0027 0 0 2.0499 −0.4238
0 0 0 0 −0.4102 0.215

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0.1ε2 −0.1 0
0 1 0 0.1 0.1ε2 0
0 0 1 0 0 0.1

−0.0039 0 0 1.0765 0 0
0 −0.0027 0 0 2.0499 −0.4238
0 0 0 0 −0.4102 0.215

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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A3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0.1ε3 0.1 0
0 1 0 −0.1 0.1ε3 0
0 0 1 0 0 0.1

−0.0039 0 0 1.0765 0 0
0 −0.0027 0 0 2.0499 −0.4238
0 0 0 0 −0.4102 0.215

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B1 = B2 = B3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

0.1 0 0
0 0.1 0
0 0 0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C1 = C2 = C3 = [0 0 1 0 0 0] , V1 = V2 = V3 = 1 and

W1 = W2 = W3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

0.01
0.01
0.01

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(52)

where ε1 = sin (2o), ε2 = cos (88o) and ε3 = cos (−88o). For the T-SFDM (51) and (52), the uncertainties are
constructed with the following matrices:

Δ1 (k) = Δ2 (k) = Δ3 (k) = sin (k) , H1 = H2 = H3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0.1 0 0
0 0 0 0 0.1 0
0 0 0 0 0 0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

RT1 = RT2 = RT3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1.0852 0 0
0 0 0 0 2.0575 0
0 0 0 0 0 0.2153

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

RA1 = RA2 = RA3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1.0852 0 0
0 0 0 0 2.0575 0
0 0 0 0 0 0.2153

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, RB1 = RB2 = RB3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

0.1 0 0
0 0.1 0
0 0 0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(53)

Benefiting from the descriptor system representation, the T-SFDM (51)–(53) can also be utilized to
describe the dynamic behaviors of a typical control system with the full-rank matrices T1 = T2 = T3. This
advantage eliminates the need for additional transformation processes when constructing the mathematical
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model for the ship steering system. Then, the triangular membership function is also designed in Fig. 6 for
the T-SFDM (51)–(53) according to the operating points.

2�
1� 1

x3(k)-90º 90º0

3�

Figure 6: Membership function of the nonlinear ship steering system

Based on the T-SFDM (51)–(56) and Fig. 6, the following target model is also constructed for the
nonlinear ship steering system (44)–(50).

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3
∑
α=1

Φα {
⌢

Tα xd (k + 1)} =
3
∑
α=1

Φα {
⌢

Aα xd (k)}

yd (k) =
3
∑
α=1

Φα {Cα xd (k)}
(54)

To demonstrate the P-D fuzzy tracking synthesis presented in Theorem 2, the tracking problem of time-
varying trajectories is considered for ship steering control in this example. Moreover, the first-order hold is
adopted to construct the target trajectories of xd (k) between different points. Selecting the parameter μ = 1
and the initial condition x (0) = [0 0 0 0 0 0]T, the following gains are obtained by solving Theorem
2 using MATLAB and Algorithm 1.

Tp
1 =

⎡⎢⎢⎢⎢⎢⎣

−0.0132 −0.0004 0.0032 −0.2782 0.0703 −0.0001
0.0002 −0.0587 −0.0519 0.0074 −0.4061 0.0218
−0.0003 −0.1024 −0.1026 0.0527 0.8408 0.0408

⎤⎥⎥⎥⎥⎥⎦
,

Tp
2 =

⎡⎢⎢⎢⎢⎢⎣

−0.0093 0.0014 −0.0004 −0.3992 0.2793 −0.0001
0.0011 −0.0455 −0.0385 −0.0167 −0.6998 0.0167
0.0011 −0.0782 −0.0799 0.1239 0.7400 0.0314

⎤⎥⎥⎥⎥⎥⎦
,

Tp
3 =

⎡⎢⎢⎢⎢⎢⎣

−0.0065 0.0005 −0.0056 −1.5966 0.1529 0.0002
0.0023 −0.0366 0.0095 0.1065 −2.4846 0.0118
0.0005 −0.0553 −0.0623 0.0845 0.8219 0.0231

⎤⎥⎥⎥⎥⎥⎦
,

Td
1 = 104 ×

⎡⎢⎢⎢⎢⎢⎣

0.2643 0.0005 −0.0001 0.8434 0.0020 −0.00003
0.0004 0.2264 0.3003 0.0017 0.7365 0.0196
0.0008 0.3886 1.7370 0.0032 1.2640 0.1630

⎤⎥⎥⎥⎥⎥⎦
,

Td
2 = 104 ×

⎡⎢⎢⎢⎢⎢⎣

0.2029 0.0003 −0.0001 0.6476 0.0013 −0.00001
0.0004 0.1741 0.2182 0.0014 0.5663 0.0137
0.0006 0.2985 1.3416 0.0024 0.9709 0.1259

⎤⎥⎥⎥⎥⎥⎦
,
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Td
3 = 103 ×

⎡⎢⎢⎢⎢⎢⎣

1.5053 0.0021 −0.0006 4.8027 0.0093 −0.0001
0.0023 1.2946 1.5290 0.0092 4.2087 0.0922
0.0045 2.2109 9.9910 0.0182 7.1925 0.9386

⎤⎥⎥⎥⎥⎥⎦
(55)

In order to better align with practical control scenarios for ship steering, the disturbance w(k) is
modeled as a random process in Fig. 7 to simulate the effects of ocean waves, winds, and currents, which
persist over time.

Figure 7: Disturbance of nonlinear ship steering system

Applying the P-D fuzzy tracking controller (6) with the gains in (55), the state responses of the nonlinear
ship steering system (44)–(50) are obtained in Figs. 8–13.

Figure 8: State x1 (k) response of nonlinear ship steering system
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Figure 9: State x2 (k) response of nonlinear ship steering system

Figure 10: State x3 (k) response of nonlinear ship steering system

Figure 11: State x4 (k) response of nonlinear ship steering system
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Figure 12: State x5 (k) response of nonlinear ship steering system

Figure 13: State x6 (k) response of nonlinear ship steering system

In this simulation, the target trajectories for the X and Y positions of the ship are directly provided
for the tracking purpose. Therefore, it is evident from Figs. 8 and 9 that the state responses of the ship can
effectively track the desired trajectories. Ultimately, the ship reaches the designed destination. Figs. 11 and 12
also show that smooth surge and sway motions are achieved during the tracking process, even under the
influence of uncertainties and disturbances. It is important to note that the magnitude of the disturbance
w (k) in Fig. 7, when applied to the state x6 (k) is expressed in radians, so the effect of random disturbance
is significantly more pronounced in Figs. 10 and 13.
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To verify the disturbance dissipating ability of the ship steering system, the following calculation is given
for the strictly input passive constraint (9) in Lemma 2.

μ
220
∑
k=1

wT (k)w (k)

2
220
∑
k=0

eT
y (k)w (k)

= 0.05 < 1 (56)

Thus, it is observed that the disturbance energy can be efficiently reduced in Figs. 11 and 12 when the
passivity (55) is ensured. Finally, the minimized H2 performance in Definition 2 is validated by the following
calculation.

(
220
∑
k=0

eT
x (k)Ωe ex (k) + uT (k)Ωuu (k) = 16.4546) < (ρ = 100) (57)

Note that the minimized parameter in (57) is further larger than the value obtained in Example 1. This is
due to the higher order of the ship steering system compared to the DC motor system. Additionally, a more
complex random process is considered for the ship steering system. As the tracking performance must be
guaranteed, the control effect cannot be minimized to an excessively small value.

Then, the MSE and MAE values are also provided as follows. Note that the main purpose is to directly
track the X and Y positions in this simulation. Because of this reason, these performance indices are only
presented for the first two states of ship steering systems (44)–(50). Based on the results in Figs. 8 and 9, the
MSE and MAE values are calculated as follows:

Υ1
MSE = 1

220

220
∑
k=0

(x1 (k) − x1d (k))2 = 3.9549 × 104,

Υ2
MSE = 1

220

220
∑
k=0

(x2 (k) − x2d (k))2 = 2.3182 × 103,

Υ1
MAE = 1

220

220
∑
k=0

∣x1 (k) − x1d (k)∣ = 173.0075,

Υ2
MAE = 1

220

220
∑
k=0

∣x2 (k) − x2d (k)∣ = 43.5981

(58)

By comparing the MSE and MAE values in (58) with Table 1 of Example 1, it is observed that the values
in this example are much larger. This is because the time-varying trajectory tracking problem is solved and
tracking errors are inevitable, even though good tracking performance is achieved as shown in Figs. 8 and 9.
To clearly demonstrate the tracking performance by using the proposed fuzzy tracking synthesis in Theorem
2, the ship trajectory and the target trajectory are provided in Fig. 14.

Based on Fig. 14, it is worth noting that the ship trajectory can still be well controlled to track the target
trajectory under the influence of uncertainties and disturbances. It is concluded that the proposed P-D fuzzy
tracking synthesis in Theorem 2 provides a more reasonable and applicable solution for practical control
applications in nonlinear descriptor system form.
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Figure 14: Trajectory of the nonlinear ship steering system

5 Conclusion
Based on the T-SFDM, a P-D fuzzy tracking synthesis is proposed for the nonlinear descriptor system

in this research to ensure the tracking purpose while meeting multiple performance requirements. By
representing the system in descriptor form, the proposed fuzzy tracking control approach can solve the
control problems of both singular and typical systems. With the application of the PDC concept and P-
D feedback technique, regularity and causality are ensured, and impulse behavior caused by the algebraic
constraint is efficiently avoided. Considering the effects of uncertainties and disturbances, robust control
and passive constraints are integrated into the fuzzy tracking controller design process. Moreover, the H2
performance index, which evaluates the energy between states and control inputs in a minimized manner, is
introduced to strike a better trade-off between the convergence rate and control effort, while preventing the
control effort from growing too large. Based on the Lyapunov theory, the stability criteria are proposed to
ensure asymptotic stability, robustness, and passivity, as well as minimize H2 performance simultaneously,
and the control problem is then reformulated as an LMI problem. The simulation presents the results of two
examples, including a nonlinear DC motor system in singular form and a nonlinear ship steering system
in typical form controlled by the proposed P-D fuzzy tracking synthesis. The simulation results validate
that the proposed P-D fuzzy controller can achieve smoother state responses and preserve control forces
while simultaneously ensuring the tracking purpose and satisfying multiple performance requirements.
However, the fuzzy tracking synthesis design process still suffers from conservativeness, which prevents the
H2 performance and passivity constraint from reaching an ideal level. Further relaxation of the design process
is worth investigating in future work.
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