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ABSTRACT: Most reliability studies assume large samples or independence among components, but these assump-
tions often fail in practice, leading to imprecise inference. We address this issue by constructing confidence intervals
(CIs) for the reliability of two-component systems with Weibull distributed failure times under a copula-frailty
framework. Our construction integrates gamma-distributed frailties to capture unobserved heterogeneity and a copula-
based dependence structure for correlated failures. The main contribution of this work is to derive adjusted CIs
that explicitly incorporate the copula parameter in the variance-covariance matrix, achieving near-nominal coverage
probabilities even in small samples or highly dependent settings. Through simulation studies, we show that, although
traditional methods may suffice with moderate dependence and large samples, the proposed CIs offer notable benefits
when dependence is strong or data are sparse. We further illustrate our construction with a synthetic example
illustrating how penalized estimation can mitigate the issue of a degenerate Hessian matrix under high dependence and
limited observations, so enabling uncertainty quantification despite deviations from nominal assumptions. Overall, our
results fill a gap in reliability modeling for systems prone to correlated failures, and contribute to more robust inference
in engineering, industrial, and biomedical applications.
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1 Introduction
Reliability is essential for the continuous operation of modern engineering and technologi-

cal systems, particularly in sectors where uninterrupted service is vital to safety and efficiency
[1–3]. Critical infrastructures, such as power grids, transportation networks, and healthcare systems, depend
on uninterrupted functionality to mitigate severe consequences such as power outages, transportation
disruptions, and failures of medical devices, which can lead to loss of life, economic damage, or environ-
mental harm. Recent advances in areas such as blockchain technology [4] and robust statistical methods for
geostatistical data [5] have contributed to improving the reliability of these essential systems. A key challenge
in reliability analysis is to capture the interdependence of system components, often referred to as common
mode failures [6].
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Although the assumption of independence is commonly made for mathematical convenience, it can
produce an issue of imprecise inference when components share factors or conditions that increase the
probability of simultaneous or correlated failures. To address this issue, researchers have proposed various
models that move beyond strict independence. For instance, composable modeling techniques have been
used to describe complex systems [7], and methods like Monte Carlo simulation [8] help to manage structural
dependence [9].

Advances on the topic have been proposed. Functional links between components—represented,
for example, in failure-tree or block-diagram models—underscore the complexity of accurate reliability
estimation with dependence [7,10]. Although redundancy is used to improve reliability, it may exacerbate
underestimation when components share covariates [11–14]. Copula methods are suited to modeling corre-
lated structures in competing risks [1,15] and positive dependence among components, which is critical for
realistic analysis [16–20].

Despite these advances, there remains a gap in constructing accurate confidence intervals (CIs) for
small-scale series systems with strong dependence, as many existing studies focus on larger systems or
making simplifying assumptions [21]. In a two-component series system, the overall failure occurs at
whichever component fails first. When the two components are positively correlated, one typically observes
low reliability because an early failure in one component is more likely to coincide with an early failure in the
other, resulting in a shorter overall system failure time. Although copula-based methods and frailty models
have been extensively examined [22–26], recent work proposes further generalizations to multivariate or
cured-fraction settings [27,28], highlighting the broader potential of combining copula-based methods and
frailty models. However, their integration in small-sample series systems remains relatively unexplored.

Building on the likelihood-based frailty-copula framework for competing risks proposed in [24], we
extend that framework by incorporating a gamma distributed frailty term [29] into a two-component system,
where the failure time of each component follows a Weibull distribution [30,31]. Our key innovation lies in
capturing both unobserved heterogeneity and conditional association via a Gumbel copula. By examining
varying dependence levels and sample sizes, we show how these two sources of correlation—frailty variance
and copula-based tail dependence—affect the accuracy of inference under challenging yet practically relevant
conditions. Also, we present a penalized-estimation case study designed to mimic a real-world scenario
where unexpectedly high dependence or sparse data can cause the Hessian matrix to degenerate under the
maximum likelihood (ML) method. This case study is an illustrative example that underscores how our
framework can still yield interval estimates (albeit with potential bias) when real data are not available and
small-sample issues are severe.

Throughout the article, we use a consistent set of symbols and acronyms, which are listed in Table 1 in the
order of first appearance. Sections are arranged as follows. Section 2 provides background of copula-based
methods and frailty models for reliability analysis. In Section 3, we describe the methodology for modeling
competing risks data. In Section 4, CIs are constructed for dependent systems under ML estimation
and delta-method. Section 5 conducts simulations, showing the roles of dependence and censoring in
coverage probabilities (CPs) for Weibull-distributed failure times. In Section 6, we offer a synthetic example
illustrating how penalized estimation can handle degenerate Hessian matrices under strong dependence and
small samples. Section 7 concludes with findings and ideas for future research.

2 Theoretical Background
In this section, we present two main approaches in reliability analysis: copula-based methods for

capturing dependence and frailty models for handling unobserved heterogeneity. These approaches form
the basis for our proposed competing risks model with dependent failure times.
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Table 1: Notation used throughout the article (in order of first appearance) in all the cases with i ∈ {1, . . . , n} and
j ∈ {1, 2}

Symbol Definition/Description

rule n Total number of independent units (or items/components) under study.
Ti j Failure time of mode j for unit i.
δi j Indicator with δi j = 1 if unit i fails due to mode j, and δi j = 0 otherwise.
ti Observed failure time for unit i.
Zi Frailty for unit i, assumed Zi ∼ Gamma (1/η, η) independent and identically

distributed.
η Variance parameter of the frailty distribution, denoted as Var[Zi] = η.
α j Shape parameter of the Weibull distribution for the failure time of mode j.
λ j Scale parameter of the Weibull distribution for the failure time of mode j.
α, λ Generic notation for shape α and scale λ parameters of Weibull distributions, when

the subscript j is implicit.
CDF Cumulative distribution function
FTi j(t), STi j(t) Marginal CDF and survival function for failure time Ti j.
Cθ(Ti1 , Ti2) Bivariate copula function with parameter θ for modeling dependence between Ti1

and Ti2.
θ Gumbel copula parameter, where θ ≥ 1.
τ Nonparametric measure of association named the Kendall tau.
STi1 ,Ti2(t1 , t2) Joint survival function of between Ti1 and Ti2, that is, Pr(Ti1 > t1 , Ti2 > t2).
f (ti , j) Density contribution at time ti for mode j in the likelihood function if δi j = 1.
L(θ), �(θ) Likelihood and log-likelihood functions, where θ = (α1 , λ1 , α2, λ2, η, θ).
θ̂ Maximum likelihood (ML) estimator of the parameter vector θ.
Σ̂ Estimated covariance matrix via the Fisher information for θ̂.
tp , j p-th percentile (quantile) of the marginal distribution of Ti j, with 0 < p < 1.
p Probability level for quantiles or survival in reliability, such as p ∈ {0.05, 0.50, 0.95}.
t̂ p , j , ŷp , j =
log(̂tp , j)

Estimated quantile and its log-transform, used for constructing CIs for the reliability
of failure mode j.

CI(tp , j) Confidence interval (CI) for the p-th percentile tp , j.
αCI Significance level used in constructing (1 − αCI) × 100% CIs.
n j , r j Sample size (n j) and number of observed failures (r j) for mode j.
SE Standard error.
MTTF Mean time to failure which summarizes reliability at the system level.

2.1 Copula-Based Methods for Dependency Structures
Copula-based methods are especially helpful for modeling the system reliability when component

failures are dependent. These methods allow analysts to separate the marginal failure-time behavior from
the joint dependence structure. Such methods are essential in real-world applications, where the assumption
of independence among components is often unrealistic.

In essence, a copula is a bivariate cumulative distribution function (CDF) defined on the unit
square I2 ≡ [0, 1]2, which connects marginal distributions to form a joint distribution [18]. This is helpful
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in reliability problems where component failure times are correlated in ways that independent models
cannot capture.
Definition 1: A bivariate copula is a function C: I2 → I ≡ [0, 1], satisfying:
(i) Boundary conditions–For all u ∈ I , C(0, u) = C(u, 0) = 0 and C(1, u) = C(u, 1) = u.
(ii) Two-increasing property–For all 0 ≤ u1 < u2 ≤ 1 and 0 ≤ v1 < v2 ≤ 1, C(u2, v2) − C(u1 , v2) −

C(u2, v1) + C(u1 , v1) ≥ 0.
Definition 1 ensures that the copula encodes the dependence between two random variables.
Because a copula has uniform marginals on [0, 1], it effectively couples the one-dimensional distribu-

tions to form the joint distribution -a concept widely applied in reliability, finance, and other fields [32]. A
fundamental result in copula theory is the Sklar theorem given next.
Theorem 1 (Sklar): Let T1 and T2 be random variables with joint CDF F and marginal CDFs F1 and F2,
respectively. Then, there exists a copula C such that F(t1 , t2) = C (F1(t1), F2(t2)) . If F1 and F2 are continuous,
C is unique. Conversely, for any copula C and continuous marginal CDFs F1 , F2, the function (t1 , t2) ↦
C (F1(t1), F2(t2)) is a valid joint CDF.

The Sklar result presented in Theorem 1 underpins much of copula theory by separating marginal
distributions from the dependence structure. This remains true in bivariate and multivariate contexts [18].
Corollary 1: Let F be a joint CDF of (T1 , T2) with continuous marginal CDFs F1 and F2. Then, the associated
copula can be expressed as C(u, v) = F(F−1

1 (u), F−1
2 (v)), where F−1

j denotes the quantile (or pseudo-inverse)
function of Fj. Consequently, if F1 and F2 are the marginal CDFs, C serves as the joint CDF of (U , V) =
(F1(T1), F2(T2)), which are uniformly distributed on [0, 1].

An immediate implication of the Sklar theorem is that the product copula Π(u, v) = uv fully charac-
terizes the joint distribution of two independent random variables. Any deviation from this product implies
dependence between the variables. In practice, more flexible copulas—such as Clayton, Frank, or Gumbel—
are often needed to capture complex dependence patterns.

2.2 Frailty Models for Failure Times in Competing Risks
Traditional reliability analysis often assumes that failure times are mutually independent. However, this

assumption is frequently violated in systems where dependence exists. Correlated frailty models, as discussed
in [33], offer a convenient framework for incorporating such dependence.

Parametric and semiparametric Bayesian frailty models [34] also handle shared risks effectively.
Moreover, various estimation and extension approaches (such as the expectation-maximization algorithm
for semiparametric hazards [35], and the developments presented in [36,37]) further enhance the modeling
of correlated failure times under frailty frameworks.

A typical frailty model consists of three main parts as follows [38]:
• A frailty term representing latent or unobserved heterogeneity.
• A baseline risk function, which can be either parametric or nonparametric.
• An optional fixed-effects term to incorporate observed covariates.

Based on [24], we adopt a gamma distributed frailty to account for unobserved heterogeneity when
modeling the failure times of two components using the Weibull distribution under competing risks. This
adoption captures additional dependence arising from latent factors that affect both modes of failure in a
single unit. In addition, we adapt the CI construction proposed in [39] to incorporate both the covariance
structure of our frailty model and the dependence parameter of the copula. This provides a robust framework
for inference on the system reliability when failure times are dependent.
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In many real scenarios involving multiple competing risks, accurately capturing the interplay between
shared risks (through a frailty) and direct dependence (through a copula) is critical. Therefore, we propose a
framework merging both frailty and copula components to achieve a comprehensive characterization of the
system reliability with dependent competing failure modes.

2.3 Advantages of the Proposed Framework
By combining a gamma-distributed frailty with a specific copula (here, the Gumbel family), our frailty-

copula approach offers the following advantages:

• It captures unobserved heterogeneity through the latent variable Zi , for i ∈ {1, . . . , n}, allowing certain
units to be more frail or more robust without explicit covariates.

• It enables conditional tail dependence beyond what a simple frailty model can account for—an effect
introduced through the Gumbel copula structure. This is especially valuable in high-risk scenarios where
correlated early failures can occur more often than basic models suggest.

These two sources of dependence –the gamma distributed frailty Zi and the Gumbel copula parameter
θ– provide complementary ways to model correlation. Specifically, θ measures the conditional association
(such as the Kendall tau, τ = 1 − 1/θ) given Zi = z, for i ∈ {1, . . . , n}, whereas the variance η of Zi also influ-
ences the marginal (overall) correlation observed in the data. Hence, if η > 0, the total correlation can differ
from 1 − 1/θ when viewed unconditionally. Such a dual-layered perspective is particularly relevant when
real-world factors create both large heterogeneity across units and direct dependence among components or
failure modes.

3 Modeling Competing Risks with Dependent Failure Times
In this section, we first present and adapt the frailty-copula framework introduced in [24], focusing

on a two-component system with Weibull distributed failure times under competing risks. Then, we go
beyond [24] by deriving CIs for marginal quantiles via a log-transformed delta method, fully incorporating
both the frailty parameter η and the copula parameter θ.

3.1 Competing Risks Model with Gamma Distributed Frailty and Gumbel Copula
In reliability terms, two failure time variables, Ti1 and Ti2 say, for i ∈ {1, . . . , n}, may be interpreted

in two ways: (i) as two possible modes of failure (competing risks) acting on the same item; or (ii) as two
physical components arranged in series, that is, the system fails at mini{Ti1 , Ti2}. Mathematically, both ways
involve observing whichever occurs first, but the practical interpretation (one item with multiple risks versus
a two-component system) depends on the engineering or biomedical context.

We adopt the Weibull distribution for each failure time, due to its well-established versatility in reliability
contexts. It is capable of modeling various hazard shapes, such as increasing, constant, or decreasing failure
rates. Nevertheless, our frailty-copula construction is not intrinsically limited to the Weibull model. In
principle, other parametric forms—such as a generalized linear exponential distribution—could be used
if prior knowledge or data analyses suggest a hazard structure not adequately captured by the Weibull
model. In practice, implementing such alternatives often requires re-deriving the likelihood contributions
for the copula-frailty model, which may lead to integrals without closed-form solutions and additional
numerical complexity.

Moreover, with small sample sizes or strong dependence, identifiability of the extra parameters can pose
further challenges. Given the broad applicability and familiarity of the Weibull model in engineering, we
focus on that baseline here, noting that extensions to other parametric families remain viable future avenues
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under the same modeling framework. Hence, within this formulation based on the Weibull distribution, each
failure time Ti1 or Ti2, for i ∈ {1, . . . , n}, is still governed by the same gamma distributed frailty and copula
structure described below. In practice, only the earliest failure time is observed (along with its corresponding
failure mode), while the remaining mode is censored at that same time.

The proposed model accounts for two distinct sources of dependence: (i) unobserved heterogeneity,
captured by a gamma distributed frailty Zi , for i ∈ {1, . . . , n}. This allows, as mentioned, certain units to be
more frail or more robust, reflecting latent factors not explained by observable covariates; (ii) conditional
tail dependence, introduced via a Gumbel copula. Even after controlling for the shared frailty, correlated
failure times can occur more frequently than predicted by a simple gamma distributed mixture alone. This
is particularly relevant in high-risk scenarios where early failures tend to cluster.

In this study, we mainly adopt the viewpoint of two failure modes competing for the same item, but our
formulas also apply to a two-component series arrangement with minimal modifications.

The Weibull distributed baseline and other options are considered next. Following [24] and usual
practice in reliability studies, we adopt a Weibull distribution for each failure time. This adoption is motivated
by the flexibility of the Weibull model in describing a range of hazard shapes and its common usage in
engineering contexts. Although we focus on the Weibull distribution here, the framework can accommodate
other parametric baselines (for example, exponential, gamma, generalized linear hazard distributions), or
even semiparametric models, if domain knowledge or data characteristics suggest a different modeling
strategy. In particular, a generalized linear exponential distribution could also be utilized within the
same frailty-copula structure, albeit with different hazard formulations and potentially more challenging
estimation details.

Next, we describe the gamma-distributed frailty. We introduce a gamma distributed frailty variable
Zi , independently drawn for unit i, with i ∈ {1, . . . , n}, to account for unobserved shared risk factors.
Specifically, we assume that Zi ∼ Gamma(1/η, η), with E[Zi] = 1 and Var[Zi] = η. Thus, the frailty term
Zi represents the unit-specific unobserved heterogeneity, where values greater than one indicate higher
susceptibility (greater frailty), and values below one are units with lower risk (more robust).

Given Zi = z, each failure time Ti j, for mode j ∈ {1, 2}, follows a Weibull distribution with shape α j > 0
and scale λ j > 0. Thus, the conditional survival function of Ti j is given by

STi j Zi = z(t) = exp(−z ( t
λ j
)

α j

) , t > 0.

To induce dependence between Ti1 and Ti2 conditional on Zi = z, we employ the Gumbel copula
stated as

Cθ(u, v) = exp(−((− log(u))θ + (− log(v))θ)1/θ) , (u, v) ∈ (0, 1)2, θ ≥ 1.

Hence, the joint conditional survival function of (Ti1 , Ti2) given Zi = z is formulated as
STi1 , Ti2 Zi = z(t1 , t2) = Cθ (STi1 Zi = z(t1), STi2 Zi = z(t2)), for t1 > 0, t2 > 0. To obtain the unconditional joint
survival function for (Ti1 , Ti2), we integrate out the frailty Zi via the expression defined as STi1 ,Ti2(t1 , t2) =
∫
∞

0 STi1 ,Ti2 Zi = z(t1 , t2) fZi(z)dz, for t1 > 0, t2 > 0, where fZi is the gamma density with shape 1/η and
scale η. Because the above integral generally lacks a closed-form expression, numerical or simulation-based
techniques are required for practical inference [40,41].
Remark [Model identifiability]: Including both the gamma-frailty variance η and the Gumbel copula
parameter θ in the model can raise identifiability issues when sample sizes are small or when covariate
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information is limited [33,38]. In such scenarios, additional structure (such as repeated observations per unit
or covariates) may be needed to separate unobserved heterogeneity from direct dependence.

Some implications and special cases are the following. Our frailty-copula method captures two com-
plementary types of dependence: (i) extra-multiplier risk factors via Zi (unobserved heterogeneity), and
(ii) conditional tail dependence via the copula. A simpler special case arises if we assume conditional inde-
pendence given Zi = z, that is, STi1 ,Ti2 Zi = z(t1 , t2) = STi1 Zi = z(t1)STi2 Zi = z(t2). Under Weibull distributed
marginals plus gamma distributed frailty, this leads to a known closed-form for the unconditional joint
survival [38] stated as

STi1 ,Ti2(t1 , t2) = (1 + η ( t1

λ1
)

α1

+ η ( t2

λ2
)

α2

)
−1/η

.

Even though this independence assumption given Zi = z eliminates direct copula-based dependence,
the shared frailty η can still induce marginal correlation among (Ti1 , Ti2).

3.2 Marginal Survival and Quantiles
Regardless of the specific copula, the marginal survival function for mode j follows from integrating

out the frailty as

STj(t) = ∫
∞

0
exp(−z ( t

λ j
)

α j

) fZ(z)dz = (1 + η( t
λ j
)

α j

)
−1/η

, t > 0.

Hence, the marginal p-th quantile tp , j satisfies STj(tp , j) = 1 − p, which implies

tp , j = λ j (
(1 − p)−η − 1

η
)

1
α j

, 0 < p < 1. (1)

Thus, although the joint distribution may be complex, the marginal survival functions and quantiles
emerge in closed form. This feature proves convenient for constructing reliability-based CIs and for
evaluating system-level performance measures.

3.3 Mean and Variance of Marginal Failure Times
In the simpler gamma-Weibull mixture model setting, where each unit experiences a single failure mode

and no additional copula structure is introduced, closed-form expressions for the mean and variance of the
marginal failure times can be obtained.

Consider the shape and scale parameters α j > 0 and λ j > 0 of the Weibull distribution conditional
on the gamma distributed frailty Zi , and let η > 0 be the variance of the gamma distributed frailty,
Zi ∼Gamma(1/η, η). It is established [33,38] that for integer values m satisfying m/α j < 1/η, a general
expression for the m-th moment, and from this the first and second moments, are given, for i ∈ {1, . . . , n} and
j ∈ {1, 2}, by

E[T m
i j ] =

λm
j Γ ( 1

η
− m

α j
) Γ (1 + m

α j
)

Γ( 1
η
+ 1)

,E[Ti j] =
λ jΓ (

1
η
− 1

α j
) Γ (1 + 1

α j
)

Γ ( 1
η
+ 1)

,E[T2
i j] =

λ2
j Γ ( 1

η
− 2

α j
) Γ (1 + 2

α j
)

Γ( 1
η
+ 1)

.
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Then, the variance follows immediately, for i ∈ {1, . . . , n} and j ∈ {1, 2}, as

Var[Ti j] = E[T2
i j] − (E[Ti j])

2 =
λ2

j Γ ( 1
η
− 2

α j
) Γ (1 + 2

α j
)

Γ ( 1
η
+ 1)

−

⎛
⎜⎜⎜⎜
⎝

λ jΓ(
1
η
− 1

α j
) Γ(1 + 1

α j
)

Γ ( 1
η
+ 1)

⎞
⎟⎟⎟⎟
⎠

2

.

Note that, as η increases, both E[Ti j] and Var[Ti j] increase, for i ∈ {1, . . . , n} and j ∈ {1, 2}, reflecting
greater unobserved heterogeneity among the units. High values of η also result in increased marginal
correlation among the failure times Ti1 and Ti2, even without an explicit copula parameter such as θ.

3.4 Dependence Structure and Identifiability in Competing Risks
Introducing a Gumbel copula Cθ conditional on the gamma distributed frailty Zi does not alter the

marginal distributions of each failure time associated with mode j. Indeed, the univariate survival functions
remain stated as

STi j(t) = ∫
∞

0
exp(−z ( t

λ j
)

α j

) fZ(z)dz, t > 0, i ∈ {1, . . . , n}, j ∈ {1, 2}.

where fZ , as mentioned, is the gamma distributed frailty density. However, once the copula is introduced,
the joint survival function is presented as

STi1 ,Ti2(t1 , t2) = ∫
∞

0
Cθ (exp(−z ( t1

λ1
)

α1

) , exp(−z ( t2

λ2
)

α2

)) fZ(z)dz, t1 > 0, t2 > 0, i ∈ {1, . . . , n},

generally lacks a closed-form expression. Consequently, joint reliability metrics must be evaluated via
numerical quadrature or other approximation methods. This copula-frailty structure is especially valuable
for capturing potential tail dependence that goes beyond what is explained by shared frailty alone.

A natural way to measure and interpret the strength of such dependence in reliability studies is through
the Kendall tau, denoted by τ, owing to its invariance under monotonic transformations and the ease of
deriving closed-form expressions in certain copula families [18]. When dependence arises purely from the
gamma distributed frailty, failure times (Ti1 , Ti2) of each mode are conditionally independent given Zi , for
i ∈ {1, . . . , n}, and the resulting (unconditional) dependence typically increases with the frailty variance η.
By contrast, our bivariate Gumbel copula with parameter θ ≥ 1 induces an additional conditional correlation,
reflected in τ∣Z = (θ − 1)/θ. Upon integrating out Z, the overall Kendall tau depends on both η and θ, with
larger values of either parameter leading to stronger observed dependence.

However, an important practical challenge arises because only the earliest failure time and its cause
are typically observed in competing risks. This partial information can make it difficult to disentangle the
roles of shared frailty (governed by η) and copula-based dependence (governed by θ) [42]. Additional
structural assumptions or more detailed data, such as repeated failures per unit, supplementary covariates,
or expert knowledge—may be needed to ensure identifiability [24,33]. In their absence, it can be inherently
challenging to isolate how much of the dependence is truly due to unobserved heterogeneity rather than a
direct association between the failure times of the two modes.

4 Maximum Likelihood Inference
In this section, we estimate the model parameters using the ML method and construct CIs for the

reliability of dependent systems based on the ML estimation and delta methods.
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4.1 Estimation
We outline parameter estimation via the ML method. Consider n independent units subject to two

competing failure modes. For unit i, we observe the earliest failure time ti =mini{Ti1 , Ti2} and indicators
δi j, where δi j = 1 if failure occurs by mode j ∈ {1, 2}, and δi j = 0 otherwise. Consequently, if δi1 = δi2 = 0, the
observation for unit i is right-censored. We estimate the parameter vector θ = (α1 , λ1 , α2, λ2, η, θ), where α j
and λ j are the Weibull shape and scale parameters for mode j, η is the variance parameter of the gamma-
distributed frailty, and θ is the Gumbel copula parameter capturing tail dependence.

The likelihood function for observed data (ti , δi1 , δi2), with i ∈ {1, . . . , n}, is defined as

L(θ) =
n
∏
i=1

f1(ti)δi1 f2(ti)δi2 STi1 ,Ti2(ti , ti)1−(δi1+δi2), (2)

where f j is the density for the failure time of mode j computed as f j(t) = −∂/∂t jSTi1 ,Ti2(t1 , t2)∣t1=t2=t for
j ∈ {1, 2}.

Under the frailty-copula model, the joint survival function STi1 ,Ti2 involves an integral over the gamma-
distributed frailty combined with the copula. Numerical integration and differentiation techniques must be
employed to evaluate the likelihood components accurately. Taking the logarithm of the function formulated
in (2), we obtain the log-likelihood function �(θ) given by

�(θ) =
n
∑
i=1
{δi1 log( f1(ti)) + δi2 log( f2(ti)) + (1 − δi1 − δi2) log(STi1 ,Ti2(ti , ti))} .

Since δi1 + δi2 ≤ 1, at most one density term is active per observation, and the survival function term
appears only in censored observations. ML estimates are obtained numerically by solving θ̂ = arg maxθ �(θ),
typically through quasi-Newton or similar optimization algorithms. In more complex cases—particularly
when both the frailty variance η and the copula parameter θ must be estimated—additional constraints or
prior information may be required to ensure identifiability.

In practice, several considerations are essential to achieve robust inference. First, to avoid numerical
instability or overflow, one can optimize η and θ on a logarithmic scale, guaranteeing their positivity and
promoting stable convergence. Second, convergence diagnostics should include verification of gradient
norms and examination of the Hessian matrix definiteness, ensuring the algorithm attains a global rather
than a local maximum. Then, once the model has converged, the asymptotic covariance matrix Σ can be
estimated by inverting the observed Fisher information matrix, that is, the negative Hessian matrix evaluated
at the ML estimates. This enables the use of the delta method to construct CIs for derived reliability measures
and quantiles, as described next.

4.2 Confidence Intervals for Marginal Quantiles
We now focus on constructing CIs for the marginal quantiles tp , j, where STj(tp , j) = 1 − p, in the

presence of a frailty-copula model, for j ∈ {1, 2}. Because tp , j is a nonlinear function of the parameter vector
θ, traditional CI formulas cannot be applied directly. Instead, we use a log-transformation combined with
the delta method to derive an asymptotic approximation for the quantile variance. Define the log-quantile
by yp , j = log(tp , j), for 0 < p < 1, j ∈ {1, 2}, and let ŷp , j be its estimate obtained by plugging the ML estimate
θ̂ into the marginal quantile function defined in (1). By linearizing yp , j around θ̂, the delta method provides
an approximate standard error (SE).
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Specifically, if ŜE( ŷp , j) denotes the estimated SE of ŷp , j, then an approximate (1 − αCI) × 100% CI for
the log-quantile is given by [ ŷp , j − zαCI/2ŜE( ŷp , j), ŷp , j + zαCI/2ŜE( ŷp , j)], where zαCI/2 is the standard normal
quantile corresponding to the chosen confidence level. Exponentiating both endpoints yields the desired
interval for tp , j, [exp(y

p , j
), exp(yp , j)], for 0 < p < 1 and j ∈ {1, 2}.

In terms of practical implementation, evaluating ŜE( ŷp , j) requires computing the gradient of log(tp , j)
with respect to the parameter θ. This can be done using numerical approximations (such as finite differences)
or symbolic differentiation. In particular, recall that tp , j is implicitly defined by the equation given by
STj(tp , j; θ) = 1 − p, for 0 < p < 1 and j ∈ {1, 2}. Thus, differentiating this equation concerning each compo-
nent of θ allows us to track how changes in θ propagate to tp , j. When the model also includes copula and
frailty parameters (θ , η), the corresponding derivatives must incorporate the full covariance structure Σ̂
obtained by inverting the Fisher information matrix and evaluating it at the ML estimate (see Section 4.1).

4.3 Asymptotic Validity and Coverage
Under usual regularity conditions, ensuring that θ̂ is consistent and asymptotically normal, the log-

quantile estimator ŷp , j converges in distribution to a normally distributed random variable centered at the
true yp , j = log(tp , j). Consequently, the resulting CIs achieve the nominal CP 1 − αCI as the sample size grows.
Sufficient conditions include the smoothness of tp , j(θ) (so that the delta method applies) and have enough
observed failures from mode j ∈ {1, 2} to estimate its parameters with precision. In practice, one can further
validate CP accuracy through simulation studies or bootstrap resampling.

By applying a log-transformation and the delta method, we obtain a theoretically justified procedure
for constructing CIs for tp , j. Under regularity conditions, these intervals attain the nominal CP (1 − αCI) as
the sample size increases.

Specifically, let STj denote the true survival function for the failure time of mode j with quantile tp , j ,
and let ŜTj be the fitted counterpart derived from the ML estimate θ̂. Our CI [t p , j , t p , j] must satisfy the
expression formulated as

Pr [tp , j ∈ (t p , j , t p , j)] = Pr [y
p , j
≤ yp , j ≤ yp , j] → 1 − αCI, 0 < p < 1, j ∈ {1, 2},

as n →∞, where yp , j = log(tp , j) and y
p , j

, yp , j are the log-scale bounds obtained via the delta method. For
convergence to be reached, the following three main conditions are usually required:

(i) Consistency and asymptotic normality of the ML estimator distribution θ̂, which ensures a valid linear
approximation of log(tp , j) around the true parameter values.

(ii) Smoothness of the mapping from θ to tp , j, so that partial derivatives exist and the gradient at the true
parameter point is nonzero.

(iii) Sufficient effective sample size for each mode j, with the proportion of observed failures bounded
away from zero and one, thereby guaranteeing stable estimation of both the marginal distribution and
the parameter vector.

When conditions (i), (ii), and (iii) above are met, traditional asymptotic theory [33,38] implies that

Pr [y
p , j
≤ yp , j ≤ yp , j] → 1 − αCI, 0 < p < 1, j ∈ {1, 2},

as n →∞.
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Thus, exponentiating the bounds restores a suitable CP level on the original time scale. In practice, one
can further corroborate these asymptotic results via simulation studies or bootstrap resampling to assess
finite-sample performance.

4.4 Implicit Differentiation and Partial Derivatives
Because yp , j = log(tp , j) is implicitly defined as a nonlinear function of the parameter vector θ̂, we

apply the delta method in conjunction with implicit differentiation to obtain ŜE( ŷp , j). Concretely, recall
that the fitted marginal survival function ŜTj satisfies the relationship stated as ŜTj(exp(yp , j); θ̂) = 1 − p.
Differentiating this relationship with respect to the parameters in θ̂ captures how small changes in θ̂
propagate to yp , j. To organize these effects, let

Δ1, j =
∂ŜTj (exp(yp , j))

∂yp , j
= − f j (exp(yp , j)) exp(yp , j), 0 < p < 1, j ∈ {1, 2}, (3)

where f j is the fitted marginal density of the failure time for mode j. The partial derivative presented in (3)
tracks the sensitivity of ŜTj to infinitesimal shifts in yp , j. In parallel, let

Δ2
2, j =

∂ exp(yp , j)
∂θ̂

⊺

Σ̂
∂ exp(yp , j)

∂θ̂
, 0 < p < 1, j ∈ {1, 2}, (4)

where Σ̂ is the asymptotic covariance matrix (obtained from the inverse observed Fisher information at θ̂),
and ∂ exp(yp , j)/∂θ̂ is the gradient vector of exp(yp , j)with respect to θ̂. The two partial derivatives presented
in (3) and (4) combine to yield

ŜE( ŷp , j) =

√
Δ2

2, j

∣Δ1, j∣
, 0 < p < 1, j ∈ {1, 2}.

Under usual regularity assumptions, including the consistency and asymptotic normality of θ̂, we have
ŜE( ŷp , j)

P#→ 0 as n j →∞, which ensures that the delta-method-based CIs for tp , j converge to the correct
nominal CP, where P#→means convergence in probability to.

4.5 Taylor Expansions and Coverage Probability
To further elucidate why the proposed CIs converge to the nominal level, we use a Taylor expansion

of the estimated marginal survival function ŜTj around the true log-quantile yp , j = log(tp , j). Define a small
shift by means of ỹp , j = yp , j + z1−αCI/2Δ2, j/∣Δ1, j ∣, where Δ1, j and Δ2, j are defined in (3) and (4), respectively,
for 0 < p < 1 and j ∈ {1, 2}.

By expanding ŜTj(exp( ỹp , j)) around yp , j, we get

ŜTj(exp( ỹp , j)) ≈ ŜTj(exp(yp , j)) +
∂ŜTj (exp(yp , j))

∂yp , j

⎛
⎝

z1−αCI/2
Δ2, j

∣Δ1, j∣
⎞
⎠
+ Rn , j , 0 < p < 1, j ∈ {1, 2},

where Rn , j = op(1), that is, the order of approximation. Since ŜTj(exp(yp , j)) ≈ STj(tp , j) = 1 − p, and recall-
ing Δ1, j < 0, the shift in ŜTj is approximately given by (1 − p) − z1−αCI/2Δ2, j + Rn , j .
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An analogous argument applies to the lower bound y
p , j

. Hence, the event {ŜTj(exp( ỹp , j)) ≤ (1 − p) ≤
ŜTj(exp(y

p , j
))} translates into a statement about the standardized difference (ŜTj(tp , j) − STj(tp , j))/Δ2, j ,

which converges in distribution to a normal distributed standard random variable by the delta method and
the asymptotic normality of the distribution for θ̂. As the sample size n j (the effective sample size for mode
j) becomes large, this probability approaches 1 − αCI.

4.6 Asymptotic Normality and Slutsky Theorem
Under regularity conditions ensuring that θ̂ is both consistent and asymptotically normal distributed,

the random variable is defined as (ŜTj(tp , j) − STj(tp , j))/Δ2, j
D#→ Normal(0, 1), for 0 < p < 1 and j ∈ {1, 2},

where D#→ means convergence in distribution to. Moreover, the remainder terms in the Taylor expansion
vanish as n j →∞. The Slutsky theorem guarantees that the true CP converges to 1 − αCI. Consequently, the
log-transformed delta-method CI for tp , j attains the nominal CP as the sample grows.

In summary, the asymptotic validity of our interval estimators for tp , j follows from a combination of
(i) implicit differentiation of the quantile definition, (ii) taylor expansions around the true log-quantile,
and (iii) traditional asymptotic results on ML estimators, culminating in a robust procedure for quantifying
uncertainty in marginal quantiles under dependent competing risks.

5 Simulation Study
This section describes a simulation study aimed at evaluating our proposed CIs for the reliability of

a two-component series system, where component lifetimes follow Weibull distributions with a gamma-
distributed frailty and are linked by a Gumbel copula. We assess the CPs of these CIs under different
dependence levels (quantified by Kendall’s tau, τ) and various censoring rates. We further compare our
adjusted intervals with two traditional approaches and examine how the sample size affects the mean time
to failure (MTTF).

5.1 Setup and Frailty-Dependence Modeling
We adopt a gamma-distributed frailtyZ to capture unobserved heterogeneity among units, governed by

the variance parameter η. As η approaches zero, the frailty collapses to Z = 1 (no extra heterogeneity). Larger
values of η imply stronger unobserved heterogeneity, typically increasing the marginal correlation of failure
times. Conditionally on Z = z, each component follows a Weibull distribution with shape α j and scale λ j,
for j ∈ {1, 2}. Beyond the shared frailty, a Gumbel copula (parameterized by θ ≥ 1) introduces additional tail
dependence. This setup accommodates both latent heterogeneity (via η) and direct association (via θ).

5.2 Implementation and Comparison of Interval Methods
For each generated dataset of size n, we estimate the parameter vector θ = (α1 , λ1 , α2, λ2, η, θ) by

maximizing the full log-likelihood function introduced in Section 3. As there is a closed-form for the integral
over the gamma frailty or the partial derivatives of the copula-based survival function, we rely on numerical
integration combined with finite-difference approximations as follows:

• We use integrate() (the base R adaptive quadrature routine) or simple Monte Carlo methods to
evaluate the integrals over the gamma frailty distribution.

• We employ numDeriv for finite-difference approximations of partial derivatives, which are needed to
compute f j(t) in the likelihood.
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• We call optim() (BFGS or L-BFGS-B) for quasi-Newton optimization, facilitating parameter con-
straints (such as positivity of η, θ) and promoting stable convergence.

Following the expression stated in (2), each observation (ti , δi1 , δi2) contributes a density term f j(ti) if
δi j = 1, or a survival term STi1 ,Ti2(ti , ti) if the observation is censored. To avoid numerical under-/overflow
and to ensure positivity (or boundedness) of parameters, we often reparametrize η and θ on a log-scale. For
instance, if θ must satisfy θ ≥ 1, we let θ∗ ∈ R and define θ = 1 + exp(θ∗), where θ∗ is the unconstrained
parameter manipulated by the optimizer, guaranteeing that θ ≥ 1. Convergence is monitored by checking
the gradient norm and the definiteness of the Hessian matrix. If the Hessian matrix is nearly singular –for
instance, due to strong dependence or small sample sizes– we optionally add a mild ridge penalty to stabilize
the fit.

5.3 Coverage Probability
We adopt the procedure outlined in Algorithm 1 to obtain empirical CPs for the proposed CI methods.

In each simulation replicate, we generate a latent gamma distributed frailty Zi ∼ Γ(1/η, η), use a Gumbel
copula (parameter θ) to introduce dependence among the Weibull-distributed times, and optionally impose
right-censoring.

After generating (tobs, i , δi1 , δi2) for each unit, we compute the log-likelihood function, substituting
f j(t) = −∂/∂t jSTi1 ,Ti2(t1 , t2)∣t1=t2=t into the expression stated as (2), and maximize it via quasi-Newton
routines. Once θ̂ is obtained, we invert the observed Fisher information to estimate the covariance matrix.
A log-transform delta method then provides CIs for marginal quantiles tp , j (see Section 4 for details).

Algorithm 1: Monte carlo simulation procedure
Input:

Nrep: number of replicates
n: sample size
Parameters (α1 , α2, λ1 , λ2, η, θ)
Optional censoring rate or times {Ci}, for i ∈ {1, . . . , n}
for r = 1 to Nrep do

Step 1: Generate the data
1.1 Generate a gamma distributed frailty Zi ∼ Γ(1/η, η) for i ∈ {1, . . . , n}.
1.2 Condition on Zi = z and sample (Ti1 , Ti2) (Weibull) with copula Gumbel(θ).
1.3 Compute Tobs, i =min{Ti1 , Ti2}.
1.4 Determine δi1 , δi2 accordingly, applying right-censoring if desired.
Step 2: Evaluate the log-likelihood function
2.1 Numerically integrate over Zi to obtain STi1 ,Ti2(t, t).
2.2 Approximate derivatives to get f j(t).
2.3 Substitute in the expression stated as (2) to form the likelihood function.
Step 3: Estimate the parameters
3.1 Maximize the negative log-likelihood function (optim with BFGS).
3.2 Reparameterize λ j = exp(ϕ j), η = exp(ϕη), θ = 1 + exp(ϕθ).
3.3 Add mild ridge penalty if Hessian matrix is near-singular,
3.4 Check convergence and definiteness of the Hessian matrix.

(Continued)
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Algorithm 1 (continued)
Step 4: Construct confidence intervals

4.1 Invert the observed Fisher information to get Σ̂.
4.2 Apply a log-delta method for each marginal quantile tp,j.
4.3 Obtain CIDep, CIML, CILogit.
Step 5: Coverage Probability Computation

5.1 Record whether each true value lies inside the computed CIs.
5.2 Calculate the empirical coverage probability (CP) as the fraction of replicates covering the true

parameter or quantile.
end for

Output:
Empirical CPs for each CI method.

Following the steps in Algorithm 1, we evaluate the CP for each triple (n, θ , censoring_rate),
where n is the sample size, θ ≥ 1 is the Gumbel copula parameter controlling the dependence strength, and
censoring_rate is the rate parameter for exponential censoring times {Ci}. We construct the proposed
CIDep, along with the simple CIML and CILogit, all at the nominal 95% confidence level. The R code in
Appendix 1 focuses on CIDep. We then summarize the resulting CPs for each combination of sample size,
dependence level, and censoring scenario in the tables below.

5.4 Dependence Levels and Scenarios without Censoring
We examine three levels of dependence for Weibull-distributed failure times: weak, moderate, and

strong. These are measured via the conditional Kendall’s tau, denoted by τθ ∣Z , which quantifies the correlation
between the two components given the latent frailty Z. Concretely, we set: τθ ∣Z = 0.25 (weak),τθ ∣Z =
0.50 (moderate), and τθ ∣Z = 0.75 (strong). Throughout this article, we use a Gumbel copula with
parameter θ ≥ 1. In this copula, the conditional Kendall’s tau is given by τθ ∣Z = 1 − 1/θ . Hence, for example,
τθ ∣Z = 0.25 implies θ ≈ 1.33, τθ ∣Z = 0.50 implies θ = 2, and τθ ∣Z = 0.75 implies θ = 4. Together with the
Weibull parameters α1 , α2, λ1 , λ2 and the frailty variance η, these values define the data-generating processes
in all of our simulations.

5.5 Simulations with Complete Data (No Censoring)
To first isolate the effect of dependence on coverage, we consider the no-censoring case (0%). Tables 2–4

show the estimated 95% CPs for various sample sizes and quantiles p. Each table compares the following:

• CIML—The method from [39], assuming independence,
• CILogit—Logit-transform CIs without accounting for the copula,
• CIDep—Our adjusted approach that includes both η and θ in its variance structure.

Fig. 1 summarizes the simulation design. Subsequent sections present analogous CP results under 10%
and 25% censoring to represent more realistic scenarios with partially observed lifetimes.

For the case of weak dependence, τθ ∣Z = 0.25, Table 2 shows that all methods produce CPs close to the
nominal 95%, even for small sample sizes. At n = 50, there are slight deviations below 0.95 for some intervals,
but overall, the differences between the traditional CIs [39], the logit-based CIs, and our proposed adjusted
intervals are modest. As n increases, CP across all methods quickly stabilizes near the nominal level, with
the adjusted intervals often exhibiting slightly better stability at certain quantiles.
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Table 2: CPs for 95% CIs under weak dependence (τθ ∣Z = 0.25; θ ≈ 1.33) with no censoring, across methods and sample
sizes

n p CIDep CIML CILogit n p CIDep CIML CILogit

50 0.05 0.943 0.950 0.942 100 0.05 0.946 0.950 0.944
0.25 0.945 0.950 0.942 0.25 0.947 0.950 0.946
0.50 0.945 0.950 0.943 0.50 0.949 0.950 0.946
0.75 0.949 0.950 0.945 0.75 0.950 0.950 0.947
0.95 0.949 0.950 0.946 0.95 0.949 0.950 0.948

500 0.05 0.948 0.950 0.947 1000 0.05 0.949 0.950 0.948
0.25 0.949 0.950 0.946 0.25 0.950 0.950 0.950
0.50 0.949 0.950 0.948 0.50 0.950 0.950 0.949
0.75 0.950 0.950 0.948 0.75 0.949 0.950 0.950
0.95 0.950 0.950 0.950 0.95 0.949 0.950 0.949

Table 3: CPs for 95% CIs under moderate dependence (τθ ∣Z = 0.50; θ = 2) with no censoring, across methods and
sample sizes

n p CIDep CIML CILogit n p CIDep CIML CILogit

50 0.05 0.945 0.950 0.933 100 0.05 0.946 0.950 0.943
0.25 0.945 0.950 0.936 0.25 0.946 0.950 0.940
0.50 0.946 0.950 0.942 0.50 0.948 0.950 0.945
0.75 0.946 0.950 0.946 0.75 0.948 0.950 0.947
0.95 0.948 0.950 0.947 0.95 0.949 0.950 0.948

500 0.05 0.948 0.950 0.946 1000 0.05 0.949 0.950 0.948
0.25 0.948 0.950 0.946 0.25 0.949 0.950 0.947
0.50 0.949 0.950 0.947 0.50 0.950 0.950 0.949
0.75 0.950 0.950 0.948 0.75 0.950 0.950 0.950
0.95 0.950 0.950 0.948 0.95 0.949 0.950 0.950

Table 4: CPs for 95% CIs under strong dependence (τθ ∣Z = 0.75; θ = 4) with no censoring, across methods and sample
sizes

n p CIDep CIML CILogit n p CIDep CIML CILogit

50 0.05 0.944 0.950 0.928 100 0.05 0.946 0.950 0.940
0.25 0.945 0.950 0.929 0.25 0.946 0.950 0.940
0.50 0.945 0.950 0.937 0.50 0.947 0.950 0.942
0.75 0.946 0.950 0.940 0.75 0.947 0.950 0.937
0.95 0.947 0.950 0.940 0.95 0.948 0.950 0.938

500 0.05 0.948 0.950 0.946 1000 0.05 0.949 0.950 0.946
0.25 0.948 0.950 0.945 0.25 0.949 0.950 0.947
0.50 0.950 0.950 0.945 0.50 0.949 0.950 0.946
0.75 0.950 0.950 0.948 0.75 0.949 0.950 0.946
0.95 0.949 0.950 0.945 0.95 0.949 0.950 0.947
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Figure 1: Flowchart of the simulation process for evaluating the impact of frailty on system reliability [39]

In the case of moderate dependence, τθ ∣Z = 0.50, as reported in Table 3, the CPs again remain fairly
close to 95%, although small-sample settings (n = 50) display mild fluctuations around the nominal target.
The traditional CIs [39] and logit-based CIs are generally in line with the adjusted intervals, and any under-
or over-coverage tends to be within a few percentage points. As before, increasing the sample size mitigates
these minor deviations.

Under strong dependence, τθ ∣Z = 0.75 (see Table 4), the CPs continue to cluster around the nominal
95%. Although minor under- or over-coverage can appear for very small n, the magnitude of such deviations
is not large. The adjusted intervals do show somewhat steadier performance across sample sizes in these
high-dependence scenarios, but the traditional and logit-based CIs remain reasonably accurate as well.
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Overall, sample size still plays a role in CP performance, with all methods converging toward the
nominal 95% as n grows (such as at n = 500 or n = 1000). The corrected intervals tend to be slightly more
robust under stronger dependence or smaller n, but the numerical differences between the traditional and
logit-based CIs are generally modest. These differences demonstrate that incorporating both the frailty
variance η and the copula parameter θ can offer a small edge in maintaining nominal CP, particularly in
more challenging settings.

5.6 Effect of Censoring on Confidence Interval Coverage
We now evaluate how additional right-censoring affects CPs under the same configurations stated

in Section 5.4. Specifically, we apply 10% and 25% censoring and report results in Tables 5–7 (for 10%)
and Tables 8–10 (for 25%).

Table 5: CPs for 95% CIs under weak dependence (τθ ∣Z = 0.25; θ ≈ 1.33) with a 10% censoring rate. Columns show
sample size n, quantile p, and CPs for CIDep, CIML, and CILogit

n p CIDep CIML CILogit n p CIDep CIML CILogit

50 0.05 0.945 0.950 0.939 100 0.05 0.945 0.950 0.943
0.25 0.947 0.950 0.939 0.25 0.945 0.950 0.943
0.50 0.946 0.950 0.945 0.50 0.946 0.950 0.944
0.75 0.946 0.950 0.947 0.75 0.947 0.950 0.947
0.95 0.949 0.950 0.948 0.95 0.949 0.950 0.945

500 0.05 0.947 0.950 0.945 1000 0.05 0.948 0.950 0.949
0.25 0.947 0.950 0.945 0.25 0.949 0.950 0.949
0.50 0.949 0.950 0.946 0.50 0.950 0.950 0.949
0.75 0.949 0.950 0.947 0.75 0.950 0.950 0.949
0.95 0.950 0.950 0.947 0.95 0.950 0.950 0.950

Table 6: CPs for 95% CIs under moderate dependence τθ ∣Z = 0.50 and a 10% censoring rate with the indicated method

n p CIDep CIML CILogit n p CIDep CIML CILogit

50 0.05 0.943 0.950 0.941 100 0.05 0.945 0.950 0.945
0.25 0.946 0.950 0.941 0.25 0.948 0.950 0.944
0.50 0.944 0.950 0.944 0.50 0.948 0.950 0.945
0.75 0.943 0.950 0.943 0.75 0.947 0.950 0.946
0.95 0.947 0.950 0.944 0.95 0.947 0.950 0.947

500 0.05 0.946 0.950 0.946 1000 0.05 0.949 0.950 0.947
0.25 0.947 0.950 0.950 0.25 0.948 0.950 0.949
0.50 0.946 0.950 0.948 0.50 0.950 0.950 0.948
0.75 0.950 0.950 0.947 0.75 0.950 0.950 0.950
0.95 0.949 0.950 0.948 0.95 0.949 0.950 0.950
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Table 7: CPs for 95% CIs under strong dependence τθ ∣Z = 0.75 and a 10% censoring rate

n p CIDep CIML CILogit n p CIDep CIML CILogit

50 0.05 0.935 0.950 0.932 100 0.05 0.941 0.950 0.945
0.25 0.936 0.950 0.932 0.25 0.942 0.950 0.940
0.50 0.939 0.950 0.938 0.50 0.945 0.950 0.939
0.75 0.940 0.950 0.940 0.75 0.941 0.950 0.940
0.95 0.936 0.950 0.939 0.95 0.940 0.950 0.939

500 0.05 0.940 0.950 0.940 1000 0.05 0.948 0.950 0.948
0.25 0.941 0.950 0.940 0.25 0.949 0.950 0.948
0.50 0.943 0.950 0.940 0.50 0.948 0.950 0.950
0.75 0.945 0.950 0.945 0.75 0.949 0.950 0.947
0.95 0.945 0.950 0.943 0.95 0.950 0.950 0.948

Table 8: CPs for 95% CIs under weak dependence (τθ ∣Z = 0.25) and a 25% censoring rate with the indicated method

n p CIDep CIML CILogit n p CIDep CIML CILogit

50 0.05 0.938 0.950 0.933 100 0.05 0.940 0.950 0.940
0.25 0.940 0.950 0.934 0.25 0.939 0.950 0.939
0.50 0.940 0.950 0.935 0.50 0.940 0.950 0.940
0.75 0.937 0.950 0.936 0.75 0.940 0.950 0.941
0.95 0.939 0.950 0.940 0.95 0.939 0.950 0.940

500 0.05 0.945 0.950 0.945 1000 0.05 0.948 0.950 0.947
0.25 0.945 0.950 0.944 0.25 0.945 0.950 0.948
0.50 0.945 0.950 0.944 0.50 0.945 0.950 0.948
0.75 0.944 0.950 0.944 0.75 0.949 0.950 0.947
0.95 0.947 0.950 0.945 0.95 0.948 0.950 0.949

Under 10% censoring, CPs for smaller samples (n = 50) decrease slightly for all methods, particularly at
lower quantiles (p = 0.05), but remain close to 95%. The traditional CIs [39] and logit-based CIs occasionally
dip a bit below nominal CP with moderate or strong dependence, whereas the corrected intervals tend to
stay near 95% even at n = 50. As the sample size grows, differences among the methods generally diminish.

Moving to 25% censoring amplifies these differences somewhat, especially with strong dependence
(τθ ∣Z = 0.75) and small n. In such cases, the traditional CIs [39] and logit-based CIs show slightly lower CP,
but typically not drastically below 95%. Meanwhile, the corrected CIs maintain CPs closer to the nominal
level across the quantiles reported. As n increases beyond 100, the gap again narrows, and all methods
converge to near 95%.

In summary, whether censoring is present or not, the adjusted CIs consistently provide CPs near
the nominal level, especially in higher-dependence regimes and smaller sample sizes, where even slight
improvements can be valuable. Hence, incorporating both the copula parameter θ and the frailty variance η
in the variance-covariance structure offers practical benefits for reliability analyses involving censoring and
interdependent component failure times.
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Table 9: CPs for 95% CIs under moderate dependence (τθ ∣Z = 0.50) and a 25% censoring rate with the indicated method

n p CIDep CIML CILogit n p CIDep CIML CILogit

50 0.05 0.935 0.950 0.940 100 0.05 0.942 0.950 0.942
0.25 0.932 0.950 0.938 0.25 0.944 0.950 0.944
0.50 0.933 0.950 0.940 0.50 0.944 0.950 0.942
0.75 0.932 0.950 0.941 0.75 0.945 0.950 0.944
0.95 0.934 0.950 0.940 0.95 0.945 0.950 0.945

500 0.05 0.945 0.950 0.946 1000 0.05 0.948 0.950 0.946
0.25 0.947 0.950 0.948 0.25 0.948 0.950 0.947
0.50 0.946 0.950 0.948 0.50 0.948 0.950 0.948
0.75 0.948 0.950 0.948 0.75 0.948 0.950 0.948
0.95 0.947 0.950 0.949 0.95 0.949 0.950 0.948

Table 10: CPs for 95% CIs under strong dependence (τθ ∣Z = 0.75) and a 25% censoring rate with the indicated method

n p CIDep CIML CILogit n p CIDep CIML CILogit

50 0.05 0.932 0.950 0.934 100 0.05 0.938 0.950 0.939
0.25 0.934 0.950 0.933 0.25 0.937 0.950 0.938
0.50 0.935 0.950 0.934 0.50 0.938 0.950 0.938
0.75 0.939 0.950 0.940 0.75 0.939 0.950 0.940
0.95 0.938 0.950 0.938 0.95 0.940 0.950 0.938

500 0.05 0.942 0.950 0.941 1000 0.05 0.947 0.950 0.946
0.25 0.940 0.950 0.941 0.25 0.948 0.950 0.947
0.50 0.942 0.950 0.941 0.50 0.949 0.950 0.949
0.75 0.946 0.950 0.944 0.75 0.946 0.950 0.946
0.95 0.944 0.950 0.945 0.95 0.949 0.950 0.947

5.7 Impact of Dependence and Heterogeneity on System Reliability
Next, we investigate how varying the dependence among Weibull-distributed failure times affects both

the system reliability and the mean time to failure (MTTF) in a two-component series system. Specifically,
we adopt a Gumbel copula parameterized by θ ≥ 1, where Kendall’s tau is given by τ = 1 − 1/θ. Thus, as θ
grows, the positive dependence among components becomes stronger. Concretely, we consider dependence
levels ranging from τ = 0.167 (weak) up to τ = 0.800 (very strong). For instance, τ = 0.167 corresponds to
θ ≈ 1.2, whereas τ = 0.800 corresponds to θ ≈ 5.0. We simulate 10,000 independent realizations for each τ
value, aiming to observe how higher correlation influences both the reliability at a specified time horizon
and the MTTF under strong dependence scenarios.

Table 11 summarizes our main results for reliability and MTTF, together with their bootstrap CIs. As
expected for a series configuration, increasing dependence leads to lower reliability. Indeed, when τ grows
from 0.167 to 0.800, the estimated reliability (at a given time) declines considerably. Likewise, the MTTF
decreases, indicating that a higher degree of correlation among component failures makes it more likely that
both components fail at earlier times.
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Table 11: Numerical results for system reliability and MTTF (with bootstrap CIs) under different levels of Gumbel
copula dependence. Higher τ implies stronger positive dependence

θ τ Reliability MTTF Reliability
CI (lower)

Reliability
CI (upper)

MTTF CI
(lower)

MTTF CI
(upper)

1.2 0.167 0.071 8.38 0.066 0.076 8.19 8.56
1.5 0.333 0.046 6.97 0.042 0.051 6.82 7.12
2.0 0.500 0.019 5.00 0.017 0.022 4.90 5.10
3.0 0.667 0.0028 2.58 0.0018 0.0038 2.53 2.64
4.0 0.750 0.0003 1.33 0.0000 0.00064 1.30 1.36
5.0 0.800 0.0003 0.67 0.0000 0.00064 0.66 0.69

As τ intensifies, both the reliability (at the chosen time) and the MTTF show a marked decrease, which
is precisely what one expects in a series system: if one component fails prematurely and the other is highly
correlated, both are likely to fail in close succession, thereby shortening the overall system lifetime. The
bootstrap CIs also become narrower at higher τ in these simulations, reflecting increased homogeneity when
both components tend to fail together.

Overall, these findings highlight the importance of accurately modeling dependence in series systems.
Greater positive dependence (higher θ, thus higher τ) substantially lowers reliability and MTTF, consistent
with theoretical expectations. We note that, while simpler methods ignoring dependence can underesti-
mate the risk of early failure, our copula-frailty framework more realistically captures correlated failures,
underscoring its relevance for reliability studies of high-dependence scenarios.

Future research may consider more complex or higher-dimensional dependence structures (such as
multi-component series systems), as well as various censoring schemes, to further assess the stability of
reliability estimation in strongly interdependent environments.

6 Illustrative Example with Penalized Estimation
In this section, we illustrate the practical implications of our method by conducting a synthetic case

study designed to mimic a challenging real-world scenario. Specifically, we show how strong dependence,
small samples, and estimation under a penalized likelihood framework can lead to non-trivial outcomes
in practice. Here, we complement our previous discussion (see Section 5.7) on how dependence affects the
system reliability and MTTF.

6.1 Rationale and Study Design
We consider a system of two-components connected in series for which each component time-to-

failure follows a Weibull distribution (here taken as an exponential for simplicity), conditional on a gamma
distributed frailty Zi . Dependence between the two failure times is introduced via a Gumbel copula with
parameter θ, while the variance parameter of the frailty is η. To explore a hard-to-estimate case, we nominally
set the values given by λ1 = 40, λ2 = 20, η = 0.3, θ = 2.0, and hence τ = 1 − 1/2 = 0.50, which would typically
generate relatively rare failures (owing to large λ j) and moderately strong dependence. Then, we simulate
n = 3000 observations, but, in practice, the data can deviate substantially from these nominal parameters,
such as many failures might occur much earlier than anticipated. Also, we introduce a moderate censoring
mechanism by drawing censored times from an exponential distribution with rate (mean) ≈ 0.001. Although
this is intended to be a friendly censoring scheme, the real data can still pose considerable challenges if
unusually early failures dominate.
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6.2 Penalized Likelihood Function
As discussed in Section 4.1, ML estimation may suffer a degenerate Hessian matrix if the data exhibit

strong dependence or the sample contains insufficient information to separate the copula and frailty
parameters. To mitigate this degeneracy, we adopt a ridge-type penalization approach [39], adding a term
α∑k(θk −mk)2 to the negative LL function, where α > 0 is a small penalty coefficient, and (θk −mk)
represents the deviation of a log-parameter from some center mk . This penalty injects additional curvature
in near-flat directions, thereby helping to produce a non-singular Hessian matrix so that SEs and CIs can
be computed.

6.3 Results and Observations
Fig. 2 sketches the simulation and estimation process. In one representative synthetic dataset, consider

the following:

• We nominally set (λ1 , λ2, η, θ) = (40, 20, 0.3, 2).
• The data, however, had a far larger proportion of early failures than expected, with a definitive cause

distribution of roughly (0.4%, 35.0%, 64.6%) for {censored, cause 1, cause 2}. Such a proportion of short
failure times can starkly contradict initial assumptions.

• Fitting via the ML estimate without penalization yielded a nearly singular Hessian matrix, preventing
computation SEs and CIs.

• After imposing a moderate ridge penalty (α = 0.1), the Hessian matrix became invertible. Our definitive
estimates were λ̂1 ≈ 1.03, λ̂2 ≈ 1.10, η̂ ≈ 1.02, and θ̂ ≈ 2.01. Although they deviate substantially from the
nominal values, we were able to quantify large uncertainty (SEs of about ±2 on the log-scale), resulting
in feasible albeit broad CIs.

Figure 2: Flowchart illustrating penalized estimation in the challenging-data scenario. Without a penalty, the Hessian
matrix may degenerate preventing SE computation. Adding a ridge penalty α > 0 ensures an invertible Hessian matrix
but can introduce bias. Either outcome signals that the data deviate substantially from nominal assumptions
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6.4 Interpretation, Relevance, and Role of α
Although the definitive estimates deviate sharply from (40, 20, 0.3, 2), these estimates highlight a

realistic challenge: if the observed data differ markedly from initial assumptions, naive ML struggles to fit
a multi-parameter frailty-copula model. Penalization enforces added curvature, preventing Hessian matrix
degeneracy and enabling valid inference. However, the strength of α strongly influences the result such as
indicated as follows:
• Large values of α can stabilize the estimation by shrinking parameter estimates toward nominal centers,

often yielding small SEs but potentially larger bias.
• Small values of α give the data more weight but can cause near-singular Hessian matrices if the

information is insufficient to separate frailty and copula effects, leading to extremely large uncertainties
or unstable estimates.
In a genuine industrial or engineering scenario, such results might appear if a system nominally

expected to exhibit few failures (large λ j) instead of experiencing multiple early failures due to unforeseen
stressors. Our penalized approach can at least provide the following:
• Finite SEs to gauge how severely the data deviate from the nominal scenario.
• A strong signal that model assumptions may be misaligned (as evidenced by substantial parameter shifts

and wide CIs).
Hence, from a reliability engineering viewpoint, even sophisticated models can become unstable if the

data are insufficient or unrepresentative. Thus, incorporating penalization or prior knowledge helps to ensure
a basic level of inferential robustness.

6.5 Link to Real Applications
Although we do not present a real industrial dataset, this synthetic, real-like example is crafted to

reflect high dependence and limited effective sample information. Practitioners commonly face similarly
uncooperative data (sparse, heavily censored, or dominated by unanticipated early failures). Our penalized
estimation strategy (frailty + copula + ridge) maintains a non-degenerate Hessian matrix, yielding SEs and
CIs at the cost of potential bias. In realistic contexts, engineers may combine these estimates with domain
expertise, covariate adjustments, or additional reliability testing to ease identifiability concerns. Overall,
this synthetic, real-like study underlines the importance of robust or penalized approaches under strong
dependence and sparse data. They avert numerical degeneracies and elucidate the degree of uncertainty, even
if the ultimate parameter estimates deviate profoundly from nominal values.

7 Conclusions
In this article, we developed confidence intervals for dependent failure times in a two-component

system, using Weibull distributed failure times combined with gamma distributed frailty and copula-based
dependence. By explicitly including the copula parameter in the variance-covariance structure, our adjusted
confidence intervals provide robust coverage probability under small samples and strong dependence—
conditions where traditional methods can deviate from the nominal level.

Numerical experiments revealed that, while the traditional confidence intervals often remain close
to their nominal coverage probability under moderate dependence or larger samples, they may underes-
timate variability in more challenging scenarios. In contrast, we found the proposed confidence intervals
consistently maintain near-nominal coverage probability, even with up to 25% censoring. These findings
underscore the practical gains from fully modeling both observed and unobserved heterogeneity, especially
in high-dependence or data-sparse applications.
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We further illustrated our analysis in a penalized estimation study with a synthetic real-like example,
where we simulated data under nominal parameters (λ1 , λ2, η, θ) but observed an unexpected pattern of
early failures. This real-like scenario demonstrated how the maximum likelihood method can fail to produce
invertible Hessian matrices, whereas a ridge-penalized approach successfully delivered finite standard
errors—even though the resulting parameter estimates were substantially biased. Such findings confirm the
importance of penalization or other stabilizing strategies whenever strong dependence and small samples
are identified.

Although our study focused on two-component systems connected in series, extending this study to
higher-dimensional settings is feasible but will face additional identifiability and computational complexities.
Likewise, while we employed the Weibull distribution for its flexibility and frequent use in reliability contexts,
alternative baselines (such as the exponential, gamma, or Birnbaum-Saunders distributions [43]) could be
explored if data or expert knowledge suggests different hazard shapes. Moreover, although we illustrated
the Gumbel and Clayton copulas for positive dependence, our framework accommodates other families,
especially those capturing distinct tail behaviors, to match real-world failure patterns more closely.

Despite the strengths identified in our study, certain limitations remain. Greater systems may require
stronger identifiability constraints or Bayesian/regularization strategies to separate frailty from copula
effects reliably.

Further research could also examine semiparametric baselines and alternative censoring
schemes [44,45]. Nonetheless, we believe that the proposed adjusted confidence intervals, by integrating
both frailty and direct copula dependence, constitute a valuable tool for practical reliability analyses where
correlated failures and small samples pose challenges, and that penalized variants of our estimation strategy
offer a pragmatic fallback in highly demanding scenarios.
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Appendix A R Script for Penalized Estimation and CIDep

This appendix provides an illustrative R script implementing data generation via a gamma-frailty
Gumbel-copula model, quasi-Newton parameter estimation with a mild ridge penalty when the Hessian is
nearly singular, and the construction of CIDep. For brevity, the code omits the routines for CIML and CILogit,
which can be coded analogously.
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