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ABSTRACT: With expeditious advancements in AI-driven facial manipulation techniques, particularly deepfake
technology, there is growing concern over its potential misuse. Deepfakes pose a significant threat to society, partic-
ularly by infringing on individuals’ privacy. Amid significant endeavors to fabricate systems for identifying deepfake
fabrications, existing methodologies often face hurdles in adjusting to innovative forgery techniques and demonstrate
increased vulnerability to image and video clarity variations, thereby hindering their broad applicability to images
and videos produced by unfamiliar technologies. In this manuscript, we endorse resilient training tactics to amplify
generalization capabilities. In adversarial training, models are trained using deliberately crafted samples to deceive
classification systems, thereby significantly enhancing their generalization ability. In response to this challenge, we
propose an innovative hybrid adversarial training framework integrating Virtual Adversarial Training (VAT) with
Two-Generated Blurred Adversarial Training. This combined framework bolsters the model’s resilience in detecting
deepfakes made using unfamiliar deep learning technologies. Through such adversarial training, models are prompted
to acquire more versatile attributes. Through experimental studies, we demonstrate that our model achieves higher
accuracy than existing models.
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1 Introduction
The swift advancements in deep learning and synthetic modelling techniques have significantly accel-

erated the evolution of technologies related to face manipulation, such as deepfake technologies. AI-based
face manipulation techniques, like Face2Face [1], Faceswap [2], focus on real-time facial reenactment,
which replaces the facial regions with those of another person. These techniques generate images that are
remarkably realistic, making it difficult to distinguish them from authentic ones.

The ascendance of new deepfake forgery techniques raises concerns about potential malicious activities.
These activities include identity theft and impersonation, cyberbullying, harassment, and privacy violations.
The use of deepfakes can pose significant security risks, particularly in sensitive sectors such as national
security and law enforcement. As a result, authenticating audio and video may become more difficult, and
there is a possibility of spreading misinformation [3]. To safeguard public safety and personal privacy, it is
imperative to advance the advancement of methodologies for recognizing and uncovering deepfakes.
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Early works focused on identifying anomalies in facial expressions, artifacts, and inconsistencies in mul-
timedia content. The techniques used for detection include analyzing noise variance [4], using watermarks
and digital signatures, and digital shadow writing analysis [5]. These methods, though not foolproof, aimed to
spot unnatural patterns indicative of deepfake manipulation. Lately, discussions have arisen regarding deep-
learning-driven deepfake detection approaches. They employ Convolutional Neural Networks (CNN) and
Region Convolutional Neural Networks (RCNN) for manipulation detection. Recent deep learning-based
detection models have incorporated adversarial training to enhance robustness. Methods such as FGSM-
based training, PGD-based training, and standard Virtual Adversarial Training (VAT) have improved in
resisting adversarial attacks. However, these models often struggle with adaptive deepfake generation tech-
niques, where adversarial perturbations become ineffective due to evolving attack strategies. Furthermore,
existing approaches fail to capture diverse adversarial examples, limiting their real-world applicability.

The challenge of identifying facial forgeries motivated us to introduce a novel adversarial training
approach that involves introducing noise to images and applying blurring techniques. This aims to enhance
both discriminative capabilities and generalizability. The synergistic combination significantly improves the
model’s ability to detect deepfakes created using unfamiliar deep learning technologies. We experimented
with many forms of adversarial training, including some additive ones based on blurring. We experimented
with the proposed model using adversarial perturbed and blurred instances to improve generalization
performance and detect deepfakes. The key contributions of this research are:

(1) We incorporate a novel hybrid adversarial training framework, integrating VAT with Two-Generator
Blurred Adversarial Training (Two-Gen-BAT). VAT enhances the model’s generalization by intro-
ducing perturbations, while Two-Gen-BAT improves robustness by generating diverse adversarial
examples through a two-generator adversarial approach.

(2) To enhance generalization to unobserved deepfake technologies, adversarial instances are created
based on image blurring. We evaluate our approach on different datasets and show that it outperforms
state-of-the-art methods.

(3) We comprehensively analyze our approach and discuss its implications for future research.

2 Related Works

2.1 Deepfake Generation
The exploration of AI-driven techniques for manipulating and forging facial images has a well-

established and extensive historical background. Initial detection methods achieved pleasing results only
in minimal scenarios. The swift progressions in computer graphics and computer vision have made facial
alteration progressively lifelike. As an illustration, Dale et al. [6] applied graphics-based methods to regen-
erate 3D face models for different individuals and achieved face swaps. Reenactment entails the exchange of
facial expressions among individuals. Thies et al. [1] advanced real-time facial expression transfer employing
an accessible RGB-D sensor to record facial gestures. The recent upsurge of deep learning has led to the
development of many vision-based methods. Generative adversarial networks (GANs) [7] were utilized
for the direct generation of entire facial images from random signals. Variational Autoencoders (VAEs)
can be employed to create authentic facial expressions and motions. Zao [8], a Chinese face-swapping
app, uses deepfake technology to swap faces with those of celebrities, and realistic face animations are
created. In March 2020, the mobile application ‘Impressions’ [9] was introduced as the first platform enabling
users to create celebrity deepfake videos directly from their smartphones. Disney has introduced its latest
technology—High-Resolution Neural Face Swapping [10], combining deepfakes and facial recognition, to
recreate and bring deceased actors back to life, allowing fans to experience their performances once again.
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2.2 Deepfake Detection Methods
The fabrication of misleading deepfake images and videos poses a considerable danger to personal

privacy and constitutes a grave societal menace. Hence, the advancement of efficient deepfake detection
solutions is paramount. Early endeavors [5,11] focused on scrutinizing internal metrics or manually designed
attributes of images and videos to differentiate genuine content from falsified ones. However, contem-
porary approaches predominantly rely on deep learning features [12–14] to distinguish between real and
manipulated media.

The existing methods, for instance, Du et al. [15] presented the Locality-Aware AutoEncoder (LAE)
for detection, emphasizing enhanced generalization accuracy. However, the method yielded relatively low
accuracy rates. Nguyen and Derakhshani [16] proposed exposing deepfake images by focusing on eyebrow
matching. Using a cosine distance measure, their model assessed resemblances between the source and
target eyebrow. However, this method heavily depends on aligning identities between the source and target,
thus necessitating a substantial number of training samples. Akul Mehra et al. [17] unveiled a spatial-
temporal model utilizing a CapsuleNet combined with a Long Short-Term Memory (LSTM) network for
deepfake identification, and the performance spectrum might deteriorate in slight inconsistencies among
frames. Shruti Agarwal et al. [18] proposed a technique for detecting altered videos by exploiting intermittent
disparities between the kinetics of mouth configuration, referred to as visemes, and the associated uttered
phoneme. Nonetheless, this strategy could prove time-intensive due to the need for numerous manual tasks
in aligning phonemes and visemes. Khalid and Woo [19] developed OC (One Class)-FakeDect, a one-class
variational autoencoder (VAE), specifically trained for deepfake detection through image reconstruction, yet
this approach may not be the best anomaly scoring scheme.

Zhang et al. [20] used a Self-Supervised Decoupling Network (SSDN) to ensure resilient detection of
facial forgery amidst diverse compression ratios. This model demonstrated superior performance, particu-
larly in challenging, low-quality scenarios. However, potential challenges may arise with unseen compression
rates. Luo et al. [21] developed a technique utilizing an Xception-based detector incorporating Speech-to-
Residual features to enhance the universality of face forgery detection. Haliassos et al. [22] prepared grayscale
lip-cropped frames as input and trained them with two pre-trained lip-reading networks: a Resnet-18 model
and a Multi-Scale Temporal Convolutional Network (MS-TCN) for detecting face forgery. However, this
model was unable to identify fake videos with mouth obstructions. Li et al. [23] introduced a Frequency-
aware Discriminative Feature Learning (FDFL) framework for detecting forgeries. They addressed the
challenge of indistinct feature differentiation in SoftMax loss and the ineffectiveness of manual features by
merging SoftMax Contrastive Learning (SCL) with SoftMax loss. Deng et al. [24] suggested a detection
technique that entails extracting bands along the edges of faces from video frames. They applied techniques
such as convex hull, dilation, and erosion to obtain these face edge bands. In this model, it becomes difficult
to predict the output if there is manipulation on regions other than the face edge.

2.3 Adversarial Training
Adversarial training employs adversarial examples to enhance the training set, serving as a primary

defense against adversarial attacks [25,26]. Its roots can be traced back to when Fast Gradient Sign Method
(FGSM) [27] was unveiled to enhance adversarial resilience. Madry et al. [25] subsequently suggested a more
robust multi-step approach named Projected Gradient Descent (PGD), outperforming FGSM and numerous
present-day defense techniques [26,28]. Hussain et al. [29] revealed the vulnerability of current deepfake
detection models to adversarial instances, whereas Ruiz et al. [30] utilized adversarial instance creation
to impede the utilization of photos in producing deepfakes. Wang et al. [31] formulated an adversarial
network utilizing image blurring, which can be constructed by introducing two generators to train the
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deepfake detection models. Safwat et al. [32] presented a hybrid deep learning model that combines
the generative power of Generative Adversarial Networks (GANs) with the discriminative capabilities of
Residual Neural Networks (ResNet) for detecting fake faces. The model distinguished real from synthetic
faces by leveraging GANs for data augmentation and ResNet for robust feature extraction. Sadhya et al. [33]
introduce an attention-based deep learning system for detecting fake faces, integrating Layer-Integrated
Channel Attention (LICA) and Scaled Spatial Attention (SSA) mechanisms into the VGG (Visual Geometry
Group) network architecture. This model enhances the ability to differentiate between real and manipulated
faces by capturing significance across channels and spatial locations. Zhang et al. [34] introduced SRTNet,
a two-stream deepfake detection network that integrates information from both the spatial and residual
domains. In contrast to these approaches, we focus on incorporating VAT with blurring-based adversarial
training to boost the efficiency of classification-oriented deepfake detection models.

3 Proposed Approach
This section unveils our deepfake detection framework, rooted in adversarial training. Firstly, we

will discuss the motivation behind advocating adversarial training. Section 3.2 will review the adversarial
training methodology used in our proposed work. Then, in Section 3.3, we offer the most specialized method
utilizing Gaussian smoothing at the pixel level for executing intrusive manipulations and counter-strategy
learning. Section 3.4 briefly outlines the procedure for conducting generator-based adversarial training.
Then, in Section 3.5, we discuss combining multiple adversarial techniques to complement each other and
provide a more robust training method. Finally, Section 3.6 covers the advantages of VAT over additive
adversarial training and proposes the integration of VAT with blurred adversarial training.

3.1 Data Preprocessing
The initial stage in data preprocessing involves extracting images from videos, followed by applying

random transformations. These transformations diversify the dataset, aiding models in better generalization
by learning invariant features and mitigating overfitting. Subsequently, extracted images undergo a series
of randomized preprocessing techniques aimed at enhancement. Image compression reduces file size by
eliminating non-essential information while retaining crucial visual details.

In image data preprocessing, several methods are employed: Gaussian noise introduction introduces
random pixel variations; horizontal flipping mirrors images along the horizontal axis, Principal Component
Analysis (PCA) adjusts color balance, hue saturation modifies color properties, random brightness adds
brightness variations, grayscale conversion transforms images to black and white, and geometric transforma-
tions such as shift, scale, or rotation are applied. Employing these techniques, as shown in Fig. 1, randomizes
and enriches training data diversity, bolstering machine learning models against variations and enhancing
their ability to generalize.
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Figure 1: The set of data preprocessing techniques employed to extract images to improve the generalization of the
proposed model

3.2 Additive Adversarial Training
In general, deepfake detection is conceptualized as a binary categorization task. A single image (utilized

as the model’s input) or a sequence of images from a singular video can generate predictions. Here,
we focus on a case where the model receives only one image from a series of images in a video. The
training set D consists of a vast collection of images accompanied by corresponding labels. A limitation of
numerous existing deepfake detection models is that conventional training on a datasetD does not guarantee
adaptability to counterfeit images generated through unfamiliar technologies or compressed at different
quality levels. A potent solution to this challenge would involve integrating an “opponent” that iteratively
refines the approach for training counterfeit images and rectifies evident weaknesses that the deepfake
detection model could readily detect. This would empower the model to discern more intricate counterfeit
images effectively, aligning with the principles of adversarial learning.

Typically, traditional deepfake classification models aim to minimize the prediction loss L(x , y; θ) for
any given input data (x , y). Here, x represents the input image (real or deepfake), y indicates the label (REAL
or FAKE), and θ encompasses all the learnable parameters within the classification model. The objective lies
in discovering an appropriate parameter set that minimizes the empirical risk ∑(x , y)∈D[L (x , y; θ)] across
the dataset D, where D consists of pairs of input data and labels. Adversarial training, however, differs by
fortifying models against adversarial vulnerabilities. It accomplishes this by producing adversarial instances
and integrating them into the training dataset. This technique aims to tackle deep models’ vulnerability to
adversarial assaults, bolstering their resilience against such obstacles.

Various adversarial training methods have emerged in recent years, each presenting unique approaches
to generating adversarial examples. One such approach, Spatial-transformed Adversarial Training (SAT),
which employs adversarial optical flow to transform pixels within natural images spatially. Its goal is to induce
significant prediction losses while introducing minimal perturbations. Conversely, Additive Adversarial
Training (AAT), akin to FGSM, adds pixel-level perturbations to images. These methods, SAT and AAT,
illustrate the diverse spectrum of techniques available for creating adversarial examples in the realm of
adversarial training.
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The current additive adversarial training technique involves introducing perturbations to images
and subsequently training the model using these altered images. The specific method for applying these
perturbations can vary between models, with many utilizing the FGSM. This framework generates each
adversarial instance xadv by augmenting a scaled input-gradient direction to the original image x within a
specified set, as shown in Eq. (1).

xadv = x+ ε ⋅sign(∇x L (x , y; θ)) (1)

where ε is a constant, ∇ represents the gradient and L(x , y; θ) is the prediction loss for any given input
data (x , y) and learnable parameters θ. Adversarial training operates within a zero-sum game framework,
focusing on generating adversarial examples that maximize classification loss. These generated adversarial
examples, alongside the original ones, contribute to a more robust training process. The optimization
problem in Eq. (2) involves the classifier learning to correctly classify genuine images while encountering
perturbed examples crafted by the adversary.

min
θ
∑

(x , y)εD
L (x , y; θ) +max

δεS
L(x + δ, y; θ) (2)

the dataset D consists of pairs of data and labels. We establish a subset S ⊆ Rh×w×c to limit the permissible
alteration from every adversarial instance to its corresponding original image. Meanwhile, the adversary’s
objective is to create perturbations that deceive the detector, leading to misclassification. This methodology
is referred to as Additive Adversarial Training (AAT).

3.3 Blurring Adversarial Training
While adversarial training has shown enhanced robustness against adversarial attacks in various exam-

ples, its influence on improving the capacity of deepfake detection models to generalize is still undetermined.
Notably, in natural image classification tasks such as those on ImageNet [35], adversarial training has been
demonstrated to have minimal impact on generalization to standard test data. This is due to the shift in
distribution between adversarial instances and standard test samples. An identical obstacle might arise
within the realm of identifying deepfakes. To tackle this issue, we present an innovative type of adversarial
instance that demonstrates greater efficacy within the adversarial training framework, thereby improving
deepfake detection.

Incorporating Gaussian blurring and JPEG compression augmentations will likely enhance deep clas-
sification Convolutional Neural Networks (CNNs). Furthermore, introducing a blurring-based adversarial
training mechanism could yield even more effective results. To elaborate, consider an input image x with
dimensions height (h), width (w), and channels (c). We obtain an adversarial image, xadv by applying
pixel-wise Gaussian blurring to x. Denoting the (i , j)th pixel of, xadv as xadv

i , j , our objective is to acquire a
single-channel map σ adv with dimensions h ×w. Each element, such as σ adv

i , j , signifies the standard deviation
of a gaussian filter intended for use on the region centered at the corresponding pixel in image x, i.e., xi , j.
Specifically, to determine the value of xadv

i , j (Eq.(4)), we initially gather σ adv
i , j and utilize it to figure the kernel

Gi , j ε Rk×k (Eq.(3)) for applying Gaussian blurring around xi , j. If the size of the kernel is selected as k, we
calculate the dot product between Gi , j and γ (xi , j , k) ε RK×K , which signifies a cluster of pixels centered at
the pixel xi , j with a radius of k.

Gi , j (u, v) = 1

2π (σ adv
i , j )

2 ex p
⎛
⎜⎜
⎝
− u2 + v2

2(σ adv
i , j )

2

⎞
⎟⎟
⎠

(3)
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xadv
i , j = ⟨Gi , j , γ (xi , j , k)⟩ (4)

where the coordinates (u, v) are relative to the center pixel in γ (xi , j , k). We seek to develop a suitable
mapping function, denoted as σ adv , for every image used in training.

This Gaussian function plays a vital role in implementing blurring at the pixel level. The implementation
of this blurring operation is optimized for efficiency through vectorization. The parameter σ adv serves as a
control mechanism for the extent of blurring applied to the original training image. Larger values of σ adv

result in more pronounced blurring, producing images with fewer discernible artifacts from the deepfake
generator. Conversely, smaller values of σ adv lead to less blurring, making the generated artifacts more
conspicuous for the classification model to learn. The objective is to blur image regions in a pixel-wise fashion,
allowing for more intense blurring in areas with fewer generalizable features.

This approach ensures that adversarial blurring is strategically applied to improve the generated
content’s overall quality while minimizing detectable artifacts by the classification model. The process is
guided by the gradual reduction of all entries in σ adv towards zero, signifying the convergence of the
adversarial blurring towards the original training image. We are motivated to create a reliable mapping, σ adv ,
for each image in our training set. Our objective with adversarial blurring entails implementing blurring
at the level of individual pixels, emphasizing areas with less uniform, transferable characteristics. Similar
to other techniques producing adversarial instances, our strategy strives for minimal alteration from the
original images. To accomplish this, we utilize a straightforward one-step method, resembling FGSM but
lacking the sign function as in Eq. (5):

σ adv = σ+ ε ⋅∇σ L (xadv , y; θ) (5)

where ∇ represents the gradient, xadv is derived from Eq. (4), σ represents the initialization of σ adv , and
ε is a constant. In practice, we set σ as a matrix with uniform entries. This method is known as Blurring
Adversarial Training (BAT).

3.4 Generator-Based Methods
Traditionally, numerous adversarial training techniques create instances by utilizing the gradient of the

loss function L for the input. Usually, resilient adversarial instances are formed via a multi-stage process,
resulting in heightened computational overhead as the number of stages increases. In this strategy, an alter-
nate technique for producing adversarial instances is employed, involving the introduction of a CNN-driven
generator. Assuming an N-layer Multi-Layer Perceptron (MLP) deepfake detection model with M neurons in
each layer, the computational complexity for forward and backward passes, including gradient computation
is O ((w × h × c + 2) ×M + (N − 2) ×M2). Incorporating a K-step scheme for adversarial example gener-
ation increases the computational complexity to O (2 × (w × h × c + 2) × K ×M + 2 × (N − 2) × K ×M2).
Significantly, this intricacy is intricately linked to the structure of the deepfake detection model. However,
by integrating an adversarial generator, these complexities become independent. They are solely determined
by the generator’s architecture as shown in Fig. 2. Table 1 shows the input and output size of the layers in
the customized generator, featuring the layers such as Reflection padding layer, Convolution layer, Instan-
ceNorm2d layer (normalization), and ReLU layer (activation), Transpose2d layer, RNet layers. Consequently,
we can easily control and constrain the computational complexity by managing the size of the generator.
This separation of concerns allows for more flexibility and efficiency in managing the overall computational
demands of the adversarial example generation process.
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Figure 2: The layers in the architecture of Pixel Kernel Generator

Table 1: Pixel Kernel Generator layer’s input and output size

Layer type Input size Output size
Padding 256 × 256 × 3 262 × 262 × 3

Convolutional 262 × 262 × 3 256 × 256 × 64
Normalization 256 × 256 × 64 256 × 256 × 64

Activation 256 × 256 ×64 256 × 256 × 64
Convolutional 256 × 256 × 64 128 × 128 × 128
Normalization 128 × 128 × 128 128 × 128 × 128

Activation 128 × 128 × 128 128 × 128 × 128
Convolutional 128 × 128 × 128 64 × 64 × 256
Normalization 64 × 64 × 256 64 × 64 × 256

Activation 64 × 64 × 256 64 × 64 × 256
R-net 64 × 64 × 256 64 × 64 × 256

Transposed convolutional 64 × 64 × 256 128 × 128 × 128
Normalization 128 × 128 × 128 128 × 128 × 128

Activation 128 × 128 × 128 128 × 128 × 128
Transposed convolutional 128 × 128 × 128 256 × 256 × 64

Normalization 256 × 256 × 64 256 × 256 × 64
Activation 256 × 256 × 64 256 × 256 × 64

We employ a CycleGAN [36] generator to produce the adversarial blurring map, σ adv . It is crucial to
note that, in contrast to the approach taken by Rusak et al. [37], we generate a specific map, σ adv

(x , y), for each
original training sample (x , y). This individualized mapping accounts for the variation in spatial regions
where the most transferable features may be present across different images. Let’s say that γD and γZ stand for
the collections of trainable attributes for the generator and discriminator model, respectively. This strategy
is devised as a game of minimizing and maximizing, to optimize the subsequent adversarial goal given
in Eq. (6).

min
γD

max
γZ

∑
(x , y)εD

L (x , y; γD) + ∑
(x , y)∈D

L(Z (x; γZ) , y; γD) (6)

the presented generator, denoted as Z, can be interpreted as an augmentation model for the initial deepfake
generator(s). The optimization problem described in Eq. (6) facilitates the training of Z with the objective of
enhancing deepfake images in a manner that contradicts the objectives of the deepfake detection model. In
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other words, the aim is to diminish conspicuous artifacts, thereby synthesizing more realistic deepfakes that
challenge the capabilities of the deepfake detection model. The successful learning of the generator results in
the production of more convincing fake images, consequently enabling the classification model to acquire
a deeper understanding of deepfake characteristics and enhance its overall generalizability. As a reciprocal
process, the generator refines its ability to generate more realistic content. Crucially, this generator-driven
method provides increased adaptability, particularly in mastering the concealment of more universally
applicable attributes across various images when integrated with BAT, as depicted in our trials. In practical
application, our generator functions to “improve” both counterfeit and authentic training images, facilitating
a well-rounded training dataset for both categories. This balanced enhancement further reinforces the
effectiveness of the training process.

The generator-based BAT shares similarities with GAN [7], consisting of a generator and a discrim-
inator. However, a crucial distinction lies in the objective: the framework targets the improvement of the
deepfake detection model (referred to as our discriminator), whereas GAN concentrates on enhancing its
generator. In our method, the generator generates adversarial instances to remove anomalies in deepfake
material or introduce comparable anomalies to genuine images to outwit the discriminator. The min-max
competition encounters convergence issues, restricting the generator to altering obvious and less transferable
anomalies that are readily identified by the deepfake detection model. To tackle the obstacle of differing
distributions between authentic and counterfeit images, we propose using two generators, Gr and G f ,
each dedicated to processing real and fake images, respectively. This approach allows specialization for
each class, mitigating the burden on a single generator to adjust to both categories and demonstrating
empirical effectiveness

3.5 Combined Adversarial Training
Integrating AAT with Two-Gen-BAT aimed to bolster the model’s resilience against unseen adversarial

tactics. While blurring-based adversarial examples strive for minimal deviation from original images, Two-
Gen-BAT’s diversity goals could inadvertently limit output variety. This constraint might hinder the model’s
capacity to generate truly unique or varied samples beyond its training scope. Furthermore, this approach
might be more sensitive to shifts in data distribution. The model may experience performance degradation
if the test data varies significantly from the training set, as it may find it challenging to adjust to these
discrepancies. Therefore, integrating AAT with Two-Gen-BAT sought to fortify the model’s robustness
against unforeseen challenges.

To accomplish the purpose, we present a straightforward one-step technique that is similar to FGSM
(apart from the sign function) as in Eq. (7).

xadv2 = xadv + z ⋅ sign(∇σ L (xadv , y; θ)) (7)

in which xadv is obtained by Eq. (4), L(xadv , y; θ) denotes the prediction loss for the blurred images,
z denotes the random perturbation factor, and xadv2 denotes the adversarial examples obtained after adding
the perturbation to the blurred examples (xadv).

Grad-AAT’s emphasis on gradient manipulation and Two-Gen-BAT’s focus on generating diverse
adversarial examples could complement each other, potentially strengthening the model’s overall robustness.

Integrating these methods can create a more comprehensive defense strategy, making it harder for
adversaries to exploit weaknesses in a singular defense mechanism and providing broader defense coverage
against various attack strategies. This adversarial training framework is known as Combined Adversarial
Training Framework 1 (Combined-AT 1).
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3.6 Virtual Adversarial Training
FGSM’s simplicity in adding imperceptible perturbations directly to input features might not universally

deliver effective results. Additionally, blurring-based adversarial examples aim to retain a closer proximity
to original images. However, the amalgamation of Two-Gen-BAT and Grad-AAT could inadvertently lead to
overfitting to specific adversarial examples utilized during training. While the objective is to enhance robust-
ness, this approach risks creating a model that becomes excessively specialized, potentially compromising
its ability to generalize across unseen adversarial samples or clean data. Therefore, we propose an advanced
strategy by integrating Two-Gen-BAT with VAT.

A potent regularization technique for deep neural networks was presented by Miyato et al. [38] to
improve generalization performance and strengthen model durability. Virtual adversarial loss, a metric
that assesses the conditional label distribution’s local smoothness concerning the input, is the foundation
of this technique. The durability of the label distribution surrounding individual data points against local
perturbations is qualified by virtual adversarial loss. This method, in contrast to adversarial training,
establishes antagonistic direction without using label information. This is VAT because these reflect only
virtual hostile routes.

The following steps are included in the VAT algorithm:

• Generate a random perturbation rv with the same shape as the input data.

rv ≈ U(− ε, ε) (8)

where U(− ε, ε) represents the uniform distribution between − ε and ε, ε determine the magnitude of
the perturbation.

• Normalize rv to have a small magnitude. To normalize it here we use tanh function which scales and
shifts the values to be within the range [−1, 1]

• Create the adversarial examples xadv2 by slightly perturbing the blurred images xadv , which were
obtained from Eq. (4). The perturbed examples might be implicit in VAT, whereas it is explicit in methods
like FGSM.

xadv2 = xadv + xi ⋅ tanh rv (9)

where xi represents a random perturbation.
• Calculate the KL (Kullback-Leibler) divergence between the model’s predictions on the perturbated

examples (xadv) and the adversarial examples xadv2:

KL ( fθ (xadv2) ∥ fθ (xadv)) = ∫ fθ (xadv2) × log
⎛
⎝

fθ (xadv2)
fθ (xadv)

⎞
⎠

dx (10)

where fθ (xadv) represents the Two-Gen-BAT model’s output logits or probabilities, fθ (xadv2) repre-
sents the output logits for perturbated adversarial examples. This loss is known as virtual adversarial loss
when the perturbation is updated iteratively.

• Minimize the KL divergence by adjusting the model parameters θ using backpropagation:

min
θ g

KL ( fθ g (xadv2) ∥ fθ g (xadv)) +max
θ g

L (xadv , y; θ g) (11)

where θ g denotes the learnable parameters for generator model.
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This process encourages the model to be robust by minimizing the divergence between its predictions
on the blurred examples and the adversarial perturbed examples and by maximizing the prediction loss for
blurred adversarial examples.

The synergy of VAT and Two-Generated Blurred Adversarial Training (Two-Gen-BAT) enhances the
model’s resilience against adversarial attacks. VAT excels at fortifying the model against local perturbations
by boosting uncertainty. At the same time, blurred adversarial training introduces perturbations through
image blurring or noise, fortifying the model against local and global distortions. This combination aims to
diminish the model’s sensitivity to subtle alterations in input data, bolstering its stability and reliability when
faced with adversarial examples. By encompassing VAT and blurred adversarial training, this framework
establishes a multi-layered defense mechanism, intensifying the challenge for attackers to devise compelling
adversarial examples that deceive the model. This adversarial training framework is known as Combined
Adversarial Training Framework 2 (Combined-AT 2), which is shown in Fig. 3. The pseudocode for
Algorithm 1 used for VAT is given below:

Figure 3: Combined Adversarial Training Framework 2 adopted in the proposed model

Algorithm 1: Virtual adversarial training
Input: fθ (Discriminator model), xadv1 j( j = 1, . . . , M) Generated images of M samples
Output: Virtual Adversarial Loss
1 rv ≈ U(− ε, ε) // generate random perturbation by calculating uniform distribution
2 for each i ← 0 to M do
3 xadv2 = xadv1 + τ ⋅ tanh rv // addition of perturbation to images

4 KL ( fθ (xadv2) ∥ fθ (xadv1)) = ∫ fθ (xadv2) × log(
fθ(x adv2)
fθ(x adv) )dx

5 radv
v = rv+ ε ⋅ tanh (∇(KL ( fθ (xadv2) ∥ fθ (xadv1))))

6 loss = KL( fθ (xadv1 + radv
v ) ∥ fθ (xadv1))

7 return ∇θ ( 1
M ∑

M
k=1 lossk)
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Virtual adversarial training (VAT) is a machine learning technique aimed at bolstering the resilience
and generalization capabilities of neural networks. The algorithm begins by initializing parameters such
as perturbation size and scaling coefficient in line 1. Perturbations are iteratively generated in line 3 to
amplify the discrepancy between model predictions on original and perturbed inputs, fostering uncertainty.
Model predictions for both inputs are computed, and the KL divergence between predicted distributions is
calculated in line 4. The perturbation is updated to maximize the KL divergence loss. Adversarial distance
between original and perturbed predictions is computed in line 5 and scaled to form virtual adversarial loss
in line 6. This loss enhances training objectives, improving model robustness and generalizability against
adversarial attacks, thus boosting real-world effectiveness and reliability.

4 Implementation Results

4.1 Dataset
The FaceForensics++ (FF++) [39] dataset, widely utilized in research on detecting deepfakes, serves as

a significant resource for this model. FF++ comprises 1000 original short video clips sourced from YouTube.
Each original video in the dataset was subjected to manipulation using four sophisticated techniques:
DeepFakes (DF) [40], Face2Face (F2F) [1], FaceSwap (FS) [2], and NeuralTextures (NT) [41], producing four
fake videos corresponding to each original. Fig. 4 displays sample images extracted from the FF++ dataset.

Figure 4: Sample images extracted from FaceForensics++ dataset. Column 1 represents original images in the dataset.
Columns 2 to 5 represent corresponding images in the dataset which have undergone manipulation techniques such as
Face2Face, FaceSwap, DeepFakes, and Neural Textures

All videos in the dataset are of C23 quality, a compressed format with relatively high quality. In total,
there are 5000 videos (combining real and fake). For training, we extracted 10 frames from each real and
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Face2Face manipulated video, totaling 20,000 frames for training and validation. Additionally, 3 frames were
extracted from each video of DF, FS, and NT, amounting to 9000 frames for testing purposes. To assess the
model’s ability to generalize, we trained models on videos from a particular manipulation type and then
assessed their performance on videos generated by various manipulation methods.

4.2 Implementation Details
We conducted experiments to assess the effectiveness of adversarial training on established deepfake

detection models. Specifically, we applied the EfficientNet [42] architecture, initially crafted for image
categorization, to the task of deepfake detection. This adaptation entailed substituting the top fully connected
layer with a fresh layer producing two-dimensional logits. While this newly introduced layer was initialized
randomly, the remaining layers of the model were pre-trained on ImageNet [35]. For model training, we
utilized the RAdam [43] optimizer with β1 = 0.9 and β2 = 0.999, along with a weight decay of 2 × 10−3.
The initial learning rate was set to 5 × 10−4 and decayed by a factor of 0.1 every 5 epochs. In cases where
models were trained alongside generators, the learning rate for the generators was initialized to 2 × 10−3.
When employing Gaussian blurring, we defined the blur kernel size k to 9. To maintain numerical stability,
we optimized or generated 1/σ adv rather than σ adv for the Blurred Adversarial Training (BAT) technique
in practice.

All experiments were conducted within a PyTorch [44] environment, operating on hardware equipped
with an Intel CPU (Santa Clara, CA, USA) and two Nvidia Tesla T4 GPUs (Santa Clara, CA, USA). The
assessment criteria included prediction accuracy, recall, precision, and F1-score.

4.3 Experimental Results
Fig. 5 shows the real image alongside the transformed image after applying random transformations

and pixel-wise Gaussian blurring. The deepfake images shown in Fig. 5 exhibit lower resolution and lighting,
due to the perturbations introduced by deepfake generation methods to generate adversarial images. We
compared various methods for generating adversarial examples and conducting adversarial training. These
methods include: (i) AAT, employing input gradient-based additive adversarial training, (ii) BAT, utilizing
adversarial training based on input gradients for blurring, (iii) Two-Gen-BAT, a variation of BAT with
two generators, and (iv) Combined AT1 (CT1), which combines Two-Gen-BAT with AAT. Additionally, we
have (v) Combined AT2 (CT2), a combination of Two-Gen-BAT with VAT. All models underwent training
exclusively on face2face data and were subsequently tested on other fake data.

Tables 2–5 present an overview of the evaluation results for adversarial training models across diverse
datasets, highlighting precision, recall, accuracy, and F1-score metrics. In Table 2, focusing on the face2face
dataset (validation), the Combined AT2 (CT2) model demonstrates superior performance with the highest
precision (89.12%), recall (94.38%), accuracy (92.83%), and F1-Score (91.67%). BAT exhibits exceptional recall
(93.54%), and CT1 shows notable precision (84.46%), while AAT and Two-Gen-BAT display balanced but
comparatively lower performance.
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Figure 5: Adversarial examples generated by the proposed generator model. Left top and left bottom show original and
fake images, respectively, from the dataset; right top shows adversarial examples crafted on the left top image, and the
right bottom shows those crafted on the left bottom image

Table 2: Evaluation metrics comparison for different deepfake detection models and our proposed model on F2F
dataset

Model Precision (%) Recall (%) Accuracy (%) F1-Score (%)
PGD [25] 80.13 91.20 90.10 85.31

FGSM [27] 87.13 92.36 91.11 89.67
BAT [31] 87.15 93.54 86.25 89.59

Two-Gen-BAT [31] 87.56 84.99 86.43 86.26
Combined AT-1 [31] 83.87 84.46 75.83 72.89
GAN + ResNet [32] 88.95 93.33 90.43 91.09

Attention + VGG [33] 86.23 90.36 90.13 88.25
Combined AT-2 (ours) 89.12 94.38 92.83 91.67

Table 3: Comparison between different deepfake detection models tested on faceswap dataset

Model Precision (%) Recall (%) Accuracy (%) F1-Score (%)
PGD [25] 60.12 80.34 62.33 68.77

FGSM [27] 60.59 82.78 64.48 69.97
BAT [31] 65.67 84 70.91 70.64

(Continued)
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Table 3 (continued)

Model Precision (%) Recall (%) Accuracy (%) F1-Score (%)
Two-Gen-
BAT [31]

55.28 84.95 58.13 66.98

Combined
AT-1 [31]

60 83.86 70.54 70.53

GAN +
ResNet [32]

60.34 80.33 65.14 68.91

Attention +
VGG [33]

63.24 80.32 69.11 70.76

Combined
AT-2(ours)

66.8 86.53 71.8 75.42

Table 4: Comparison between different deepfake detection models tested on neural texture dataset

Model Precision (%) Recall (%) Accuracy (%) F1-Score (%)
PGD [25] 60 80 63.11 68.57

FGSM [27] 60.25 82 64.08 69.76
BAT [31] 63.53 80 67.7 69.83

Two-Gen-
BAT [31]

53.65 84.96 55.76 65.77

Combined
AT-1 [31]

66.62 84.17 69.79 69.84

GAN +
ResNet [32]

61.22 83.15 68.53 70.52

Attention +
VGG [33]

64.33 82.63 67.13 72.34

Combined
AT-2(ours)

65.77 86.53 70.75 77.91

Table 5: Comparison between different deepfake detection models tested on deepfake dataset

Model Precision (%) Recall (%) Accuracy (%) F1-Score (%)
PGD [25] 61.74 82.23 64.56 70.52

FGSM [27] 62.97 82.69 67.02 71.5
BAT [31] 63.19 83 70 70.2

Two-Gen-
BAT [31]

57.33 84.97 60.82 68.46

Combined
AT-1 [31]

65.41 85.29 73.2 71.59

GAN +
ResNet [32]

65.51 83.28 71.16 73.33

(Continued)
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Table 5 (continued)

Model Precision (%) Recall (%) Accuracy (%) F1-Score (%)
Attention +
VGG [33]

55.21 81.47 73.33 65.81

Combined
AT-2(ours)

69.86 86.53 74.6 77.3

Table 3 illustrates the FS dataset, where CT2 emerges as the top-performing model with precision
(66.8%), recall (86.53%), accuracy (71.8%), and an F1-score of 75.42%. CT1 displays competitive accuracy
(70.54%). AAT and Two-Gen-BAT exhibit balanced but relatively lower performance.

Moving to Table 4, concerning the neural texture dataset, CT2 stands out as the top performer with
65.77% precision, 86.53% recall, 70.75% accuracy, and an F1-score of 77.91%. CT1 shows a notable recall
(84.17%). AAT and Two-Gen-BAT maintain balanced but comparatively lower performance.

In Table 5, examining the deepfake dataset, CT2 again excels with 69.86% precision, 86.53% recall, 74.6%
accuracy, and an F1-score of 70.2%. While CT1 displays competitive precision (65.41%) and recall (85.29%).

AAT and Two-Gen-BAT show balanced but comparatively lower performance across metrics. Overall,
CT2 consistently performs well across various datasets, balancing precision, recall, accuracy, and F-
score. Table 5 shows the consolidated accuracy comparison between different deepfake detection models on
data generated using different manipulation technologies (F2F, DF, FS, NT).

The dataset has been compressed and tested using the Combined AT-2 model for the datasets, DF, NT,
FS, and F2F. The model shows relatively low accuracy when tested against a compressed dataset, as shown
in Fig. 6. F2F shows higher accuracy for compressed as well as uncompressed data. DF and FS show the same
level of accuracy, followed by NT.

Figure 6: Comparison the performance of the proposed model using compressed and uncompressed data
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To evaluate the generalizability of our model, we performed a cross-manipulation experiment, train-
ing exclusively on Face2Face (F2F) manipulated videos and testing on other manipulation types in the
FaceForensics++ dataset, including DeepFakes (DF), FaceSwap (FS), and NeuralTextures (NT). This setup
simulates a realistic deployment scenario where the model encounters unseen manipulation techniques, and
the results in Tables 6 and 7 demonstrate that our method generalizes well across manipulation domains.

Table 6: Ablation study for the proposed model

Model Precision (%) Recall (%) Accuracy (%) F1-Score (%)
Baseline model (No Adversarial Training) 76.9 75.8 78.4 76.3

VAT only 80.5 79.3 82.1 79.9
Two-Gen-BAT only 83.2 82.1 84.7 82.6

VAT + Two-Gen-BAT (Proposed Model) 86.7 85.9 88.3 86.3

Table 7: Performance comparison of FGSM, PGD, and our proposed approach

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%)
FGSM [25] 80.2 78.5 77.9 78.2
PGD [27] 82.6 81.0 80.4 80.7

VAT + Two-Gen-BAT (Proposed Model) 88.3 86.7 85.9 86.3

To validate the effectiveness of our VAT with the Two-Gen-BAT framework, we conduct an ablation
study analyzing how each component contributes to overall deepfake detection performance. We perform
experiments on the FaceForensics++ dataset, evaluating different model variations: (1) Baseline Model—
Standard CNN-based classifier without adversarial training; (2) Baseline Model+VAT Only—Model trained
with VAT but without Two-Gen-BAT; (3) Baseline Model + Two-Gen-BAT Only—Model trained with Two-
Gen-BAT but without VAT; (4) Baseline Model+Combined VAT+Two-Gen-BAT—Our proposed approach
integrating both methods. Table 6 shows the results of the ablation study.

The baseline model (without adversarial training) struggles with unseen deepfake techniques, achieving
only 78.4% accuracy. Incorporating VAT alone improves generalization, increasing accuracy to 82.1%. Two-
Gen-BAT alone achieves 84.7% accuracy, proving that blurred adversarial training enhances robustness.
The complete model (VAT + Two-Gen-BAT) significantly improves performance, reaching 88.3% accuracy,
demonstrating that the proposed approach is the most effective.

In addition to the ablation study in Table 6, we further evaluated the effectiveness of our approach by
comparing it with standard adversarial training techniques: Fast Gradient Sign Method (FGSM) [25] and
Projected Gradient Descent (PGD) [27]. The results are shown in Table 7. While FGSM and PGD offer
modest improvements over the baseline, our VAT + Two-Gen-BAT framework outperforms both, achieving
the highest performance across all metrics. This confirms that the proposed dual-stream adversarial approach
provides superior robustness against adversarial perturbations.

The model underwent comprehensive training for 100 epochs, with each session lasting approximately
2 h, conducted on an NVIDIA GPU server (Santa Clara, CA, USA), 16 GB RAM, and a 6-core Intel i7
processor (Santa Clara, CA, USA). The total training time of the proposed model is approximately 1 week.
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Furthermore, data augmentation techniques, such as rotation, scaling, flipping, noise addition, blurring, and
compression, were applied to improve the model’s ability to recognize complex deep fakes.

5 Conclusion
A new technique has been developed to improve the versatility of deepfake detection models by

incorporating VAT into the current models. Our method introduces a unique form of adversarial attacks
based on image blurring, facilitated by two generators during model training and incorporating VAT.
Employing VAT encourages the model to learn more transferable and essential features and helps reduce
overfitting to specific training data. Unlike conventional techniques that focus on exploiting specific artifacts,
our approach encourages the detection models to learn more generalizable features, thereby improving
their ability to distinguish between authentic and fake content. Additionally, our adversarial method can be
combined with other adversarial techniques to further enhance generalization. Through experimental trials,
we showcased that our method notably enhances the generalizability of deepfake detection models across
diverse, unseen image/video datasets and deepfake generation techniques. Furthermore, VAT can mitigate
the impact of adversarial perturbations, making the model more resilient to various types of attacks. The train
time complexity of the proposed model is high. Also, we need GPU support to train the proposed model.
Further adversarial blurred examples may be crafted with different kernel sizes to improve the generalization.
Refining VAT techniques is also a key area for future research. The model is still susceptible to compression
artifacts and unseen deepfake techniques, requiring additional fine-tuning. By optimizing VAT algorithms,
researchers can streamline training procedures, leading to the development of highly robust detection models
capable of generalizing across diverse datasets and real-world scenarios.
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