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ABSTRACT: The reliability and efficiency of photovoltaic (PV) systems are essential for sustainable energy produc-
tion, requiring accurate fault detection to minimize energy losses. This study proposes a hybrid model integrating
Neighborhood Components Analysis (NCA) with a Convolutional Neural Network (CNN) to improve fault detection
and diagnosis. Unlike Principal Component Analysis (PCA), which may compromise class relationships during feature
extraction, NCA preserves these relationships, enhancing classification performance. The hybrid model combines
NCA with CNN, a fundamental deep learning architecture, to enhance fault detection and diagnosis capabilities. The
performance of the proposed NCA-CNN model was evaluated against other models. The experimental evaluation
demonstrates that the NCA-CNN model outperforms existing methods, achieving 100% fault detection accuracy and
99% fault diagnosis accuracy. These findings underscore the model’s potential in improving PV system reliability
and efficiency.

KEYWORDS: Artificial intelligence; photovoltaic energy systems; machine learning; photovoltaic fault detection and
diagnosis; convolutional neural networks (CNN); neighbourhood component analysis (NCA)

1 Introduction

Photovoltaic (PV) systems are vital for renewable energy but faults can reduce efficiency, reliability, and
safety, increasing the risk of fire hazards. Given the high initial investment and associated risks, continuous
monitoring and timely fault detection are crucial for maintaining efficiency and minimizing operational
costs [1]. Common faults in PV systems, including dust accumulation, short circuits, partial shading, series
resistance degradation, and aging, result in changes to the system’s electrical performance, observable
through the current-voltage (I-V) characteristics [2]. Among these faults series resistance degradation, often
caused by contamination or prolonged ultraviolet exposure, can significantly damage PV systems if not
addressed promptly [3,4].

Early fault detection and diagnosis play a crucial role in ensuring the optimal performance of PV
systems. Various fault detection techniques have been proposed, ranging from conventional methods to
advanced machine learning (ML) based approaches [5]. ML-based approaches and deep learning (DL)
algorithms have recently gained prominence in PV system fault detection due to their capability to analyze
large datasets and extract meaningful patterns [6]. Researchers have explored different ML classifiers such as
Decision Trees (DT), Random Forests (RF), Support Vector Machines (SVM), and Artificial Neural Networks

® Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2025.064269
https://www.techscience.com/doi/10.32604/cmes.2025.064269
mailto:yasemin.onal@bilecik.edu.tr

2308 Comput Model Eng Sci. 2025;143(2)

(ANN) to enhance fault diagnosis accuracy [7,8]. DTs are valued for their simplicity and interpretability,
effectively diagnosing issues such as line-to-line faults, open circuits, and partial shading. However, their
reliance on splitting criteria may limit their performance in complex, dynamic conditions [8]. RF enhances
DTs by leveraging an ensemble approach, improving accuracy and efficiency in diagnosing faults like line-
to-line faults, degradation, and shading [9]. RF encounters challenges including data sparsity, imbalanced
datasets, and high computational demands. SVM is renowned for its robustness and high accuracy in diag-
nosing complex PV system faults, such as short circuits, open circuits, shading faults, and degradation [10,11].
Additionally, ensemble learning approaches have been proposed to improve classification performance in
grid-connected PV systems.

PV fault detection methods balance interpretability, efficiency, and accuracy. Hybrid Artificial Intel-
ligence (AI) approaches, combining MLs feature extraction with DLs classification strengths, outperform
single methods, enhancing reliability, scalability, and diagnostic performance. Approaches like hybrid
learning machines [12], feature extraction techniques such as principal component analysis (PCA) [13],
and wavelet packet transform [14] have shown promising results. These hybrid methods leverage the
dimensionality reduction and feature extraction strengths of ML while utilizing the superior classification
capabilities of DL, resulting in enhanced overall performance in data-driven tasks [15,16]. PCA has been
widely used for PV fault detection [17] but has limitations in classification tasks due to its unsupervised
nature and inability to preserve class relationships [18]. While PCA reduces dimensionality by capturing data
variance, it disregards fault class distinctions, affecting accuracy.

This limitation can reduce PCA’s effectiveness in fault detection tasks. To address this, NCA has
been introduced [19], as it not only reduces dimensionality but also retains intra-class and inter-class data
scattering, improving classification accuracy. This capability allows NCA to effectively differentiate between
fault types, enhancing its utility in PV fault diagnosis by improving classification accuracy and reliability.
NCA has been effectively used as a preprocessing step for ANN classifiers in PV power estimation [20].

The literature contains very few studies utilizing the NCA-CNN hybrid method. Among these, one
study proposed a hybrid model to enhance the accuracy of tomato leaf disease classification by combining
features extracted from different CNN architectures and selecting the most relevant ones with NCA before
classification [21]. Another study in [22], is integrated wavelet transform, singular values, and NCA-CNN
methods for automatic modulation recognition of communication signals. Besides, the literature [23] applied
the NCA-CNN algorithm in an Internet of Things (IoT) based system to improve the monitoring of diabetic
patients, aiming for more effective health data tracking and better disease management. Although NCA-
CNN has been explored in various domains to a limited extent, its application to PV fault detection has not
yet been addressed in the literature. The key aspect lies in the system architecture required to capture the
specific features of the measurements derived from the system outputs. In physics, PV faults exhibit distinct
characteristics in PV current-voltage and power-voltage graphs. Our study is the first to apply NCA-CNN
analysis for PV fault detection, bridging this gap in the research. The integration of NCA and CNN provides
several advantages over traditional ML models. Firstly, NCA effectively filters out redundant and irrelevant
features, reducing computational complexity and mitigating the risk of overfitting. Secondly, CNNs excel at
capturing spatial dependencies and local feature patterns, which conventional ML classifiers may struggle to
detect [24].

The success of NCA-CNN varies across different application areas, depending on the nature of the
problem and how errors impact system outputs. Even within the fault analysis literature, performance
results and system architecture vary significantly depending on the specific system and its operational
conditions [25,26]. Unlike fault analysis, applying it to a field like disease progression monitoring in
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healthcare would lead to entirely different system architectures [24]. Given these variations, applying NCA-
CNN for PV fault detection and analyzing the results is particularly valuable for real-world PV system
monitoring, enhancing reliability and efficiency. This study uniquely adapts and optimizes NCA-CNN for
photovoltaic systems, making a significant contribution to the PV fault detection literature. While DL-based
fault detection has gained momentum in PV systems, a critical gap remains in studies focused on extracting
optimal features for PV faults. Our research addresses this gap by presenting a structured NCA-CNN
framework that effectively eliminates irrelevant data while maximizing fault differentiation, setting a new
benchmark in the field. Rather than merely extending existing NCA-CNN applications, this study introduces
a transformative adaptation specifically tailored for PV fault detection. By redefining how PV faults are
identified, diagnosed, and prevented, our approach makes significant scientific and practical contributions
to the advancement of renewable energy diagnostics.

Contributions of the proposed method in the PV fault detection/diagnosis process are as follows:

«  Optimized Feature Selection: Integrating NCA with CNN enables automatic feature selection, eliminat-
ing noise and enhancing PV fault detection accuracy.

o Superior Spatial Feature Extraction: Unlike traditional ML and Long Short-Term Memory (LSTM)
models, NCA-CNN excels in capturing spatial dependencies, making it more robust for analyzing
distinct PV fault hierarchies.

o Enhanced Fault Differentiation: The model precisely detects complex PV faults, including series
resistance and shading effect issues.

o Performance Superiority: NCA-CNN achieved the highest accuracy (0.99), outperforming XGBoost,
PCA-CNN, and LSTM, as confirmed by statistical analysis.

+ Reduced Computational Complexity: NCA reduces dimensionality, boosting efficiency while preserving
fault detection performance.

The paper proposes an innovative hybrid model, an integration of NCA and CNN, for accurate and
early detection of partial shading and series resistance breakdown faults in PV systems. The hybrid model
is designed to address the key challenges of accurate classification of complex fault patterns and precise
interpretation of I-V curve variations. I-V curves simulated from the direct current side of the PV array
are used in the experimental studies. NCA is used to automatically identify and extract important features
from I, V, and power (P) values derived from the I-V curve. These features serve as inputs to a CNN
classifier that provides accurate and systematic fault diagnosis in PV systems. The remainder of this paper
is organized as follows: Section 2 presents the mathematical model of the PV panel, including the modeling
of series resistance and partial shading faults. Section 3 introduces the proposed NCA-CNN method and its
comparison with PCA, detailing NCA, CNN, and their integration into the hybrid model. Section 4 discusses
the experimental studies, including data description, evaluation metrics, and fault detection and diagnosis
results. Finally, conclusions and future research directions are provided.

2 Materials
2.1 Mathematical Model of PV Panel

Fig. 1 illustrates the equivalent circuit of an ideal PV cell. To obtain the I-V characteristics of a PV
panel, the single-diode or two-diode equivalent circuit of the PV cell is among the most commonly utilized
approaches. The classical single-diode model is typically employed to obtain the fundamental characteristics
of a PV panel. This equivalent circuit is modeled as an electrical circuit that includes the current source
generated by the incident light, a small resistor in series with the source, a large resistor in parallel, and a
diode in parallel. The fundamental equation, derived from semiconductor theory [27], that mathematically
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describes the I-V characteristics of an ideal PV cell is given by Eq. (1) [28].

\%4
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where I, .1 represents the current generated by incident light, which is directly proportional to solar
irradiation, and I; corresponds to the Shockley diode equation. Iy ..;; denotes the reverse saturation or
leakage current of the diode, g is the electron charge, k is the Boltzmann constant, T is the absolute
temperature of the p-n junction in Kelvin, and a is the diode ideality factor.
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Figure 1: The single-diode model of a theoretical PV cell, along with the equivalent circuit representation of a practical
PV device, includes both series and parallel resistances

The equation of a basic PV cell does not adequately represent the I-V characteristics of a practical
PV array. Practical PV arrays consist of several interconnected PV cells, and accurately observing the
characteristics at the terminals of the PV array requires the inclusion of additional parameters in the
fundamental Eq. (2).
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where I,, represents the PV current of the array, I, denotes the saturation current, and V; is the thermal
voltage of the array composed of N series-connected cells (V; = N;kT/q). R, and R, are the equivalent series
and parallel resistances of the array, respectively. When the array consists of N, cells connected in parallel,
the PV current and saturation current can be expressed as I, = I,y c.11Np and Iy = Iy .11 N, respectively.
This equation generates the I-V curve. The short circuit (0, I;.) point, the MPP (V,,5, I1np,) point and the
open circuit (V,, 0) point are important on the curve [29].

The PSIM software package is used for the design, control, and simulation of power electronics and
digital motor control circuits and provides fast and accurate results [30]. The PV fault modes and synthetic
dataset utilized in this study were generated by simulating the experimental dataset obtained using the
FL60-250MBP monocrystalline PV panel, as employed in their research within the PSIM [17]. The module’s
key parameters under Standard Test Conditions (1000 W/m?, 25°C) include a maximum power current
(Impp 8.21 A), a maximum power voltage (V,,, 30.52 V), a short-circuit current (I, 8.64 A), and an open-
circuit voltage (Vo 37.67 V). Structurally, it comprises 60 monocrystalline silicon PV cells connected in
series, organized into three sub-arrays of 20 PV cells each. To safeguard the module, three bypass diodes are
integrated, each connected in an anti-parallel configuration to protect the corresponding PV sub-array [17].
In the PSIM simulation circuit, a solar module is used to account for changes in solar irradiation and ambient
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temperature. The physical model of the PV module used is shown in Fig. 2. A large number of parameters
must be entered into the solar module. Some of these parameters can be obtained from the manufacturer’s
data sheets, while others, such as photocurrent, diode saturation current, series and parallel resistances, and
ideality factor, are determined using the physical model. The PV panel under investigation consists of 60 PV
cells connected in series [18].
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~Manufacturer Datasheet 1(a)
Number of Cells Ns: (|
Maximum Power Pmax: 250 (W)
Voltage at Pmax: 30.52 (V)
Current at Pmax: 8.21 (A)
Open-Circuit Voltage Voc: 3767 (V)
Short-Circuit Current Isc: 8.64 (A)
Temperature Coeff. of Voc: 0.38  (%/oC or ok)
Temperature Coeff. of Isc: [W (%/oC or o)
Standard Test Conditions:
Light Intensity S0: 1000  W/(m™m)
Temperature Tref: 25 (oQ)
dv/di (slope) at Voc: 0.68 (v/A)
(if available)
—Model F s (defined)
Band Energy Eg: 112 (eV)
Ideality Factor A: 1.2
Shunt Resistance Rsh: 1000 (Ohm)
I Coeffident Ks: 0
[~Model Parameters (calculated) 1
Calculate Parameters
Series Resistance Rs: ,W (Ohm)

Short Circuit Current IscD: 8.64 (A) 10 20 30 40
Saturation Current1s0: | 1.27e-8 (A) v
Temperature Coeffident Ct: | 0.005184 (A/K)
L -Maximum Power Point (calculated) - e | TN ‘
[ Operating Conditions Pmax: | 249.78 (W)
Light Intensity S: 1000 W/(m™m) Venae: 30.76 (V) Load... | Copy PSIM Parameters ‘
Ambient Temperature Ta: 25 (oC) Imax: 8.12 (&) Help | Close ]

Figure 2: The physical model of the PV panel in PSIM [18]

2.2 Modeling of Series Resistance and Partial ShadingFaults

PV arrays are prone to a wide range of failures due to improper usage and lack of maintenance.
Among these, shading is one of the most frequent and damaging faults, significantly degrading PV
system performance. As demonstrated in the literature [31], partial shading can lead to an annual power
generation loss exceeding 10%-20% in residential applications. Moreover, despite the presence of bypass
diodes, localized shading can cause excessive heating of shaded cells. Resulting in thermal power losses,
a considerable reduction in PV module lifespan, and potential damage to the affected cells [32]. For PV
systems, the breakdown modes are reflected differently in the I-V curve, which has a specific shape under
shaded conditions due to the activation of bypass diodes. Under partial shading fault, PV substrings receive
irregular irradiation. The series resistance breakdown mode changes the I-V curve in the region close to
the Vo [33]. The same effect is observed in the case of potential-induced degradation [34]. Due to these
detrimental effects, investigated the impact of specific PV faults on the I-V curve, focusing on healthy
conditions, partial shading, and series resistance degradation [17].
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Experimental studies were carried out under various operating modes. Two operating cases were
considered as faulty operation modes and healthy operation modes. The first faulty operation mode is three-
series resistance degradation (Fault A, Fault B, and Fault D), and the second faulty operation mode is partial
shading (Fault C). Operation modes are given in Table 1. In this study, we simulated a PV panel with the
same specifications as used in the literature study [17].

Table 1: PV array operating modes created in the experimental study

Class Series Seri resistance Solar Panel
label resistance value Q irradiation temperature °C
coefficent W/m?
Healthy mode Healthy R; 0.0035 1000 25
. . Fault A L.5R; 0.00525 1000 25
Series resistance
. Fault B 2 R, 0.007 1000 25
degradation modes
Fault D 3R; 0.0105 1000 25
Partial shadingmode  Fault C R, 0.0035 735 25

Fig. 3 depicts the PSIM simulation circuit utilized for the series resistance degradation mode and the
healthy mode. The healthy mode is defined by 1000 W/m? solar irradiation, 25°C reference temperature and
series resistance R (0.0035 Q). Series resistance degradation modes were performed for three different series
resistance values, 1.5R, (0.00525 Q) for Fault A, 2R, (0.007 Q) for Fault Band 3R, (0.0105 Q) for Fault D. The
faulty modes are represented differently in the I-V curve. Partial shading fault can cause significant problems
in PV systems. In PV panels, when the number of shaded cells is less than the number of illuminated cells,
the current generated by the illuminated cells exceeds that of the shaded cells. This causes the diodes of the
shaded cells to become reverse biased, resulting in power loss within the shaded cells.
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Figure 3: The PSIM simulation circuit used for Healthy, Fault A, Fault B, and Fault D conditions

The I-V curves obtained from the simulation results vary based on the location and number of cells
experiencing partial shading on the PV panel. One PV cell in the first sub-string and one PV cell in the third
sub-string are shaded. The effect of shaded cells on the output current is clearly illustrated by the three peaks
occurring on the I-V curve. Multiple peaks appear in all I-V curves depending on the type of shading applied
under shaded conditions. The short circuit current of the PV panel varies according to the solar irradiation.
The PV panel produces less current at low solar irradiation [34].
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Fig. 4 shows the simulation circuit created in PSIM for partial shading mode. The shading mode is
applied to three substrings with irregular irradiation levels. To simulate the effect of shading, the PV panel
under study is applied for Fault C with the series resistance value R; (0.0035Q)) of 60 PV cells connected in
series, organized into three sub-strings of 20 PV cells each. The shading mode is applied to three substrings
with irregular irradiance levels. These sub-strings are equipped with three bypass diodes, each connected in
antiparallel to protect a PV sub-string.
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Figure 4: The PSIM simulation circuit used for fault C condition

To illustrate the effects of some PV array faults on the I-V and P-V curves, simulation results obtained
under healthy mode, partial shading mode and series resistance degradation modes are presented in Fig. 5.
Although the series resistance R; is considered to be negligible in certain cases due to its minimum
magnitude, considering the effect of the series resistance degradation on the output power and open circuit
voltage (V,.) of the PV array, it becomes a critical parameter especially in the evaluation of the resistance
degradation. From Fig. 5, we can observe that a degradation in the series resistance mainly changes the
I-V curve in the region close to the open circuit voltage V,. [20,34]. The increase in the series resistance
leads to a decrease in the I-V curve V. and causes deviations from the maximum power point, negatively
affecting the overall efficiency of the panel. The same effect can be observed in the case of potential-induced
disturbance [35].

The NCA-CNN model proposed in this study aims to enhance generalization in the analysis of features
extracted from I-V curves, enabling the detection of both simulated faults and unforeseen errors that may
arise under real-world conditions. To improve the model’s generalization capacity, diverse dataset comprising
various faulty and healthy operating scenarios was utilized during the training phase. The proposed approach
is applied offline in the case of PV module analysis. By leveraging online I-V trackers integrated into modern
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PV inverter technologies, the NCA-CNN method can seamlessly operate with any connected PV system,
utilizing existing measurements without requiring additional hardware. While NCA identifies discriminative
features by maintaining inter-class relationships, CNN leverages DL capabilities to extract meaningful
patterns from these features. Consequently, the model is optimized not only for recognizing predefined fault
types but also for detecting previously unseen anomalies, ensuring robust real-world applicability. As a result,
the model is optimized not only for recognizing predefined fault types, but also for detecting any fault that
can be precisely mapped to a real-world situation that was not explicitly introduced during training.
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Figure 5: (a) the I-V and (b) the P-V curves obtained under one healthy and four faulty conditions in PSIM

3 Proposed NCA-CNN Method
3.1 Neighbourhood Component Analysis, NCA and Its Comparision with PCA

NCA is a supervised dimensionality reduction technique specifically designed to enhance the classifi-
cation performance of algorithms, particularly k-nearest neighbors (k-NN). This method learns an optimal
transformation that maximizes the likelihood of accurately classifying training instances, thereby increasing
the separability between distinct classes in the transformed feature space. Unlike PCA which generates
a new feature space by creating a transformation matrix that captures the maximum variance across the
entire dataset without regard to class labels, NCA’s primary objective is to maximize the distance among
different classes. This targeted approach is why NCA often performs better than PCA in classification
tasks. The process of the NCA algorithm is illustrated through the pseudocode presented in Fig. 6. This
structured overview provides a clearer understanding of the step-by-step methodology employed within the
NCA framework.

The graphics in Fig. 7 illustrate a comparison of the efficiency between the PCA and NCA methods.
The scatter plots in Fig. | display the distribution of the PV data that are the original, as well as the PV data
transformed using PCA and NCA. From the analysis of Fig. 7, it is clear that the NCA algorithm outperforms
PCA in terms of distinguishing between different fault classes. In the original data distribution (Fig. 7a), only
the healthy PV data points can be separable from the faulty ones, while the PV data points that have various
fault types remain indistinguishable from each other. When PCA is applied (Fig. 7b), the transformed feature
space resembles the original data space, lacking the ability to differentiate between fault types; again, only
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the healthy data is separable from the faulty instances. In contrast, when the NCA transformation is used
(Fig. 7¢), a clear distinction emerges between Fault A and Fault C, as well as between these faults and the
healthy data. Additionally, Faults B and D can be distinctly identified from Faults A and C, as well as from
the healthy data. However, it is seen that Faults B and D are not distinguishable from one another.

Step1:Initialization. Start with an initial transformation matrix A: Identity matrix or a small random
matrix.

Step2: Transformation. Perform transformation for each input data point x; using y; = Ax; .
exp(-[lyi=v; %)
Step3: Probability Calculation.The probability p;; that x; is the neighbor of x;:p;; = —_—

ki exp(=[lyi-vjll
where, ||yi - y,-|| is the Euclidean distance between y;and y;.
Step4: Expected Classification Score. Define the probability that x;is correctly classified: p; = ¥ jec, pij
where, C; is the set of indices of points that share the same class label as x;.
Step5: Objective Function. The objective is to maximize the expected number of correctly classified
points: L(A) =X p;

Step6: Gradient Computation.% = ZiZj(pij - Sij)(yi =YX

where, §;;is 1if x;andx;belong to the same class, and 0 otherwise.

AL(A)

Step7: Optimization. Use gradient ascent to update A iteratively:A « A + PRrye

where, 1 is the learning rate.

Step8: Iteration. Continue with steps 3 to 7 until convergence is achieved, meaning that the objective

function L(A) stabilizes or shows minimal improvement over iterations.

Figure 6: The pseudocode of NCA algorithm

® Faulth . ®  Faulth [ ] ®  FaultA
* Faults 35 o Faulth " // o Faults
1 * faultc e Rt / ® Faulto
» FaultD £ » Faulc »  Faultc
po & Healthy o T2 ® Healthy
[ £ 25 ¥
- £
H H —
5 H
B 220 g
g -1 5 5
i s ;™
] o 2
pd 4 o
-2 Eo g -e0
05 -100
-3
o eSS
b - -120 .
-1 [} 1 2 3 -2 -1 o 1 2 -40 =20 o 20 40 &0 80 100 120
I (Standardized] Principal Component 1 Neighbor Companent 1
(a) (b) (©

Figure 7: The data scatter plot, (a) Original data space simulated by PSIM and standardized to have a mean of 0 and a
standard deviation of 1, (b) the data transformed by PCA, and (c) the data transformed by NCA for feature space

The integration of NCA and CNN provides several advantages over traditional ML models. Firstly,
NCA effectively filters out redundant and irrelevant features, reducing computational complexity and
mitigating the risk of overfitting. Secondly, CNNs excel at capturing spatial dependencies and local feature
patterns, which conventional ML classifiers may struggle to detect [36]. By applying NCA for dimensionality
reduction, CNN training becomes more efficient, as the model can focus on learning meaningful feature
interactions rather than processing unnecessary data. The Hybrid NCA-CNN approach is particularly
valuable for datasets with a high number of features, where only a subset significantly influences classification
outcomes. Removing irrelevant and noisy features enhances the model’s ability to generalize, leading
to improved performance on unseen data. Additionally, this method is computationally more efficient
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than training CNNs on the full dataset without prior feature selection, making it a scalable solution for
high-dimensional classification tasks.

3.2 Convolutional Neural Networks CNN

CNNs, primarily used for image classification, can also effectively classify tabular data by capturing
feature interactions and spatial dependencies. Their ability to apply convolutional filters across feature
dimensions enables them to identify patterns and hierarchical relationships that traditional models might
overlook. Unlike conventional ANNs, CNNs utilize adjustable weights and biases, applying nonlinear
activation functions to enhance feature extraction. This feedforward kernel structure allows CNNs to
transform data efficiently through multiple layers. As supervised learning algorithms, CNNs follow a
structured process involving definition, training, evaluation, and prediction. Additionally, they require less
preprocessing compared to other DL methods, simplifying the workflow [37,38]. The pseudocode outlining
the essential steps of the CNN process is illustrated in Fig. 8.

Step 1. Define the CNN architecture: Input data, layers
(convolutional, pooling, activation, fully connected, and
the output). Compile the model with an optimizer, loss
function, and evaluation metrics.

Step 2. Train the model: Using training data and labels,
and validate it using validation data and labels.

Step 3. Evaluate the model: Using test data and labels to
assess its performance.

Step 4. Predict using the CNN model: Use the trained

CNN model to make predictions on new data.

Figure 8: The pseudocode of CNN as a supervised learning algorithm

Despite their advantages, CNNs are prone to overfitting due to a high number of parameters, leading to
poor performance on unseen data. Overfitting often results from limited training data, insufficient variability,
or excessive training durations [39]. To mitigate this, regularization techniques like dropout are commonly
used. Dropout improves generalization by randomly deactivating neurons during training, forcing the
model to learn diverse features and enhancing robustness. Additionally, it is often combined with data
augmentation and hybrid strategies to improve accuracy and efficiency. In this study, both dropout and
early stopping techniques are incorporated into CNN to prevent overfitting [40]. Consequently, dropout has
become a standard component in training CNNS, often used alongside strategies like data augmentation and
hybrid approaches, further enhancing model accuracy and computational efficiency. In this study to prevent
overfitting both dropout and early-stopping techniques are incorporated with CNN.

The architecture of the CNN used in this studyconsists of several key layers. The process begins with an
input layer that receives a reduced feature set derived from NCA. The architecture includes three ConvliD
layers that extract hierarchical features using 32, 64, and 128 filters, respectively. This is followed by a
MaxPooling layer that reduces the dimensionality to (1,128) and a Dropout layer that helps prevent overfitting
while maintaining the same shape. The feature maps are then converted into a 128-dimensional vector
through a Flatten layer, followed by fully connected Dense layers with 256 and 512 neurons, which facilitate
deep feature learning. Finally, the model concludes with an output layer designed for 4-class classification
using the Softmax activation function. The CNN network layer structure used in this study is illustrated
in Fig. 9.
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Figure 9: Basic CNN architecture

3.3 The Proposed Hybrid NCA-CNN Method

The hybrid NCA-CNN method follows a systematic workflow that combines feature extraction (using
NCA) with DL (CNNs) to improve classification performance. The sample data acquisition process in the
hybrid method is given in Fig. 10. It includes data collection, data preprocessing, feature extraction, and
model training and evaluation steps for fault detection and diagnosis in PV systems. First, simulation-based
synthetic data are collected and current, voltage, and power parameters are recorded. Then, missing or
erroneous data are cleaned, and the dataset is preprocessed to normalize the numerical features to a standard
scale, which improves consistency and facilitates model convergence. Then, the most discriminative features
that preserve inter-class relationships are selected using NCA and dimensionality reduction is performed.
Then, the processed features are divided into training, validation, and test sets, ready for training the CNN
classification model, and fed into the CNN architecture. The last step involves validating the trained model
on test data and evaluating its performance. Once the validation is complete, the model can be used to predict
labels for new data samples, thus providing an effective and reliable classification system. In the hybrid model
evaluation phase, the first experimental run determined whether the new, previously unseen data was due
to a faulty PV panel or a faultless PV panel, and the second experimental run determined the specific type
of fault present in the PV panel.

The NCA-CNN hybrid method begins with the normalization of the nxd dimensional input matrix X
defined in Eq. (3). By applying NCA to the input data matrix, a linear transformation matrix A is learned as
defined in the Steps given in Fig. 6, which projects the input data matrix X into an efficient NCA feature space
for classification tasks. Then, this transformation matrix A such that samples from the same class are closer
together in the transformed space, improving classification performance is used to project the normalized
data matrix X into the NCA feature space with a linear transformation.

Vi I P
V, I, P

Xnca=XAT,|x=| 72 7 2 (3)
Vo I, P,

nx(d=3)
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where 7 is the sample number and d is the feature number (in which our case d equals to 3). This process
corresponds to the feature extraction by the NCA method and the extracted features (Xnca) are used for
the inputs to the CNN classifier.

[PV Fault detection/diagnosis model] [Testing Process]

Labeled Training Data (Preprocess:Normalization) New Unabeled PV Data (Preprocess:Normalization) :

|
|
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Figure 10: The model construction and testing processes of the proposed NCA-CNN hybrid method for fault
detection/diagnosis

To demonstrate the effectiveness of the proposed NCA-CNN method in capturing the dynamic nature
of faults in real PV systems, we also applied our dataset to the LSTM model and also XGBoost model. LSTM
networks are a specialized type of Recurrent Neural Network (RNN) designed to effectively handle sequential
data and capture long-term dependencies. Traditional RNNs often struggle with the vanishing gradient
problem, which makes it difficult for them to learn from long-range dependencies. LSTMs address this issue
by introducing gated mechanisms the forget gate, input gate, and output gate. These gates regulate the flow
of information and selectively retain important features over time. This unique architecture makes LSTMs
particularly effective for tasks that require the memory of past states. Each block given in Fig. 11 represents
a key gate or state in the LSTM structure, illustrating the flow of information within the network. The
gated structure of LSTMs allows them to dynamically store, forget, and update information. The forget gate
determines which past information should be discarded, the input gate updates relevant new information,
and the output gate decides the final processed output. The cell state (C; ) serves as the memory unit, carrying
long-term dependencies forward, while the hidden state (/) represents the current output. Unlike standard
DL models that analyze data statically, LSTMs process sequences step by step, allowing them to learn patterns
over time.
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LSTM Architecture
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Figure 11: A visual representation of the LSTM architecture that illustrates the flow of information through its gated
mechanisms

XGBoost is a powerful, scalable, and highly efficient gradient boosting algorithm widely used for
classification, regression, and ranking tasks. It builds an ensemble of decision trees, where each tree corrects
the errors of its predecessors, improving predictive accuracy. Known for its speed and computational
efficiency, XGBoost offers a fast, accurate, and interpretable alternative to DL methods, making it particularly
effective for structured data processing. The algorithm employs an optimized gradient boosting approach
that minimizes loss functions while incorporating regularization techniques to prevent overfitting. Addi-
tionally, its ability to handle missing values and optimize computational performance makes it an excellent
choice for fault classification tasks where structured features are crucial. The visual representation of the
XGBoost architecture, shown in Fig. 12, illustrates how input features are processed through multiple boosted
decision trees. These trees contribute to weighted predictions, ultimately resulting in a final classification.
This diagram highlights the ensemble learning mechanism in XGBoost, where multiple trees collaborate to
improve prediction accuracy through gradient boosting.

4 Experimental Studies, Results and Discussions

4.1 Description of the Data, the Experimental Studies, and the Evaluation Metrics

This study includes two experimental investigations centered on the detection and diagnosis of faults
in PV panels. The first investigation focused on distinguishing faulty PV panels from non-faulty ones, while
the second investigation aimed to identify the specific types of faults present in the PV panel. Experimental
studies are carried out using simulated data with the PSIM software. In the simulated database, the data
matrix is constructed as X = [V I P]. The matrix X comprises three attributes: V, I, and P generated by the
PV system. The performance of the proposed NCA-CNN method was compared with other well-known
traditional methods, such as LR, DT, RE, SVM, and XGBoost, as well as ANN. The comparison also included
state-of-the-art models: CNN, PCA-CNN, and LSTM.
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Figure 12: XGBoost architecture: the flow of data through boosted decision trees to the final prediction

While simulated datasets may not fully capture the complexity and variability of real-world PV
faults, utilizing PSIM-generated data provides a controlled environment where specific fault types can
be systematically analyzed. This approach is crucial for benchmarking and fine-tuning fault classification
models before they are applied to real-world conditions. Furthermore, although the NCA-CNN method has
been used in previous research, it has not been extensively studied for PV fault detection, particularly in
relation to the dynamically evolving characteristics of faults. This research enhances existing methodologies
by integrating NCA for optimal feature selection with CNN-based spatial feature extraction, specifically
targeting the unique fault signatures found in I-V and P-V curves. Additionally, a comparative evaluation
against LSTM networks will provide deeper insights into the effectiveness of the NCA-CNN approach in
addressing both spatially distinct and temporally evolving fault patterns. Future work will focus on validating
the model using real-world PV datasets to ensure its applicability in practice.

The present study employs a classification process grounded in supervised learning methodologies. The
efficacy of the employed classification algorithms is evaluated through a range of metrics derived from the
confusion matrix. The confusion matrix serves as a critical tool for assessing the performance of classification
algorithms. It provides a visual representation of the model’s ability to differentiate between distinct classes
by comparing actual class labels with the predicted class labels produced by the ML model. In the study,
the most common performance evaluation metric derived from the confusion matrix Accuracy Eq. (4) was
used.

TP+ TN

Accuracy = (4)
TP+FP+FN+ TN

4.2 Fault Detection Results

Since 2016, the use of CNN for fault detection in PV systems has increased. Initially, CNN models were
developed based on electroluminescence and thermographic images to detect microcracks and cell defects
in photovoltaic panels [41]. However, in recent years, CNN models have also been applied to time-series
data, such as P-V and I-V curves, enabling the identification of various fault types [42]. Despite this progress,
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most fault diagnosis studies have implemented CNN architectures originally designed for image recognition
without tailoring the architecture specifically for fault detection in PV systems [26]. In most fault detection
studies, CNN architectures have been implemented using designs originally intended for image recognition
without specific modifications for fault detection. However, each fault has unique characteristics, making
both the number of data samples and the CNN architecture problem-specific. In image-based tasks such as
pattern recognition, using a large number of samples enhances CNN performance. When faults manifest as
localized changes in system output signals, such as I-V and P-V curves in a PV system, a dataset with fewer
samples than what is typically found in pattern recognition problems actually improve the performance of
CNNss [26].

Unlike, failing to select an appropriate sample range to capture these changes can significantly degrade
CNN performance. Training CNN models using data samples from regions where faults cause significant
deviations in I-V and P-V graphs compared to normal operating conditions enhances model performance by
allowing it to learn fault characteristics more effectively. This analysis highlights the importance of developing
a CNN model that prioritizes the physical outputs of the system rather than relying solely on a data-driven
approach for fault detection [26]. Therefore, in this study, a comprehensive database was established from
simulation results representing both healthy and faulty operational modes of the system. Data samples were
taken from regions where faults cause significant deviations in I-V and P-V graphs compared to normal
operating conditions.

In this study, a comprehensive database was established from simulation results representing both
healthy and faulty operational modes of the system. The faulty mode encompasses three specific degradation
scenarios: Fault A, Fault B, and Fault D, as well as partial shading represented by Fault C. Each I-V curve,
consisting of 101 sampled data points collected over a one-minute interval, was utilized to capture the
complete I-V characteristics effectively. Considering 101 samples is sufficient to scan the I-V curve of the
investigated module [17]. The resulting data matrix, denoted as X, has dimensions of 515 x 3, with each row
corresponding to a sample and each column representing an attribute such as voltage, current, and power.
Within this dataset, 101 data points were designated to the healthy class, while the remaining points were
categorized under the faulty class.

Fig. 13 shows the confusion matrix and ROC curve obtained in the PV fault detection process for
the proposed NCA-CNN method. For the analysis, a training set comprising 67% of the overall data was
generated, along with a test set containing the remaining samples, through random selection from the
data matrix. Subsequently, fault detection results were derived from this methodology. This process was
performed 10 times, with the mean results being presented in Fig. 13a in the form of a confusion matrix
that illustrates the performance of the proposed method. Performing multiple test runs (commonly 10
times) and averaging the results is crucial for ensuring reliability, stability, and generalizability in model
performance. This approach minimizes stochastic variability, prevents biased estimates, accounts for data
variability, evaluates model robustness, and improves reproducibility. In DL models like CNNs, which exhibit
stochastic behavior due to random weight initialization, dropout, and batch sorting, multiple runs smooth
out fluctuations and provide a more consistent performance measure. Running the model multiple times
reduces biases from dataset splits, ensuring a more comprehensive evaluation. Additionally, it helps detect
instability, overfitting, or hyperparameter sensitivity. For fair model comparisons, averaging results prevents
misleading conclusions from favorable random conditions. In research and industry, reporting an average
performance metric with standard deviation enhances credibility and ensures reliable replication of findings.
The ROC curve reaching the top-left corner in Fig. 13b indicates perfect separation between the two of
the classes, healthy and faulty PV panel, with an AUC value of 1.0 This means the model achieves perfect
classification accuracy, confirming that it can classify instances without any errors. The absence of a diagonal
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(random guess) region in the curve shows that the model maintains an ideal balance between sensitivity and
specificity, with no trade-offs necessary. Overall, this ROC curve highlights the model’s exceptional ability
to accurately distinguish between faulty and non-faulty conditions.
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Figure 13: (a) Confusion matrix, and (b) ROC curve of PV fault detection process for proposed NCA-CNN method

Fig. 14 presents a comparative analysis of accuracy rates, evaluating the proposed model against well-
known and state-of-the-art models. PV fault detection is performed by distinguishing between a healthy
PV module and a faulty module, using the dataset obtained from I-V and P-V curves (Fig. 5). The fault
signatures of healthy and faulty modules are distinguishable, indicating that the dataset is well-structured
and ideal for ML models like CNN and NCA-CNN. This well-defined fault separation contributes to the
high classification accuracy observed in Fig. 14, where both traditional ML models (LR, SVM, RF) and
DL approaches (CNN, LSTM, PCA-CNN, NCA-CNN) achieved near-perfect classification performance,
demonstrating the dataset’s effectiveness in PV fault identification. The paired ¢-test results confirm that
NCA-CNN significantly outperforms traditional models like LR, DT, SVM, RE, and XGBoost, as shown by
their extremely low p-values (p < 0.05) and negative infinity (—oo) t-statistics. While CNN had a slight but
statistically significant difference, LSTM performed at the same level as NCA-CNN, showing no significant
difference. ANN’s lower accuracy (0.97) confirmed its weaker classification performance. Overall, these
results highlight NCA-CNN’s superior feature selection and DL capabilities, making it the best-performing
model for PV fault detection.

The plots presented in Fig. 15 offer a clear view of the model’s training and validation performance over
40 epochs. The loss function plot indicates a steady decrease in training loss, signifying effective learning.
In contrast, the validation loss shows a sharp decline at first before stabilizing with minimal fluctuations.
This stability in validation loss suggests that the model generalizes well without overfitting, as the gap
between training and validation loss remains consistently small. Similarly, the accuracy curve illustrates a
rapid increase in training accuracy during the initial epochs, approaching perfect accuracy. Meanwhile, the
validation accuracy also aligns closely and stabilizes at a high level. The close agreement between training
and validation metrics demonstrates the model’s robustness and strong generalization capabilities.
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Comparison of PV Fault Detection Results
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Figure 15: The proposed method’s (a) the loss curves for the training and the validation processes and (b) the accuracy

curves for the training and the validation processes

The proposed results for PV fault detection were analyzed statistically alongside other classifiers,
emphasizing their performances in terms of accuracy. The histogram of the PV fault detection data given
in Fig. 16 and the overlaid density plot display a bell-shaped curve, indicating that the dataset closely follows a
normal distribution. The density plot aligns well with the central peak and tails of the histogram, supporting
this interpretation and suggesting that the dataset is symmetrical with minimal skewness. Similarly, the Q-
Q plot given in Fig. 16, which compares the ordered values of the dataset to the theoretical quantiles of a
standard normal distribution, shows that most data points are located close to the diagonal red line. This
further confirms the dataset’s near-normal distribution. However, slight deviations at the tails, observed
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in the Q-Q plot, suggest minor departures from normality, possibly caused by outliers or extreme values.
Despite these minor discrepancies, the dataset largely meets the assumptions of normality, making it suitable
for statistical analyses utilizing paired ¢-tests that require such a distribution [43].
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Figure 16: For the proposed method’s PV fault detection experiment, (a) the histogram and (b) the Q-Q plot

4.3 Fault Diagnosis Results

Fig. 17 shows the confusion matrix and ROC curve obtained in the PV fault detection process for the
proposed NCA-CNN method. In this study, we investigated two distinct types of PV faults: degradation of
series resistance and partial shading. Each I-V curve, consisting of 101 sampled data points collected over
a one-minute interval, was utilized to capture the complete I-V characteristics effectively [17]. The second
experimental setup involved a data matrix, designated as X, with dimensions of 404 x 3. Each fault class
(1.5R, 2R,3R;, and partial shaded) contained 101 data points, with rows representing various fault scenarios
that included a series of degraded resistance and instances of partial shading. The columns corresponded
to three attributes: V, I, and P. Consistent with the methodology employed in the first experimental study,
we partitioned the dataset into a training set, comprising 67% of the total data, and a test set, representing
the remaining portion. This division was accomplished by randomly selecting samples from the data matrix
in each iteration. The process yielded fault diagnosis results, which were averaged over 10 repetitions to
ensure reliability.

The results of the study are given in Fig. 17a in terms of the confusion matrix for the proposed NCA-
CNN method. The matrix compares the predicted and actual values for four different fault types. The diagonal
cells contain examples that the model correctly classified, with 30 correct classifications for Fault A, 33 for
Fault B, 34 for Fault C, and 26 for Fault D. These results show that the proposed model can distinguish
faults with high accuracy and performs quite well. Experimental study results obtained for the proposed
NCA-CNN method were analyzed utilizing ROC curves. The One-vs-Rest (OvR) approach with ROC curve
analysis demonstrated the NCA-CNN model’s exceptional classification performance. Fig. 17b shows perfect
classification for FaultB and FaultD (AUC = 1.0) and near-perfect accuracy for FaultA and FaultC (AUC
= 0.99). Both micro and macro-average ROC curves also achieved AUC = 0.99, confirming consistent
performance across all fault types. The results indicate high sensitivity and specificity, significantly surpassing
random guessing (AUC = 0.5), proving the model’s effectiveness in PV fault detection.
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ROC Curve for PV Fault Diagnosis
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Figure 17: (a) Confusion matrix, and (b) ROC curve of PV fault diagnosis process for proposed NCA-CNN method

Fig. 18 compares the accuracy rates of the proposed model with both traditional ML models, such
as LR, DT, RE SVM, and ANN, and state-of-the-art DL models like XGBoost, LSTM, CNN, and PCA-
CNN in PV fault diagnosis. The classification accuracy results indicate that CNN-based models significantly
outperform traditional ML models, with NCA-CNN achieving the highest accuracy (0.99). This suggests
that NCA effectively enhances CNN performance by selecting the most relevant features and eliminating
noise. Other approaches, like XGBoost and CNN (both at 0.97), also demonstrated strong fault detection
capabilities. LSTM, which is designed for sequential data, performed lower at 0.90, indicating that spatial
feature extraction is more critical than temporal dependencies in this dataset. Meanwhile, PCA-CNN (0.81)
underperformed compared to NCA-CNN, highlighting that PCA may discard essential features, whereas
NCA optimally selects them. Traditional ML models, including DT and RF (both at 0.96), as well as LR
and SVM (both at 0.82), showed moderate performance but failed to match DL models. These findings
suggest that CNN-based models, particularly when combined with feature selection techniques like NCA,
provide superior classification performance, making them the most effective approach for fault detection in
this context.

Labeling faults as Fault A, B, or C, etc., with associated data rows in the developed PV fault diagnosis
model may fail to capture the dynamic nature of real PV system faults, as these faults evolve due to changes
in irradiance, temperature, and operational conditions, requiring models that can analyze both spatial and
temporal dependencies. A model that is effective in monitoring fault progression, such as LSTM, may be
considered. However, as seen in the results in Fig. 18, LSTM is less capable of detecting distinct spatial fault
patterns than detecting spatial and temporal dependencies. In this study, NCA-CNN outperformed LSTM
because the dataset benefits more from spatial feature extraction and optimal feature selection rather than
sequential pattern recognition. The NCA component enhances CNN performance by retaining only the most
relevant fault-related features, reducing dimensionality and noise, thereby allowing CNN to identify distinct
spatial hierarchies more effectively. As demonstrated in Fig. 18, NCA-CNN achieves the highest classification
accuracy by prioritizing feature selection and spatial analysis, reinforcing that static labeling and time-series-
based methods alone are insufficient for capturing the dynamic nature of PV faults. These findings suggest
that CNN-based models, particularly when combined with feature selection techniques like NCA, provide
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superior classification performance, making NCA-CNN the most effective approach for fault detection in
this context.

s Comparison of PV Fault Diagnosis Results
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Figure 18: PV fault diagnosis results in term of accuracy metric

Fig. 19 presents two graphical evaluations of the PV fault detection model: the Loss Function plot (left)
and the Accuracy Curve plot (right). The loss function plot shows a steady decline in training loss, indicating
effective learning, while validation loss stabilizes around epoch 20, suggesting strong generalization without
overfitting. The accuracy curve reveals rapid training accuracy improvement, plateauing at 98%-100%, with
validation accuracy following a similar trend. The close alignment of these metrics confirms the model’s
robustness, high accuracy, and optimized performance, reinforcing its reliability for real-world applications.
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Figure 19: The performance of the proposed method’s (NCA-CNN) for PV fault diagnosis: (a) loss function and (b)
accuracy curve
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The proposed results for PV fault diagnosing were analyzed statistically alongside other classifiers,
emphasizing their performance in terms of accuracy. The histogram of the PV fault data given in Fig. 20
revealed a bell-shaped curve, indicating that the data closely follows a normal distribution. This finding is
further supported by the overlaid density plot, which aligns well with the central peak and tails, suggesting
symmetry and minimal deviations in skewness and kurtosis. Additionally, the Q-Q plot shows that most
data points fall along the red reference line, representing theoretical normality. This conclusion supports the
use of parametric statistical methods, such as paired ¢-tests, for further analysis of the data [43].
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120 A ] 34 -amese

100 — "\
| ~ # \\ 14

60 1

Frequency
g
_-""“--\J
| (

|

|

]
Ordered Values

o

=14

40
_2 -
20 A
-3
I_:L‘_ * SN
0 7 T T T T T T T T T T T T T
= -2 -1 0 1 2 3 -3 -2 =1 0 1 2 3
values Theoretical quantiles
(a) (b)

Figure 20: For the proposed method’s PV fault diagnosis experiment, (a) the histogram and (b) the Q-Q plot

The paired t-test results given in Table 2 confirm that NCA-CNN significantly outperforms all other
models in PV fault detection. The low p-values (p < 0.05) indicate that the performance improvement
is statistically significant and not due to random chance. Traditional ML models (LR, DT, SVM, RE
XGBoost) had significantly lower accuracy, with some showing negative infinity (—oo) ¢-statistics. Even DL
models (ANN, CNN, PCA-CNN, LSTM) failed to match NCA-CNN'’s accuracy. These results highlight the
effectiveness of NCA for feature selection and CNN for deep spatial feature extraction, making NCA-CNN
the best-performing model, offering superior accuracy and robustness over all other approaches.

The superior performance of the proposed hybrid approach can be attributed to its innovative com-
bination of NCA and CNNs. This combination utilizes NCA for enhanced feature selection by learning a
transformation that optimizes class separation and ensures that only the most relevant and discriminative
features are retained for classification. This preprocessing step reduced noise and redundancy in the dataset,
allowing the CNN to focus on meaningful patterns rather than irrelevant details. CNNs, on the other hand,
excel at hierarchical feature learning and can be modified to extract hierarchical features by recognizing
patterns and connections across the dataset such as relationships between single columns (linear correlations
or specific thresholds), or non-linear interactions among several columns or patterns within certain data
subsets. This gradual approach to feature extraction allowed CNNs to detect complex dependencies and
representations in PV fault data that traditional models may struggle to capture. The synergy between these
two methods ensured that the model benefits from optimized feature input while leveraging CNN’s powerful
learning architecture to generalize well to unseen data.

Further, this hybrid approach incorporated an advanced optimization technique, adaptive optimizers
(Adam), and dropout regularization strategy, which stabilize training and prevent overfitting. Early stopping
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mechanisms were also employed to avoid unnecessary epochs, maintaining model generalization. The
alignment between the training and validation accuracy curves, as shown in the figure, highlighted the
method’s effectiveness in generalizing while avoiding overfitting; unlike the traditional classifiers like LR or
SVM, which do not possess the same level of sophistication in feature extraction and learning. While the
proposed methodology, demonstrates promising results, the complexity of the approach and the absence of
detailed implementation guidelines may hinder reproducibility and scalability, particularly for large datasets.
In future studies, we will focus on enhancing scalability and efficiency for large datasets, improving model
explainability, and establishing benchmarks. Key areas of improvement include developing customized
CNN architectures for heterogeneous features and missing values, integrating domain knowledge for better
interpretability. Addressing these limitations in future research could improve the methodology’s robustness,
interpretability, and practicality for tabular data analysis.

Table 2: The paired t-tests results of the proposed NCA-CNN method

Pairs Paired t-test
t-statistics p-value

Proposed method vs. LR 1.83746%¢ + 16 2.132512e-143
Proposed method vs. DT Inf 0.000000e + 00
Proposed method vs. SVM 1.83746%¢ + 16 2.132512¢ — 143
Proposed method vs. RF Inf 0.000000e + 00
Proposed method vs. XGBoost Inf 0.000000e + 00
Proposed method vs. ANN 1.729382e + 16 3.680034e-143
Proposed method vs. CNN Inf 0.000000e + 00
Proposed method vs. PCA-CNN Inf 0.000000e + 00
Proposed method vs. LSTM Inf 0.000000e + 00

5 Conclusions

The proposed NCA-CNN hybrid method combines NCA and CNN to create an advanced and scalable
framework for fault detection and diagnosis in PV systems and significantly increases the reliability and
efficiency of the algorithms used. In the hybrid method, NCA is utilized for effective feature selection and
dimensionality reduction, allowing the system to identify critical patterns in historical performance data.
CNN processes complex nonlinear data and captures complex features from datasets. The combined use of
these features increases the early fault detection and comprehensive diagnosis capacity. Two experimental
studies were conducted in the study. In the first study, the fault detection performance of the proposed
method was evaluated, and it was found that the method detected faults with 100% accuracy. The proposed
method outperformed all other methods with 99% accuracy. In this hybrid method, the integration of NCA
and CNN not only reduced false positives but also provided precise fault detection and diagnosis. The method
addressed the series resistance degradation and partial shading faults, facilitating timely maintenance in the
PV system, optimizing system performance, and extending the life of PV installations.

This makes the NCA-CNN method a highly effective and reliable tool for modern PV fault detection and
diagnosis. While NCA-CNN demonstrated better performance than LSTM in diagnosing PV faults due to its
enhanced ability to extract spatial features and select optimal features, it does have some limitations. CNN is
adept at identifying fault patterns in I-V and P-V curves, whereas LSTM’s focus on sequential learning didn’t
yield a notable benefit, possibly because the dataset lacks pronounced temporal dependencies. However,
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NCA-CNN relies on simulated datasets, which may not adequately reflect real-world variability, and it
also does not monitor fault progression over time, limiting its effectiveness for progressive or intermittent
faults. While the NCA-CNN model offers strong generalization and fault detection capabilities, its practical
application may present certain challenges. One significant limitation is the accuracy of measurements
obtained from sensors and field equipment, which may not match the precision level provided by the PSIM
simulator. Variations in sensor calibration, environmental conditions, and noise in real-world measurements
can introduce discrepancies, potentially affecting the model’s reliability. Despite these challenges, the high
classification accuracy of NCA-CNN indicates that spatial feature extraction is particularly effective for this
dataset. Improvements to the NCA-CNN could enhance its adaptability and effectiveness in detecting faults
in real-world PV systems. Integrating LSTM layers into the NCA-CNN can strengthen its ability to analyze
spatial and temporal dependencies, making it better suited for detecting faults that develop gradually over
time. Additionally, incorporating adaptive feature selection through a dynamic learning mechanism can
enable NCA to prioritize relevant features based on the real-time conditions of the PV system. Future studies
could investigate hybrid NCA-CNN-LSTM models to combine spatial and temporal learning for improved
PV fault diagnosis.
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Highlights

« Thisstudy highlights the importance of accurate fault detection for reliable and efficient photovoltaic sys-
tems in sustainable energy. Integrating NCA with CNN enables automatic feature selection, eliminating
noise and enhancing PV fault detection accuracy.

o  Unlike traditional ML and LSTM models, NCA-CNN excels in capturing spatial dependencies, making
it more robust for analyzing distinct PV fault hierarchies.

o The model precisely detects complex PV faults, including series resistance and shading effect issues.

o NCA-CNN achieved the highest accuracy (0.99), outperforming XGBoost, PCA-CNN, and LSTM, as
confirmed by statistical analysis.

»  NCA reduces dimensionality, boosting efficiency while preserving fault detection performance.
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