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ABSTRACT: With the increasing complexity of hotel selection, traditional decision-making models often struggle
to account for uncertainty and interrelated criteria. Multi-criteria decision-making (MCDM) techniques, particularly
those based on fuzzy logic, provide a robust framework for handling such challenges. This paper presents a novel
approach to MCDM within the framework of Circular Intuitionistic Fuzzy Sets (C-IFS) by combining three distinct
methodologies: Weighted Aggregated Sum Product Assessment (WASPAS), an Alternative Ranking Order Method
Accounting for Two-Step Normalization (AROMAN), and the CRITIC method (Criteria Importance Through Inter-
criteria Correlation). To address the dynamic nature of traveler preferences in hotel selection, the study employs a
comprehensive set of criteria encompassing aspects such as location proximity, amenities, pricing, customer reviews,
environmental impact, safety, booking flexibility, and cultural experiences. The CRITIC method is used to determine the
importance of each criterion by assessing intercriteria correlations. AROMAN is employed for the systematic evaluation
of alternatives, considering their additive relationships and providing a weighted assessment. WASPAS further analyzes
the results obtained from AROMAN, incorporating both positive and negative aspects for a comprehensive evaluation.
The integration of C-IFS enhances the model’s ability to manage uncertainty and imprecision in the decision-making
process. Through a case study, we demonstrate the effectiveness of this integrated approach, offering decision-makers
valuable insights for selecting the most suitable hotel option in alignment with the diverse preferences of contemporary
travelers. This research contributes to the evolving field of decision science by showcasing the practical applicability of
these methodologies within a C-IFS framework for complex decision scenarios.
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1 Introduction
The lodging provided for guests is an essential component of any trip. In this context, the hotels that

visitors choose significantly influence both their emotions and overall travel experiences. Travelers often rely
on various sources to obtain information about hotels in order to select the most suitable option from a wide
range of choices [1]. Kwok and Lau [2] recommended that tourism communities foster interaction among
members of the general public and other travelers. Xiang et al. [3] and Zhang et al. [4] highlighted the role
of online platforms in providing reviews that document hotel guest experiences. Travelers are able to gather
comprehensive information about hotels and tourist destinations by engaging with these online communities
before planning their trips [5].

A compilation of hotel suggestions from online evaluation platforms serves as a useful resource for
travelers [6]. However, these recommendation lists often lack adaptability, making them ineffective in
accommodating the individual needs and preferences of visitors. The increasing prevalence of artificial
intelligence presents challenges in meeting the diverse needs of travelers. A considerable number of scholars
have worked in this domain to identify techniques that could enhance recommendation systems [7,8]. Studies
that provide recommendations based on hotel features remain in their preliminary stages, despite numerous
advancements in the field over the years. Research focusing on recommendations for tourist groups
and traveler types has garnered more attention compared to studies on hotel characteristics influencing
individual choices [9,10]. Suggestions are often informed by various types of travelers and tourist groups.

Hou et al. [11] proposed a comprehensive hybrid decision support model for evaluating the service
quality of economy hotel websites, addressing the inherent uncertainty and psychological behavior of
decision-makers. Unlike traditional evaluation models, this study introduces probabilistic linguistic term
sets to capture the hesitancy and subjectivity in human assessments. The authors combine Analytic Network
Process with a TODIM-PROMETHEE II approach to construct a MCDM framework that considers both the
interdependencies among evaluation criteria and the bounded rationality of users. Their model prioritizes
website features across four key dimensions: customer relationship, information value, service competence,
and usability. Through a real-world case study involving three economy hotel websites in China, the hybrid
model demonstrated robustness, sensitivity, and superiority over traditional MCDM methods. This work
significantly contributes to literature by merging fuzzy logic, behavioral decision theory, and outranking
methods to support complex web-based service evaluations.

In today’s ever-evolving decision-making environment, characterized by increasing system complexity,
decision-makers (DMs) face the significant challenge of selecting the most appropriate solution from a
range of possible alternatives. While determining the difficulty of achieving a specific goal is undoubtedly
challenging, it is not impossible. Many organizations grapple with motivating their employees, defining
objectives, and shaping their worldviews—all of which contribute to the complexity of the decision-making
process. As a result, organizational decisions are often laden with multiple implications. Given these
constantly shifting factors, it is no surprise that DMs are making considerable efforts to develop reliable
methods for solving real-world problems.

1.1 Literature Review
The MCDM method is an efficient cognitive tool, as it enables decision-makers to choose the best option

from a limited number of alternatives based on expert judgments. The concept of a “fuzzy set” (FS) was
initially introduced by Zadeh [12] in his foundational study, providing a framework specifically designed to
represent imprecision. Since then, researchers have developed numerous fuzzy sets and models to address
the inherent ambiguity in real-world situations. Atanassov’s intuitionistic fuzzy sets (IFSs) [13] and Yager’s
q-rung ortho-pair fuzzy sets (q-ROFSs) [14] are key examples within this category. In 2020, Atanassov
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extended his research to include the circular domain, in response to increasingly complex decision-making
scenarios [15], which led to the development of Circular Intuitionistic Fuzzy Sets (C-IFSs), representing a
more advanced methodology.

A significant milestone in computational intelligence (CI) is the evolution of fuzzy set theory from
IFS to C-IFS. The circular version of C-IFS offers a more comprehensive representation of uncertainty,
particularly useful in situations where categorization is difficult. This nuanced approach allows for the
expressive and flexible modeling of complex systems. Due to its distinctive mathematical structure and
enhanced representational capacity, C-IFS serves as a powerful tool for managing complex uncertainties.
Khan et al. [16] proposed new divergence measures for C-IFS and demonstrated their significance in
practical decision-making contexts. Their study illustrated the effectiveness of C-IFS in handling uncertainty,
emphasizing its relevance to complex MCDM problems.

Alkan and Kahraman [17] made a significant contribution by demonstrating the application of C-IFS in
critical decision-making contexts, specifically in selecting pandemic hospital locations, thereby exemplifying
its practical utility. This technique was incorporated into their work related to smart cities. Alsattar et al. [18]
contributed to the development of the Internet of Things (IoT) by designing real-time monitoring devices
for food supply chains using C-IFS. CRITIC was first proposed by Diakoulaki et al. [19], and since then, it has
evolved into a prominent method in MCDM for determining objective weights in complex decision-making
situations. CRITIC has developed into a flexible tool applied across various domains. Its effectiveness lies in
the systematic approach it uses for weight assignment by organizing the evaluation process and integrating
multiple criteria.

Enhancing decision-making in engineering applications, Kizielewicz et al. [20] introduced a fuzzy
normalizing-based Multi-Attributive Border Approximation Area Comparison method. Using Stochastic
Fuzzy Normalization, Kizielewicz and Salabun [21] demonstrated the effectiveness of benchmark re-
identification techniques in engineering decision problems. Further, Kizielewicz et al. [22] compared
re-identification techniques in multi-criteria decision analysis, highlighting variations in model perfor-
mance. Collectively, these studies advance re-identification procedures and normalization strategies, thereby
improving decision-making accuracy in engineering and related fields.

New developments, such as the work of Mishra et al. [23], have provided evidence of the method’s
adaptability in sophisticated MCDM applications within the field. The unique score functions of Fermatean
fuzzy numbers were integrated with CRITIC and GLDS techniques [24]. CRITIC has shown effectiveness
in non-traditional sectors, including software selection, 5G industry appraisal [25], and the selection of
food waste treatment techniques [26]. All of these applications demonstrate the usefulness of CRITIC
across various domains. Market evaluations—such as the assessment of pear varieties in Serbia [27]—
and transformations driven by Industry 4.0 [28] also rely on CRITIC to address contemporary challenges.
Alterations to criterion weight coefficient computations by Žižović et al. [29] demonstrated that CRITIC is
in a continual state of evolution. Liu [30] contributed by incorporating a fuzzy decision-making method
for financial risk evaluation. In another study, Zhu et al. [31] employed the CRITIC-TOPSIS method along
with multiple machine learning algorithms to evaluate aqueous solubility, making a notable contribution
to environmental research. Given the complexities of additive manufacturing, Trivedi et al. [32] proposed
a strategy that combines fuzzy WASPAS and fuzzy CRITIC for selecting wire arc additive manufacturing
processes. Similarly, Qiu et al. [33] used an integrated spherical fuzzy SWARA-WASPAS technique to
accelerate Industry 4.0 implementation in East Africa.
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1.2 AROMAN
In 2023, Bošković et al. [34] presented the AROMAN approach, offering a fresh perspective on

the decision-making process in the realm of cargo bike delivery concepts. Through their study, which
emphasized the system’s flexibility and versatility, they laid the foundation for broader applications in
this field. At the same time, Kara et al. [35] introduced the MEREC-AROMAN approach, developed to
assess levels of sustainable competitiveness. They achieved this by integrating the MEREC technique with
AROMAN through a case study in Turkey, providing valuable insights applicable to real-world situations
in socio-economic planning. In a different study, Yalçın et al. [36] proposed an IF-based model focused on
port performance assessment. This model aimed to expand existing methodologies. IFSs were incorporated
into a comprehensive approach, which was highlighted in a comparison table. The goal of this technique was
to assess the sustainability and efficiency of port operations, offering a clearer picture of the uncertainties
involved in performance evaluation.

A decision-making problem that considers many criteria seeks to choose the most suitable alternative
from a set of options, as opposed to a strategy that only takes one criterion into account. AROMAN [34],
when compared to other techniques such as MABAC [37], TOPSIS [38], ARAS [39], MAUT [40],
CODAS [41], WASPAS [42], CoCoSo [43], VIKOR [44], and SWARA [45], exhibits notable differences. Most
of these methods adhere to the same decision-making principles, the most important of which is the use of
an initial decision-making matrix that incorporates a range of alternative options, assessed against a variety
of often competing criteria. The outcome of any Multiple Criteria Decision Making (MCDM) approach is
a final ranking of the available alternatives, providing decision-makers with a basis for selecting the option
that is most suitable for their situation. Table 1 provides a comprehensive presentation of the overall ratings
of each strategy, which can be found in full.

Table 1: MCDM methods for finding final ranking

MCDM
method

Final ranking formula Description

MAUT TY = ∑n
j=1 Mi j ⋅ w j Utilizing the utility score values that have been

allocated to each alternative allows for the
determination of the final utility score for

eachalternative.
TOPSIS KY = MY

−

MY−+MY+
Location in close proximity to the best possible

positive answer.
ARAS TY = SKY

SK0
The degree of usefulness that is characteristic of

different alternatives.
MABAC βηY = ∑m

j=1 Mi j All that is required of us is to calculate the distance
that each alternative is from the border in general.

After that, we can simply determine the order of the
choices by looking at these distances, which will

allow us to make an informed decision.
WASPAS Ti = λM(1)1 + (1 − λ)M(2)1 Within the range of 0 to 1, the aggregate measure

for each option, where λ denotes the parameter in
the WASPAS approach, may be modified to make

adjustments.

(Continued)
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Table 1 (continued)

MCDM
method

Final ranking formula Description

CoCoSo TY =
(Ti a ⋅ Tib ⋅ Ti c)

1
3+

1
3 (Ti a + Tib + Ti c)

The optimal ranking Ti , where: Ti a , Tib , and Ti c are
the Total Utility of all alternatives.

SWARA w j = M j

∑n
j=1 M j

The ultimate ranking of options for each
decision-maker is sorted by arranging the values in

descending order, taking into consideration the
relative weight of each characteristic.

EDAS TY = 1
2 (KPY + KNY) The evaluation score given to each option, where

KPY and KNY represent the normalised values of
the weighted Positive Distance from Average (PDA)

and weighted Negative Distance from Average
(NDA) of each alternative, respectively.

AROMAN TY = ℶμλ
Y + ℶμ(1−λ)

Y The final ranking of alternatives, which is expressed
by the symbol T1, is established by the effect of the

coefficient λ, which represents the degree of the
criteria type.

The WASPAS approach was developed by Zavadskas et al. [42], who significantly advanced MCDM.
By providing decision-makers with a structured and weighted framework for evaluating and ranking
alternatives based on multiple criteria, this novel approach is particularly useful when negotiating complex
situations. Zavadskas et al. [46] further enhanced decision-making across various domains, offering theo-
retical support for MCDM while also providing a practical and flexible tool for its application. The domain
of MCDM continues to evolve, integrating advanced fuzzy and hybrid models to improve decision-making
precision across different fields.

Garg et al. [47] proposed an extended group decision-making method using IFS information distance
measures, demonstrating the algorithm’s effectiveness in addressing uncertainty in industrial decision-
making contexts. Ayyildiz et al. [48] developed a risk evaluation system for occupational health and safety
in pharmaceutical warehouse settings using PyF Bayesian networks, emphasizing the role of probabilistic
and fuzzy modeling in risk management. Zheng et al. [49] introduced a novel group decision-making
method that combines interval-valued q-rung orthopair fuzzy sets with the CoCoSo approach, enhancing
choice robustness in complex evaluation contexts. The study by Chen et al. [50] analyzes over one million
TripAdvisor reviews using sentiment analysis and a hospitality-specific lexicon to evaluate hotel attributes
across different star ratings. By combining the Kano model with importance-performance analysis, it
identifies which features drive positive or negative ratings, showing that key service priorities vary by hotel
class. Haseli et al. [51] advanced the MCDM process by incorporating spherical fuzzy sets into the Best-Worst
Method, enabling a more sophisticated representation of higher-order uncertainty.

Anum et al. [52] introduced a weighted distance measure for IFS based on a tendency coefficient to
demonstrate its application in intelligent control and information processing. Using dual hesitant fuzzy
logic, Niaz Khan et al. [53] developed an MCDM model to address problems in the hotel sector. Through a
hybrid approach that combines second-order cone programming with multi-criteria decision-making, Tan
et al. [54] conducted a cost-benefit analysis in UK hotels, emphasizing the importance of economic efficiency
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in tourism management. Arıkan Kargı and Cesur [55] identified renewable energy opportunities for hotel
buildings using Analytic Hierarchy Process and Multi-Criteria Optimization and Compromise Solution
methodologies, thereby enhancing sustainable decision-making in the hotel sector. Research emphasizing
the benefits of fuzzy and hybrid MCDM approaches for improving choice accuracy, managing uncertainty,
and optimizing complex decision-making processes is driving their increasing adoption across various
application domains.

1.3 Motivation and Contribution
The study aims to address the increasing complexity of decision-making processes through a case study

focused on hotel selection. In this context, enhanced MCDM approaches are essential to meet the needs
of a wide range of tourists. Traditional decision models are often unsuitable in the hotel industry due to
the complexity of subjective and ever-changing factors involved in the business. C-IFS provide a solution
to the challenges that arise in decision-making situations due to ambiguity and uncertainty. Another key
motivation for this study is the need to explore the interaction between three distinct MCDM approaches—
namely, CRITIC-AROMAN and CRITIC-WASPAS—within the C-IFS framework. This integration aims to
offer decision-makers a combination of tools that are both effective and sophisticated, designed to assist them
in navigating the complex process of selecting a hotel.

• Developed an integrated MCDM framework combining C-IFS with CRITIC, AROMAN, and WASPAS
for hotel selection.

• Enhanced decision-making under uncertainty by leveraging the unique properties of C-IFS to address
imprecision in traveler preferences.

• Contributed methodologically by employing CRITIC for objective criteria weighting, AROMAN for
ranking, and WASPAS for comprehensive evaluation.

• Conducted a case study to validate the effectiveness of the proposed model in a hotel selection context.
• Performed sensitivity analysis to assess the model’s robustness and adaptability to changes in

input parameters.
• Compared the proposed model with existing MCDM techniques to highlight its superiority and

practical applicability.

1.4 Structure of the Paper
Section 2 provides a comprehensive overview of the fundamental concepts of C-IFS, establishing the

foundation for the subsequent sections. Section 3 describes the methodology, illustrating how CRITIC
emphasizes criteria importance, how AROMAN systematically evaluates alternatives, and how WASPAS
conducts an in-depth analysis of the outcomes within the C-IFS framework. After presenting the findings,
insights, and applications of the integrated approach, Section 4 effectively addresses the practical aspects
by applying the method to a real-world hotel selection scenario. In the ever-evolving field of decision-
making, Section 5 summarizes the study, highlighting key issues, implications, and potential directions for
future research. Table 2 presents the abbreviations and their full names.

Table 2: Abbreviations and their full names

Abbreviation Full name
MAUT Multi-attribute utility theory
TOPSIS Technique for order preference by similarity to

ideal solution

(Continued)
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Table 2 (continued)

Abbreviation Full name
ARAS Additive ratio assessment

MABAC Multi-attributive border approximation area
comparison

WASPAS Weighted aggregated sum product assessment
CoCoSo Combined compromise solution
SWARA Step-wise weight assessment ratio analysis
EDAS Evaluation based on distance from average

solution
AROMAN Aggregated ranking of multi-attribute alternatives

using normalization
PYFSs Pythagorean fuzzy sets

IFS Intuitionistic fuzzt set
PFS Picture fuzzy set
SFS Spherical fuzzy set

TODIM Interactive and Multicriteria decision making
MCDM Multi-criteria decision-making
CRITIC Criteria importance through intercriteria

correlation
C-IFSS Circular intuitionistic fuzzy set system
DMs Decision-Makers

q-ROFSs q-rung Ortho-Pair Fuzzy Sets
CI Computational intelligence

GLDS Generalized logarithmic distance similarity
method

2 Preliminaries

2.1 Intuitionistic Fuzzy Sets
Atanassov [13] expanded fuzzy sets with the introduction of Intuitionistic Fuzzy Sets (IFSs). For IFSs,

the sum of the membership and non-membership degrees assigned to each element in a set must be less than
or equal to one, ensuring that the sum is a valid whole. Wu et al. [56] outlined the fundamental principles
governing the operation of Intuitionistic Fuzzy Numbers (IFNs).
Definition 1: [13] Let U be a non-empty set. An IFS Y in U is given by:

Y = {(k, βγ
ητY(k), βγ

ηηY(k)) ∶ k ∈ U}

where the functions βγ
ητY ∶ X → [0, 1] and βγ

ηηY ∶ X → [0, 1] define the degree of membership and the degree
of non-membership of the elements in U, respectively, with the condition that

0 ≤ βγ
ητY(k) + βγ

ηηY(k) ≤ 1, for all k ∈ U
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The degree of hesitancy is computed as follows:

πY(k) = 1 − βγ
ητY(k) − βγ

ηηY(k). (1)

Definition 2: [13] Let A = (βγ
ητA, βγ

ηηA) and B = (βγ
ητB , βγ

ηηB) be two IFNs, then the addition and
multiplication operations on these two IFNs are defined as follows.

A⊕ B = (βγ
ητA + βγ

ητB − βγ
ητA

βγ
ητB , βγ

ηηA
βγ

ηηB) (2)

A⊗ B = (βγ
ητA

βγ
ητB , βγ

ηηA + βγ
ηηB − βγ

ηηA
βγ

ηηB). (3)

Definition 3: Let A = (βγ
ητA, βγ

ηηA) be an IFN, then the score function S(A) and accuracy function H(A) of
A can be defined as as follows:

S(A) = βγ
ητA − βγ

ηηA (4)

H(A) = βγ
ητA + βγ

ηηA. (5)

Definition 4: [56] Let AY = (βγ
ητAY

, βγ
ηηAY

) (i = 1, 2, . . . , n) be a set of IFNs and w = (w1 , w2, . . . , wn)J be
the weight vector of AY with ∑n

i=1 wY = 1, then an IF weighted geometric (IFWG) operator is:

IFWG(A1 , A2, . . . , An)

= (
n
∏
i=1

βγ
ητ

wY

AY
, 1 −

n
∏
i=1

(1 − βγ
ηηAY

)wY) . (6)

Definition 5: [57] Let A = (βγ
ητAY

, βγ
ηηAY

) and B = (βγ
ητBY

, βγ
ηηBY

) be two IFNs. The following is the
formula for calculating the normalised Euclidean distance between these two C-IFNs:

=
�
��� 1

2n

n
∑
i=1
(βγ ητAY

− βγ ητBY
)2 + (βγ ηηAY

− βγ ηηBY
)2

+(πAY − πBY)2 (7)

2.2 Circular Intuitionistic Fuzzy Sets
Research has proposed several expansions of IFSs, such as Pythagorean fuzzy sets (PyFSs) and q-q rung

orthopair fuzzy sets (q-ROFSs). A significant expansion of IFS, the concept of circular IFS (C-IFS), was
introduced by Atanassov [15]. In this section, we provide a brief overview of the fundamentals of C-IFSs. Each
element in a C-IFS is represented by a circle that indicates its membership status. The following definition
clarifies what C-IFS is.
Definition 6: [15] Let U be the universe. A C-IFS Yr in U is an object with the form

Yr = {⟨k, βγ
ητY(k), βγ

ηηY(k); βγ
r⟩ ∶ k ∈ U} , (8)

where 0 ≤ βγ
ητY(k) + βγ

ηηY(k) ≤ 1, and r ∈ [0, 1] is the radius of the circle around each element x ∈ U. The
functions βγ

ητY ∶ E → [0, 1] and βγ
ηηY ∶ E → [0, 1] represent the degree of membership and the degree of non-

membership of the elements x ∈ U, respectively.
The degree of indeterminacy is calculated as follows:

πY(k) = 1 − βγ
ητY(k) − βγ

ηηY(k). (9)
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In contrast to standard IFSs, where each element is represented by a point, in C-IFSs, each element is
represented by a circle with center ⟨βγ

ητY(k), βγ
ηηY(k)⟩ and radius r.

Definition 7: For an IFS ZY, where i is the number of IFS ZY that include kY IF pairs, the IF pairs may be
expressed as {⟨mi ,1 , ni ,1⟩ , ⟨mi ,2 , ni ,2⟩ , . . .}. Next, we find the C-IFS by following these steps. To begin, Eq. (10)
is used to compute the arithmetic average of the IF pairings.

⟨βγ
ητ(ZY), βγ

ηη(ZY)⟩ = ⟨
∑kY

j=1 mi , j

kY
,
∑kY

j=1 ni , j

kY
⟩ , (10)

where kY is the number of pairs in ZY. Then, the radius of ⟨βγ
ητ(ZY), βγ

ηη(ZY)⟩ is the maximum of the
Euclidean distances given in Eq. (11).

βγ
rY = max

1≤ j≤kY

√
(βγ ητ(ZY) − mi , j)

2 + (βγ ηη(ZY) − ni , j)
2. (11)

For a universe X = {Z1, Z2, . . .}, the C-IFS can be expressed as follows.

Ar = {⟨ZY, βγ
ητ(ZY), βγ

ηη(ZY); βγ
r⟩ ∶ ZY ∈ X}

= {⟨ZY, Or(βγ
ητ(ZY), βγ

ηη(ZY))⟩ ∶ ZY ∈ U} (12)

Fig. 1 gives the geometric explanation of C-IFS and IFS.

Figure 1: Graphical explanation of C-IFS and IFS

Definition 8:

L∗ = {⟨c, d⟩ ∶ c, d ∈ [0, 1] & c + d ≤ 1}. (13)

Therefore, Yr can be rewritten in the form:

Yr
∗ = {⟨k, O(βγ

ητY(k), βγ
ηηY(k)); βγ

r⟩ ∶ k ∈ U} , (14)
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where O is a function representing a circle, whose radius is r and center is (βγ
ητY(k), βγ

ηηY(k)).

O (βγ
ητY(k), βγ

ηηY(k)) = {⟨c, d⟩ ∶ c, d ∈ [0, 1],
√

(βγ ητY(k) − a)2 + (βγ ηηY(k) − b)2 ≤ r} ∩ L∗

= {⟨c, d⟩ ∶ c, d ∈ [0, 1],
√

(βγ ητY(k) − c)2 + (βγ ηηY(k) − d)2 ≤ r, c + d ≤ 1} .

Thus C-IFS has the form C = {(⟨k, O(βγ
ητY(k), (βγ

ηηY(k))⟩ ∶ k ∈ U)}. Note that each IFS is a C-IFS
with radius 0. But its converse is not true.

3 Algorithm
Step 1: Presenting the C-IFNs dataset, where AATT (for k = 1, 2, . . . , p) signifies alternatives assessed

across various criteria CCRT (for k = 1, 2, . . . , q). A mathematical statement that characterises our dataset,
which is referred to as C-IFNs, is CCRij = (BYi j , BYi j; Ri j). This dataset contains information on alternatives
evaluated based on various DM criteria. These alternatives are identified by indices i and j, where i is a range
of 1, 2, . . . , p and j is a range of 1, 2, . . . , q. Table 3 provides an overview of eight unique linguistic terms
that are used to characterise each criteria under consideration. The linguistic terms that are related with
competence are shown in Table 4. In addition, we complement these words with others. In order to provide
a thorough information assessment process, this collection of diverse linguistic terms is providing it.

Table 3: Linguistic terms for evaluation in the sports event case study

Linguistic
term

Description (C-IFNs)

Excellent
(EE)

Represents a hotel that exhibits outstanding
alignment with selection criteria, seamlessly
integrates with socio-economic factors, and

demonstrates optimal sustainability
practices.

(⟨0.90, 0.03; 0.02⟩)

Strong (SS) Denotes a hotel that is clear and effective in
meeting selection criteria, showcasing a

strong cultural fit and economic viability.

(⟨0.85, 0.05; 0.04⟩)

Good (GG) Signifies a hotel that requires reasonable
evaluation time, demonstrating satisfactory

community engagement and facilities.

(⟨0.80, 0.10; 0.07⟩)

Adequate
(AA)

Refers to a hotel that consistently performs
across various conditions, showing
adaptability and prioritizing safety

considerations.

(⟨0.75, 0.15; 0.10⟩)

Acceptable
(AAT)

Represents a hotel that can handle the
complexities of hotel selection, scalable to

evolving circumstances.

(⟨0.65, 0.20; 0.15⟩)

(Continued)
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Table 3 (continued)

Linguistic
term

Description (C-IFNs)

Moderate
(MM)

Denotes a hotel that demonstrates
satisfactory performance but with room for

improvement in certain criteria.

(⟨0.60, 0.30; 0.20⟩)

Poor (PP) Indicates a hotel with minimal instances of
incorrectly predicting unsuitability,

addressing concerns promptly.

(⟨0.50, 0.40; 0.30⟩)

Unsatisfactory
(UU)

Represents a hotel with very low instances of
failing to meet selection criteria, ensuring
safety and environmental consciousness.

(⟨0.45, 0.50; 0.40⟩)

Table 4: Decision-makers with linguistic terms for hotel selection

Profession Role Responsibilities Linguistic
terms

Hotel critic Evaluator Analyzes and critiques hotels
based on various criteria,

including amenities, customer
reviews, and sustainability
practices. Provides expert

opinions to guide travelers in
their hotel selection.

Critic,
Analyst,
Reviewer

(EE) (SS) (GG)
Travel blogger Informer Explores and documents hotel

experiences, highlighting
unique features and cultural

aspects. Shares insights with a
broad audience through blog

posts and social media.

Explorer,
Content
Creator,
Informer

(SS) (GG) (AA)
Sustainability

consultant
Advisor Evaluates hotels’ eco-friendly

practices and sustainable
initiatives. Advises hotels on

improving environmental
consciousness and reducing

their ecological impact.

Advisor,
Sustainabil-
ity Expert,
Consultant

(GG) (AA) (AAT)
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Step 2: Calculate the weights of the DM by using the scoring function outlined in Eq. (4). Include the
scores into the Equation that has been specified 15 once they have been evaluated.

ℶ−i j =
∑n

Y(
βγ

ητY−
βγ

ηηY+
√

2βγ r(2s−1)
3 )

∑3
j(∑n

Y
βγ ητY−βγ ηηY+

√
2βγ r(2s−1)

3 )
(15)

Step 3: Calculate the aggregated decision matrix shown as M = [Mi j]q×p using the method detailed
in Eq. (16). This entails using the stated formula in a methodical manner in order to gather together the
pertinent data, which ultimately results in the production of a complete decision matrix.

=

⎛
⎜⎜⎜⎜
⎝

1 − 1

1 + {∑n
i=1 θνγ i ( ξνγ

i
1−ξνγ

i
)

m
}

1
m

, 1

1 + {∑n
i=1 θνγ i ( 1−ωνγ i

ωνγ i
)

m
}

1
m

⎞
⎟⎟⎟⎟
⎠

(16)

Step 4: CRITIC Method
The method is divided into the following parts so that we may evaluate the relative importance of the

MCDM process’s contained criteria:
Step 4.1: Utilising Eq. (17), get the score value of the combined choice matrix.

βγ
ητY − βγ

ηηY +
√

2βγ r(2s − 1)
3

(17)

Step 4.2: Apply Eq. (18) to convert SScc into normal matrix.

S̃Scci j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

SScc i j−SScc−j
SScc+j −SScc−j

, j ∈ CCRb
SScc+j −SScc i j

SScc+j −SScc−j
, j ∈ CCRc

(18)

where SScc+j = max
i

SScci j , SScc−j = min
i

SScci j , CCRb and CCRc represents the benefit-type and cost-type
criteria, respectively.

Step 4.3: Estimating the standard deviations for the criterion by use of Eq. (19).

σj =

�
�����

n
∑
i=1

(SScci j − ¯SScc j)
2

n
. (19)

where ¯SScc j =
n
∑
i=1

S̃Scci j/n

Step 4.4: The correlation coefficient of the criteria concerned is determined by means of the Eq. (20).

r jt =

n
∑
i=1

(SScci j − ¯SScc j) (SScci j − ¯SScct)
�
���

n
∑
i=1

(SScci j − ¯SScc j)
2 (SScci j − ¯SScct)

2
(20)
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Step 4.5: Perform a thorough analysis of the data pertaining to every criteria by using Eq. (21).

ZZ j = σ
m
∑
t=1

(1 − r jt) (21)

Step 4.6: Use the Eq. (22) to determine the objective weight that each criteria.

wj =
ZZ j

m
∑
j=1

ZZ j

(22)

Step 5: AROMAN
To standardise the data input into the decision-making matrix, normalisation must be conducted. After

creating the matrix with the input data, the next step involves normalising the data within the intervals of 0
to 1 by using Eqs. (23) and (24).

Step 5.1: Normalization 1 (Linear):

ℶμi j =
βηi j − βηi j

βηi j − βηi j
, Y = 1, 2, . . . , p; j = 1, 2, . . . , q (23)

Step 5.2: Normalization 2 (Vector):

ℶμ∗i j =
βηi j√

∑m
i=1 βη2

i j

, Y = 1, 2, . . . , p; j = 1, 2, . . . , q (24)

Step 6: For the purpose of standardising the information that has been provided, do the Averaged
Aggregation Normalisation.

For the purpose of carrying out the procedure of aggregated averaged normalisation, Eq. (25) is used
accordingly.

ℶμnorm
i j =

βℶμi j + (1 − β)ℶμ∗i j

2
, Y = 1, 2, . . . , p; j = 1, 2, . . . , q (25)

The phrase ℶμnorm
i j where β acts as a weighting factor within the range of 0 to 1 reflects the aggregated

average normalisation. With regard to our specific circumstances, the variable β gets a value of 0.5.
Step 7: The decision-making matrix, which has been processed by aggregated averaging to achieve

normalisation, should be multiplied by the weights of the corresponding criteria. As shown by Eq. (26), this
procedure results in the production of a weighted decision-making matrix.

ˆℶμi j = Wi j ⋅ ℶμnorm
i j , Y = 1, 2, . . . , p; j = 1, 2, . . . , q (26)

Step 8: Eq. (27) must be employed to distinctly express the normalised weighted values for the criteria
type min(ξνγ

i) and the maximum type (ηηi) under consideration.

ξνγ
=

n
∑
j=1

ℶ̂μi j
(min), Y = 1, 2, . . . , p; j = 1, 2, . . . , q

ηηY =
n
∑
j=1

ℶ̂μi j
(max), Y = 1, 2, . . . , p; j = 1, 2, . . . , q

(27)
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Step 9: Determine the final ranking of alternatives:

R̂Y = ξγ βη + ηη(1−βη)
Y , Y = 1, 2, . . . , p (28)

Step 10: WASPAS method
Step 10.1: Normalise the cost and benefit criterion using Eq. (29).

WWSi j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

SKi j
max

Y
SKi j , j ∈ CCRb

max
Y

SKi j
SKi j , j ∈ CCRc

(29)

Step 10.2: Eq. (30) allows one to obtain the additive relative significance in the weighted normalised
data for every alternative.

Q 1
Y =

n
∑
j=1

WWSi j ⋅ βη j , (30)

where Q 1
Y indicates the additive relative importance of each alternative.

Step 10.3: Calculate the multiplicative relative significance of the weighted normalised data for each
alternative using Eq. (31).

Q2
Y =

n
∏
j=1

WWSβη j
i j . (31)

Step 10.4: The joint generalized criteria (Q) described as follows to combine and generalise additive and
multiplicative methods:

QQY = 1
2
⎛
⎝

n
∑
j=1

WWSi j ⋅ βη j +
n
∏
j=1

WWSβη j
i j

⎞
⎠

. (32)

In addition, apply Eq. (33) to improve ranking accuracy as:

QQY = λ
n
∑
j=1

WWSi j ⋅ βη j + (1 − λ)
n
∏
j=1

WWSβη j
i j . (33)

4 Case Study
This case study has been influenced by the evolving needs of modern travelers, who are increasingly

seeking unique and superior hotel selections. Contemporary travelers exhibit a wide range of motivations
and interests, including a commitment to environmental sustainability, cultural immersion, as well as
more traditional reasons such as business trips and romantic getaways. As a result, there is a need for an
alternative decision-making approach that can address the various factors involved in hotel reservations
comprehensively. This case study is particularly important given the complexity of transportation options
available today. Planning a trip now requires considering numerous factors, such as preferences for facilities,
attractions, pricing, sustainability, safety, and opportunities for cultural engagement. Understanding the
intricacies of these challenges is crucial for hotel operators who aim to meet the ever-changing expectations
of their guests, as well as for travelers seeking to make choices that align with their individual preferences
and tastes.
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This case study demonstrates the practical application of the decision-making framework, helping
travelers identify the alternatives that best align with their specific needs. It serves as a crucial resource for
addressing the evolving demands of the hospitality sector. Moving beyond theoretical discussions, this work
introduces a flexible decision-making model that can be easily adapted to meet the requirements of both
hotel owners and guests. By doing so, it enables informed decision-making that aligns with the complexities
of contemporary travel preferences.

4.1 Definition Machine Learning Models (Alternatives)
1. Hotel A-Luxury Boutique Hotel in the City Center (AAT1):

Hotel A stands as an urban sanctuary, offering a tailored experience amidst the vibrant pulse
of the city. Catering to discerning travelers, it goes beyond traditional accommodation by providing
personalized concierge services, bespoke interiors crafted by renowned designers, and a selection of
amenities that redefine luxury.

2. Hotel B-Resort with Scenic Views and Recreational Facilities (AAT2):
Hotel B serves as the perfect retreat, offering complete privacy alongside breathtaking views of the

surrounding landscape. The establishment combines the traditional resort experience with a variety of
recreational activities, complemented by rejuvenating spa services and serene natural surroundings.

3. Hotel C-Budget-Friendly Accommodations with Essential Amenities (AAT3):
Hotel C sets a new standard for cost-effective accommodations by offering a unique blend of

affordable pricing and essential amenities. It goes beyond simple lodging, presenting a practical choice
for pragmatic travellers.

4. Hotel D-Business-Focused Hotel with Conference Facilities (AAT4):
Hotel D is tailored to meet the needs of modern professionals. The facility boasts state-of-the-

art meeting amenities, high-speed internet access, and a streamlined design that promotes efficiency,
making it the perfect choice for productive business travel.

5. Hotel E-Eco-Friendly Accommodations Emphasizing Sustainability (AAT5):
Hotel E goes beyond traditional accommodation by embracing a vacationing philosophy focused

on environmental and social responsibility. The hotel actively engages in sustainability initiatives,
including energy-efficient systems and waste reduction measures, making a positive impact on both the
environment and the community.

4.2 Definition of Criteria
Location Proximity (CCR1):
This criterion evaluates the hotel’s proximity to public transportation and key tourist attractions. The

goal is to offer guests a luxurious all-inclusive experience, with easy access to the city’s top destinations,
ensuring a seamless and memorable stay.

Amenities and Services (CCR2):
This criterion goes beyond mere assessment by evaluating the hotel’s in-room facilities, which are both

comprehensive and of exceptional quality. A thorough analysis of the available alternatives must take into
account factors such as personalized concierge services and meticulously designed interiors.

Pricing and Affordability (CCR3):
In an era where financial savings are paramount, this criterion evaluates the total cost of the stay,

factoring in any applicable discounts or promotions. This analysis goes beyond simple price assessment to
encompass the overall value of the accommodation.
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Customer Reviews and Ratings (CCR4):
This criterion goes beyond aggregated evaluations by incorporating qualitative analysis derived from

specific feedback provided by previous visitors, based on their individual experiences.
Environmental Impact (CCR5):
This criterion emphasizes the fundamental principles of ethical travel by highlighting the hotel’s

commitment to environmental sustainability. The assessment includes environmentally responsible actions
and evaluates certifications for sustainable practices.

Safety and Security (CCR6):
To ensure the hotel’s physical safety, this criterion evaluates the immediate surroundings of the

establishment, including data on the local crime rate. Additionally, it assesses the safety procedures followed
by the hotel.

Step 1: Experts employ the C-IFNs dataset, integrating linguistic terms from Table 3 for each alternative
AATr (where p = 1, 2, . . . , r), considering diverse criteria CCR, as specified in Table 5.

Table 5: DM’s evaluation

DMs Alternatives CCR1 CCR2 CCR3 CCR4 CCR5 CCR6

DM1

AAT1 EE SS GG GG MM AAT
AAT2 AA SS GG AA AAT MM
AAT3 AAT PP AA UU EE MM
AAT4 MM SS PP MM AAT AA
AAT5 EE MM AAT PP UU GG

DM2

AAT1 PP MM AAT EE AA GG
AAT2 SS AAT PP UU AA MM
AAT3 UU AA SS AAT PP GG
AAT4 MM AAT GG AA EE PP
AAT5 PP UU GG SS MM EE

DM3

AAT1 AAT PP GG MM SS EE
AAT2 SS AAT MM PP AA UU
AAT3 UU PP GG AA SS MM
AAT4 MM AA SS AAT UU EE
AAT5 GG SS MM EE AAT AA

Step 2: To determine the weights of decision-makers (DMs), it is necessary to use the scoring function
that is defined in Eq. (4). After that, the scores that were acquired should be applied to Eq. (15), and the values
that are obtained should be shown in Table 6.
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Table 6: Decision-makers with linguistic terms for hotel selection and their weights

Profession Role Responsibilities Linguistic
terms

Weights

Hotel critic Evaluator Analyzes and critiques hotels
based on various criteria,

including amenities, customer
reviews, and sustainability
practices. Provides expert

opinions to guide travelers in
their hotel selection.

Critic,
Analyst,
Reviewer

(EE) (SS) (GG) 0.4043

Travel blogger Informer Explores and documents hotel
experiences, highlighting

unique features and cultural
aspects. Shares insights with a
broad audience through blog

posts and social media.

Explorer,
Content
Creator,
Informer

(SS) (GG) (AA) 0.3219

Sustainability
consultant

Advisor Evaluates hotels’ eco-friendly
practices and sustainable

initiatives. Advises hotels on
improving environmental

consciousness and reducing
their ecological impact.

Advisor,
Sustainabil-
ity Expert,
Consultant

(GG) (AA) (AAT) 0.2738

Step 3: Utilising Eq. (16), do the calculation of the aggregated decision matrix M = [Mi j]q×p. The results
of this calculation should be shown in Table 7.

Table 7: Aggregated decision matrix

CCRi AAT1 AAT2 AAT3 AAT4 AAT5

CCR1 ⟨0.6529, 0.2440; 0.1381⟩ ⟨0.7365, 0.1603; 0.0500⟩ ⟨0.7235, 0.1765; 1500⟩ ⟨0.6766, 0.2446; 3113⟩ ⟨0.5945, 0.3265; 2955⟩
CCR2 ⟨0.6094, 0.3270; 0.2575⟩ ⟨0.6867, 0.2100; 0.1185⟩ ⟨0.7604, 0.2262; 0.2000⟩ ⟨0.6139, 0.2826; 0.3719⟩ ⟨0.5289, 0.3919; 0.3439⟩
CCR3 ⟨0.5280, 0.4087; 0.3756⟩ ⟨0.6390, 0.2814; 0.2026⟩ ⟨0.6227, 0.2977; 0.2335⟩ ⟨0.5461, 0.3539; 0.4603⟩ ⟨0.4418, 0.4788; 0.4431⟩
CCR4 ⟨0.4187, 0.4813; 0.4668⟩ ⟨0.5744, 0.3463; 0.3092⟩ ⟨0.5573, 0.3797; 0.3035⟩ ⟨0.6852, 0.2353; 0.3388⟩ ⟨0.6035, 0.3170; 3405⟩
CCR5 ⟨0.3383, 0.5822; 0.5707⟩ ⟨0.4979, 0.4227; 0.3977⟩ ⟨0.4631, 0.4575; 3906⟩ ⟨0.6155, 0.3012; 0.4035⟩ ⟨0.5166, 0.4011; 0.4159⟩
CCR6 ⟨0.7210, 0.1994; 0.2928⟩ ⟨0.4161, 0.5207; 0.5008⟩ ⟨0.3671, 0.5533; 0.4920⟩ ⟨0.5471, 0.3732; 0.1125⟩ ⟨0.6540, 0.2460; 0.49790⟩

Step 4.1: To obtain the score of the choice matrix, use Eq. (4) in Table 8 through calculation.
Step 4.2: Convert the matrix ℶ̄− into a C-IFNs matrix utilising Equation (refttt1) from Table 9.
Step 4.3: Utilise the formula presented in Eq. (19) in Table 10 to compute an estimate of the standard

deviations for the criteria.
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Table 8: Score of aggregation matrix

CCR1 CCR2 CCR3 CCR4 CCR5 CCR6

0.2064 0.1898 0.1553 0.1080 0.0612 0.2759
0.2342 0.2238 0.2048 0.1809 0.1440 0.0986
0.2554 0.2324 0.1994 0.1631 0.1197 0.0702
0.2492 0.2254 0.1920 0.2597 0.2249 0.1212
0.1918 0.1562 0.1132 0.2055 0.1601 0.2689

Table 9: Standardized C-IFNs matrix using normalization

CCR1 CCR2 CCR3 CCR4 CCR5 CCR6

0.7709 0.5591 0.5400 1.0000 0.0000 0.3272
0.3328 0.1129 0.0000 0.5195 0.5059 1.0000
0.0000 1.0000 0.0591 0.6367 0.3576 0.4321
0.0972 0.4865 0.1401 0.0000 1.0000 0.2481
1.0000 0.0000 0.4567 0.3572 0.6042 0.9662

Table 10: Standard deviations for the criterion

CCR1 CCR2 CCR3 CCR4 CCR5 CCR6

0.4318 0.4218 0.4212 0.3672 0.3643 0.4763

Step 4.4: To determine the correlation coefficient for the criteria enumerated in Table 11,
employ Eq. (20) supplied.

Table 11: Correlation matrix

CCR1 CCR2 CCR3 CCR4 CCR5 CCR6

1 0.9625 0.9132 0.3068 −0.3440 0.9381
0.9625 1 0.9868 0.1427 −0.1911 0.9132
0.9132 0.9868 1 0.0978 −0.1513 0.9005
0.3068 0.1427 0.0978 1 −0.9981 0.3349
−0.3440 −0.1911 −0.1513 −0.9981 1 −0.3734
0.9381 0.9132 0.9005 0.3349 −0.3734 1

Step 4.5: Evaluate the details of each criterion using Eq. (21) as specified in Table 12.
Step 4.6: Calculate the desired weight for each criteria using Eq. (22), as shown in Table 13. Evaluate

each criteria using Eq. (21), as shown in Table 12.
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Table 12: Weights

CCR1 CCR2 CCR3 CCR4 CCR5 CCR6

0.9600 0.9221 0.9491 1.8787 2.5715 1.0891

Table 13: Normalize weights

CCR1 CCR2 CCR3 CCR4 CCR5 CCR6

0.1147 0.1102 0.1134 0.2244 0.3072 0.1301

Step 5:
Step 5.1: Normalization 1 (Linear) utilizing Eq. (23).

T(i , j) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2291 0.4409 0.4600 0 0 1
0.6672 0.8871 1 0.4805 0.5059 0.1381

1 1 0.9409 0.3633 0.3576 0
0.9028 0.9085 0.8599 1 1 0.2481

0 0 0 0.6428 0.6042 0.9662

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Step 5.2: Normalization 2 (Vector) utilizing Eq. (24)

F(i , j) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.4035 0.4090 0.3939 0.2541 0.1803 0.6543
0.4580 0.4823 0.5194 0.4256 0.4246 0.2338
0.4993 0.5008 0.5057 0.3837 0.3530 0.1664
0.4873 0.4858 0.4868 0.6110 0.6632 0.2875
0.3751 0.3367 0.2870 0.4835 0.4721 0.6378

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Step 6: Table 14 shows how we use Eq. (25) for aggregated averaged normalisation.

Table 14: Aggregated averaged normalization

Alternative CCR1 CCR2 CCR3 CCR4 CCR5

AAT1 0.1582 0.2125 0.2135 0.0635 0.0451 0.4136
AAT2 0.2813 0.3423 0.3799 0.2265 0.2326 0.0930
AAT3 0.3748 0.3752 0.3617 0.1867 0.1776 0.0416
AAT4 0.3475 0.3486 0.3367 0.4027 0.4158 0.1339
AAT5 0.0938 0.0842 0.0717 0.2816 0.2691 0.4010

The variation in β from 0.1 to 0.8 is depicted in Fig. 2.
Step 7: To obtain a weighted decision-making matrix as given in Eq. (26), multiply the aggregated

averaged normalised decision-making matrix by the criteria weights (Table 15).
Step 8: Using Eq. (27) with parameter βη = 0.5 express the normalised weighted values distinctively

for the criterion type min(βηi) and the max type (βηi). Using Eq. (28) in Table 16 get the last ranking of
the choices.
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Figure 2: The variation in β from 0 to 1

Table 15: Aggregated averaged normalized by the criteria weights

Alternative CCR1 CCR2 CCR3 CCR4 CCR5 CCR6

AAT1 0.0061 0.0498 0.0017 0.0684 0.0281 0.0109
AAT2 0.0375 0.0491 0.0422 0.0693 0.0369 0.0637
AAT3 0.0283 0.0184 0.0283 0.0965 0.1362 0.0464
AAT4 0.0447 0.0385 0.0272 0.0904 0.0044 0.0326
AAT5 0.0410 0.0109 0.0513 0.0647 0.0753 0.0306

Table 16: Final ranking of alterntives

Alternatives Sum of all min criteria Sum of all max criteria Final ranking of alternatives
AAT1 0.0109 0.0061 0.1828
AAT2 0.0637 0.0375 0.3760
AAT3 0.0464 0.0283 0.3737
AAT4 0.0326 00.0447 0.3918
AAT5 0.0306 0.0410 0.3676
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Step 9: Use Eq. (29) to normalise the cost and benefit criterion. Table 17 shows values after
normalisation.

Table 17: Normalized decision matrix

Alternative CCcr1 CCcr2 CCcr3 CCcr4 CCcr5 CCcr6

AAlt1 0.7481 0.6880 0.5630 0.5663 0.2217 1
AAlt2 1 0.9554 0.8745 0.5449 0.6148 0.4208
AAlt3 1 0.9100 0.7808 0.4302 0.4688 0.2748
AAlt4 0.9595 0.8680 0.7392 0.4667 0.8661 0.4667
AAlt5 0.7133 0.5809 0.4208 0.5506 0.5954 1

Steps 10.1–10.3: To determine the additive relative significance, multiplicative relative importance, and
joint generalised criterion (Q) in the weighted normalised data for each option, use the Formulae (30)–(32).
The acquired values are shown in Table 18.

Table 18: Normalized decision matrix

Alternative Q1 Q2 QQ Ranking
AAlt1 0.5508 0.5508 0.5163 0.5163
AAlt2 0.6850 0.6850 0.6715 0.6715
AAlt3 0.5798 0.5720 0.5566 0.5566
AAlt4 0.7210 0.7213 0.7063 0.7063
AAlt5 0.6302 0.6301 0.6214 0.6214

4.3 Sensitivity Analysis
Within the C-IFS framework for hotel selection, the sensitivity analysis conducted in this study aims

to assess the reliability and robustness of the combined CRITIC-WASPAS techniques (Fig. 3) and CRITIC-
AROMAN techniques (Fig. 4). By systematically varying key factors βη, the sensitivity analysis provides
insights into the stability of the decision outcomes. This analysis explores how changes in these criteria
influence the final selection of the best hotel option, thereby offering a deeper understanding of the model’s
responsiveness to variations in decision inputs. The sensitivity analysis of decision outcomes, presented
in Table 19, shows a consistent ranking of alternatives by the CRITIC-WASPAS method, denoted as AAT1 to
AAT5, as the parameter βη changes from 0.1 to 0.8. In contrast, Table 20 reveals an inconsistent ranking of
alternatives by the CRITIC-AROMAN method.

4.4 Comparative Analysis
Throughout our comprehensive comparative study, we conducted a systematic investigation into the

practicality and efficiency of decision-making processes within C-IFNs. Moreover, the reliability and consis-
tency of our findings are significantly enhanced by the thorough examination of each component, coupled
with rigorous validation and robustness tests performed throughout the research. These methodological
elements not only contribute to the comprehensive nature of our study but also form the foundation upon
which our conclusive insights are based. The key findings are succinctly summarized in Table 21, which offers
a compelling overview of our work. Our in-depth analysis has provided valuable insights that have allowed
us to fully understand the strengths and weaknesses associated with the various decision-making techniques
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employed within IFNs. At the heart of our study is the provision of reliable insights for decision-makers,
which strategically guide the integration of IFs and enhance our collective understanding of decision-making
within the IF framework.

Figure 3: Visualizing variations with changing parameter (βη) in CRITIC-WASPAS

Figure 4: Visualizing variations with changing parameter (βη) in CRITIC-AROMAN
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Table 19: The influence of the parameter βη on the outcome of the decision with CRITIC WASPAS

βη AAT1 AAT2 AAT3 AAT4 AAT5 Ranking
βη = 0.1 0.4888 0.6607 0.5380 0.6944 0.6144 AAT4 ≻ AAT2 ≻ AAT5 ≻ AAT3 ≻ AAT1
βη = 0.2 0.4957 0.6634 0.5426 0.6974 0.6161 AAT4 ≻ AAT2 ≻ AAT5 ≻ AAT3 ≻ AAT1
βη = 0.3 0.5025 0.6661 0.5473 0.7003 0.6179 AAT4 ≻ AAT2 ≻ AAT5 ≻ AAT3 ≻ AAT1
βη = 0.4 0.5094 0.6688 0.5519 0.7033 0.6196 AAT4 ≻ AAT2 ≻ AAT5 ≻ AAT3 ≻ AAT1
βη = 0.5 0.5163 0.6715 0.5566 0.7063 0.6214 AAT4 ≻ AAT2 ≻ AAT5 ≻ AAT3 ≻ AAT1
βη = 0.6 0.5232 0.6742 0.5612 0.7092 0.6231 AAT4 ≻ AAT2 ≻ AAT5 ≻ AAT3 ≻ AAT1
βη = 0.7 0.5301 0.6769 0.5659 0.7122 0.6249 AAT4 ≻ AAT2 ≻ AAT5 ≻ AAT3 ≻ AAT1
βη = 0.8 0.5370 0.6796 0.5705 0.7151 0.6266 AAT4 ≻ AAT2 ≻ AAT5 ≻ AAT3 ≻ AAT1

Table 20: The influence of the parameter βη on the outcome of the decision with CRITIC-AROMAN

βη AAT1 AAT2 AAT3 AAT4 AAT5 Ranking
βη = 0.1 0.6179 0.8039 0.7633 0.8787 0.7700 AAT4 ≻ AAT2 ≻ AAT5 ≻ AAT3 ≻ AAT1
βη = 0.2 0.3879 0.6290 0.5760 0.7016 0.5894 AAT4 ≻ AAT2 ≻ AAT5 ≻ AAT3 ≻ AAT1
βη = 0.3 0.2592 0.5189 0.4598 0.6845 0.4708 AAT4 ≻ AAT2 ≻ AAT5 ≻ AAT3 ≻ AAT1
βη = 0.4 0.1968 0.4605 0.3988 0.5165 0.4022 AAT4 ≻ AAT2 ≻ AAT5 ≻ AAT3 ≻ AAT1
βη = 0.5 0.1828 0.3760 0.3737 0.3918 0.3676 AAT4 ≻ AAT2 ≻ AAT3 ≻ AAT5 ≻ AAT1
βη = 0.6 0.2112 0.4718 0.4106 0.4990 0.3952 AAT4 ≻ AAT2 ≻ AAT3 ≻ AAT5 ≻ AAT1
βη = 0.7 0.2862 0.4381 0.4105 0.4714 0.4184 AAT4 ≻ AAT2 ≻ AAT5 ≻ AAT3 ≻ AAT1
βη = 0.8 0.4222 0.4488 0.3988 0.4873 0.2757 AAT4 ≻ AAT2 ≻ AAT1 ≻ AAT3 ≻ AAT5

Table 21: Comparison of newly proposed Alternative Options (AOs) with already existing AOs when PP = 0.4

Authors AOs Ranking of alternatives Optimal
alternative

Ashraf et al. [58] C-SFSWWG Alt4 ≻ Alt3 ≻ Alt5 ≻ Alt1 ≻ Alt2 Alt4
Garg et al. [59] Extended EDAS

method
Alt4 ≻ Alt3 ≻ Alt5 ≻ Alt2 ≻ Alt1 Alt4

Alkan et al. [17] Circular
intuitionistic
fuzzy TOPSIS

Alt4 ≻ Alt5 ≻ Alt4 ≻ Alt2 ≻ Alt1 Alt4

Kahraman [60] PFs with
TOPSIS

Alt4 ≻ Alt5 ≻ Alt1 ≻ Alt3 ≻ Alt2 Alt4

Krohling et al. [61] IF-TODIM Alt4 ≻ Alt5 ≻ Alt3 ≻ Alt1 ≻ Alt2 Alt4
Liu et al. [62] q-ROFS

Bonferroni
Alt4 ≻ Alt5 ≻ Alt1 ≻ Alt3 ≻ Alt2 Alt4

Proposed C-IFIDPWA Alt4 ≻ Alt3 ≻ Alt5 ≻ Alt1 ≻ Alt2 Alt4
Proposed C-IFIDPWG Alt4 ≻ Alt3 ≻ Alt5 ≻ Alt2 ≻ Alt1 Alt4
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To contextualize the novelty of C-IFS, we provide a comparative analysis with well-established fuzzy set
models:

• PyFS extends Intuitionistic Fuzzy Sets (IFS) by relaxing the constraint μ2 + ν2 ≤ 1, which allows greater
flexibility in representing uncertainty. While this increases expressiveness, it does not inherently handle
hesitation in a structured manner. In contrast, C-IFS employs a circular geometric approach that bal-
ances membership and non-membership values, providing a more interpretable measure of hesitation.

• q-ROFS generalizes PFS by extending the condition to μq + νq ≤ 1, offering an increased capacity for
representing higher degrees of uncertainty. However, as q increases, the interpretability of membership
functions becomes more complex. In contrast, C-IFS provides a structured representation with mem-
bership and non-membership confined within a circular boundary, enhancing both intuitiveness and
computational stability.

• PFSs introduce a neutral membership degree alongside membership and non-membership, which
is useful when neutrality is significant. However, in decision-making scenarios where hesitation is
crucial, C-IFS offers a more flexible and nuanced approach to characterizing uncertainty, thanks to its
circular representation.

• SFS extends PFS by incorporating three-dimensional membership structures, which enhances its ability
to capture complex uncertainties but also increases computational complexity. C-IFS, on the other
hand, retains an intuitive two-dimensional structure while improving the representation of hesitation,
maintaining both simplicity and expressive power.

• Neutrosophic Sets allow independent assignment of truth, indeterminacy, and falsity degrees. While
this flexibility is valuable, it can lead to inconsistency. C-IFS, in contrast, ensures consistency by
inherently accounting for hesitation within a bounded circular representation, reducing concerns
about inconsistency.

The key innovations and advantages of C-IFS over these alternative models include:

• C-IFS ensures that all decision values remain within a circular boundary, preventing infeasible repre-
sentations and enhancing the stability of the decision-making process.

• Unlike q-ROFS and PFS, which extend membership constraints mathematically, C-IFS incorporates
hesitation within a geometric space, making it easier to interpret and apply in decision-making contexts.

• While models such as SFS and NS introduce additional parameters that may increase computa-
tional complexity, C-IFS maintains computational efficiency while preserving a robust representation
of uncertainty.

4.5 Discussion
The study investigates the outcomes, implications, and overall insights gained from applying the C-IFS

framework for hotel selection in conjunction with the integrated CRITIC-AROMAN and CRITIC-WASPAS
methodologies. The comprehensive research conducted in a real-life scenario led to valuable findings, with
Hotel D, a commercial hotel offering conference rooms, being identified as the most suitable alternative.

The CRITIC method, by effectively determining the importance of criteria, reveals that business-
oriented amenities, particularly conference facilities, are critical to the decision-making process. The
thorough evaluation conducted by AROMAN further underscores the significance of Hotel D and its ability
to meet the specific needs of corporate guests. The complete analysis provided by WASPAS considers
both the positive and negative aspects of the evaluated alternatives, enhancing the robustness of the
decision-making process.
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The selection of Hotel D illustrates a strong awareness of factors such as amenity availability, safety,
and the specific requirements of business travel. In addition to addressing the practical constraints of
the decision-making problem, the result highlights the efficacy of the integrated approach in identifying
subtle aspects across multiple criteria. This application provides decision-makers with tailored insights that
align with their specific needs, showcasing the potential of the integrated methodology to address complex
decision scenarios.

By demonstrating how these approaches, when applied within a C-IFS framework, can benefit situations
such as hotel selection, the study contributes to the growing body of knowledge in decision science. The
discussion concludes with reflections on the research findings, their implications for hotel decision-making,
and potential future directions for MCDM research.

4.6 Limitations
While the proposed C-IFS-based decision-making model demonstrates strong applicability in hotel

selection, several limitations must be addressed to improve methodological transparency and practical
implementation:

1. The integration of multiple methodologies, including C-IFS, CRITIC, AROMAN, and WASPAS,
increases the computational burden, particularly for large-scale decision problems.

2. The determination of fuzzy set parameters, especially hesitation and membership degrees in C-IFS, may
introduce subjectivity, potentially affecting the model’s consistency.

3. Sensitivity analysis reveals that small fluctuations in input data can influence ranking outcomes. A more
extensive robustness check is necessary to assess the model’s stability in varying conditions.

4. The model’s accuracy depends heavily on the availability and quality of input data. In data-scarce envi-
ronments, hybrid approaches that combine expert judgment with machine learning-driven imputation
techniques could enhance the model’s reliability.

5. While the model has been validated in a hotel selection scenario, broader applicability across industries
such as healthcare, energy, and supply chain management requires further empirical testing to confirm
its effectiveness.

6. The complexity of integrating multiple methodologies may reduce interpretability for decision-makers.
Enhancing model transparency through visual analytics and explainable AI techniques could facilitate
its practical adoption in real-world decision support systems.

5 Conclusion
In conclusion, this research introduces a novel approach to MCDM in hotel selection, utilizing the

C-IFS framework in conjunction with the CRITIC-AROMAN and CRITIC-WASPAS methodologies. The
study delves into the complexities of hotel selection and the evolving preferences of tourists through a detailed
classification approach. The systematic application of this integrated method in a real-world scenario reveals
that Hotel D, which caters to business travelers and provides conference facilities, emerges as the most
suitable choice. This finding demonstrates the effectiveness of the integrated approach in providing decision-
makers with unique insights tailored to diverse contexts, underscoring its practical significance in identifying
subtle distinctions.

The research highlights the effective application of each methodology, emphasizing their roles in
assessing alternatives, conducting comprehensive analyses, and establishing the importance of various
criteria. The paper contributes to the field of decision science by demonstrating the efficacy of these
strategies within the C-IFS framework and their relevance to complex decision-making problems, such as
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hotel selection. The sensitivity analysis further illustrates the model’s responsiveness to variations in input
parameters, showcasing its adaptability.

However, the integration of multiple methodologies and the C-IFS framework may demand significant
computational resources, potentially limiting scalability for larger datasets. The accuracy and reliability of the
proposed algorithm are influenced by several important constraints. Notably, the subjectivity in determining
fuzzy parameters, such as expert assessments and pre-defined membership functions, can introduce biases,
potentially compromising the accuracy of decision results. Furthermore, the model’s sensitivity to minor
changes in input parameters can lead to variations in the final rankings, affecting the stability of the decision-
making process. The model’s performance is also heavily dependent on the availability and quality of data,
which may impact its effectiveness in data-scarce environments.

To address these limitations, future research can focus on the following areas:

• Developing computationally efficient algorithms to enhance the scalability of the model for handling
larger decision problems, ensuring applicability in more complex scenarios.

• Exploring alternative parameter determination techniques to reduce subjectivity, improving the relia-
bility and robustness of the decision outcomes by minimizing biases in expert judgments.

• Extending the framework to other industries, such as healthcare, transportation, and sustainable energy,
to validate its broader applicability and demonstrate its versatility in diverse decision-making contexts.

• Investigating hybrid decision-support models that integrate machine learning with fuzzy logic-based
MCDM approaches to enhance decision accuracy and adapt to dynamic environments.

• Enhancing interpretability by simplifying the integration of multiple methodologies, providing more
user-friendly decision-support tools to practitioners and decision-makers, making the model more
accessible and easier to apply in real-world settings.

By addressing these aspects, future research can further refine and expand the applicability of the
proposed MCDM model, enhancing its adaptability to a wider range of complex decision-making scenarios
across various industries.
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22. Kizielewicz B, Wiȩckowski J, Franczyk B, Waţróbski J, Sałabun W. Comparative analysis of re-identification
methods of multi-criteria decision analysis models. IEEE Access. 2025;13:8338–54. doi:10.1109/ACCESS.2024.
3524672.

https://doi.org/10.1016/j.ijhm.2023.103459
https://doi.org/10.1016/j.dss.2019.02.004
https://doi.org/10.1016/j.tourman.2016.10.001
https://doi.org/10.1016/j.cie.2020.106421
https://doi.org/10.1016/j.tourman.2019.03.009
https://doi.org/10.1016/j.ijhm.2019.01.003
https://doi.org/10.1016/j.jocs.2018.09.006
https://doi.org/10.1016/j.ijinfomgt.2017.11.001
https://doi.org/10.1016/j.ins.2018.08.014
https://doi.org/10.1016/j.tourman.2018.02.007
https://doi.org/10.3390/math11122776
https://doi.org/10.1016/j.engappai.2022.105455
https://doi.org/10.3233/JIFS-219193
https://doi.org/10.1109/JIOT.2023.3305910
https://doi.org/10.1016/0305-0548(94)00059-H
https://doi.org/10.1016/j.engappai.2024.109736
https://doi.org/10.22190/FUME240916004K.
https://doi.org/10.22190/FUME240916004K.
https://doi.org/10.1109/ACCESS.2024.3524672
https://doi.org/10.1109/ACCESS.2024.3524672


2182 Comput Model Eng Sci. 2025;143(2)

23. Mishra AR, Chen SM, Rani P. Multi-criteria decision-making based on novel score function of Fermatean fuzzy
numbers, the CRITIC method, and the GLDS method. Inf Sci. 2023;623:915–31. doi:10.1016/j.ins.2022.12.031.
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