
Computer Modeling in
Engineering & Sciences

echT PressScience

Doi:10.32604/cmes.2025.064416

ARTICLE

Developed Time-Optimal Model Predictive Static Programming Method
with Fish Swarm Optimization for Near-Space Vehicle

Yuanzhuo Wang and Honghua Dai*

School of Astronautics, Northwestern Polytechnical University, Xi’an, 710072, China
*Corresponding Author: Honghua Dai. Email: hhdai@nwpu.edu.cn
Received: 31 December 2024; Accepted: 31 March 2025; Published: 30 May 2025

ABSTRACT: To establish the optimal reference trajectory for a near-space vehicle under free terminal time, a time-
optimal model predictive static programming method is proposed with adaptive fish swarm optimization. First, the
model predictive static programming method is developed by incorporating neighboring terms and trust region,
enabling rapid generation of precise optimal solutions. Next, an adaptive fish swarm optimization technique is employed
to identify a sub-optimal solution, while a momentum gradient descent method with learning rate decay ensures
the convergence to the global optimal solution. To validate the feasibility and accuracy of the proposed method, a
near-space vehicle example is analyzed and simulated during its glide phase. The simulation results demonstrate that
the proposed method aligns with theoretical derivations and outperforms existing methods in terms of convergence
speed and accuracy. Therefore, the proposed method offers significant practical value for solving the fast trajectory
optimization problem in near-space vehicle applications.

KEYWORDS: Near-space vehicle; model predictive static programming; neighboring term and trust region; optimal
control; adaptive fish swarm optimization

1 Introduction
Research on near-space vehicles has recently become a hot topic in the aerospace field [1], with the

success of such missions heavily relying on their effective guidance, navigation, and control systems [2].
The performance of these systems is critical to the success of the entire flight [3], as failures can result in
catastrophic consequences. Consequently, developing an effective guidance method is essential for near-
space vehicles. Current guidance methods can meet terminal angle [4] and position [5] constraints; however,
the feedback-based methods fail to address other important requirements, such as constraints on terminal
velocity and the need for minimal fuel consumption. During the glide phase, it is important to design an
optimal trajectory that satisfies every constraint. Some scholars proposed various tracking methods [6] to
control terminal states by optimal reference trajectory [7,8]. The reference trajectory is open-loop, with a
closed-loop tracking controller employed to follow it. This paper focuses on designing an optimal reference
trajectory [9] that can be rapidly and accurately generated for the near-space vehicle. Recently, many
scholars have conducted in-depth research on trajectory optimization problems [10,11]. In the aerospace field,
Chai et al. [12] reviewed outstanding developments in numerical multi-objective trajectory programming
methods. Malyuta et al. [3] provided an overview of recent advances and successes in optimization-based
space vehicle control problems, offering promising directions for future research. Li et al. [13] systematically
summarized and reviewed various optimization methods from both global and Chinese competitions,

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2025.064416
https://www.techscience.com/doi/10.32604/cmes.2025.064416
mailto:hhdai@nwpu.edu.cn

1464 Comput Model Eng Sci. 2025;143(2)

proposing development trends and promising solutions for trajectory programming challenges. Shirazi
et al. [14] outlined the steps involved in spacecraft trajectory optimization problems. The current trajectory
optimization methods are primarily classified into direct methods and indirect methods [15]. On the one
hand, the indirect method using Lagrange multipliers transforms the optimal control problem into a two-
point boundary value problem, and solves it via minimum principle [16,17]. To explore the impact of electrical
power constraints on the gradients in trajectory programming, Wang et al. [18] employed a high-efficiency
indirect method. Under the condition of free terminal time, Nakano et al. [19] proposed an indirect method
to address the asteroid landing trajectory programming problem with the objective of minimizing fuel
consumption. In addressing the trajectory optimization problem for an Unmanned Aerial Vehicle (UAV),
Coupechoux et al. [20] using Lagrangian mechanics and Hamilton-Jacobi equations established a closed-
form optimal trajectory. In summary, while the indirect method ensures high accuracy and optimality for
trajectory optimization through the first-order necessary condition, problems such as a small convergence
radius and sensitivity to initial values limit its applicability for real-time trajectory optimization in aerospace
applications. On the other hand, the direct method solves the optimal control problem by discrete nonlinear
dynamic equations and nonlinear programming (NLP). For direct trajectory programming of a free-floating
space manipulator, Shao et al. [21] enhanced the current nonlinear programming method by an adaptive
Radau Pseudospectrum technique. Methods that do not require costate calculation can be classified as
direct methods. For high-precision trajectory optimization of the Dreyfus rocket and inverted pendulum,
Sun et al. [22] proposed two novel differential dynamic programming methods. Ma et al. [23] developed a
sequential convex programming method for the launch vehicles in the ascent stage, employing an enhanced
Chebyshev-Picard iteration. To reduce the computational burden of real-time trajectory programming for
UAV, Xu et al. [24] proposed a trust-region-constrained sequential convex programming method. Chapnevis
et al. [25] utilized integer linear programming to solve the multi-target UAV trajectory optimization problem.
In summary, the direct method offers three advantages over the indirect method: 1) low computational
complexity; 2) high computational efficiency; and 3) large convergence radius. Motivated by the advantages
of the direct method, some scholars proposed model predictive static programming (MPSP) to achieve fast
and high-precision trajectory optimization. Padhi et al. [26] first proposed the MPSP method by combining
approximate dynamic programming and model predictive control. To design the missile’s optimal trajectory,
Fu et al. [27] introduced slack variables for state inequality constraints and enhanced the current MPSP
method. For the optimal trajectory design of satellites, Wang et al. [28] using a two-loop MPSP guidance
scheme established fuel-optimal trajectories as nominal solutions. For interceptors targeting incoming
ballistic missiles, Dwivedi et al. [29] using MPSP proposed two nonlinear suboptimal midcourse guidance
methods. Zhou et al. [30] using Gaussian quadrature collocation proposed a novel generalized quasi-spectral
MPSP method. Pan et al. [31] demonstrated that the MPSP method is an improved Newton-type trajectory
optimization method. Although the above methods have relatively good simulation effects, there is still some
room for improvement in two aspects: 1) the improvement of optimization accuracy and speed. The above
methods do not pay much attention on how to improve the accuracy and speed of the current model pre-
dictive static programming method. In general, accuracy and speed are very important for online trajectory
optimization. Thus, it is essential to study how to speed up the method’s solving accuracy and speed. 2) the
trajectory optimization problem under free terminal time. In typical aerospace missions, the final flight time
is not a primary concern. Compared to the fixed time trajectory optimization problem, the performance
index (fitness function) of the generated trajectory is lower when the time is flexible. Consequently, it is
necessary to study the problem under free terminal time to gain an optimal performance index. Linearization
theory is employed in the current method to obtain optimal flight time in MPSP [32]. The Taylor expansion
may lead to lower solving accuracy which will sacrifice performance index and degrade flight performance.
To improve the accuracy, some scholars employed intelligent methods: Zamfirache et al. [33] developed

Comput Model Eng Sci. 2025;143(2) 1465

a Grey Wolf Optimizer (GWO) method to train Neural Networks in the reinforcement learning-based
control method. To enhance the conventional GWO method’s accuracy, Zamfirache et al. [34] further
proposed a gravitational search method to initialize the Q-function’s parameter which has better results in
reinforcement learning. Additionally, some scholars developed the fish swarm optimization method for high-
precision, complex trajectory optimization problems. For example, Tsai et al. [35] proposed a particle swarm
optimization framework to improve the existing fish swarm optimization method. Sivakumar et al. [36]
developed the current fish swarm optimization method to minimize the sensor node position errors. To
more effectively address the drone path programming problem, Zhang et al. [37] developed the current
artificial fish swarm optimization method. To address the problem of Unmanned Helicopter formations,
Ma et al. [38] proposed a path planning method based on the developed artificial fish swarm optimization
method, considering both neighborhood learning and method characteristics. The above intelligent methods
have the following problems: 1) it is easy to fall into the local optimal solution (sub-optimal solution); 2)
The fixed step will affect the solving speed for complex optimization problems. Motivated by the preceding
discussions, a developed time-optimal model predictive static programming (D-MPSP) method is proposed
for near-space vehicle with adaptive fish swarm optimization and momentum gradient descent (AFSO-
MGD). Note that this method is also applicable to a wide range of aerospace problems that require trajectory
optimization. In this method, the D-MPSP method with a neighboring term and trust region is proposed to
determine the optimal flight trajectory that satisfies the terminal state constraints under fixed terminal time.
Additionally, when the terminal time is free, the AFSO-MGD method is employed to optimize terminal time
to minimize performance index (fitness function). In this method, the fish swarm optimization is employed
to explore the sub-optimal solution, while the momentum gradient descent focuses on finding the global
optimal solution. Compared to previous research on trajectory optimization, the primary contributions of
this paper can be summarized as follows: 1) Compared to the current method, a developed model predictive
static programming method with neighboring term and trust region is proposed to enhance both the speed
and accuracy of trajectory optimization. The trust region guarantees the solution’s accuracy and efficiency,
while the neighboring term guarantees that the updated solution remains within the neighborhood of
the reference trajectory, thus ensuring that the solution process stays within in the convergence radius.
2) Compared to the conventional method under free terminal time, the adaptive fish swarm optimization
method with momentum gradient descent significantly improves the solution accuracy, while avoiding the
current method’s linearization errors caused by analytical derivations. Then the adaptive theory facilitates
rapid convergence. Meanwhile, the momentum gradient descent method prevents the solution from being
trapped in a local optimum.

The rest of this paper is organized as follows. In Section 2, the dynamic model is established for near-
space vehicle, then Euler method is employed for discretization. In Section 3, the main contributions of
this paper are presented, the detailed theory about time-optimal model predictive static programming
method is proposed with adaptive fish swarm optimization. In Section 4, a numerical example for near-
space vehicle is implemented to verify the proposed method’s feasibility. In Section 5, the compared methods
are implemented to demonstrate the proposed method’s accuracy. Finally, some conclusions are drawn
in Section 6.

2 Dynamic Model for Near-Space Vehicle
The near-space vehicle’s dynamic equation [39] is obtained in Eq. (1):

1466 Comput Model Eng Sci. 2025;143(2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = υ cos γ cos ψ
ẏ = υ sin γ
ż = −υ cos γ sin ψ
v̇ = g (nx − sin γ)
θ̇ = g

v (ny − cos γ)
ψ̇ = − gnz

υ cos γ

(1)

where, state quantities are downrange, altitude, lateral position, flight-path angle and heading angle,
respectively; nx , ny and nz are three-shaft overloads, respectively; ny and nz are optimized variables; nx is
given by:

nx = −ρυ2CDS
2mg

(2)

in which, S is reference area (S = 0.5 m2); g is gravitational acceleration (g = 9.81 m/s2); ρ is density:

ρ = 1.225 exp(− y
7110

) (3)

Euler method is employed to discrete Eq. (1):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 = xk + [υk cos γk cos ψk]dt
yk+1 = yk + [υk sin γk]dt
zk+1 = zk + [−υk cos γk sin ψk]dt
υk+1 = υk + [g (nxk − sin γk)]dt
θk+1 = θk + [g

υk
(nyk − cos γk)]dt

ψk+1 = ψk + [− gnzk
υk cos γk

]dt

(4)

in which, dt is the step.

3 Developed Time-Optimal Model Predictive Static Programming Method
In this section, the time-optimal model predictive static programming method is proposed with

neighboring term and trust region for rapid and precise trajectory optimization. In addition, the adaptive fish
swarm optimization is developed for model predictive static programming method under free terminal time.

3.1 Model Predictive Static Programming with Neighboring Term and Trust Region
The model predictive static programming method is to establish the optimal trajectory satisfying

terminal state constraints. Eq. (4) can be simplified as:

X k+1 = Gk (X k , U k) (5)

where, k is the iterative number; state vector is X k = [xk yk zk υk γk ψk]T and control vector is
U k = [nyk nzk]T. The output equation is:

Zk = X k (6)

Comput Model Eng Sci. 2025;143(2) 1467

in which, Zk is output state vector (observed state vector). Linearizing Eq. (5) in the neighboring area of
reference trajectory, one has:

δX k+1 =
∂Gk

∂X k
δX k +

∂Gk

∂U k
δU k (7)

where, δX k is the deviation of X k , ∂G k
∂U k

and ∂G k
∂X k

are partial derivatives with respect to U and X, respectively.
According to Eq. (7), one has:

δZf = δX f =
∂Gf−1

∂X f−1
δX f−1 +

∂Gf−1

∂U f−1
δU f−1 (8)

By Eqs. (7), (8) is changed as:

δZf =
∂Gf−1

∂X f−1
(∂Gf−2

∂X f−2
δX f−2 +

∂Gf−2

∂U f−2
δU f−2) +

∂Gf−1

∂U f−1
δU f−1 (9)

By induction from Xf to X 1, one has:

δZf = AδX 1 +
f−1
∑
i=1

B i δU i (10)

in which, i is discrete time step (i = 1, 2, . . . , f-1); matrices A and B i are given by:

A = [∂Gf−1

∂X f−1
] [∂Gf−2

∂X f−2
] ⋅ ⋅ ⋅ [∂G2

∂X2
] [∂G1

∂X 1
] (11)

B i = [∂Gf−1

∂X f−1
] [∂Gf−2

∂X f−2
] ⋅ ⋅ ⋅ [∂G i+2

∂X i+2
] [∂G i+1

∂X i+1
] [∂G i

∂U i
] (12)

It is not necessary to consider the initial state perturbations for near-space vehicle in trajectory
optimization problem, thus Eq. (10) is reduced to:

δZf =
f−1
∑
i=1

B i δU i (13)

The control curves’ design needs to ensure the smoothness as much as possible, given the limitations of
near-space vehicle’s control capability. Therefore, the continuous system’s performance index Jc is designed
as:

Jc =
1
2 ∫

tf

t0
(U TRU)dt (14)

where, R is the user-designed control weight matrix; t0 and tf are initial and terminal times, respectively. The
performance index designed in Eq. (14) guarantees the smooth control curves which have two advantages:
1) The smooth reference trajectory guarantees that the subsequent attitude control system has a large control
margin; 2) The smooth curves significantly reduce the demands on both the steering mechanism and the
structure of near-space vehicle.

Discretize Eq. (14):

Jd = 1
2

f−1
∑
i=1

U T
i RU i (15)

1468 Comput Model Eng Sci. 2025;143(2)

To improve terminal state control accuracy and guarantee optimal performance index, multiple
iterations are implemented. The performance index Jd is changed as J:

J = 1
2

f−1
∑
i=1

(U ir − δU ir)TR (U ir − δU ir) + (−δU ir)TK δu (−δU ir) (16)

where, U ir is the control history calculated by reference trajectory; δU ir is the deviation control history; K δu
is the penalty coefficient of error term. Note that, U and δU should have different signs in Eq. (16). If they
have different signs:

∂J
∂U

> 0, ∂J
∂δU

< 0 → { 1) J ↘, U ↘, δU ↗
2) J ↗, U ↗, δU ↘ ⇒ trajectory convergence (17)

In condition 1), with J decreasing, control U decreases while δU increases; In condition 2), with J
increasing, control U increases while δU decreases. The above analysis ensures the trajectory convergence
through multiple iterations.

The quadratic error term designed in Eq. (16) is regarded as a trust region. Its advantages are shown
as follows: 1) It improves the optimization accuracy, and subsequent simulations demonstrate a significant
improvement in accuracy; 2) It ensures the proximity of the trajectories in two iterations, guaranteeing
that the final solution converges within the feasible region; 3) It reduces the iterative number and enhances
efficiency, which is important for real-time trajectory optimization of near-space vehicle. Now the optimal
MPSP problem is established. To address this problem, the optimal control theory is employed through the
Lagrange multiplier method [40]. The augmented performance index J̄ is given by:

J̄ = 1
2

f−1
∑
i=1

(U ir − δU ir)TR (U ir − δU ir) + (−δU ir)TK δu (−δU ir) + λT (δZf −
f−1
∑
i=1

B ir δU ir) (18)

where, λ is the Lagrange multiplier vector.
Assuming no control constraint, the optimal necessary condition is given by:

∂J̄
∂δU ir

= −R (U ir − δU ir) − K δu (−δU ir) + BT
ir λ i = 0 (19)

Control perturbation δU ir is obtained by Eq. (20):

δU ir = (R + K δu)−1 (RU ir − BT
ir λ i) (20)

Now the essential problem is to solve Lagrange multiplier vector in Eq. (20):

δZf =
f−1
∑
i=1

B ir(R + K δu)−1 (RU ir − BT
ir λ i) =

f−1
∑
i=1

B ir(R + K δu)−1RU ir − B ir(R + K ffiu)−1BT
ir λ i (21)

By Eq. (21), Lagrange multiplier vector is obtained by a simple inversion:

λ i = −(
f−1
∑
i=1

B ir(R + K δu)−1BT
ir)
−1

(δZf −
f−1
∑
i=1

B ir(R + K δu)−1RU ir) (22)

Comput Model Eng Sci. 2025;143(2) 1469

Combining Eqs. (20) and (22):

δU ir = (R + K δu)−1
⎧⎪⎪⎪⎨⎪⎪⎪⎩

RU ir + BT
ir

⎡⎢⎢⎢⎢⎣

f−1

∑
i=1

B ir(R + K ffiu)−1BT
ir

⎤⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎣
δZf −

f−1

∑
i=1

B ir(R + K δu)−1RU ir

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(23)

Then the updated control law is obtained in Eq. (24):

U i = U ir − δU ir (24)

where, U i is the updated control history. Eq. (24) is the iterative equation of model predictive static
programming method with trust region.

Then the neighboring term is implemented to ensure that the proposed method is solved in the feasible
region, given that the control constraint is not considered in Eq. (19). With the updated control history, the
state deviations are calculated by integrating the dynamic equations:

δX i =
f−1
∑
i=1

X i − X ir (25)

where, X i , X i r and δX i represents updated state vector, reference state vector, and state deviation vec-
tor, respectively.

Then the performance index F based on state deviations is established in Eq. (26):

F = δx̂Kδx δx̂ + δ ŷKδ y δ ŷ + δẑKδz δẑ + δv̂Kδv δv̂ + δγ̂Kδγ δγ̂ + δψ̂Kδψ δψ̂ (26)

in which, K represents the normalized penalty coefficient for corresponding state deviations; then one has:

x̂ = x
xmax

, ŷ = y
ymax

, ẑ = z
zmax

, v̂ = v
vmax

, γ̂ = γ
γmax

, ψ̂ = ψ
ψmax

(27)

in which, “max” represents the maximum value of state in reference trajectory.
A neighboring term based on state deviations in Eq. (26) is established as:

F < Fmax (28)

where, Fmax represents the maximum value of objective function. In Eq. (28), if this condition is satisfied,
the proposed method continues to execute; otherwise, the following method is applied to ensure that the
solution remains within the feasible region:

δU ir = (Ktrust)mδU ir (29)

in which, Ktrust is a positive number and less than 1, m is the iterative number of neighboring term.
The pseudocode is shown in Table 1:

Table 1: Pseudocode for the developed model predictive static programming method

Method: Model predictive static programming with neighboring term and trust region
Initialization:
1) Set the number of discrete points and determine the remaining flight time;

(Continued)

1470 Comput Model Eng Sci. 2025;143(2)

Table 1 (continued)

Method: Model predictive static programming with neighboring term and trust region
2) Discrete dynamic equations;
3) Design the desired performance index J, penalty coefficient K δu and control weight matrix R;
4) Determine initial and terminal state constraints.
5) Establish the initial control and state guesses for reference trajectory.
Iterative loop:
1) Calculate the matrices A and Bi in reference trajectory;
2) Calculate Lagrange multiplier vector λ ;
3) Calculate deviation control vector δU by Eq. (23);
4) Calculate updated control vector U by Eq. (24);
5) Calculate F based on δX;
6) Determine whether the neighboring term is satisfied; If not, update δU by Eq. (29) and U
by Eq. (24);
7) By the updated control history U , integral dynamic equations in Eq. (4).
Cut-off condition:
If the trajectory converges and the error tolerance requirements are satisfied, the iteration will be
stopped.

3.2 Adaptive Fish Swarm Optimization Method with MGD under Free Terminal Time
Most trajectory optimization problems are more sensitive to performance index rather than to terminal

time, making it essential to study the problem under free terminal time. The current fish swarm optimization
method suffers from slow convergence and a tendency to get trapped in local optimum. To solve this
problem, the adaptive theory [41,42] and momentum gradient descent method with learning rate decay are
employed. Before optimization, the fish swarm size, the maximum number of tries (try number), crowding
parameter (delta), the maximum iterative number (maxgenf), and the visual distance (visual) should be
set. Through sensitivity analysis and multiple simulation verifications, it was found that the fish swarm
size and the maximum iterative number have significant impacts on computational complexity. To balance
computational complexity and optimization accuracy, the fish swarm size and maximum iterative number
are both determined to be 3 by using the additional optimization method. To further improve the iterative
efficiency, the adaptive step is employed. In this method, the initial larger step ensures the convergence of
the proposed method, and the later smaller step ensures sub-optimal results. The adaptive step is obtained
as:

ste pi+1 =
Kste p

gen
∣bestJ ∣ (30)

where, gen is the current iterative number; bestJ is the global optimal solution for current iteration; Kste p
is the parameter to set. The adaptive fish swarm optimization method consists of four main parts. In the
foraging part, the flow is:

In Fig. 1, subscript m represents the random individual in sight line, the subscript i represents different
individual fish; ti is the current time of individual fish; rand is the random number range from −1 to 1;
k is the current try number; J is the fitness function (performance index) to be optimized, the same as
that in Eq. (15). For the minimization optimization problem, if Ji > Jm , enter foraging behavior; otherwise,
determine whether to enter random mode or iterate again.

Comput Model Eng Sci. 2025;143(2) 1471

Figure 1: Foraging behavior flowchart

In the gathering and following part, the flow is:
In Fig. 2, di j is the second norm of distance between individual fishes, δ is the crowding parameter to

set, nf is the number of partners in the neighborhood, c represents the central location of the partners. If
(Jc/nf) < δJi , enter gather behavior; else, enter foraging behavior; if (J j/nf) < δJi , enter follow behavior;
else, enter foraging behavior.

Figure 2: Gather and follow behavior flowchart

In random part, individual fish randomly select a state within its visible range:

ti−update = ti + rand ⋅ visual (31)

The above four parts are the core of the adaptive fish swarm optimization method. In this method,
strategies to prevent overfitting can be implemented from the following seven aspects: 1) Enhancing popula-
tion diversity: by periodically introducing random perturbations to some individuals or adding new random
individuals, population diversity is maintained to avoid premature convergence to local optima; 2) Adaptive
parameter adjustment: dynamically adjust parameters (step or search range) based on the iterative number,
gradually narrowing the search space or optimizing step to prevent the proposed method from getting
stuck in local optima; 3) Regularization methods: incorporate penalty terms related to solution complexity
into the fitness function to suppress overly complex solutions, thereby reducing the risk of overfitting; 4)

1472 Comput Model Eng Sci. 2025;143(2)

Cross validation: divide the dataset into training and validation sets, run multiple times, and select the best
solution on the validation set to ensure the model’s generalization capability; 5) Early stopping strategy:
continuously monitor the fitness function on the validation set. If no improvement is observed after several
iterations, terminate the method early to avoid overfitting the training data; 6) Ensemble methods: run the
fish swarm optimization method multiple times and integrate the results (voting or weighted averaging) to
reduce the risk of overfitting by combining the outputs of multiple models; 7) Constraining the search space:
impose reasonable constraints on the solution space based on the problem’s practical context, preventing
the method from searching in overly complex or irrelevant regions. By implementing the above strategies,
the risk of overfitting in adaptive fish swarm optimization methods can be effectively mitigated, significantly
enhancing the method’s generalization ability and robustness. However, the problem of the current method
will converge at suboptimal solutions rather than optimal solutions for nonlinear and coupled problems. To
resolve this problem, the momentum gradient descent method is employed. Gradient descent is developed
based on exponential weighted average, and its equation for k iteration is:

vk = βvk−1 + (1 − β)∇ f (tk) (32)

where, ∇ f represents the gradient value, β represents weight coefficient, vk−1 is updated weighted gradient
value. Due to the exponential weighted average, the direction of parameter update is not only affected by
the current gradient, but also by the previous gradient, making the parameter update path smoother. To
address the problem of poor convergence in the above method due to large learning rate, a learning rate
decay method is employed as:

hupdate = h +∇ f (tk) ⋅ ∇ f (tk) (33)

in which, h represents the sum of squared gradient values. Combining the above two methods, the final
iteration update rule is given by:

xk+1 = xk − Kmvk − η 1√
h
∇ f (tk) (34)

where, Km is the parameter to set, and η is the learning rate. Note that the learning rate itself is dynamically
adjusted by updated weight coefficient h.

This proposed method consists of two parts: fish swarm optimal method for sub-optimal solution and
momentum gradient descent method for global optimal solution.

3.3 Method Flow
Fig. 3 shows the design flowchart for the whole method in detail.
Fig. 3 shows that the model predictive static programming method is employed to generate an optimal

reference trajectory that satisfies the initial and terminal state constraints under fixed terminal time. The
adaptive fish swarm optimization method is aimed at looking for the sub-optimal solution, while the gradient
descent method is implemented to generate a global optimal solution. Note that, the proposed method is
used not only to the near-space vehicle, but also to all kinds of aerospace problems that require trajectory
optimization. Additionally, the computational complexity of this proposed method is discussed. 1) For the
model predictive static programming method with trust region and neighboring term, a symbolic recursive
solution to directly update control history makes it suitable for trajectory optimization in online guidance
systems. Therefore, the key factor influencing its solving speed lies in the number of discrete points and
the quality of the initial values (initial control history guess). 2) For the adaptive fish swarm optimization

Comput Model Eng Sci. 2025;143(2) 1473

and momentum gradient descent methods, their computational complexity primarily depends on the fish
swarm size and the maximum iterative number. For time-sensitive trajectory optimization problems, these
parameters need to be carefully set to ensure the online trajectory optimization capability for computational
guidance. Finally, the hardware implementation is discussed. The hardware requirements for this real-time
guidance system depend on factors such as the application’s complexity, speed, and operating environment. It
is important to note that the proposed method does not require high computational resources. Consequently,
it is not necessary to use expensive, high-performance hardware. Given the cost constraints for large-scale
deployment, the proposed method proves to be highly practical. Additionally, this method does not rely on
complex toolboxes and can be easily converted into a C++ program for deployment on a near-space vehicle’s
micro-controller. As a result, the implementation of the proposed method is relatively straightforward from
software to hardware.

Figure 3: Method flow

4 Case Study: Time-Optimal Model Predictive Static Programming Method for Near-Space Vehicle
In this section, the simulation of the near-space vehicle example is implemented. First, the simulation

results of the proposed model predictive static programming method with neighboring terms and trust
region are presented. Next, the proposed adaptive fish swarm optimization method is validated under
free terminal time. Finally, the tracking accuracy of terminal controllers is demonstrated with an optimal
reference trajectory. The initial and terminal state constraints are set in Table 2.

Table 2: Initial and terminal state constraints

State x (km) y (km) z (km) v (m/s) γ (deg) ψ (deg)
Initial values 0 32 0 1650 −6 −30

Terminal values 43 17 43 1040 −11 −50

1474 Comput Model Eng Sci. 2025;143(2)

4.1 Model Predictive Static Programming with Neighboring Term and Trust Region
This section uses neighboring term and trust region for current model predictive static programming

method. Other parameters are set as: terminal time (tf): 44.5 s, R = [1 0; 0 1], and K δu = diag (10, 10). Shown
in Figs. 4–10 are the simulation results in 8 iterations.

Figure 4: Iterations of three-dimensional trajectories

Figure 5: Iterations of longitudinal overload profiles Figure 6: Iterations of lateral overload profiles

Figs. 4–10 show that every state achieves good convergence through 8 iterations. In particular, good
convergence is achieved for the relatively sensitive terminal velocity. Given the influence of nonlinearity
and coupling in dynamic equations, the proposed model predictive static programming method with a
neighboring term and trust region has high convergence efficiency and good convergence accuracy. These
results will be further explained later in Section 5.2. Then the 500 Monte Carlo simulations are presented
in Figs. 11 and 12. In this simulation, based on the initial states’ reference values in Table 2, the perturbation
ranges of the initial downrange, altitude, and lateral position are [–500 500] m, while the perturbation ranges
of the initial flight-path and heading angles are [−1 1] deg.

Comput Model Eng Sci. 2025;143(2) 1475

Figure 7: Iterations of flight-path angle profiles Figure 8: Iterations of heading angle profiles

Figure 9: Iterations of velocity profiles Figure 10: Iterations of performance index profiles

Figure 11: Monte Carlo of 3D trajectory profiles Figure 12: Monte Carlo of velocity profiles

1476 Comput Model Eng Sci. 2025;143(2)

Under the different initial state perturbations, Fig. 11 demonstrates that each trajectory achieves high-
precision convergence, especially sensitive terminal velocity in Fig. 12. Consequently, it proves the proposed
method’s robustness.

Next, the convex optimization method and GPOPS (a matlab software for solving multiple-phase
optimal control problems) trajectory optimization method is compared to verify the effectiveness and
accuracy of the proposed method. Convex optimization is a widely used trajectory optimization method. It
has advantages such as a well-defined convergence criterion and relatively high solution efficiency. However,
the constraints in trajectory optimization problems are typically non-convex, requiring the original problem
to be transformed into a convex one by sequential convexification or lossless convexification. The sequential
convex optimization method requires converting the original problem into a standard form required by spe-
cific toolboxes and solving large-scale nonlinear programming problems, which increases the computational
complexity of engineering implementation. In contrast, the proposed method updates the deviation control
history through a Lagrange multiplier with a symbolic recursive solution, and then combines it with the
reference control history to indirectly update the control history. This method achieves higher computational
efficiency and lower computational complexity. Then the GPOPS trajectory optimization method is generally
considered an offline trajectory optimization method, as its nonlinear programming method consumes
substantial computational resources. Using MATLAB numerical simulation software, the simulation results
show that the trajectory optimization time (CPU time) for GPOPS is 4 s, for convex optimization is 1.8 s,
and for the proposed model predictive static programming method is less than 1 s. This demonstrates that
the proposed method offers higher optimization efficiency.

4.2 Model Predictive Static Programming under Free Terminal Time
In this section, the model predictive static programming method is implemented under free terminal

time. The initial flight time is set to 44.3 s. Parameters are initialed in Table 3.

Table 3: Initialization parameters

Parameter names Parameter values Parameter names Parameter values
Fish size 3 Kste p 5 × 10−4

max genf 3 Km 0.025
Try number 1 η 0.025
Initial-step 0.01 Terminal time (tf) [45.4 48] s

β 0.2

The fitness function curve is presented in Fig. 13.
With the increase of iteration times, the fitness function gradually decreases in Fig. 13. Note that, the

fitness function does not converge completely, because the proposed adaptive fish swarm optimization
method guarantees global convergence over a large range to obtain the suboptimal solution rather than the
optimal one. To obtain the optimal solution, the momentum gradient descent method is employed. In Fig. 13,
the sub-optimal performance index J = 196.6544 while tf = 45.50 s. After the adaptive fish swarm optimization
method, the momentum gradient descent method is employed. The best solution (global optimal solution)
is J = 196.6514 while tf = 45.51 s. The reduction in performance index ensures smooth control curves, which
is beneficial for the attitude tracking system.

Comput Model Eng Sci. 2025;143(2) 1477

Figure 13: Curve of performance index (fitness function) with iterative number

4.3 Terminal Controllers for Tracking Guidance Based on Reference Trajectory
Given that the trajectory designed above is open-loop, a closed-loop guidance method is employed

to track it. A current terminal controller is presented to track reference trajectory due to their general
applications treated and relation to this paper. The detailed theory and equation derivation can be seen in [6].
The optimal terminal controller can be given in Eqs. (35)–(37):

X = XREFERENCE + δX (35)
δU = −R−1DTSδX (36)
U = U REFERENCE + δU (37)

in which, R is the control weight matrix; D is the control partial derivative matrix; S is the feedback matrix
by backward integration; “REFERENCE” represents reference trajectory.

In this simulation, “TRACK1” denotes the tracking trajectory without any perturbation in wind
speed and gravitational acceleration; “TRACK2” indicates the tracking trajectory affected by gravitational
acceleration perturbation, with a range of −1 to 1; “TRACK3” indicates the tracking trajectory with wind
speed perturbation, with a range of −5 to 5; “TRACK4” presents the tracking trajectory impacted by
both gravitational acceleration and wind speed perturbations, with perturbation ranges matching those of
“TRACK3” and “TRACK4”. The initial state perturbations are provided in Table 4 for simulations “TRACK1”
to “TRACK4”. And the simulation results are presented in Table 4 and Figs. 14–18.

Table 4: Initial perturbations and terminal state errors

State x (m) y (m) z (m) v (m/s) γ (deg) ψ (deg)
Initial perturbations 160 600 −100 0 2 2
Terminal state errors 1.9315 −0.8425 −1.5020 0.2494 −0.0009 −0.0229

1478 Comput Model Eng Sci. 2025;143(2)

Figure 14: Trajectory tracking curves

Figure 15: Longitudinal overload tracking curves Figure 16: Lateral overload tracking curves

Figure 17: Flight-path angle tracking curves Figure 18: Heading angle tracking curves

Comput Model Eng Sci. 2025;143(2) 1479

Under larger initial state perturbations, Table 4 and Figs. 14–18 demonstrate the terminal position,
velocity and angle errors remain small compared to the reference trajectory. All state and control curves
quickly converge to the reference values, indicating that the controller exhibits strong tracking performance
and precision. It is important to emphasize that various disturbances in actual flight, such as initial
perturbations and model uncertainties, may lead to deviations of near-space vehicles from their reference
trajectory. The closed-loop control strategy employed in this study ensures high-precision convergence of
terminal states.

5 Method Comparison
In this section, two method comparisons are presented. First, the proposed adaptive fish swarm opti-

mization method is compared with the current analysis method for solving free-time trajectory optimization
problems. Secondly, a comparative evaluation is conducted between the proposed methods with and without
the neighboring term and trust-region.

5.1 Method Comparison between Proposed and Current Methods under Free Terminal Time
To verify the simulation results of trajectory optimization methods under free terminal time, proposed

and current methods are compared. The current methods are briefly presented as follows and the detailed
theory can be seen in [32].

Different from the performance index in current model predictive static programming method, the
developed performance index Jfree in time-free problem is given by:

Jfree =
1
2

cf(dtf)2 + 1
2

f−1
∑
i=1

(U ir − dU ir)TR (U ir − dU ir) (38)

where, R is the control weight matrix; cf is the weight term for terminal time deviation (dtf).
The terminal state deviation is given by:

dZf =
f−1
∑
i=1

B i dU i +
∂Zf

∂X f
f (X f , U f)dtf (39)

in which, matrices f and B i are the same as those in Eqs. (1) and (10), respectively.
The first-order optimal necessary conditions are changed as:

∂J̄free

∂dU ir
= −R (U ir − dU ir) − BT

ir λ i = 0 (40)

∂J̄free

∂dtf
= cf (dtf) − {[∂Zf

∂X f
] f (X f , U f)}

T
λ = 0 (41)

Then the control history and terminal time are updated as:

uk−update = R−1
k {[BT

k(Aλ + Cλ)−1 (−dZf + bλ)]} (42)

tf−update = tref
f + c−1

f {[∂Zf

∂X f
] f (X f , U f)}

T
(Aλ + Cλ)−1 (−dZf + bλ) (43)

where, Aλ , bλ and Cλ are the parameter matrices; uk-update and tf-update represent the updated u and
tf, respectively.

1480 Comput Model Eng Sci. 2025;143(2)

Given that the current method does not impose constraints on the neighboring term and trust
region, this comparison only focuses on the time-free trajectory optimization problem. In the simulation,
“Proposed” represents the proposed method, while “Analysis” denotes the current analytic terminal time
estimation method. The parameter cf is set to 106. Figs. 19–24 demonstrate the comparison results.

Figure 19: Three-dimensional trajectory profiles Figure 20: Performance index profiles

Figure 21: Longitudinal overload profiles Figure 22: Lateral overload profiles

Figs. 19–24 show both methods achieve fast convergence of trajectories. It is obvious that the proposed
method has smoother curves and better simulation results. Additionally, the smooth trajectories are
beneficial for the subsequent attitude control system. The data statistics for terminal time estimation are
presented and compared in Table 5.

The comparative results presented in Table 5 indicate that the proposed method achieves a substantially
lower performance index than that in the analytic method, confirming the proposed method’s effectiveness.

Comput Model Eng Sci. 2025;143(2) 1481

Figure 23: Flight-path angle profiles Figure 24: Heading angle profiles

Table 5: Data statistics of two methods

Different methods Terminal time (s) Performance index
Proposed method 44.51 196.65
Analysis method 44.37 214.63

5.2 Method Comparison between Whether Implementing Trust Region
In this subsection, the iterative number is set to 7; the terminal flight time is set to 44.5 s; and K δu

= diag(10,10). These simulation results comparing the method with and without the neighboring term
are presented in Table 6. The method “With constraint” presents the proposed model predictive static
programming method with trust region in Section 3, while the method “Without constraint” represents the
current model predictive static programming method.

Table 6: Error statistics between current and proposed methods

Different methods errorx (m) errory (m) errorz (m) errorv (m/s) errorγ (deg) errorψ (deg)
With constraint −5.6287 0.1726 −5.0247 −0.0009 −0.0003 0.0001

Without constraint −159.4572 8.8149 −86.9247 −0.0643 −0.0161 −0.1259

Table 6 presents the error terms, which represent the differences between the desired and actual terminal
states. Compared to the current method, which does not incorporate trust region, the proposed method
significantly reduces terminal state errors. The improved precision offers several advantages: 1) It further
enhances the trajectory optimization capability of near-space vehicle during the glide phase; 2) It reduces
the number of discrete points required to complete the trajectory optimization task, thereby significantly
decreasing optimization time; 3) It ensures smooth state and control curves between two adjacent iterations;
4) A key advantage of the model predictive static programming method with trust region is that this
constraint ensures iterative smoothness and minimize terminal state errors.

1482 Comput Model Eng Sci. 2025;143(2)

6 Conclusion
In this paper, firstly, the model predictive static programming method is proposed with a neighboring

term and trust region. Secondly, to address the free terminal time problem, an adaptive fish swarm
optimization method is developed to optimize terminal flight time to obtain a sub-optimal solution, while the
momentum gradient descent method with a decaying learning rate is employed to achieve the global optimal
solution. The final conclusions are drawn as: 1) The designed neighboring term and trust region for the
current model predictive static programming method significantly improve solution accuracy, reduce solving
time to some extent, and guarantee smooth optimal solutions; 2) The adaptive fish swarm optimization
and momentum gradient descent methods ensure the global optimal solution in model predictive static
programming method under free terminal time. The global optimal solution reduces energy consumption
and ensures a smooth trajectory for near-space vehicles, which greatly benefits their structural and rudder
surface design. Although the proposed method demonstrates good trajectory optimization capabilities, it
may encounter a common problem of Newton-type methods: with poor initial values, a large step in the
early iterations may cause the trajectory to diverge directly. Therefore, it is necessary to design an adaptive
law to balance robustness and convergence during the trajectory iteration process.

Acknowledgement: Not applicable.

Funding Statement: This work was supported by the National Science Foundation for Distinguished Young Scholars of
China (No. 52425212), National Key Research and Development Program of China (No. 2021YFA0717100), and National
Natural Science Foundation of China (Nos. 12072270, U2013206, and 52442214).

Author Contributions: The authors confirm contribution to the paper as follows: Conceptualization, Yuanzhuo Wang
and Honghua Dai; methodology, Yuanzhuo Wang and Honghua Dai; software, Yuanzhuo Wang; validation, Yuanzhuo
Wang and Honghua Dai; resources, Honghua Dai; writing—original draft preparation, Yuanzhuo Wang; writing—
review and editing, Yuanzhuo Wang and Honghua Dai; funding acquisition, Honghua Dai. All authors reviewed the
results and approved the final version of the manuscript.

Availability of Data and Materials: This article does not involve data availability, and this section is not applicable.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Sziroczak D, Smith H. A review of design issues specific to hypersonic flight vehicles. Prog Aerosp Sci.

2016;84(3):1–28. doi:10.1016/j.paerosci.2016.04.001.
2. Ding Y, Yue X, Chen G, J. SI. Review of control and guidance technology on hypersonic vehicle. Chin J Aeronaut.

2022;35(7):1–18. doi:10.1016/j.cja.2021.10.037.
3. Malyuta D, Yu Y, Elango P, Açıkmeşe B. Advances in trajectory optimization for space vehicle control. Annu Rev

Control. 2021;52(2):282–315. doi:10.1016/j.arcontrol.2021.04.013.
4. Lu P, Doman D, Schierman J. Adaptive terminal guidance for hypervelocity impact in specified direction. J Guid

Control Dynam. 2006;29(2):269–78. doi:10.2514/1.14367.
5. Ding Y, Yue X, Li W, Huang P, Li N. Novel finite-time controller with improved auxiliary adaptive law for

hypersonic vehicle subject to actuator constraints. IEEE Trans Intell Transp Syst. 2025;1(3):1–15. doi:10.1109/TITS.
2024.3522567.

6. Bryson A, Ho Y. Applied optimal control. New York: Taylor & Francis Group; 1975. p. 148–76.
7. Gardi A, Sabatini R, Ramasamy S. Multi-objective optimisation of aircraft flight trajectories in the ATM and

avionics context. Prog Aerosp Sci. 2016;83:1–36. doi:10.1016/j.paerosci.2015.11.006.

https://doi.org/10.1016/j.paerosci.2016.04.001
https://doi.org/10.1016/j.cja.2021.10.037
https://doi.org/10.1016/j.arcontrol.2021.04.013
https://doi.org/10.2514/1.14367
https://doi.org/10.1109/TITS.2024.3522567
https://doi.org/10.1109/TITS.2024.3522567
https://doi.org/10.1016/j.paerosci.2015.11.006

Comput Model Eng Sci. 2025;143(2) 1483

8. Tordesillas J, Lopez B, How J. Faster: fast and safe trajectory planner for flights in unknown environments. In: 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2019; New York: IEEE. p. 1934–40.

9. Kwon D, Jung Y, Cheon Y, Bang H. Sequential convex programming approach for real-time guidance during the
powered descent phase of mars landing missions. Adv Space Res. 2021;68(11):4398–417. doi:10.1016/j.asr.2021.08.
033.

10. Betts J. Survey of numerical methods for trajectory optimization. J Guid Control Dynam. 1998;21(2):193–207.
doi:10.2514/2.4231.

11. Zhang J, Yu H, Dai H. Overview of earth-moon transfer trajectory modeling and design. Comput Model Eng Sci.
2022;135(1):5–43. doi:10.32604/cmes.2022.022585.

12. Chai R, Savvaris A, Tsourdos A, Chai S, Xia Y. A review of optimization techniques in spacecraft flight trajectory
design. Prog Aerosp Sci. 2019;109(2):100543. doi:10.1016/j.paerosci.2019.05.003.

13. Li S, Huang X, Yang B. Review of optimization methodologies in global and China trajectory optimization
competitions. Prog Aerosp Sci. 2018;102(9):60–75. doi:10.1016/j.paerosci.2018.07.004.

14. Shirazi A, Ceberio J, Lozano J. Spacecraft trajectory optimization: a review of models, objectives, approaches and
solutions. Prog Aerosp Sci. 2018;102(2):76–98. doi:10.1016/j.paerosci.2018.07.007.

15. Von Stryk O, Bulirsch R. Direct and indirect methods for trajectory optimization. Ann Oper Res. 1992;37(1):357–73.
doi:10.1007/BF02071065.

16. Antony T. Large scale constrained trajectory optimization using indirect methods [dissertation’s thesis]. West
Lafayette, IN, USA: Purdue University; 2018. 72 p.

17. Nolan S, Smith C, Wood J. Real-time onboard trajectory optimization using indirect methods. In: AIAA Scitech
2021 Forum, American Institute of Aeronautics and Astronautics; Virtual Event; 2021. doi 10.2514/6.2021-0106.

18. Wang Y, Topputo F. Indirect optimization of power-limited asteroid rendezvous trajectories. J Guid Control
Dynam. 2022;45(5):962–71. doi:10.2514/1.G006179.

19. Nakano R, Taheri E, Hirabayashi M. Time-optimal and fuel-optimal trajectories for asteroid landing via in-direct
optimization. In: AIAA SCITECH, 2022 Forum 1128; 2022.

20. Coupechoux M, Darbon J, Kélif J, Sigelle M. Optimal trajectories of a UAV base station using Hamilton-Jacobi
equations. IEEE Trans on Mobile Comput. 2023;22(8):4837–49. doi:10.1109/TMC.2022.3156822.

21. Shao X, Yao W, Li X, Sun G, Wu L. Direct trajectory optimization of free-floating space manipulator for reducing
spacecraft variation. IEEE Robot Autom Lett. 2022;7(2):2795–802. doi:10.1109/LRA.2022.3143586.

22. Sun W, Theodorou E, Tsiotras P. Continuous-time differential dynamic programming with terminal constraints.
In: 2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL); 2014;
Orlando, FL, USA: IEEE. p. 1–6. doi:10.1109/ADPRL.2014.7010647.

23. Ma Y, Pan B, Hao C, Tang S. Improved sequential convex programming using modified Chebyshev-Picard iteration
for ascent trajectory optimization. Aerosp Sci Technol. 2022;120(6):107234. doi:10.1016/j.ast.2021.107234.

24. Xu G, Long T, Wang Z, Sun J. Trust-region filtered sequential convex programming for multi-UAV trajectory
planning and collision avoidance. ISA Trans. 2022;128(4):664–76. doi:10.1016/j.isatra.2021.11.043.

25. Chapnevis A, Bulut E. Time-efficient approximate trajectory planning for AoI-centered multi-UAV IoT net-
works[J]. Internet of Things. 2025;29(12):101461. doi:10.1016/j.iot.2024.101461.

26. Padhi R, Banerjee A, Mathavaraj S, Srianish V. Computational guidance using model predictive static program-
ming for challenging space missions: an introductory tutorial with example scenarios. IEEE Control Syst Mag.
2024;44(2):55–80. doi:10.1109/MCS.2024.3358624.

27. Fu B, Guo H, Chen K, Fu WX, Wu XY, Yan J. Aero-thermal heating constrained midcourse guidance using state-
constrained model predictive static programming method. J Syst Eng Electron. 2018;29(6):1263–70. doi:10.21629/
JSEE.2018.06.13.

28. Wang Y, Topputo F. Robust bang-off-bang low-thrust guidance using model predictive static programming. Acta
Astronaut. 2020;176(8):357–70. doi:10.1016/j.actaastro.2020.06.037.

29. Dwivedi P, Bhattacharya A, Padhi R. Suboptimal midcourse guidance of interceptors for high-speed targets with
alignment angle constraint. J Guid Control Dynam. 2011;34(3):860–77. doi:10.2514/1.50821.

https://doi.org/10.1016/j.asr.2021.08.033
https://doi.org/10.1016/j.asr.2021.08.033
https://doi.org/10.2514/2.4231
https://doi.org/10.32604/cmes.2022.022585
https://doi.org/10.1016/j.paerosci.2019.05.003
https://doi.org/10.1016/j.paerosci.2018.07.004
https://doi.org/10.1016/j.paerosci.2018.07.007
https://doi.org/10.1007/BF02071065
https://doi.org/10.2514/6.2021-0106
https://doi.org/10.2514/1.G006179
https://doi.org/10.1109/TMC.2022.3156822
https://doi.org/10.1109/LRA.2022.3143586
https://doi.org/10.1109/ADPRL.2014.7010647
https://doi.org/10.1016/j.ast.2021.107234
https://doi.org/10.1016/j.isatra.2021.11.043
https://doi.org/10.1016/j.iot.2024.101461
https://doi.org/10.1109/MCS.2024.3358624
https://doi.org/10.21629/JSEE.2018.06.13
https://doi.org/10.21629/JSEE.2018.06.13
https://doi.org/10.1016/j.actaastro.2020.06.037
https://doi.org/10.2514/1.50821

1484 Comput Model Eng Sci. 2025;143(2)

30. Zhou C, Yan X, Tang S. Generalized quasi-spectral model predictive static programming method using gaussian
quadrature collocation. Aerosp Sci Technol. 2020;106(11):106134. doi:10.1016/j.ast.2020.106134.

31. Pan B, Ma Y, Yan R. Newton-type methods in computational guidance. J Guid Control Dynam. 2019;42(2):377–83.
doi:10.2514/1.G003931.

32. Zha Y, Jie G, Hong H, Tang S. Guidance law design based on the flexible final time model predictive static
programming. Flight Dyn. 2019;37:61–5. (In Chinese).

33. Zamfirache I, Precup R, Roman R, Petriu EM. Policy iteration reinforcement learning-based control using a grey
wolf optimizer algorithm. Inf Sci. 2022;585(2):162–75. doi:10.1016/j.ins.2021.11.051.

34. Zamfirache I, Precup R, Roman R, Petriu E. Reinforcement learning-based control using Q-learning and gravi-
tational search algorithm with experimental validation on a nonlinear servo system. Inf Sci. 2022;583(2):99–120.
doi:10.1016/j.ins.2021.10.070.

35. Tsai H, Lin Y. Modification of the fish swarm algorithm with particle swarm optimization formulation and
communication behavior. Appl Soft Comput. 2011;11(8):5367–74. doi:10.1016/j.asoc.2011.05.022.

36. Sivakumar S, Venkatesan R. Error minimization in localization of wireless sensor networks using fish swarm
optimization algorithm. Int J Comput Appl. 2017;159(7):39–45. doi:10.5120/ijca2017913000.

37. Zhang T, Yu L, Li S, Wu F, Song Q, Zhang X. Unmanned aerial vehicle 3D path planning based on an improved
artificial fish swarm algorithm. Drones. 2023;7(10):636. doi:10.3390/drones7100636.

38. Ma Z, Gong H, Wang X. Trajectory planning of unmanned helicopter formation based on improved artificial fish
swarm algorithm. J Beijing Univ Aeronaut Astronaut. 2021;47:406–12.

39. Wang Y, Dai H. Secure model predictive static programming with initial value generator for online computational
guidance of near-space vehicles. Aerosp Sci Technol. 2025;156:109768. doi:10.1016/j.ast.2024.109768.

40. Sabuj S, Cho Y, Elsharief M, Jo HS. Trajectory design of UAV-aided energy-harvesting relay networks in the
terahertz band. Comput Commun. 2025;230(4):108007. doi:10.1016/j.comcom.2024.108007.

41. Ding Y, Yue X, Liu C, Dai H, Chen GS. Finite-time controller design with adaptive fixed-time anti-saturation
compensator for hypersonic vehicle. ISA Trans. 2022;122(2):96–113. doi:10.1016/j.isatra.2021.04.038.

42. Guo R, Ding Y, Yue X. Active adaptive continuous nonsingular terminal sliding mode controller for hypersonic
vehicle. Aerosp Sci Technol. 2023;137(7):108279. doi:10.1016/j.ast.2023.108279.

https://doi.org/10.1016/j.ast.2020.106134
https://doi.org/10.2514/1.G003931
https://doi.org/10.1016/j.ins.2021.11.051
https://doi.org/10.1016/j.ins.2021.10.070
https://doi.org/10.1016/j.asoc.2011.05.022
https://doi.org/10.5120/ijca2017913000
https://doi.org/10.3390/drones7100636
https://doi.org/10.1016/j.ast.2024.109768
https://doi.org/10.1016/j.comcom.2024.108007
https://doi.org/10.1016/j.isatra.2021.04.038
https://doi.org/10.1016/j.ast.2023.108279

	Developed Time-Optimal Model Predictive Static Programming Method with
obreakspace Fish Swarm Optimization for Near-Space Vehicle
	1 Introduction
	2 Dynamic Model for Near-Space Vehicle
	3 Developed Time-Optimal Model Predictive Static Programming Method
	4 Case Study: Time-Optimal Model Predictive Static Programming Method for Near-Space Vehicle
	5 Method Comparison
	6 Conclusion
	References

