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ABSTRACT: This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human
from 2D images and pre-marked landmarks based on algorithmic methods. The study focuses on the reconstruction
of a 3D nose model tailored for applications in healthcare and cosmetic surgery. The approach leverages advanced
image processing techniques, 3D Morphable Models (3DMM), and deformation techniques to overcome the limita-
tions of deep learning models, particularly addressing the interpretability issues commonly encountered in medical
applications. The proposed method estimates the 3D coordinates of landmark points using a 3D structure estimation
algorithm. Sub-landmarks are extracted through image processing techniques and interpolation. The initial surface
is generated using a 3DMM, though its accuracy remains limited. To enhance precision, deformation techniques
are applied, utilizing the coordinates of 76 identified landmarks and sub-landmarks. The resulting 3D nose model is
constructed based on algorithmic methods and pre-marked landmarks. Evaluation of the 3D model is conducted by
comparing landmark distances and shape similarity with expert-determined ground truth on 30 Vietnamese volunteers
aged 18 to 47, all of whom were either preparing for or required nasal surgery. Experimental results demonstrate a strong
agreement between the reconstructed 3D model and the ground truth. The method achieved a mean landmark distance
error of 0.631 mm and a shape error of 1.738 mm, demonstrating its potential for medical applications.

KEYWORDS: Nose reconstruction; 3D reconstruction; medical applications; algorithmic reconstruction; enhanced
3D model

1 Introduction
The human face has a highly complicated structure with numerous delicate features, such as the shape of

the nose, the contour of lips, and the curve of eyebrows. These elements contribute to the distinctive identity
of each individual. While two-dimensional (2D) images are widely used across various applications due to
their convenience and accessibility, they are inherently limited in their ability to capture the full spatial and
depth information of the face. This limitation poses a significant challenge in scenarios requiring precise
recognition and reconstruction of facial features, particularly in medical applications. Therefore, three-
dimensional (3D) face reconstruction techniques have been increasingly developed. 3D face reconstruction
refers to the creation of a three-dimensional model of the human face from two-dimensional sources such as
images, depth maps, or scans. This technology involves accurately mapping facial features to produce shape,
surface, and detail. Its applications span various fields, including medical treatment, cosmetic surgery, facial
recognition, virtual reality, the creation of personalized prosthetics, and 3D interaction in medical education.
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Before the development of artificial intelligence (AI), 3D face reconstruction primarily relied on statistical
model fitting methods or photometric methods. A key example is the 3D Morphable Model (3DMM) [1], a
statistical model that captures variations in 3D facial shapes and textures. It enables 3D face reconstruction
from 2D images by adjusting its parameters to match the input data. With advancements in deep learning
(DL), modern approaches now leverage neural networks to predict 3D facial structures directly from 2D
images. Notably, the research [2] proposes a dual-stream network for 3D face reconstruction from a single
image, focusing on handling expression variations. These AI-driven techniques offer higher accuracy and
better handling of variations in facial expressions, poses, and occlusions. However, 3D reconstruction models
using neural networks face challenges in interpreting the results and are difficult to apply in the fields of
medicine and cosmetic surgery.

The nose is an important part that performs many functions and is located in the center of the face. It
is crucial for respiration and plays a role in pronunciation. The nose also contributes distinct characteristics
for facial recognition. In aesthetics, it is a focal area of concern and impacts the way a person is perceived
by the outside world [3]. In addition, its natural prominence makes it more prone to trauma, often requiring
surgical intervention based on individual nose structure. However, research on 3D nose reconstruction has
been limited due to the complexity of the nose compared to other facial regions such as eyes, and oral.

In the early stages, 3DMMs were used to reconstruct the entire face [4], including the construction of
a 3D nose model. 3DMM is a widely applied method in the branch of statistical models in the field of 3D
reconstruction from 2D images. This method is based on constructing a statistical model of facial shape
and texture from a dataset of 3D scans. It allows the representation of any face as a linear combination
of the faces in the learned dataset, thus creating a space of variability for both facial shape and texture.
When inferred, the method can take one or more 2D images as input to reconstruct the corresponding
3D face. Thanks to its strong generalization ability, the model avoids generating unrealistic facial shapes.
This advantage has made 3DMM a popular research direction. However, this method relies on Principal
Component Analysis (PCA) [5], which introduces certain limitations in accuracy when evaluating complex
regions, such as the nose.

To tackle the aforementioned problems, several hybrid methods have been explored. Notably, the study
by Zhu et al. [6] proposed a 3D reconstruction and refinement process for the nose from a single image, based
on a combination of the 3DMM model and coarse-to-fine correction. The process demonstrated outstanding
results compared to previous methods, particularly in terms of personalization in 3D nose shapes. However,
the procedure requires hardware for capturing RGB-D depth images. Additionally, the study does not include
a corrective method for the radix point of the nose and nasal bridge area, which limits the ability to evaluate
accuracy across the entire nose.

An alternative is the photometric method [7], which reconstructs an object’s 3D surface by analyzing
multiple images captured under varying lighting conditions to deduce shape from light. The goal is to
compute information about light direction and surface reflectance to reconstruct the 3D object. This method
can accurately capture surface details such as wrinkles and skin texture, which statistical models like 3DMM
are not able to achieve effectively. However, this approach is less commonly used for 3D nose reconstruction
due to its strict requirements for control of lighting. These factors pose significant challenges when setting
up systems in practical applications.

In recent years, deep learning methods have gained significant attention in the task of 3D face and nose
reconstruction from 2D images. This approach differs from traditional techniques by its ability to directly
learn the transformation from 2D images to 3D facial shapes, without relying on statistical or photometric
models. Deep learning models can capture and process nonlinear transformations, enabling neural networks
to learn complex representations of the face that linear models, such as 3DMM, are unable to achieve. As
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a result, they can offer higher accuracy compared to earlier approaches. However, one of the challenges
in applying deep learning to 3D face reconstruction is the lack of real-world data. Unlike the previous
methods, deep learning models require a significantly larger amount of data for training. Additionally, deep
learning models face a critical issue known as the black-box problem. While neural networks can produce
accurate results, the decision-making process of the model is often not easily interpretable. In sensitive fields
like medical treatment or cosmetic surgery, safety and transparency are of paramount importance. These
problems have led to practical challenges in the application of these models.

We propose a method for constructing a 3D of the nose from multiple 2D images to address the
previously mentioned problems. This method focuses on improving the accuracy of the 3D nose model
based on algorithmic methods and pre-marked landmarks without using deep learning techniques. This
approach ensures the clarity, low computational cost, and applicability of the method in real-world medical
problems and cosmetic surgery. The input consists of four 2D facial images with marked landmarks that
include front, left, right, and bottom views. An estimated 3D structures algorithm is employed to generate
the 3D coordinates of the landmarks based on their 2D positions from different perspectives. Camera
parameters are also estimated during this process. The 3D landmarks are sparse and represent only the
basic shape of the nose structure. Image processing techniques are applied then to identify the edges of the
nose from 2D images and map them onto the 3D structure. Some unclear edges or lack information for
precise coordinate determination are estimated through interpolation methods. Sub-landmarks are extracted
from these edges to enhance the detail of the nose shape. At the end of this step, we have constructed 3D
nose boundary curves with 17 landmarks and 45 sub-landmarks. Next, a combination of 3D Morphable
Models and deformation techniques is used to generate the surface of the nose. The baseline nose surface
is constructed using the 3DMM model. However, the accuracy of the surface is not high. Deformation is
then applied to refine the nose surface in detail. The landmarks and sub-landmarks on the nose surface are
identified as corresponding to points on the 3D nose boundary curves. The deformation technique modifies
the positions of the landmarks and sub-landmarks on the surface to align with the corresponding points on
3D nose boundary curves while maintaining the reasonable shape of the nose. The final result is a highly
accurate 3D nose model based on pure algorithms and pre-marked landmarks without the use of deep
learning techniques.

The accuracy and reliability of the 3D nose model were evaluated using two distinct experiments. The
first experiment compared the distance ratios between the landmark points of the 3D nose model and actual
physical measurements. The second experiment assessed the discrepancies between the edges of the model
and those manually defined by experts. The results demonstrate that the 3D nose model closely corresponds
to real-world dimensions. In conclusion, the key contributions of this research can be summarized as follows:

• A novel method for constructing and refining a 3D nose model from four 2D images and predefined
landmarks, particularly suitable for applications in healthcare and cosmetic surgery.

• A technique for generating boundary curves and sub-landmarks of the 3D nose model based on image
processing algorithms.

• An approach to improving the accuracy of 3D models that does not rely on deep learning, making it
more interpretable and safer for medical applications

2 Related Work
Research on 3D face reconstruction from 2D images has achieved significant advancements. The 3D

Morphable Model (3DMM) and its variants employ low-dimensional representations, which are widely
used in practical applications. Research [6] enhances the reconstruction capability of 3DMM for occluded
face image by incorporating pose-adaptive algorithms. The Basel Face Model (BFM) [7] is one of the
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most notable publicly available 3DMM models. BFM utilizes an improved registration algorithm, providing
higher accuracy in both shape and texture. DL-3DMM [8] is another variant combining 3DMM and
dictionary learning to enhance the reconstruction of facial expressions. However, these variants are all
based on statistical foundations, making it challenging to capture detailed individual features. Recent studies
have leveraged neural networks to enhance accuracy, resulting in impressive results. Specifically, a CNN
architecture was used to regress 3DMM shape and texture parameters in research [9], improving accuracy.
Subsequently, FGNet [10] also based on CNN to fine-grain the 3DMM model. In addition, researches [11,12]
did not rely on the 3DMM but instead utilized GAN [13] to directly generate 3D faces. However, while these
neural network methods provide good generalization in full face reconstruction, their results remain difficult
to explain.

Several studies have applied sparse landmarks to refine 3D face models. Research [14] proposed an
improved method to ensure the model performs well even when the face undergoes significant changes in
expression, angle, and lighting conditions. The landmarks are used to align and optimize entire 3D model,
including the nose. Results showed that the Mean Absolute Error (MAE) of this method was lower compared
to previous deep learning-based methods. Recently, Ding and Mok [15] introduced a method to construct
3D facial models using deep learning and then refine them by automatically detecting sparse landmarks.
However, using sparse landmarks leaves many regions of the 3D model unrefined. Notably, the lateral wall
area of nose lacks sufficient sparse landmarks. To address this problem, Wood et al. [16] proposed increasing
the number of landmarks from 68 to over 700 points that were detected by a CNN network. The authors
then aligned a morphable 3D model based on these landmarks. In their paper, they also emphasized that
a large number of accurate 2D landmarks and a 3D model are sufficient to reconstruct the face without
requiring complex parametric models or algorithms. However, using CNNs to predict landmarks can result
in unpredictable and inexplicable errors.

The aforementioned research primarily focuses on the reconstruction of entire face without specific
attention to the refining and evaluation of local regions. Notably, local features of the eyes, nose, and mouth
have not been fully represented. Compared to using sparse facial landmarks for the entire face, employing
local landmarks for refining results better in local regions. The study by Wen et al. [17] introduced a system
for real-time tracking and reconstruction of 3D eyelid shape and movement. A holistically-nested neural
network (HNN) [18] was adapted to detect and classify the edges of eyes. These edges were then used to
reconstruct and refine the 3D model of eyes. Another study by Wang et al. [19] presented a highly accurate
real-time 3D gaze tracking method using an RGB camera. Landmarks around the eyes and segments of the
iris were used to refine the 3D model, enhancing its adaptability to complex factors such as variations in
lighting, head posture, and facial expressions.

For lip correction, the research of Garrido et al. [20] introduced a novel method aimed at enhancing the
accuracy of 3D lip reconstruction from RGB video. The inner and outer contours of the lips were utilized to
improve the accuracy of the regression model that was used for predicting the 3D shape of lips. Similarly, a
regression-based approach for 3D lip reconstruction was also proposed in another research [21]. The author
solved reconstruction error problems with user-guided assistance. More recently, factors influencing the
quality of lip motion in 3D models were investigated in [22], with quantitative evaluation based on the Root
Mean Square Error (RMSE).

Fewer studies focus on 3D nose reconstruction and refinement compared to other facial features, likely
due to the complex geometry of nose. According to our survey, only one research of Tang et al. [23] aimed
to correct a 3D nose model from 2D images. This research introduced a process for reconstruction from
coarse to fine stages, starting with the reconstruction of a rough 3D model, which was then gradually refined
based on 3D–2D curve correlation constraints. Sparse nose landmarks were automatically detected and used
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for coarse refining of the 3D model. Subsequently, depth information from RGB-D images was utilized for
dense refining. The results demonstrated that the method excelled in reconstructing various nose shapes.
However, the nose model did not include the radix point of nose and nasal bridge areas. In addition, the
research required hardware setup to capture RGB-D images.

Deformation technique is widely applied in the problem of refining 3D models based on landmarks
without abnormal distortions. The general idea is to adjust the position of vertices to better fit the landmarks
on the face. The number and location of landmarks are defined differently depending on specific cases.
For example, the 300-W dataset [24] defines 68 landmarks. Another dataset in the study [25] defines 35
landmarks. Laplacian deformation technique [26] is applied in researches [27] to refine the 3D model of the
face with constraints from 2D landmarks while preserving local details. The research by Li et al. [28] utilizes
this technique to refine 3D facial models in animated character creation. In [23], Laplacian deformation
is also used to roughly refine the 3D nose shape during the Sparse Nose Correction stage. An alternative
approach is As-Rigid-As-Possible (ARAP) Deformation [29], which focuses on preserving local rigidity.
The study by Seylan and Sahillioğlu applies the ARAP method to 3D shape deformation based on stick
figures [30]. However, the strict enforcement of local rigidity limits ARAP’s ability to smooth surfaces,
making them appear stiff and unnatural. Research in [31] integrates ARAP and Laplacian Smoothing to
enhance deformation quality in voxel-based human deformation modeling. Similarly, the study in [32]
introduces a robust framework for mesh editing, combining ARAP and Laplacian Smoothing to improve the
deformation process.

3 Method

3.1 Overview
The proposed method constructs a 3D nose model using four 2D facial images from different angles

and 21 predefined 2D landmarks, being key points manually marked on the face to guide reconstruction. The
input images are taken with a monochromatic background to facilitate the application of image processing
algorithms. Based on the 2D landmarks (LM2D), the Structure from Motion (SfM) algorithm is employed to
determine the 3D spatial coordinates of landmarks (LM3D). Camera parameters are also estimated during
this process. Simultaneously, the edges of nose in the 2D images are detected by combining edge detection
algorithms, morphological operations. The 3D boundary curves of nose (B3D) are then reconstructed by
aligning these edges into the 3D space defined by the landmarks. Subsequently, sub-landmark points are
extracted from these boundary curves. At this stage, the total number of landmark and sub-landmark points,
referred to as ad-landmarks (ad-LM), has been determined to be 76 points. A 3D Morphable Model (3DMM)
is utilized to create a based-3D face model (MF) from the 2D images. Finally, ARAP deformation and
Cotangent Laplacian Smoothing [33] utilizes ad-landmarks to refine the nose region of base 3D model. The
entire pipeline is illustrated in Fig. 1.

3.2 3D Landmark Reconstruction
The 2D RGB images utilized in this study consist of four facial images captured from different angles.

The landmarks employed in this stage include a total of 21 points, of which 19 were synthesized from previous
studies [34,35], and an additional 2 points called md were specifically defined by our team. The data is
presented in Fig. 2. The origin point O is set at landmarks g, as shown in Fig. 2e. Due to the unavailability
of camera parameters, the Structure from Motion (SfM) algorithm is employed to construct 3D landmarks
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and estimate camera parameters. The optimization equation for this process is illustrated below:

LM3D
j = argmin

LM3D
j ,P i
∑
i , j
∥LM2D j

i − Pi LM3D
j ∥

2
(1)

LMj
3D represents the 3D coordinates of the j-th landmark. LMi

2D,j denotes the 2D coordinates of j-th
landmark in the i-th mage. Pi is the projection matrix of the i-th camera used to project 3D points onto 2D
space. Each camera has unique parameters depending on its position, orientation, and intrinsic parameters.
The term ∣∣LMi

2D,j − Pi LMj
3D∣∣2 can be interpreted as the L2 Loss between the observed 2D coordinates and

the estimated coordinates obtained from the SfM algorithm. The result after optimization includes the 3D
coordinates of the landmarks LMj

3D as shown in Fig. 3, along with the projection matrices Pi of the cameras.

Figure 1: Pipeline of proposed 3D nose reconstruction method

Figure 2: Input 2D images and landmark points. (a) bottom view (b) front view (c) left view (d) right view (e) landmarks
on the nose
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Figure 3: The 3D landmarks reconstructed in the first stage. (a) Frontal view showing red landmarks and blue
wireframe. (b) Isometric view of the same 3D landmarks, providing a three-dimensional perspective

3.3 Boundary Curve Reconstruction
This stage presents a novel method that utilizes image processing techniques to identify the edges of the

nose from 2D images. These edges are then mapped into a 3D space to construct boundary curves, aiming
to enhance level of detail for boundaries in the nose model. Specifically, this section extracts six types of
nose edges.

3.3.1 Mid-Curve Extraction
The mid-curve is a curve passing through a sequence of points g-n-k-r-prn-c-sn illustrated by the blue

arrows in Fig. 4a. The background of the input image is set to a monochromatic color in the data collection
process. This approach simplifies removal of the background. A thresholding algorithm is applied in the HSV
color space. Each output pixel Iregb (xi, yi) is determined by the Eq. (2). The result was shown in Fig. 4b.

Ireb g (xi , yi) = {0 if I (xi , yi) ∈ Tthresh
I (xi , yi) otherwise (2)

Let Tthresh be the threshold selected based on the pre-configured background setup. The term (xi, yi)
represents the pixel coordinates within the image, distinguishing them from (x, y, z) in the 3D space in Fig. 3.
The image Irebg is converted into a mask (Fig. 4c), and the following equation is then applied to determine
the mid-curve. Eq. (3) describes the set of pixel coordinates that create the mid-curve MC by identifying the
first white pixel from left to right, where H is the height of image. The results are shown in Fig. 4d.

MC = {
(min (xi∣I (xi , yi) = 1), yi) ∣
yi ∈ [0, H − 1], ∃xi∶ I (xi , yi) = 1

} (3)

M2D
C = K−1 ⋅M2D′ (4)

K =
⎡⎢⎢⎢⎢⎢⎣

fx 0 cx
0 fy cy
0 0 1

⎤⎥⎥⎥⎥⎥⎦
(5)

M3D
img = R ⋅M2D

C + T (6)
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Figure 4: Sequential Process of mid-curve detection. (a) Original left-view image of the sample. (b) HSV thresholding
result, isolating the facial region against the background. (c) Binary mask generated from the thresholded image. (d)
Mid-curve extracted by identifying the first white pixel from left to right in the mask

To map 2D points in MC onto the 3D model, the Closest Point Calculation method and interpolation
techniques are employed. Fig. 5 illustrates this process, where M3D is the result of mapping from the point
M2D (xi, yi) on the image into 3D space. According to the Structure from Motion algorithm, the point M3D lies
on the green line of sight. However, information from the 2D image is insufficient to determine distance from
the camera to M3D. The below algorithm is applied to determine the position based on the assumption that
M3D is the intersection of the green line of sight and the blue line passing through the two nearest landmarks.
The green line of sight is determined by constructing the line passing through points PC and M2D, where PC
represents the coordinates of the camera in 3D space. The point M2D (xi, yi) in the 2D space of the i-th image
must be transformed into a 3D spatial coordinate. There are two steps to transform. First, Eq. (4) is used to
convert the coordinates of M2D from the 2D image coordinate system into the camera coordinate system.
The homogeneous coordinate form M2D = [xi, yi, 1]T represents the coordinates of M2D. Here, K denotes the
intrinsic matrix of camera, estimated during the SfM computation, as shown in Eq. (5). The parameters f x
and f y are the focal lengths along the x and y axes in pixel units. cx and cy are the principal point coordinates
on the image plane. Second, the rotation matrix R and the translation vector T are employed to transform
MC

2D into 3D coordinate system, as detailed in Eq. (6).
Two points, PC and Mimg

3D, are utilized to define the green line of sight L1. Similarly, two points, LM1
3D

and LM2
3D, are employed to establish the blue line L2. The specific coordinates of point M3D are determined

as the intersection of lines L1 and L2. Both of these lines are derived using an estimation method, which
inherently involves a certain degree of error. Consequently, in many cases, they do not actually intersect,
making it impossible to directly find the intersection point.
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Figure 5: The process of mapping the point Mimg
3D from 2D space to the point M3D in 3D space based on the

relationship between already mapped landmark points

To address this issue, the Closest Point Calculation method is employed. Assuming that the parametric
equations of L1 and L2 are presented in Eq. (7), the point of intersection with the minimal deviation is
identified by solving Eq. (8). The process involves expanding, simplifying, and deriving with respect to two
variables t and s to obtain the system of equations in Eq. (9). Solving this system yields the optimal values
t’ and s’ corresponding to two optimal points on each line. Finally, the coordinates of M3D are estimated as
the midpoint of these two points, as presented in Eq. (10). This process is applied sequentially to consecutive
point pairs in the sequence g-n-k-r-prn-c-sn. The result is a mid-curve 3D estimated from 2D images and
landmark points.

L1 (t) = X1 + t ⋅ →u
L2 (t) = X2 + s ⋅ →v

(7)

d2 = ∥(X1 + t ⋅ →u) − (X2 + s ⋅ →v)∥
2

(8)

∂d2

∂t
= 0; ∂d2

∂s
= 0 (9)

M3D =
(X1 + t∗ ⋅ →u) + (X2 + s∗ ⋅ →v)

2
(10)

3.3.2 Bottom-Curve Extraction
The bottom-curve represents the contour of nose when viewed from bottom, extending from left to

right and passing through the points ac-al-al′-add-prn-add-al′-al-ac. Seven of these points are landmarks
previously introduced in Section 3.1. We define the addition of two purple-colored points called add to
enhance edge detection. The coordinates of these points do not require high precision. They simply need to
be approximately positioned between points al′ and prn along the nose edge when viewed from the bottom
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perspective. Fig. 6 shows where these points are located. Similar to the other landmarks, add points are
manual marked.

Figure 6: Sequential process of detecting the nose bottom curve. (a) Bottom-view image of the sample. (b) Edge
detection result. (c) Bottom-curve reconstructed by applying pathfinding algorithms

The Scharr gradient filter is applied to detect edges of the nose through landmarks on the bottom-curve
using Eq. (11). Where K denotes the gradient magnitude at coordinate (xi, yi), while M represents the set of
gradient magnitude values K(xi, yi) across the entire image. The terms Gxi, Gyi refer to the Scharr kernels
in the xi and yi axis, respectively. The symbol * indicates the convolution operation. The result of the Scharr
gradient filter is shown in Fig. 6b. However, some segments of the edge remain unclear due to high color
similarity in the skin tone.

Edge (xi , yi) = 255 ⋅ K −min (M)
max (M) −min (M)

K =
√
(I (xi , yi) ∗Gx i)2 + (I (xi , yi) ∗Gy i)

2
(11)

P = arg min
P

⎛
⎝ ∑
(ik , jk)∈P

C (ik , jk)
⎞
⎠

(12)

Pathfinding algorithms are applied to connect these unclear segments together with minimal cost. The
optimization equation is presented in Eq. (12), where P represents the path connecting two consecutive
landmarks, and C(ik, jk) denotes the movement cost between pixel points along the path. This cost is
determined by the gray value at the pixel of destination point. The path P is illustrated as a green curve
in Fig. 6c. In a similar manner to the mid-curve approach, the estimating intersection method of two lines
is employed to transform 2D coordinates (xi, yi) into 3D coordinates (xBC, yBC, zBC).

3.3.3 Ala-Curve and C-Curve Extraction
The Ala-curve AC is defined as a curve passing through the ac-al-int landmarks composed of left and

right parts, as shown in Fig. 7a. The C-curve CC follows a path md(left)-c-md(right), as displayed in Fig. 7b.
Both curves are reconstructed using a method similar to the approach of the bottom-curve. By applying a
combination of the Scharr gradient filter and pathfinding algorithms, the 2D curves are accurately identified.
The mapping process from 2D coordinates to 3D coordinates is conducted similar to the mid-curve approach.
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Figure 7: Results of detecting the Ala-curve and C-curve in 2D. (a) Left and right Ala-curve passing through landmarks
ac-al-int. (b) C-curve passing through landmarks md(left)-c-md(right)

3.3.4 Nasal-Sill Extraction
The nasal-sill NS includes two closed curves defining the borders of nostrils. Based on Fig. 8, a clear color

contrast between the nostril area and its surroundings is observable. The Color Thresholding algorithm, as
presented in Eq. (3), is used to identify the dark-colored areas considered as nostrils. This algorithm enables
a relative detection of the nostril shape, though it still contains significant noise like black spots. The closing
algorithm (13) in morphology is applied for noise reduction. Result is shown in Fig. 8b.

Ic l os ing = (I ⊕ B)ΘB

(I ⊕ B) (xi , yi) =max(x i′ , y i′)∈B {I (xi − xi′, yi − yi′)}
(IΘB) (xi , yi) =min(x i′ , y i′)∈B {I (xi + xi′, yi − yi′)}

(13)

Figure 8: Sequential process of detecting nasal-sill. (a) Original bottom-view of the sample. (b) Result of color
thresholding that isolates the nostril areas. (c) Nasal-sill after being extracted

The 2D nasal-sill was detected using the Contour Tracing Algorithm, following Eq. (14). Where A(xi, yi)
represents the set of neighboring pixels for the pixel located at coordinates (xi, yi), while (xi ′, yi ′), represents
the coordinates of a pixel within the neighboring set A(xi, yi). The nasal-sill only has information about
passing through a single point al ′′, which is insufficient to define its position in 3D space. Therefore, we
assume that the nasal-sill has a normal vector perpendicular to the md-c line and parallel to the Oxy plane.
The result of mapping NS into 3D space is shown in Fig. 9.

C = {
(xi , yi) ∣I (xi , yi) = 1,
∃(xi′, yi′) ∈ A(xi , yi) , I (xi′, yi′) = 0

} (14)
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Figure 9: The results of side-curve detection. (a) Depict the two approximated int-mf curves (left and right) of the nose.
(b) Detail the parameters used for the approximation, including the tmp point in purple, determined by the dimensions
w1, w2, h1, and h2

3.3.5 Side-Curve Extraction
The side-curve represents a curve passing through int-mf but lacks distinct features, making it hard to

identify in 2D images. We propose a curve equation based on landmark coordinates. Specifically, the side-
curve is approximated by a circle passing through the three points int, mf, and tmp. Where, the point tmp
in purple is an additional point determined based on relative distance to landmark int using Eq. (15). In the
other words, w1 =w2 and h2 = 3h1 as shown in Fig. 9b. The selection of these parameters is based on the steep
change in y-values within segment w1 and the gradual change observed in segment w2. The circle passing
through three points is determined by an Eq. (16) where the coefficients δ1, δ2, δ3 are defined in Eq. (17). The
circular segment between int and mf is transformed into 3D space, similar to the Ala-curve. The results are
shown in Fig. 9a.

xitm p =
(xim f − xiint)

2

yitm p =
(yim f − yiint)

4

(15)

xi2 + yi2 + δ1xi + δ2 yi + δ3 = 0 (16)

⎡⎢⎢⎢⎢⎢⎣

xim f yim f 1
xitm p yitm p 1
xiint yiint 1

⎤⎥⎥⎥⎥⎥⎦
⋅
⎡⎢⎢⎢⎢⎢⎣

δ1
δ2
δ3

⎤⎥⎥⎥⎥⎥⎦
= −
⎡⎢⎢⎢⎢⎢⎣

xi2
m f + yi2

m f
xi2

tm p + yi2
tm p

xi2
int + yi2

int

⎤⎥⎥⎥⎥⎥⎦
(17)

The six curves in this section are extracted from 2D images and landmarks. They are then connected to
form the shape of a nose in 3D space, as shown in Fig. 10.
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Figure 10: Visualization of smooth nasal boundary curves in green and landmarks in red. (a) Front view. (b) Isometric
view

3.4 Refining 3D Nose
This Stage details the process of refining 3D nose model reconstructed from a basic 3D Morphable Model

(3DMM) by the boundary curve of the nose. Initially, a base 3D face model is generated from the 3DMM,
following Eq. (18). Where vbase, f base represent the sets of vertices and faces of the 3D face, respectively. The
results are displayed in Fig. 11d.

vbase , fbase = 3DMM (I) (18)

Figure 11: Base 3D face model and landmark refining for nasal reconstruction. (a) 3D nasal boundary curves in front-
view. (b) Sparse landmarks and sub-landmarks extracted from the boundary curves. (c) Combined sparse landmarks
and sub-landmarks aligned with the 3D model. (d) Base 3D face model generated using a 3D Morphable Model

ARAP deformation and Cotangent Laplacian Smoothing techniques are applied to refine the base 3D
face model. The techniques allow for refinings to the overall shape while preserving the position of anchor
points (also known as landmarks) during deformation, ensuring that key areas remain unchanged while the
rest of the mesh adjusts accordingly. ARAP maintains local rigidity, preventing excessive distortion, while
Cotangent Laplacian Smoothing distributes deformation more evenly, reducing unwanted shape distortion
or shrinkage. ARAP is an optimization process that finds a deformation S′ in which the transformation
between pairs of vertices is preserved as rigidly as possible. This optimization process can be formulated
as Eq. (19).
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EARAP (S′) =
n
∑

i
wi ∑

j∈N(i)
wi j ∥(vi

′

− v j
′

) − Ri (vi − v j)∥
2

(19)

wi j =
1
2
(cot αi j + cot βi j) (20)

Δvi = ∑
j∈N(i)

wi j (v j − vi) (21)

The terms vi and vj represent the coordinates of vertices i and j before deformation, respectively.
Similarly, vi

′ and vj
′ denote the coordinates of these vertices after applying the deformation S′. The matrix Ri

is the local rotation matrix at vertex i, while wij is the edge weight, calculated using the cotangent weighting
method as presented in Eq. (20). The angles αij and βij are the opposite angles to the edge (i, j). The set N(i)
represents the neighboring vertices of i. Landmark points are used as constraints to optimize the ARAP
equation. Then, the Cotangent Laplacian Smoothing algorithm is applied. The expression for Cotangent
Laplacian Smoothing is presented in Eq. (21). Similar to ARAP deformation, hard constraints on landmarks
are added to ensure that their positions remain unchanged during the smoothing process. This algorithm
smooths the surface of the 3D model, minimizing unnatural areas caused by ARAP deformation.

To perform ARAP deformation and Cotangent Laplacian Smoothing, it is essential to determine the
coordinates of anchor points in the base 3D face model and their corresponding coordinates after refining.
The use of sparse landmarks (21 red points) can help in refining the 3D mode but this approach does
not provide high precision. Additional sub-landmarks, as shown in Fig. 11c, were introduced to enhance
accuracy. In this study, we employed 55 sub-landmarks. Number of these points depends on the vertices on
the base 3D face model that align with the reconstructed boundary curves. Fig. 11 demonstrates the process
and results of identifying these landmarks. The objective of deformation is to map the ad-landmarks, as
shown in Fig. 11c, to their refined positions, as shown in Fig. 11b.

Results of 3D nose reconstruction based on the proposed method in this study are presented in Fig. 12.
The front view, left view, and right view projections in 2D are shown in Fig. 12a–c, respectively. The parameter
P of the projection in Section 3.2 is used to generate these projections. The nose model in 3D is shown
in Fig. 12d.

Figure 12: 3D nose model and its 2D projection views for evaluation. (a) Left-view projection. (b) Front-view
projection. (c) Right-view projection. (d) 3D nose model rendered in grayscale
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4 Experiments

4.1 Experiment Setup
This section presents a series of experiments designed to evaluate the proposed method for constructing

a 3D nose model. First experiment assesses the distance between landmark pairs, with 11 specific distances
measured by experts. They are doctors working at a hospital with expertise in orthopedics and plastic surgery.
These distances were selected based on the consensus of experts and with reference to the study [36]. Each
distance was measured three times, and the average was taken as the final result. This process took an average
of 3 min and 18 s for each volunteer. The distances in 3D space and in real-world space are not in the same
units. The assumption that the actual al-al distance is equivalent to the al-al distance in the front-view image
is employed to transform the spatial 3D distance into the actual physical distance. The error is calculated
using the Mean Absolute Error (MAE) formula. To refine 3D nose, the Open3D ARAP function [37] was
utilized with max iterations parameter of 50. Cotanhent Laplacian Smoothing was applied with parameters,
including number of iterations of 10, smoothing step size of 0.1, and convergence threshold of 10−5. In the first
experiment, the results are also presented in comparison with prominent previous researches. The second
experiment evaluates the shape of 3D nose model. The 3D edges of nose are projected onto 2D space and
compared with labeled data. Similar to the first experiment, the labels in this test are also measured by experts.
This process involves two steps and is carried out using a tool to collect mouse-click positions on images.
First, one expert labels the 2D images, and then the labeling results are reviewed by another expert to ensure
accuracy. On average, the labeling process for each volunteer in the second experiment took 24 min and
17 s. Both experiments were evaluated on 30 volunteers who required nasal surgery, with 93% of them being
female. The age of volunteers ranged from 18 to 47 years. The 3D nose reconstruction results based on 2D
images and landmarks of the four ramdomly selected volunteers are shown in Fig. 13.

Figure 13: Experimental results of 3D nose reconstruction on four randomly selected volunteers

4.2 Point-to-Point Distance Evaluation
This experiment focuses on evaluating the ability to construct 3D coordinates of nose landmarks in

Stage 1. The experimental results are presented in Table 1 for each volunteer. Volunteers A, B, C, and D are
four randomly selected samples from the 30 volunteers participating in the experiment to conduct a detailed
evaluation of each case.
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Table 1: The error between pairs of landmarks in millimeter (mm)

Distance Volunteer A Volunteer B Volunteer C Volunteer D

Mean of All
Volunteers

95% CI

Lower Upper
mf-mf 0.265 0.231 0.522 0.594 0.422 0.340 0.504
int-int 0.905 0.945 1.047 1.423 0.957 0.845 1.069
al ′-al ′ 0.832 1.171 0.978 0.876 1.094 0.889 1.299
ac-ac 0.461 1.064 0.551 0.529 0.545 0.456 0.631

md-md 0.504 0.528 0.515 0.627 0.542 0.462 0.622
g-n 0.212 0.622 0.350 0.559 0.401 0.338 0.463

n-prn 1.174 0.617 1.388 1.214 1.253 1.043 1.457
prn-c 0.399 0.268 0.293 0.721 0.353 0.294 0.431

int-ac* 0.754 0.263 0.425 0.739 0.476 0.386 0.565
int-ac** 0.359 0.332 0.372 0.405 0.325 0.297 0.412

c-sn 0.262 0.477 0.454 0.537 0.469 0.400 0.538
%Error 2.549% 2.977% 2.708% 3.650% – – –

Note: * denotes the error from the landmark int (on the left side of the nose) to the landmark ac (also on the left side
of the nose). Conversely, ** denotes the error from the landmark int (on the right side of the nose) to the landmark
ac (on the right side of the nose).

The distances presented in Table 1 represent the Euclidean distances of the volunteers, along with
the corresponding 95% confidence intervals. Here, int-ac* and int-ac** denote the error from landmark
int to landmark ac in the left and right, respectively. MAE stands for the Mean Absolute Error of the
distances. To provide a more visual evaluation, this experiment uses the %Error metric, which represents
the mean percentage of error relative to the actual distance. The equation of %Error metric is presented
in Eq. (22), where n, representing the number of distances in this experiment, is defined as 11. The term dreal
and dpred denote the actual measured distance and the algorithm-reconstructed distance, respectively. The
experimental results on distance show that the positions of reconstructed landmarks are highly accurate.
The experimental results showed that 24 out of 30 volunteers achieved %Error index below 3%. The average
%Error across all volunteers was recorded at 2.894%. A general evaluation across specific distances indicated
that al ′-al ′ and n-prn were the two distances with a Mean Absolute Error of all volunteers exceeding 1mm.
Conversely, the distances of prn-c and int-ac** have a Mean Absolute Error of all volunteers below 0.4 mm.
The average of the entire MAE of distance is 0.631 mm, with the smallest confidence interval associated with
the distance of int-ac**, ranging from 0.297 to 0.412. Overall, the proposed approach provides high accuracy
results when evaluating the distances between pairs of landmarks.

%Error = 1
n∑

n
1

∣dreal − dpred ∣
dreal

(22)

Table 2 presents the results of proposed method in this research compared with previous prominent
researches. The 3D models reconstructed in prior researches did not include landmark points. Medical
definitions of the landmarks were utilized to determine their coordinates on the 3D model. In this section,
the evaluation is based on the 2 distances, n-prn and prn-sn, due to their distinctive features and ease of
coordinate identification. The presented results in Table 2 showed the mean absolute error of these two
distances. Detailed evaluation results indicated that the traditional 3DMM exhibited significant errors with
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error of 2.691 mm. The RingNet [38], a deep learning model enables 3D face reconstruction from 2D images
without requiring direct 3D supervision data, demonstrated some improvements over the 3DMM model with
error of 2.185 mm. The experiment also compares the results with those of the DECA [39] and EMOCA [40]
researches. DECA introduces a detailed 3D face model capable of animation, with a clear distinction between
fixed facial features and expression-dependent details. EMOCA, a more recent study, proposes a method for
reconstructing 3D faces from single images, demonstrating an improved ability to capture fine details. The
experimental results for DECA and EMOCA are 1.543 and 1.326 mm, respectively. The proposed method
achieved high results of 1.034 mm, with a maximum error of 1.518 mm and a minimum error of 0.613 mm.
The high error rates in previous methods are attributed to their focus on adjusting the entire face rather than
concentrating on the nose region.

Table 2: Results of absolute error comparison with previous researches in millimeter (mm)

Method Volunteer A Volunteer B Volunteer C Volunteer D Mean of All Volunteers

Original
front view
image

--

3DMM

3.492 2.259 3.218 2.757

2.691

RingNet

2.385 1.508 2.094 2.125

2.185

DECA

1.565 1.479 1.746 1.495

1.543

EMOCA

1.302 1.064 1.485 1.367

1.326

Ours

0.916 0.677 1.068 1.241

1.034
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To evaluate the stability of the method and enhance the reliability of the experiment, the calculation
of the confidence interval and the t-test were conducted, with the results presented in Table 3. The 95%
confidence intervals for the absolute error of proposed method are consistently smaller than those of the
previous methods, with a range of [0.893, 1.175]. It indicates that the proposed method exhibits a more
precise and reliable performance. Statistical analysis using the t-test further supports these results, with all
comparisons between Ours and the other methods resulting p-values significantly less than 0.05. In most
cases, the p-values were as low as p < 0.001, with the exception of one case where the comparison with
EMOCA yielded a p-value of 0.003. These results indicate statistical evidence that proposed method provides
an improvement over the previous methods.

Table 3: 95% confidence interval of absolute error and t-test results for comparing the differences between previous
methods and the proposed method

Method 95% CI t-Value df p-Value
Lower Upper

3DMM 2.515 2.867 18.881 29 p < 0.001
RingNet 2.046 2.324 13.945 29 p < 0.001
DECA 1.442 1.644 6.422 29 p < 0.001

EMOCA 1.216 1.437 3.211 29 0.003
Ours 0.893 1.175 – – –

4.3 Nose Shape Evaluation
The shape of nose model reconstructed by the proposed method is evaluated in this experiment. Due to

the complexity of labeling process, the ground truth in this experiment is not a continuous curve but consists
of discrete points along the boundaries. They are marked by experts on 2D images and shown in Fig. 14.
The boundaries of 3D nose model are projected onto 2D, and corresponding points are selected to conduct
the evaluation.

Figure 14: Ground truth for nose shape evaluation. (a) Left view showing the mid-curve ground truth. (b) Front view
showing the ala-curve, c-curve and side-curve ground truth. (c) Bottom-view showing bottom-curve and nasal-sill
ground truth
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The results of this experiment, presented in Table 4, are measured on the MAE metric. Each 3D nose
model of the volunteer was evaluated across all six boundaries. The distance between points is calculated in
pixels and then converted to millimeters using the n-prn and al-al distances as reference measurements. The
average error across the 30 volunteers is 1.738 mm. In four randomly selected cases, the 3D nose model for
volunteer A exhibited the lowest error in this experiment, with an MAE of 1.546 mm. Conversely, the 3D
nose model for volunteer D showed the highest error, with an MAE of 1.960 mm. The experimental results
indicate consistently low mean error rates, below 1.5 mm, in reconstructing four boundaries that include
the Mid-curve, Nasal-sill, and C-curve. The Mid-curve had lowest average error of 1.347 mm, likely due to
distinct edge forming the mid-curve in 2D images. The Bottom-curve recorded the highest average error,
at 2.565 mm. Fig. 13 shows that the curve connecting landmark ac and al was not accurately reconstructed,
likely due to the similar skin color on the nose wing and cheek of the volunteers. It posed challenges in
boundary identification and extraction of the bottom-curve. Another noteworthy point is that the Side-curve
had an MAE of 2.144 mm. This result is higher than for many other boundaries, due to the indistinct nature
of this boundary. However, from the perspective of regression algorithms, the error for Side-curve does not
deviate significantly from that of other boundaries extracted from 2D images and even outperforms the
Bottom-curve in certain cases, indicating the effectiveness of using regression for the Side-curve.

Table 4: The MAE of the six boundaries measured in Euclidean distance

Boundary Volunteer A Volunteer B Volunteer C Volunteer D
Mean of All
Volunteers

95% CI

Lower Upper
Mid-curve 1.270 1.373 1.271 1.594 1.347 1.125 1.565

Bottom-curve 1.597 1.850 3.178 2.921 2.565 2.131 2.993
Ala-curve 1.587 1.649 1.593 1.816 1.573 1.330 1.824
C-curve 1.111 1.289 1.536 1.707 1.377 1.142 1.738

Nasal-sill 1.770 1.089 1.774 1.645 1.421 1.055 1.776
Side-curve 1.942 2.085 1.913 2.078 2.144 1.705 2.584

Mean 1.546 1.556 1.877 1.960 – – –

Table 5 presents additional experimental results measured using the Hausdorff distance metric of four
randomly selected volunteers, along with the mean values for the entire experiment. The results obtained for
each boundary show slight differences when compared to those measured in the Euclidean distance system.
Notably, the Bottom-curve shows a discrepancy in which Volunteer C has a higher error at 3.178 mm in the
Euclidean system compared to Volunteer D at 2.921 mm. While in the Hausdorff system, Volunteer C has a
lower error than Volunteer D. Despite these differences, the overall evaluation of the mean error across all
volunteers demonstrates a similarity between the two distance measurement systems. The Mid-curve and
C-curve achieved the lowest errors, with mean values of 2.350 mm and 2.326 mm, respectively. Conversely,
the Bottom-curve exhibited the highest mean error, with a value of 3.762 mm.
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Table 5: The MAE of the six boundaries measured in Hausdorff distance

Boundary Volunteer A Volunteer B Volunteer C Volunteer D Mean of All Volunteers
Mid-curve 1.902 2.315 2.483 2.443 2.350

Bottom-curve 2.739 3.720 4.371 4.583 3.762
Ala-curve 2.861 2.613 2.315 2.719 2.634
C-curve 2.452 2.252 2.912 2.433 2.326

Nasal-sill 2.519 2.463 2.942 2.460 2.740
Side-curve 2.863 2.792 3.176 3.379 3.393

5 Discussion
Both experiments show that the proposed method performs better than previous studies in terms of

results. This improvement comes from two main factors: the manually marked landmark coordinates and the
boundaries extracted from 2D images. Identifying these landmarks requires expertise, and in this study, the
process was performed by cosmetic surgeons, taking approximately 1 min and 26 s per individual. However,
in both the medical and cosmetic surgery fields, this manual identification is already a standard part of
the surgical planning process. Therefore, applying this method does not add extra time or resources to the
existing workflow. Currently, in the research location, Vietnam, surgeons make decisions and plan surgeries
based on 2D images of patients. Our method provides a 3D model, offering surgeons an additional visual tool
providing more insights. Furthermore, the proposed method can also be applied in 3D printing synthetic
bones or cartilage to help restore or improve the shape of nose.

Despite these advantages, the generalizability of the proposed method remains a concern due to the
limited scope of the experiment. All volunteers participating in the study were Vietnamese, aged between
18 and 47. They were individuals who had a demand for or were preparing for nasal surgery. Selecting this
group is appropriate for the application objectives of this study, particularly in the fields of medicine and
cosmetic surgery in Vietnam. This also means that the study lacks evidence regarding the generalizability of
method to other populations, such as individuals from different countries and continents or a broader age
range. The expansion of experiment to evaluate the generalizability of the method was considered. However,
this would require additional costs and time from experts, which exceeds the scope of the current study.
Therefore, when applying this method to other populations, additional evaluations should be considered to
confirm the accuracy and generalizability of the model. Additionally, in this study, evaluation using scan
data was not conducted due to the lack of appropriate equipment for scanning the faces and nose areas
of the volunteers. The absence of scan datasets containing the required landmark coordinates also made it
impossible to perform this comparison. In future studies, incorporating scan data for evaluation should be
considered, as it could provide more comprehensive information.

Expanding on this point, process of marking and measuring nasal landmarks has already been an
integral part of preoperative planning research site. Therefore, applying the proposed method in this
study does not require significant changes to the existing procedure. In other regions or medical facilities
with different procedures, the collection of nasal landmark data may not be readily available. This means
that implementing the method will require additional initial efforts to establish a data collection process.
However, knowledge of identifying nasal landmarks is common in medical field, and the average time
required for marking and collecting data for each patient is only 1 min and 26 s. As a result, although
additional effort is needed to set up data collection in these regions, the time required for this process is
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minimal and does not significantly affect the overall surgical procedure. Overall, integrating this method
into medical facilities can be achieved easily with only minor adjustments in the preparation phase.

Besides, one particular limitation of this method relates to the accuracy of bottom-curve reconstruction.
This issue arises due to the similarity in skin tone between the nose wing and the cheek, making it challenging
for the algorithm to precisely identify the boundary. To address this issue, we propose the use of a soft
adhesive patch with a distinct color contrast to the skin, which would be applied to the cheek area when
capturing bottom-view images of the patient. This approach would enhance the algorithm ability to detect the
nasal boundary, thereby improving reconstruction accuracy. Currently, this tool is not readily available, and
we are planning to conduct further research and development to implement it as a solution to this limitation.
Additionally, while the results of study indicate that this method achieves the goal of constructing 3D nose
models for medical and cosmetic surgery applications, the research primarily focuses on ensuring accuracy
and interpretability for practical implementation. The level of detail of nose has not been the primary focus
of this study. Therefore, the method still has limitations in reconstruction and small details on the nose, such
as acne or minor scars. This presents a promising direction for future researches, offering the potential to
enhance both accuracy and detail of 3D model.

6 Conclusion
The proposed method presented a highly accurate algorithmic approach for 3D nose reconstruction

from 2D images and pre-marked landmarks, offering enhanced accuracy and transparency to satisfy the
safety and interpretability standards required in the field of medical and cosmetic applications. The method is
structured into three main stages: 3D landmark reconstruction, boundary curve reconstruction, and refining
3D nose. In experiments, the method achieved an average error of 0.631 mm in point-to-point distance
evaluation and an average boundary shape error of 1.738 mm. By leveraging pre-marked landmarks and
algorithmic processes, it provides a suitable solution for practical use in medical and cosmetic applications.
The study also has certain limitations, particularly the experimental scope, which includes 30 Vietnamese
volunteers. Additional experiments should be conducted when applying this method to different populations
for more comprehensive evaluation. Overall, this study paves the way for future applications of 3D nose
reconstruction technology in medical fields.
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